8-bit Proprietary Microcontroller cmos

F²MC-8L MB89670R/670AR Series

MB89673R/673AR/675R/675AR MB89677AR/P677A/PV670A

■ OUTLINE

The MB89670R/670AR series has been developed as a line of proprietary 8-bit, single-chip microcontrollers.

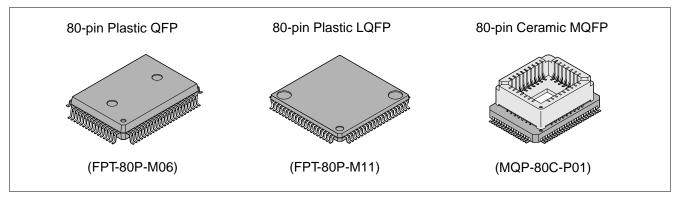
In addition to the F²MC*-8L family CPU core which can operate at low voltage but at high speed, the microcontrollers contain pheripheral functions such as timers, a serial interface, a 10-bit A/D converter, a UART, an 8/16-bit up/down counter/timer, and an external interrupt.

The MB89670R/670AR series is applicable to a wide range of applications from consumer appliances to industrial equipment, including portable devices.

*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

• F²MC-8L family CPU core


Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

- · High-speed processing at low voltage
- Minimum execution time: 0.4 μs@3.5 V, 0.8 μs@2.7 V, 2.0 μs@2.2 V
- I/O ports: max. 69 channels

(Continued)

■ PACKAGE

(Continued)

• Timers: 9 channels (MB89675AR/677AR/P677A/PV670A: 12 channels)

8-bit PWM timer: 3 channels (MB89675AR/677AR/P677A/PV670A: 6 channels) (also usable as a reload timer or 8-bit PWM timer)

16-bit timer/counter

21-bit timebase timer

8/16-bit timer (8 bits × 2 channels or 16 bits)

8/16-bit up/down counter/timer (8 bits × 2 channels or 16 bits)

• 2-channel serial interfaces

8-bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various equipment.)

UART: 1 channel (internal full-duplex double buffer)

• External interrupts: 8 channels

Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Buzzer output
- 10-bit A/D converter

Input: 8 channels

• Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

• Bus interface function

Including hold and ready functions

■ PRODUCT LINEUP

Part number		MDOCZOAD	MD0007ED*1	MDOCZEAS	MDOCZZAD	MDOODCZZA	MDOODVOZGA	
Item	WB89673R 1	MB89673AR	MB89675R 1	MB89675AF	MB89677AR	WB89P677A	MB89PV670A	
Classification			s-produced pro sk ROM produ			One-time PROM product (for development)	Piggyback/ evaluation product (for development)	
ROM size		: 8 bits nask ROM)		< 8 bits nask ROM)		× 8 bits nask ROM)	48 K × 8 bits (external ROM)	
RAM size	384×	8 bits	512×	8 bits		1 K × 8 bits		
CPU functions	Inst Inst Data Mini	number of ins ruction bit leng ruction length: a bit length: imum executio rrupt processii	s 3 bytes 16 bits us@10 MHz to us@10 MHz to					
Ports	Output ports (N-channel open-drain): Output ports (CMOS): I/O ports (N-channel open-drain): I/O ports (CMOS): Input ports: Total: 14 (12 also serve as 8 (All also serve as 32 (All also serve as 8 (All also serve as 69					peripherals.) peripherals.) s peripherals.)		
Option	Specify when ordering masking					Set with EPROM programmer	Setting not possible	
Timebase timer		21 bits	(0.81 ms, 3.2	7 ms, 26.21 r	ms, 419 ms@1	0 MHz)		
8/16-bit up/down counter/timer		8 bits × 2 channels or 16 bits × 1 channel Timer operation Up/down counter operation Phase difference counting (double mode, quadruple mode)						
16-bit timer/counter		16-		bit timer oper nter operation	ation (edge selectal	ole)		
8/16-bit timer/counter	8 bits \times 2 channels or 16 bits \times 1 channel Reload timer operation (toggled output capable) Event counter operation							
8-bit PWM timer 1, 2	8 bits × 2 channels reload timer operation (toggled output capable) 8 bits × 2 channels PWM operation (four frequencies fixed) 8 bits × 1 channel PPG operation (variable frequency) Capable of output switching between 2 channels in any mode							
8-bit PWM timer 3, 4, 5, 6		8-bit reload timer operation (toggled output capable) 8-bit PWM operation (four frequencies fixed) Capable of output switching between 2 channels in any mode						
8-bit serial I/O		8 bits LSB first/MSB first selectable One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks)						

(Continued)

Part number	MB89673R*1	MB89673AR	MB89675R*1	MB89675AR	MB89677AR	MB89P677A	MB89PV670A
UART		Variable data length (7 or 8 bits) On-chip baud rate generator Error detection function On-chip full-duplex double buffer NRZ transfer format CLK synchrnous/asynchronous data transfer capable					
10-bit A/D converter		10 bits × 8 channels					
External interrupt	8 channels (Rising edge/falling edge)						
Power supply voltage*2	2.2 V to 6.0 V 2.7 V to 6.0 V						
EPROM for use	<u> </u>				MBM27C512 -20TV		

^{*1: 8-}bit PWM timer 4, 5, and 6 are not provided for the MB89673R/MB89675R.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89673R MB89675R	MB89673AR MB89675AR MB89677AR	MB89P677A	MB89PV670A
FPT-80P-M06	0	0	0	×
FPT-80P-M11	0	0	0	×*
MQP-80C-P01	×	×	×	0

^{○ :} Available × : Not available

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Note: For more information about each package, see section "■ Package Dimensions."

^{*2:} The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.

^{*:} Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available 80QF-80QF2-8L-UP

^{+ (}MQP-80C-P01 or FPT-80P-M06) \rightarrow for conversion to FPT-80P-M11 80QF-80QF2-8L-DWN

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, make sure of its differences from the product that will actually be used. Take particular care on the following points:

• On the MB89P677A, the program area starts from address 8007H, while on the MB89677AR and MB89PV670A starts from 8000H.

(On the MB89P677A, the option setting data can be read by reading the addresses "8000H" to "8006H", while on the MB89677AR and MB89PV670A, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P677A.)

- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV670A, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following point:

Options are fixed on the MB89PV670A.

4. Differences between the MB89670/670A and MB89670R/670AR Series

· Memory access area

Memory access area of both the MB89677A and MB89677AR is the same.

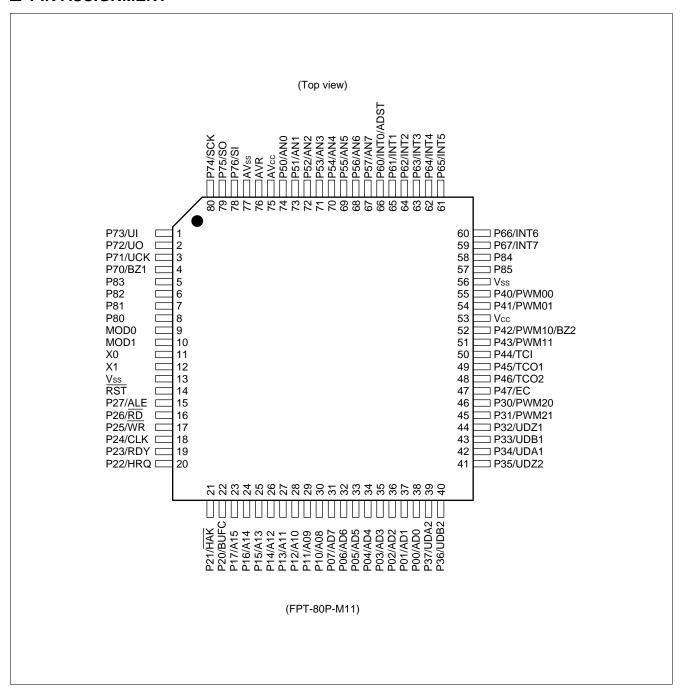
The access are of the MB89673 is different from that of the MB89673R and MB89673AR respectively in the external bus mode. See below.

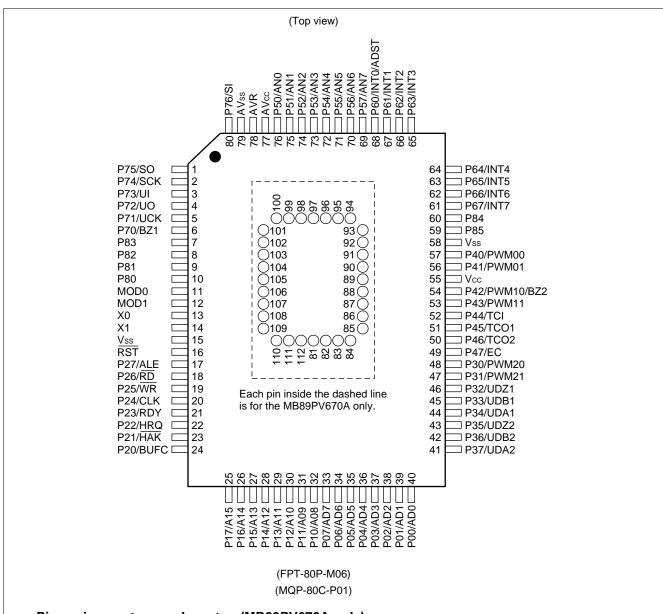
Address	Memory area				
Address	MB89673	MB89673R/673AR			
0000н to 007Fн	I/O area	I/O area			
0080н to 01FFн	RAM area	RAM area			
0200н to 027Fн		Access prohibited			
0280н to BFFFн	External area	External area			
C000н to DFFFн		Access prohibited			
E000н to FFFFн	ROM area	ROM area			

- Electrical specifications/characteristics
 Electrical specifications/characteristics of the MB89673R/673AR/677AR are the same with that of the MB89670/670A series.
- The other specifications

 Both the MB89673R/673AR/677AR and the MB89670/670A series are the same.

■ CORRESPONDENCE BETWEEN THE MB89670/670A SERIES AND MB89670R/670AR SERIES


- The MB89670R/670AR series is the reduction version of the MB89670/670A series.
- The MB89670/670A and MB89670R/670AR sereis consist of the following products:


MB89670/ 670A series	MB89673	_	_	_	MB89677A	MR80D677A	MB89PV670A
MB89670R/ 670AR series	MB89673R	MB89673AR	MB89675R	MB89675AR	MB89677AR		WIDOSI VOTOA

Differences between the MB89670A/670AR series and MB89670/670R series
 8-bit PWM timer 4, 5, and 6 is not provided for the MB89670/670R series.
 See the table below for the provided 8-bit PWM timer and the corresponding pin for the MB89670A/670AR series and MB89670/670R series.

Function	Pin name for MB89670A/670AR series	Pin name for MB89670/670R series
8-bit PWM timer 1	P40/PWM00	P40/PWM00, P41/PWM01
8-bit PWM timer 2	P42/PWM10/BZ2	P42/PWM10/BZ2, P43/PWM11
8-bit PWM timer 3	P30/PWM20	P30/PWM20, P31/PWM21
8-bit PWM timer 4	P31/PWM21	_
8-bit PWM timer 5	P41/PWM01	_
8-bit PWM timer 6	P43/PWM11	_

■ PIN ASSIGNMENT

Pin assignment on package top (MB89PV670A only)

Pin no.	Pin name						
81	N.C.	89	A2	97	N.C.	105	OE/V _{PP}
82	A15	90	A1	98	04	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	01	101	07	109	A8
86	A5	94	O2	102	O8	110	A13
87	A4	95	O3	103	CE	111	A14
88	А3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.			Oinevit.	
LQFP*1	QFP*2 MQFP*3	Pin name	Circuit type	Function
11	13	X0	Α	Clock oscillator pins
12	14	X1		
9	11	MOD0	В	Operating mode selection pins
10	12	MOD1		Connect directly to Vcc or Vss.
14	16	RST	С	Reset I/O pin This pin is of a N-ch open-drain output type with pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
38 to 31	40 to 33	P00/AD0 to P07/AD7	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O.
30 to 23	32 to 25	P10/A08 to P17/A15	D	General-purpose I/O ports When an external bus is used, these ports function as upper address output pins.
22	24	P20/BUFC	F	General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
21	23	P21/HAK	F	General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR.
20	22	P22/HRQ	D	General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
19	21	P23/RDY	D	General-purpose output port When an external bus is used, this port functions as a ready input.
18	20	P24/CLK	F	General-purpose output port When an external bus is used, this port functions as a clock output.
17	19	P25/WR	F	General-purpose output port When an external bus is used, this port functions as a write signal output.
16	18	P26/RD	F	General-purpose output port When an external bus is used, this port functions as a read signal output.
15	17	P27/ALE	F	General-purpose output port When an external bus is used, this port functions as an address latch signal output.

*1: FPT-80P-M11

(Continued)

*2: FPT-80P-M06

*3: MQP-80C-P01

Pin no.			Circuit	
LQFP*1	QFP*2 MQFP*3	Pin name	Circuit type	Function
46	48	P30/PWM20	D	General-purpose I/O port Also serves as the PWM20 output for the 8-bit PWM timer.
45	47	P31/PWM21	D	General-purpose I/O port Also serves as the PWM21 output for the 8-bit PWM timer.
44	46	P32/UDZ1	E	General-purpose I/O port Also serves as the Z-phase input for the 8/16-bit up/down counter/timer.
43	45	P33/UDB1	Е	General-purpose I/O port Also serves as the B-phase input for the 8/16-bit up/down counter/timer.
42	44	P34/UDA1	Е	General-purpose I/O ports Also serves as the A-phase input for the 8/16-bit up/down counter/timer.
41	43	P35/UDZ2	Е	General-purpose I/O port Also serves as the Z-phase input for the 8/16-bit up/down counter/timer.
40	42	P36/UDB2	E	General-purpose I/O port Also serves as the B-phase input for the 8/16-bit up/down counter/timer.
39	41	P37/UDA2	E	General-purpose I/O port Also serves as the A-phase input for the 8/16-bit up/down counter/timer.
55	57	P40/PWM00	D	General-purpose I/O port Also serves as the PWM00 output for the 8-bit PWM timer.
54	56	P41/PWM01	D	General-purpose I/O port Also serves as the PWM01 output for the 8-bit PWM timer.
52	54	P42/PWM10/ BZ2	D	General-purpose I/O port Also serves as the PWM10 and the BZ2 output for the 8-bit PWM timer.
51	53	P43/PWM11	D	General-purpose I/O port Also serves as the PWM11 output for the 8-bit PWM timer.
50	52	P44/TCI	Е	General-purpose I/O port Also serves as the TCI input for the 8/16-bit timer/counter.
49	51	P45/TCO1	D	General-purpose I/O port Also serves as the TCO1 output for the 8/16-bit timer/counter.
48	50	P46/TCO2	D	General-purpose I/O port Also serves as the TCO2 output for the 8/16-bit timer/counter.

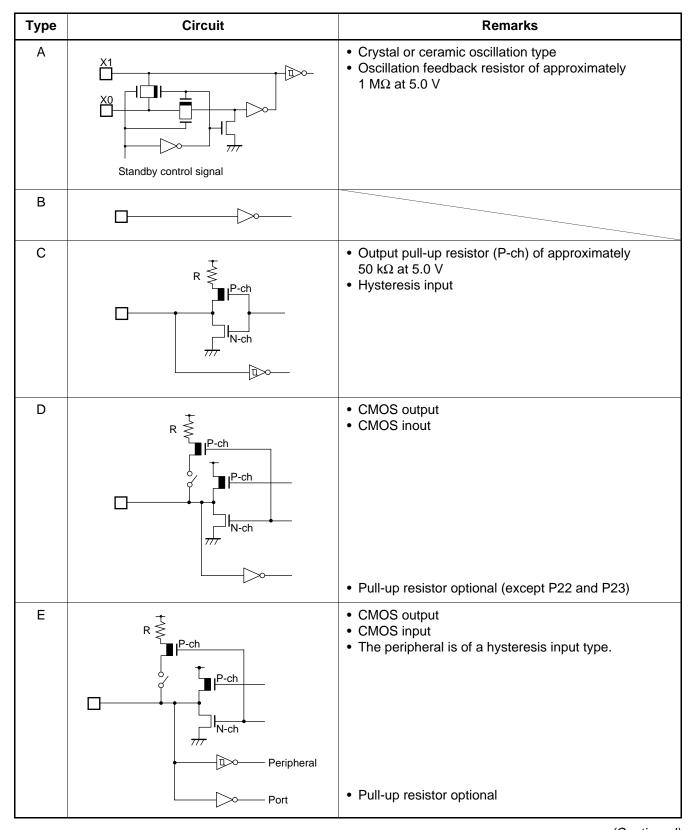
*1: FPT-80P-M11

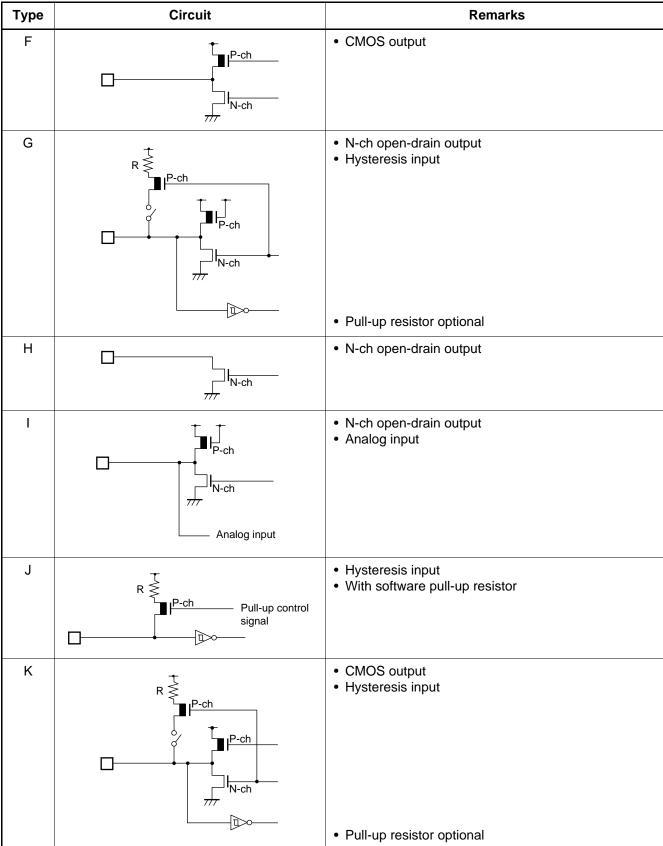
^{*2:} FPT-80P-M06

^{*3:} MQP-80C-P01

Pin	no.		Cinovit	
LQFP*1	QFP*2 MQFP*3	Pin name	Circuit type	Function
47	49	P47/EC	Е	General-purpose I/O port Also serves as the input for the16-bit timer/counter. The EC input is of a hysteresis input type.
74 to 67	76 to 69	P50/AN0 to P57/AN7	l	N-ch open-drain output ports Also serve as the analog inputs for the 10-bit A/D converter.
66	68	P60/INT0/ ADST	J	General-purpose input port The software pull-up resistor is provided. Also serves as an external interrupt input (INT0) and an 10-bit A/D converter external start-up. This port is of a hysteresis input type.
65 to 59	67 to 61	P61/INT1 to P67/INT7	J	General-purpose input ports A software pull-up resistor is provided. Also serve as external interrupt inputs (INT1 to INT7). These ports are of a hysteresis input type.
4	6	P70/BZ1	G	N-ch open-drain I/O port Also serves as a buzzer output.
3	5	P71/UCK	К	N-ch open-drain I/O port Also serves as a UART clock I/O (UCK), switchable to CMOS.
2	4	P72/UO	К	N-ch open-drain I/O port Also serves as a UART data output (UO), switchable to CMOS.
1	3	P73/UI	G	N-ch open-drain I/O port Also serves as a UART data input (UI).
80	2	P74/SCK	К	N-ch open-drain I/O port Also serves as the clock I/O (SCK) for the 8-bit serial I/O, switchable to CMOS.
79	1	P75/SO	К	N-ch open-drain I/O port Also serves as the data output (SO) for the 8-bit serial I/O, switchable to CMOS.
78	80	P76/SI	G	N-ch open-drain I/O port Also serves as the data input (SI) for the 8-bit serial I/O.
8 to 5, 57, 58	10 to 7, 59, 60	P80 to P83, P85, P84	Н	N-ch open-drain output ports
53	55	Vcc	_	Power supply pin
13, 56	15, 58	Vss	_	Power supply (GND) pin
75	77	AVcc	_	A/D converter power supply pin Use this pin at the same voltage as Vcc.
76	78	AVR	_	A/D converter reference voltage input pin
77	79	AVss	_	A/D converter power supply pin Use this pin at the same voltage as Vss.

^{*1:} FPT-80P-M11


^{*2:} FPT-80P-M06


^{*3:} MQP-80C-P01

• External EPROM pins (MB89PV670A only)

Pin no.	Pin name	I/O	Function
82 83 84 85 86 87 88 89 90	A15 A12 A7 A6 A5 A4 A3 A2 A1	O	Address output pins
93 94 95	O1 O2 O3	I	Data input pins
96	Vss	0	Power supply (GND) pin
98 99 100 101 102	O4 O5 O6 O7 O8	I	Data input pins
103	CE	0	ROM chip enable pin Outputs "H" during standby.
104	A10	0	Address output pin
105	OE/V _{PP}	0	ROM output enable pin Outputs "L" at all times.
107 108 109	A11 A9 A8	0	Address output pins
110	A13	0	
111	A14	0	
112	Vcc	0	
81 92 97 106	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

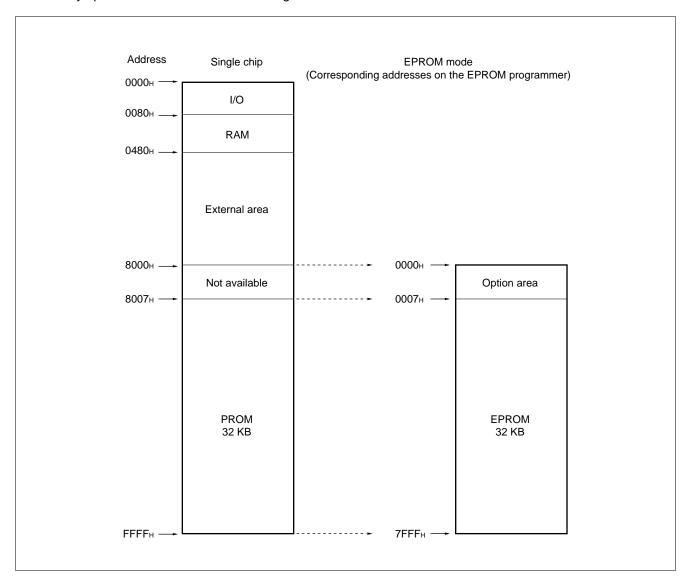
5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P677A


The MB89P677A is an OTPROM version of the MB89670R/670AR series.

1. Features

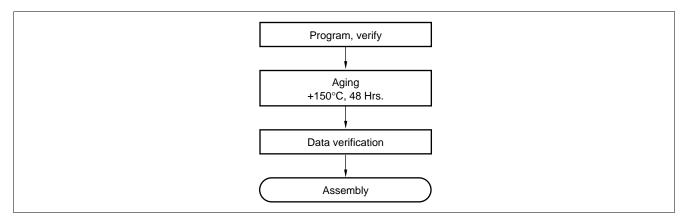
- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in the EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in the EPROM mode is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.


• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH while operating as a single chip assign to 0007H to 7FFFH in the EPROM mode).

 Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see "7. Setting OTPROM Options.")
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

Due to the nature of the blanked OTPROM microcomputer, bit programming test can't be conducted as Fujitsu's shipping test. Therefore a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Part number	MB89P677APF	MB89P677PFM
Package	QFP-80	QFP-80
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-80QF-28DP-8L2	ROM-80QF2-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 μ F between V_{PP} and V_{SS} or V_{CC} and V_{SS} can stabilize programming operations.

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM.

Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Vacancy	Reset pin	Power-on	Oscillation stabilization ti	
0000н	Readable	Readable	Readable	Readable	output 1: Yes 0: No	reset 1: Yes 0: No	00: 2 ⁴ /Fc 10: 2 ¹⁷ /Fc	01: 2 ¹⁴ /Fc 11: 2 ¹⁸ /Fc
0001н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0002н	P37 Pull-up 1: No 0: Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0003н	P47 Pull-up 1: No 0: Yes	P46 Pull-up 1: No 0: Yes	P45 Pull-up 1: No 0: Yes	P44 Pull-up 1: No 0: Yes	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0: Yes	P41 Pull-up 1: No 0: Yes	P40 Pull-up 1: No 0: Yes
	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
0004н	Readable	Readable	Readable	Readable	Readable	Readable	Readable	Readable
0005н	Vacancy Readable	Vacancy Readable	Vacancy Readable	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0: Yes	P71 Pull-up 1: No 0: Yes	P70 Pull-up 1: No 0: Yes
0006н	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	P04 to P07 Pull-up 1: No 0: Yes	P00 to P03 Pull-up 1: No 0: Yes	P76 Pull-up 1: No 0: Yes	P75 Pull-up 1: No 0: Yes

Notes: • Each bit is set to "1" as the initialized value.

Do not write "0" to the vacant bit.

The read value of the vacant bit is "1" under the vacant bit is "1".

The read value of the vacant bit is "1".

The read value of the vacant bit is "1".

The read value of the vacant bit is "1", unless "0" is written to it.

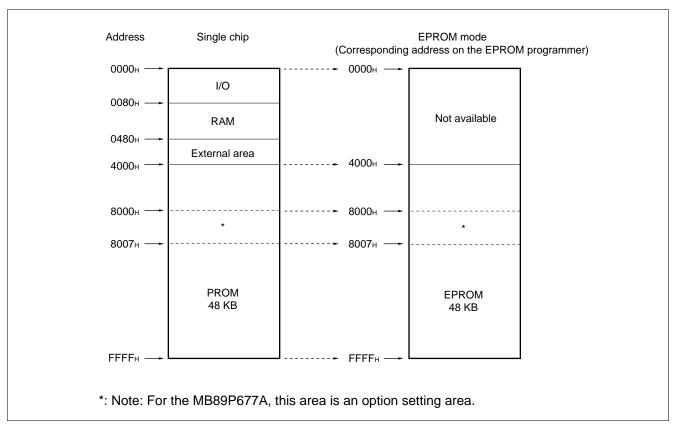
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

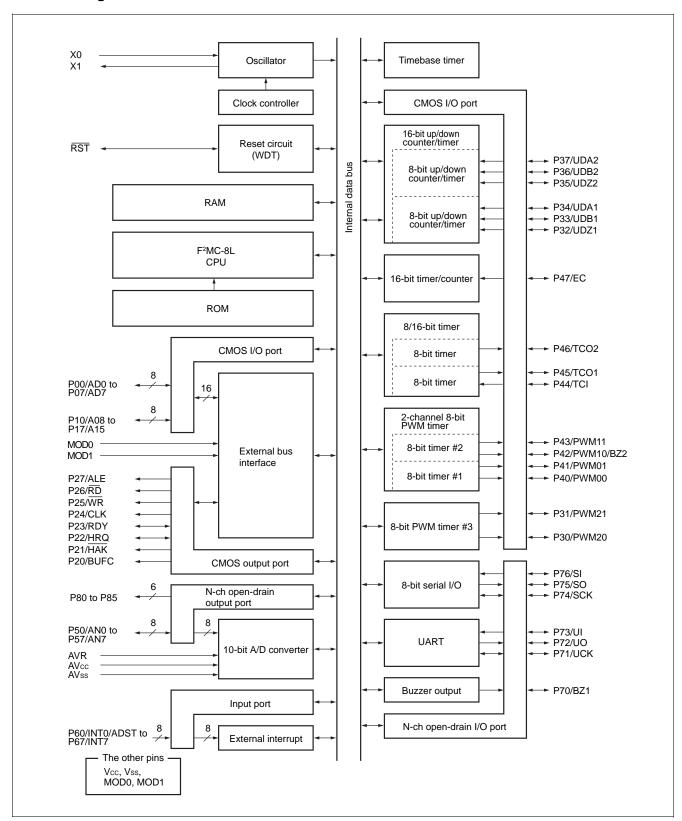

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

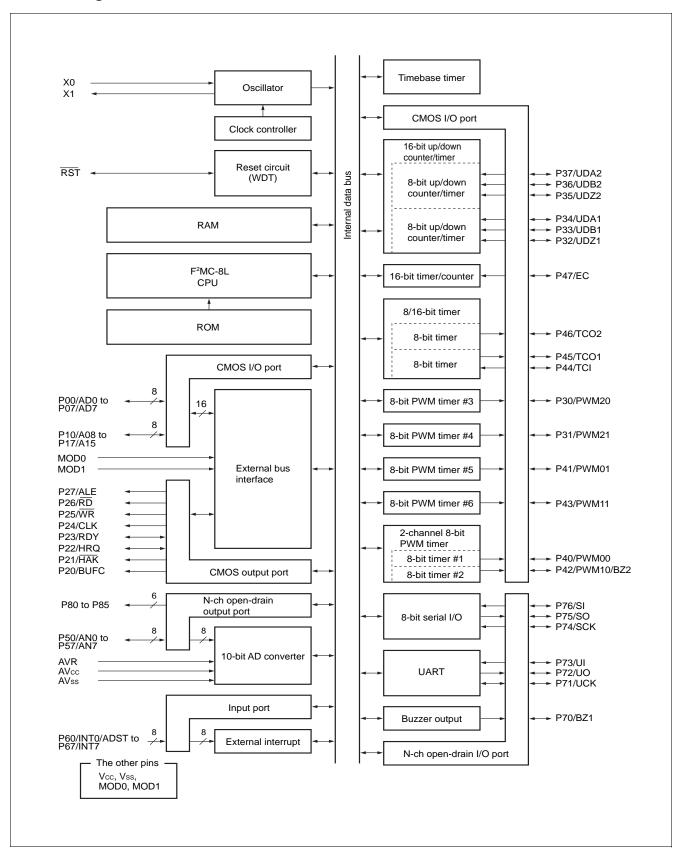
FAX: (81)-3-5396-9106

3. Memory Space

Memory space in each mode is diagrammed below.

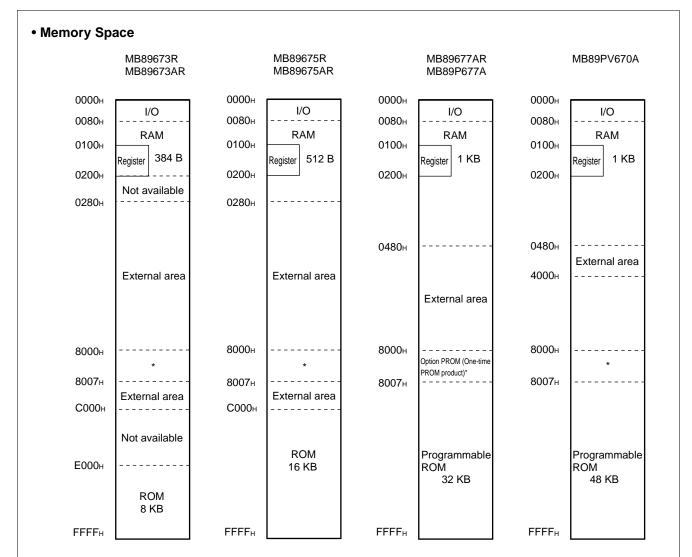


4. Programming to the EPROM


- (1) Set the EPROM programmer to the MBM27C512.
- (2) Load program data into the EPROM programmer at 4000_H to FFFFH.
- (3) Program to 4000H to FFFFH with the EPROM programmer.

■ BLOCK DIAGRAM

1. Block Diagram of MB89673R/89675R


2. Block Diagram of MB89673AR /89675AR/89677AR/89P677A/89PV670A

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89670R/670AR series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated at the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I/O area, that is, near the highest address. The tables of interrupt reset vectors and vector call instructions are allocated from the highest address within the program area. The memory space of the MB89670R/670AR series is structured as illustrated below.

^{*:} Since addresses 8000H to 8006H for the MB89P677A comprise an option area, pay attention to use this area for the other products in this series.

2. Registers

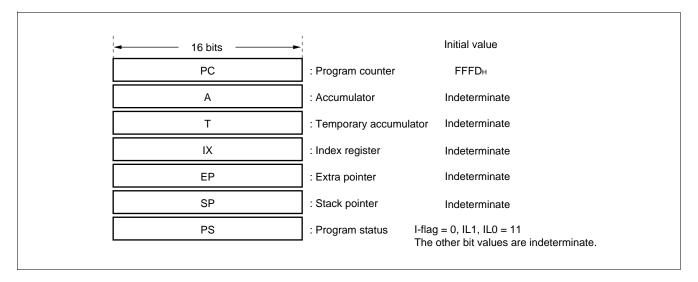
The F²MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating the instruction storage positions

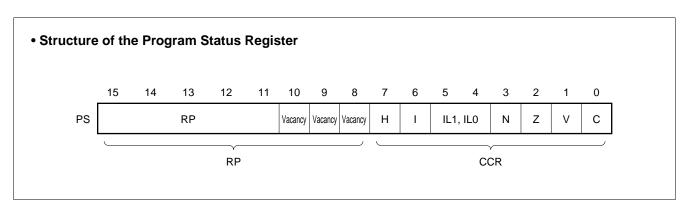
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

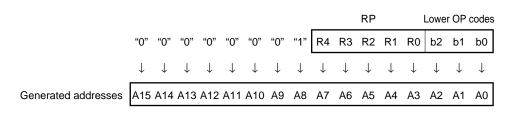

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

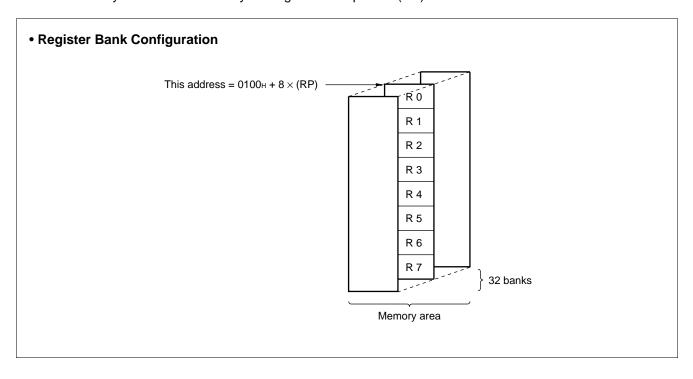
I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, IL0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	I	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the MSB becomes '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.


V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are of 8 bits each and allocated in the register banks of the memory. One bank contains eight registers and up to 32 banks can be used on every product of the MB89670R/670AR series. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/Write	Register abbreviation	Register name
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н	(W)	BCTR	External bus pin control register
06н		(Va	cancy)
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Timebase timer control register
0Вн		(Va	cancy)
0Сн	(R/W)	PDR3	Port 3 data register
0Dн	(W)	DDR3	Port 3 data direction register
0Ен	(R/W)	PDR4	Port 4 data register
0Fн	(W)	DDR4	Port 4 data direction register
10н	(R/W)	PDR5	Port 5 data register
11н	(R)	PDR6	Port 6 data register
12н	(R/W)	PPCR	Port 6 pull-up control register
13н	(R/W)	PDR7	Port 7 data register
14н	(R/W)	PDR8	Port 8 data/port 7 swiching register
15н	(R/W)	BZCR	Buzzer register
16н	(R/W)	CNTR #3	PWM control register #3
17н	(R/W)	COMP #3	PWM compare register #3
18н	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer count register (H)
1Ан	(R/W)	TCLR	16-bit timer count register (L)
1Вн		(Va	cancy)
1Сн	(R/W)	SMR	Serial mode register
1D _H	(R/W)	SDR	Serial data register
1Ен to 1Fн		(Va	cancy)

Address	Read/Write	Register abbreviation	Register name			
20н	(R/W)	ADC1	A/D converter control register 1			
21н	(R/W)	ADC2	A/D converter control register 2			
22н	(R/W)	ADCH	A/D converter data register H			
23н	(R/W)	ADCL	A/D converter data register L			
24н	(R/W)	T2CR	Timer 2 control register			
25н	(R/W)	T1CR	Timer 1 control register			
26н	(R/W)	T2DR	Timer 2 data register			
27н	(R/W)	T1DR	Timer 1 data register			
28н	(R/W)	CNTR1	PWM 1 control register			
29н	(R/W)	CNTR2	PWM 2 control register			
2Ан	(R/W)	CNTR3	PWM 3 control register			
2Вн	(W)	COMR2	PWM 2 compare register			
2Сн	(W)	COMR1	PWM 1 compare register			
2Dн to 2Fн		(Vacancy)				
30н	(R) (W)	UDCR1 RCR1	Up/down counter register 1 Reload compare register1			
31н	(R) (W)	UDCR2 RCR2	Up/down counter register 2 Reload compare register2			
32н	(R/W)	CCRA1	Counter control register A1			
33н	(R/W)	CCRA2	Counter control register A2			
34н	(R/W)	CCRB1	Counter control register B1			
35н	(R/W)	CCRB2	Counter control register B2			
36н	(R/W)	CSR1	Counter status register 1			
37н	(R/W)	CSR2	Counter status register 2			
38н	(R/W)	EIC1	External interrupt 1 control register 1			
39н	(R/W)	EIC2	External interrupt 1 control register 2			
ЗАн	(R/W)	EIE2	External interrupt 2 control register			
3Вн	(R/W)	EIF2	External interrupt 2 flag register			
3Cн to 3Fн		(Va	cancy)			

(Continued)

Address	Read/Write	Register abbreviation	Register name				
40н	(R/W)	USMR	UART serial mode register				
41н	(R/W)	USCR	UART serial rate control register				
42н	(R/W)	USTR	UART status register				
43н	(R) (W)	RXDR TXDR	UART receiving data register UART transmitting data register				
44н		(Va	cancy)				
45н	(R/W)	RRDR	Baud rate generator reload data register				
46н to 47н		(Va	cancy)				
48н*	(R/W)	CNTR #4	PWM control register #4				
49н*	(R/W)	COMP #4	PWM compare register #4				
4A _H *	(R/W)	CNTR #5	PWM control register #5				
4B _H *	(R/W)	COMP #5	PWM compare register #5				
4Сн*	(R/W)	CNTR #6	PWM control register #6				
4D _H *	(R/W)	COMP #6	PWM compare register #6				
4E to 7Вн		(Va	cancy)				
7Сн	(W)	ILR1	Interrupt level setting register 1				
7Dн	(W)	ILR2	Interrupt level setting register 2				
7Ен	(W)	ILR3 Interrupt level setting register 3					
7 Fн		(Vacancy)					

^{*:} For the MB89673R/675R, these are (vacancies).

Note: Do not use (vacancies).

■ ELECTRICAL CHARACTERISTICS

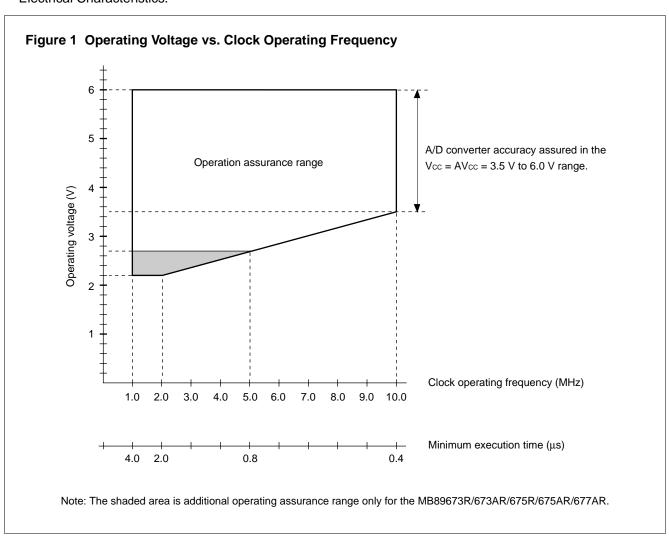
1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Devemates	Cumbal	Rated	l value	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
Device eventuality and	Vcc	Vss-0.3	Vss + 7.0	V	*
Power supply voltage	AVcc	Vss - 0.3	Vcc + 0.3	V	*
A/D converter reference input voltage	AVR	Vss-0.3	Vcc + 0.3	V	AVR must not exceed "AVcc + 0.3 V".
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	
Output voltage	V _{O1}	Vss-0.3	Vcc + 0.3	V	Except P80 to P85
Output voltage	V _{O2}	Vss-0.3	Vss + 7.0	V	P80 to P85
"L" level maximum output current	Іоь	_	20	mA	
	loLAV1	_	4	mA	Average value (operating current × operating rate)
"L" level average output current	lolav2	_	8	mA	Average value (operating current × operating rate) P80 to P85
"L" level total maximum output current	ΣloL	_	100	mA	
"L" level total average output current	ΣIOLAV	_	40	mA	Average value (operating current × operating rate)
"H" level maximum output current	Іон	_	-20	mA	
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	∑Іон	_	-50	mA	
"H" level total average output current	Σ lohav	_	-20	mA	Average value (operating current × operating rate)
Power consumption	P _D	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

^{*:} Use AVcc and Vcc set at the same voltage.

Take care that AVR does not exceed "AVcc + 0.3 V" and AVcc does not exceed Vcc, such as when power is turned on.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol Rated value		Unit	Remarks	
Parameter	Symbol	Min.	Max.	Ollit	Remarks
		2.2*	6.0	V	Normal operation assurance range MB89673R/673AR/675R/675AR/677AR
Power supply voltage	Vcc AVcc	2.7*	6.0	V	Normal operation assurance range MB89PV670A/P677A
		1.5	6.0	V	Retains the RAM state in the stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

The horizontal line of the graph in the figure 1 indicates the operating frequency of the external oscillator and the lower horizontal line indicates the min. instruction execution time = $4/F_c$.

In the case of changing the operating clock with the clock gear function, be sure to convert it into the min. instruction execution time on the lower horizontal line since the operating voltage range is dependent on the min. instruction execution time.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

			(AVcc = Vcc = 5		ated valu			
Parameter	Symbol	Pin name	me Condition		Тур.	Max.	Unit	Remarks
"H" level input	VIH	P00 to P07, P10 to P17, P30 to P37, P40 to P47		0.7 Vcc	—	Vcc+0.3	V	P32 to P37, P44, and P47 are of a port input type.
voltage	Vihs	RST, MOD0, MOD1, P32 to P37, P44, P47, P60 to P67, P70 to P76		0.8 Vcc	_	Vcc+0.3	V	P32 to P37, P44, and P47 are of a peripheral input type.
"L" level input	VIL	P00 to P07, P10 to P17, P30 to P37, P40 to P47	_	Vss - 0.3	_	0.3 Vcc	V	P32 to P37, P44, and P47 are of a port input type.
voltage	VILS	RST, MOD0, MOD1, P32 to P37, P44, P47, P60 to P67, P70 to P76		Vss - 0.3	_	0.2 Vcc	V	P32 to P37, P44, and P47 are of a peripheral input type.
Open-drain output pin applied voltage	VD	P80 to P85		Vss - 0.3	_	Vss + 6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P71, P72, P74, P75	Iон = -2.0 mA	4.0	_		V	
"L" level output	Vol1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P76	IoL = 4.0 mA	_	_	0.4	V	
voltage	V _{OL2}	P80 to P85	IoL = 10 mA	_		0.5	V	
	Vol3	RST	IoL = 4.0 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	Iu ₁	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P76, MOD0, MOD1	0.0 V < Vı < Vcc	_	_	±5	μΑ	Without pull-up resistor option
Tourage current)	I _{LI2}	P80 to P85	0.0 V < Vı < Vcc	_	_	±1	μΑ	οριιστί
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P60 to P67, P70 to P76, RST	Vı = 0.0 V	25	50	100	kΩ	With pull-up resistor option

(Continued)

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name		Condition	R	ated valu	ue	Unit	Remarks
Parameter	Syllibol	Pili liallie		Jonailion	Min.	Тур.	Max.	Ullit	Remarks
	Icc ₁		Vcc	= 10 MHz = 5.0 V ² = 0.4 μs	_	12	20	mA	
	Icc2		Fc = 10 MHz Vcc = 3.0 V t _{inst} ² = 6.4 μs		_	1	2	mA	MB89673R/ 673AR/ 675R/675AR/ 677AR/ PV670A
		Vcc			_	1.5	2.5	mA	MB89P677A
	Iccs ₁	VCC	Sleep mode	Fc = 10 MHz Vcc = 5.0 V $t_{inst}^{*2} = 0.4 \mu s$	_	3	7	mA	
Power supply current*1	Iccs ₂			Fc = 10 MHz Vcc = 3.0 V t_{inst}^2 = 6.4 µs	_	1	1.5	mA	
	Іссн		Vcc = 3.0 V $T_A = +25^{\circ}\text{C}$ Stop mode		_	_	1	mA	
	IA		Fc = 10 MHz When A/D converter starts		_	6	8	mA	
	Іан	AVcc	Fc = 10 MHz T _A = +25°C When A/D converter is at a stop		_	_	1	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = '	1 MHz	_	10	_	pF	

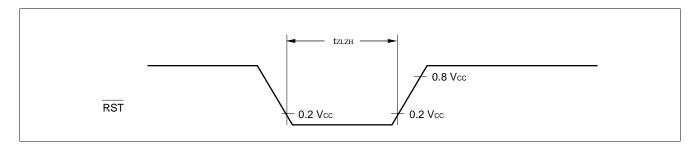
^{*1:} The measurement conditions of the power supply current are as follows.

Note: The current consumption of connected EPROM and ICE is not considered on MB89PV670A.

The external clock is used.

The output pins are open.

Vcc is upon the condition above the table.

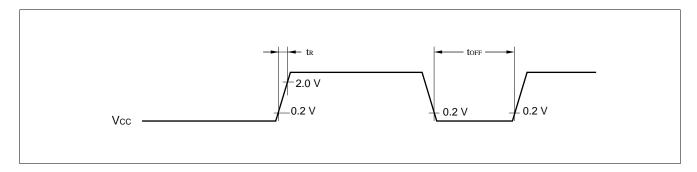

^{*2:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

(AVcc = Vcc = 5.0 V $\pm 10\%$, AVss = Vss = 0.0 V, TA = -40° C to +85°C)

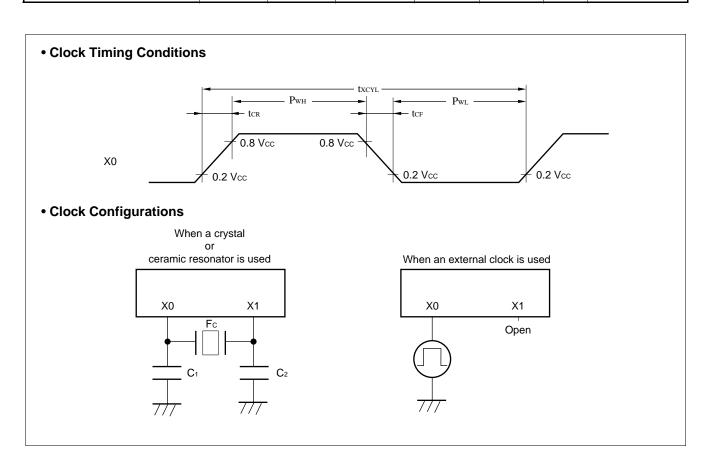
Parameter	Symbol	Symbol Condition		value	Unit	Remarks
Farameter	Symbol Condition		Min. Max.		Oilit	Remarks
RST "L" pulse width	t zlzh	_	48 t HCYL	_	ns	



(2) Specifications for Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Rated value		Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Onit	Nemarks	
Power supply rising time	tr		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff	_	1	_	ms	Min. internal time to next power-on reset	


Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

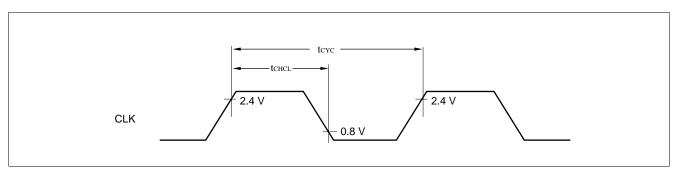
(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Rated value		l lm!t	Domonko
				Min.	Max.	Unit	Remarks
Clock frequency	Fc	X0, X1		1	10	MHz	
Clock cycle time	txcyL	X0, X1		100	1000	ns	
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	ns	External clock
Input clock rising/falling time	tcr tcr	X0		_	10	ns	External clock

(4) Instruction Cycle

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

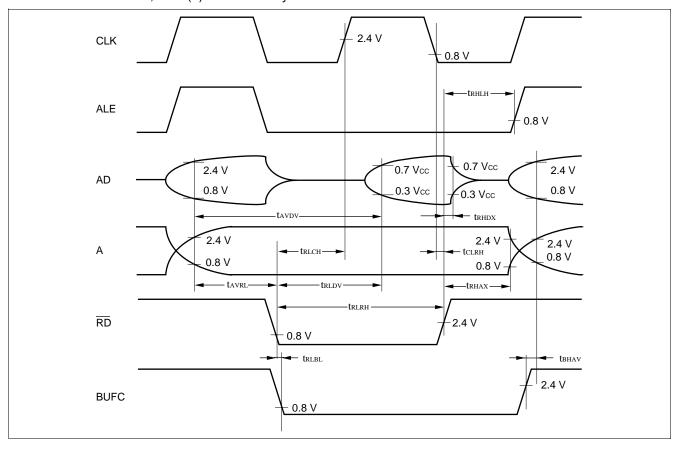

Parameter	Symbol	Rated value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fc, 8/Fc, 16/Fc, 64/Fc	μs	(4/Fc) t_{inst} = 0.4 μs when operating at Fc = 10 MHz

(5) Clock Output Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition	Rated	value	Unit	Remarks
			Condition	Min.	Max.		
Cycle time	tcyc	CLK		1/2 t _{inst} * —		μs	
$CLK \uparrow \to CLK \downarrow$	t chcL	CLK	_	1/4 t _{inst} — 0.07	1/4 t _{inst}	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

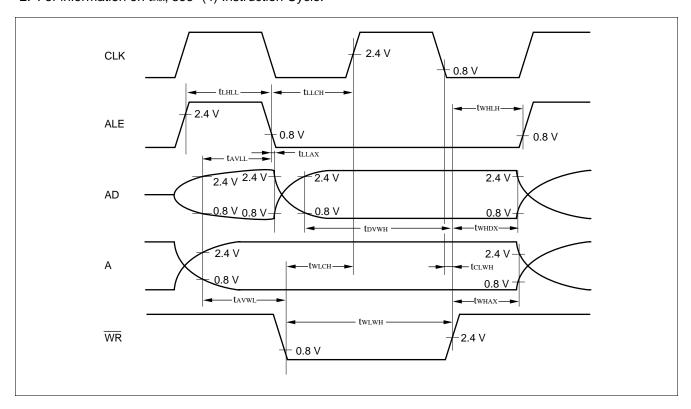


(6) Bus Read Timing

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40°C to $+85^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condition	Rated	value	Unit	Remarks
Parameter	Syllibol	Fill Hallie	Condition	Min.	Max.	Oilit	Remains
Valid address $\rightarrow \overline{RD}$ ↓ time	t avrl	RD, A15 to A08, AD7 to AD0		1/4 tinst* - 0.06	_	μs	
RD pulse width	t rlrh	RD		1/2 tinst *- 0.02		μs	
$\begin{array}{c} \text{Valid address} \rightarrow \text{Data} \\ \text{read time} \end{array}$	tavdv	AD7 to AD0, A15 to A08		_	1/2 t inst *	μs	No wait
$\overline{RD} \downarrow \to Data$ read time	t RLDV	RD, AD7 to AD0		_	1/2 tinst *- 0.08	μs	No wait
$\overline{RD} \uparrow \to Data \; hold \; time$	t RHDX	AD7 to AD0, RD		0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	_	1/4 tinst* - 0.04	_	μs	
$\overline{\text{RD}} \uparrow \rightarrow \text{Address loss}$ time	t RHAX	RD, A15 to A08		1/4 tinst* - 0.04	_	μs	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1/4 tinst* - 0.04	_	μs	
$CLK \downarrow \rightarrow \overline{RD} \uparrow time$	t CLRH	RD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	t RLBL	RD, BUFC		-5	_	ns	
BUFC ↑ → Valid address time	t BHAV	A15 to A08, AD7 to AD0, BUFC		5	_	ns	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

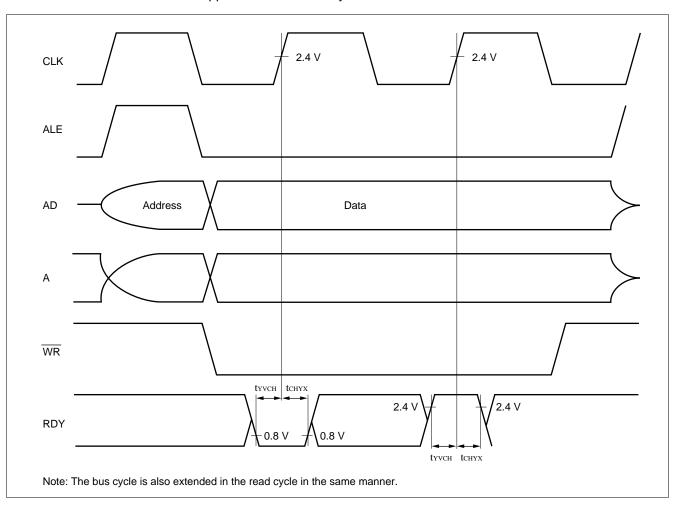

(7) Bus Write Timing

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40°C to $+85^{\circ}\text{C}$)

Daramatar	Symbol	Din name	Condition	Rated	value	Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks
Valid address → ALE ↓ time	t avll	AD7 to AD0, ALE, A15 to A08		1/4 tinst*2 - 0.064	_	μs	
ALE ↓ time → Address loss time	tLLAX	AD7 to AD0, ALE, A15 to A08		5 ^{*1}	_	ns	
	tavwl	WR, ALE		1/4 tinst*2 - 0.06	_	μs	
WR pulse width	t wlwh	WR		1/2 tinst*2-0.02	_	μs	
Writing data $\rightarrow \overline{\text{WR}} \uparrow \text{time}$	t DVWL	AD7 to AD0, WR		1/2 tinst*2-0.06	_	μs	
$\overline{\text{WR}} \uparrow \rightarrow \text{Address loss}$ time	twhax	WR, A15 to A08	_	1/4 tinst*2 - 0.04	_	μs	
$\overline{WR} \uparrow \to Data \; hold \; time$	twndx	AD7 to AD0, WR		1/4 tinst*2-0.04	_	μs	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 tinst* - 0.04	_	μs	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WR, CLK		1/4 t _{inst*2} - 0.04	_	μs	
$CLK \downarrow \to \overline{WR} \uparrow time$	t clwH	WR, CLK		0	_	ns	
ALE pulse width	t LHLL	ALE		1/4 tinst*2-0.035	_	μs	
$ALE \downarrow \to CLK \uparrow time$	t LLCH	ALE, CLK		1/4 tinst*2-0.03	_	μs	

^{*1:} These characteristics are also applicable to the bus read timing.

^{*2:} For information on tinst, see "(4) Instruction Cycle."

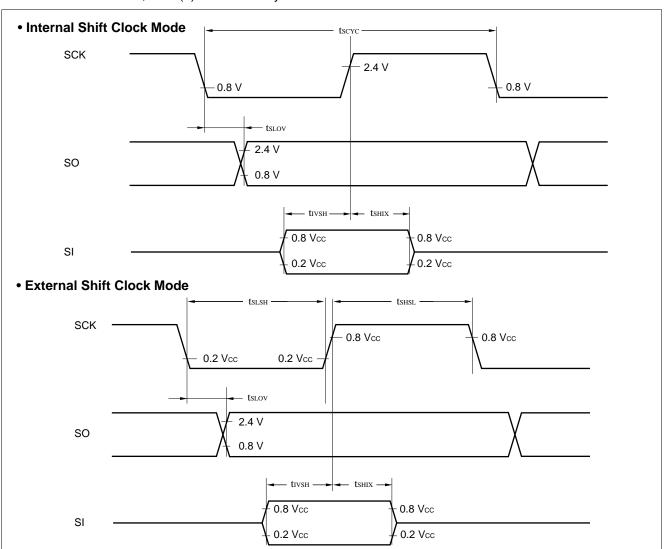


(8) Ready Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition -	Rated	value	Unit	Remarks
	Symbol			Min.	Max.	Oilit	Remarks
RDY valid → CLK ↑ time	tүvсн	RDY, CLK		60	_	ns	*
$\begin{array}{c} CLK \uparrow \to RDY \; loss \\ time \end{array}$	tснух	RDY, CLK	_	0	_	ns	*

^{*:} These characteristics are also applicable to the read cycle.

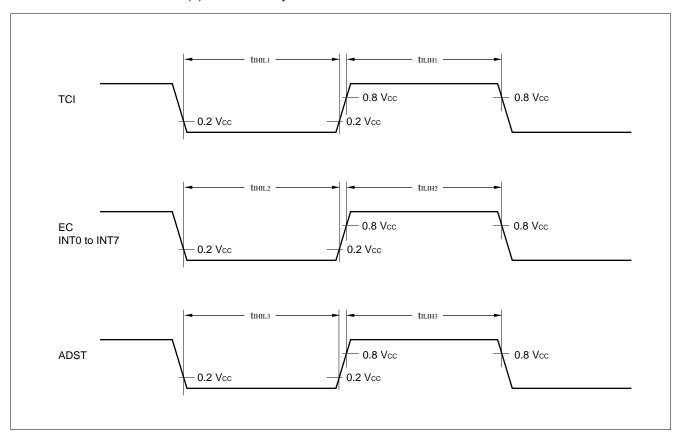


(9) Serial I/O Timing

 $(AVcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Daramatar	Symbol	Pin name	Condition	Rated	value	Unit	Remarks	
Parameter	Symbol	Fill liallie	Condition	Min.	Max.	Oilit	IVEIIIai NS	
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs		
$SCK \downarrow \to SO$ time	tslov	SCK, SO	Internal shift	-200	200	ns		
Valid SI \rightarrow SCK $↑$	tıvsh	SI, SCK	clock mode	1/2 tinst*	_	μs		
$SCK \uparrow \to valid \; SI \; hold \; time$	tshix	SCK, SI		1/2 tinst*	_	μs		
Serial clock "H" pulse width	tshsl	SCK		1 t inst*	_	μs		
Serial clock "L" pulse width	tslsh	SCK		1 tinst*	_	μs		
$SCK \downarrow \to SO$ time	tslov	SCK, SO	External shift clock mode	0	200	ns		
Valid SI → SCK \uparrow	tivsh	SI, SCK		1/2 tinst*	_	μs		
$SCK \uparrow \rightarrow valid SI hold time$	tshix	SCK, SI		1/2 tinst*	_	μs		

*: For information on tinst, see "(4) Instruction Cycle."

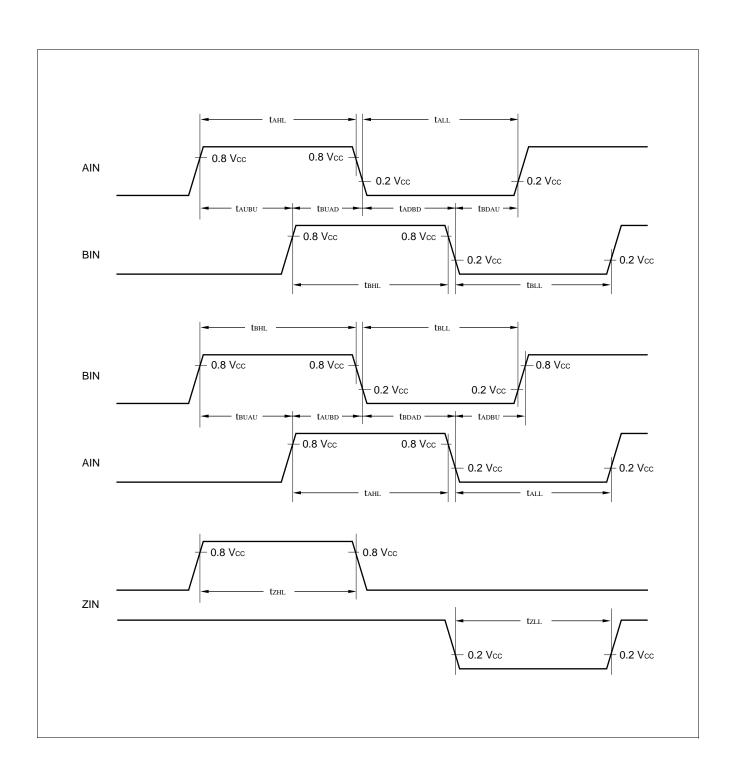


(10) Peripheral Input Timing

 $(AVcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Dozomotov	Symbol	Pin name	Condition	Rated	value	Unit	Remarks	
Parameter	Symbol	riii iiaiiie	Condition	Min.	Max.	Offic	Iveillaiks	
Peripheral input "H" pulse width 1	t _{ILIH1}	TCI		1 t inst*	_	μs		
Peripheral input "L" pulse width 1	t _{IHIL1}	TCI		1 tinst*	_	μs		
Peripheral input "H" pulse width 2	t _{ILIH2}	EC, INT0 to INT7	_	2 tinst*	_	μs		
Peripheral input "L" pulse width 2	t _{IHIL2}	EC, INT0 to INT7		2 tinst*	_	μs		
Peripheral input "H" pulse width 3	t ılıнз	ADST	A/D	64 tinst*	_	μs		
Peripheral input "L" pulse width 3	t ıнıl3	ADST	mode	64 tinst*	_	μs		
Peripheral input "H" pulse width 3	t ılıнз	ADST	Sense	64 tinst*	_	μs		
Peripheral input "L" pulse width 3	t _{IHIL3}	ADST	mode	64 tinst*	_	μs		

*: For information on t_{inst}, see "(4) Instruction Cycle."



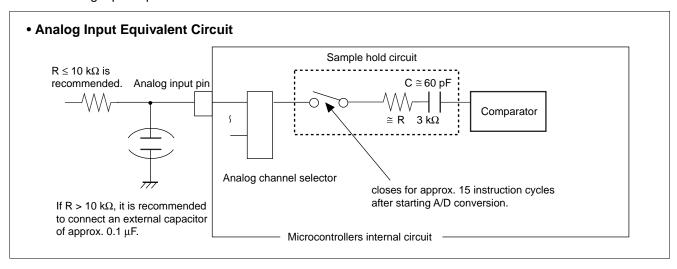
(11) Up/down Counter Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Donomotor	Cumbal	Din nama	Condition	Rated	value	l lmi4	Remarks	
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks	
AIN input "1" pulse width	t ahl			2 tinst*	_	μs		
AIN input "0" pulse width	t all			2 tinst*	_	μs		
BIN input "1" pulse width	t BHL			2 tinst*	_	μs		
BIN input "0" pulse width	t BLL			2 tinst*	_	μs		
$AIN \uparrow \rightarrow BIN \uparrow time$	t aubu			1 tinst*	_	μs		
$BIN \uparrow \rightarrow AIN \downarrow time$	t BUAD	P33, P34,		1 tinst*	_	μs		
$AIN \downarrow \rightarrow BIN \downarrow time$	t ADBD	P36, P37		1 tinst*	_	μs		
$BIN \downarrow \rightarrow AIN \uparrow time$	t BDAU		_	1 tinst*	_	μs		
$BIN \uparrow \to AIN \uparrow time$	t BUAU			1 tinst*	_	μs		
$AIN \uparrow \rightarrow BIN \downarrow time$	t AUBD			1 tinst*	_	μs		
$BIN \downarrow \rightarrow AIN \downarrow time$	t BDAD			1 tinst*	_	μs		
$AIN \downarrow \rightarrow BIN \uparrow time$	t adbu			1 tinst*	_	μs		
ZIN input "1" pulse width	tzhl	P32, P35		1 tinst*	_	μs		
ZIN input "0" pulse width	t zll	F32, F33		1 tinst*		μs		

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

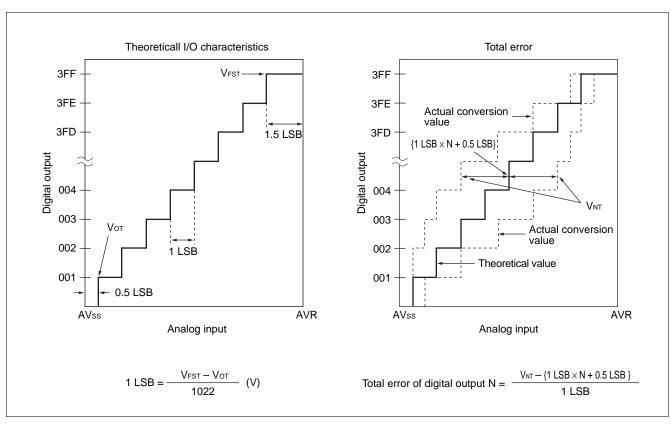

 $(AVcc = Vcc = 3.5 \text{ V to } 6.0 \text{ V}, Fc = 10 \text{ MHz}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Devementer	Cumbal	Din nama		Rated value		l lm:4	Domorko	
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	Remarks	
Resolution			_	_	10	bit		
Linearity error			_	_	±2.0	LSB		
Differential linearity error	_	_	_	_	±1.5	LSB		
Total error			_	_	±3.0	LSB	AVcc =	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	AVCC = AVR = Vcc	
Full-scale transition voltage	V _{FST}	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV		
Interchannel disparity			_	_	4	LSB		
A/D mode conversion time	_	_	_	_	13.2	μs	At 10 MHz oscillation	
Sense mode conversion time			_	_	7.2	μs	At 10 MHz oscillation	
Analog port input current	IAIN	AN0 to AN7	_	_	10	μА		
Analog input voltage	_	AN0 to AN7	0	_	AVR	V		
Reference voltage		AVR	0	_	AVcc	V		
Reference voltage supply current	IR	AVR	_	200	_	μΑ	AVR = 5.0 V	

6. Notes on Using A/D Converter

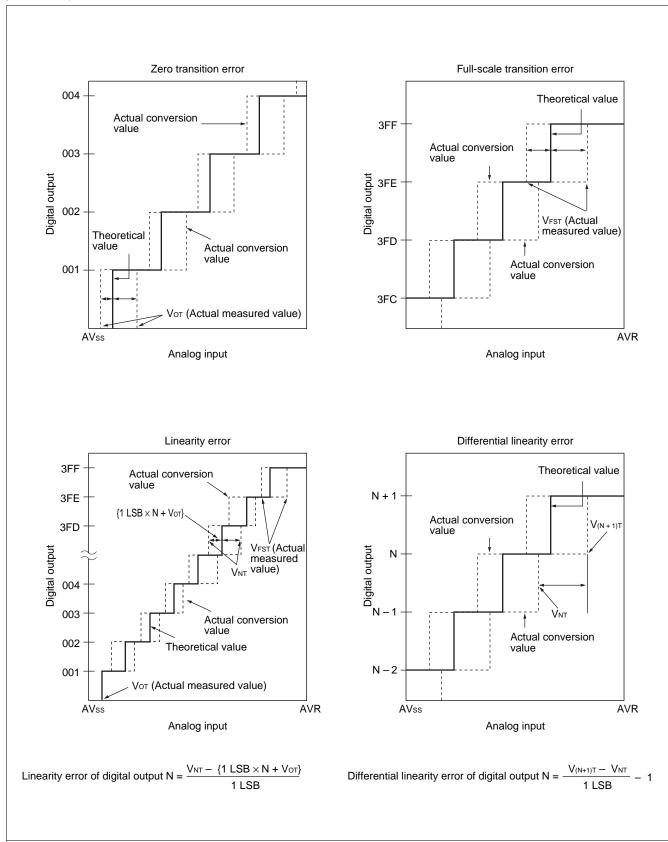
- The smaller | AVR AVss |, the greater the error would become relatively.
- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 k Ω If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 μ s at 10 MHz oscillation).

An analog input equivalent circuit is shown below.

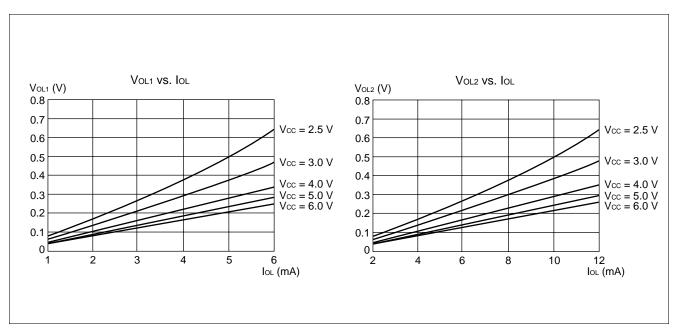

Since the A/D converter contains a sample hold circuit, the level of the analog input pin might not stabilize within the sampling period after starting A/D, resulting in inaccurate A/D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.

It is recommended to keep the input impedance to the analog pin from exceeding 10 k Ω . If it exceeds 10 k Ω , it is recommended to connect a capacitor of approx. 0.1 μ F to the analog input pin.

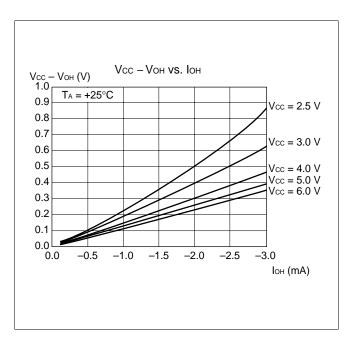
Except for the sampling period after starting A/D, the input leakage current of the analog input pin is less than 10 μA.


7. A/D Converter Glossary

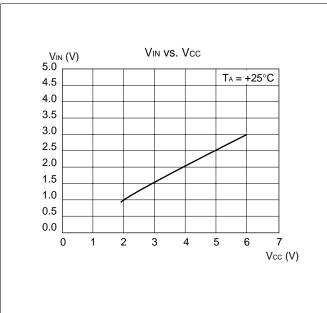
- Resolution
 - Analog-change that are identifiable with the A/D converter.
- · Linearity error
 - The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics
- · Differential linearity error
 - The deviation of the input voltage needed to change the output code by 1 LSB from the theoretical voltage
- Total error
 - The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.

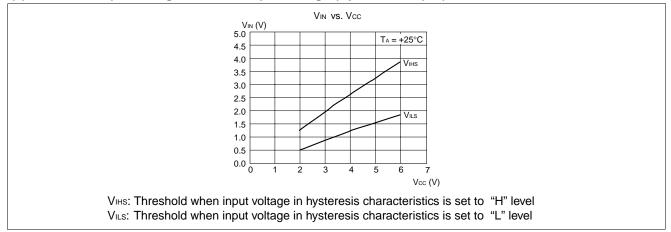

(Continued)

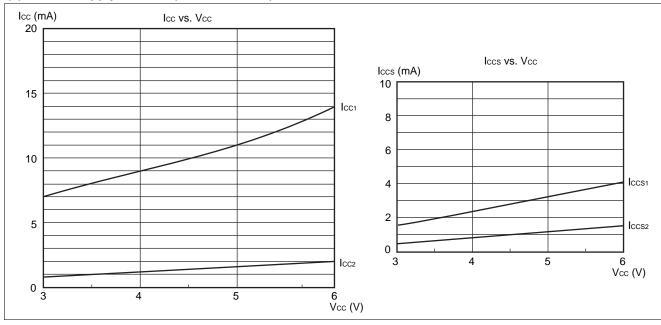
(Continued)

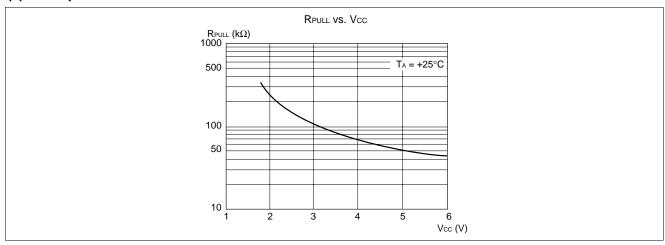


■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS (136 instructions)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8/3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (e.g.: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	indicates that the contents at address 'x' is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The contents addressed by the contents at address 'x' is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions. An instruction cycle consists of 2 machine cycles.

#: The number of bytes

Operation: Operation of an instruction

TL, TH, AH: A changed contents of the TL, TH and AH when instruction is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the upper 8 bits of the data in the operation.

• AL and AH must become the contents of AL and AH each prior to the instruction executed.

• "00" becomes "00".

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

e.g.: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	-	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	(A) ← ((EP))	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dir) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
			$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_				E3
MOVW A,#d16	3	3	(A) ← d16	AL	AH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
	_	_	$(AL) \leftarrow ((IX) + off + 1)$					
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$	AL	AH	dΗ	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dΗ	++	C7
MOVW A,EP	2	1	(A) ← (EP)	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_			E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	$(SP) \leftarrow (A)$	_	_			E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dH		F1
MOV @A,T	3	1	$((A)) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	-11.1		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70 74
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	$(dir): b \leftarrow 1$	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): $b \leftarrow 0$	_ ^!	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	ΑL	_ ∧⊔	4U -		42
XCHW A,T	3 3	1	$(A) \leftrightarrow (T)$	AL	AH	dH dH		43
XCHW A,EP XCHW A,IX	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7 F6
XCHW A,IX XCHW A,SP	3	1	$ \begin{array}{c} (A) \leftrightarrow (IX) \\ (A) \leftrightarrow (SP) \end{array} $	_	_	dН		F5
MOVW A,PC	2	1	$(A) \leftrightarrow (SP)$ $(A) \leftarrow (PC)$	_	_	dH		F0
IVIOV VV A,PC		I	(A) ← (FC)	_	_	uП		ΓU

Notes: • During byte transfer to A, the data transfered at "T ← A" is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	-	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	-	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23 22
ADDC A SUBC A,Ri	3	1	$(AL) \leftarrow (AL) + (TL) + C$ $(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,RI	2	2	$(A) \leftarrow (A) - (B) - C$ $(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,#do	3	2	$(A) \leftarrow (A) - G = G$ $(A) \leftarrow (A) - (G) - G$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - (IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	(AL) ← (TL) – (AL) – C	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	-	_	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	+ + R -	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	_	_	dH	+ + R -	53
CMP A CMPW A	2	1	(TL) – (AL)	_	_	_	++++	12
RORC A	2	1	(T) – (A)	_	_	_	++++	13 03
RORG A	2	'	$\rightarrow C \rightarrow A$	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	-	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction $(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++++	94
XOR A	2	1	. , . , . ,	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$ $(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	54 55
XOR A,dir	3	2	$(A) \leftarrow (AL) \lor (all)$ $(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R- ++R-	55 57
XOR A,@EP	4	2	$(A) \leftarrow (AL) \lor ((LF))$ $(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R- ++R-	57 56
XOR A,@IX +off XOR A,Ri	3	1	$(A) \leftarrow (AL) \lor ($	_	_	_	++R- ++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \vee (IU)$ $(A) \leftarrow (AL) \wedge (TL)$	_	_	_	++R- ++R-	62
AND A AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge (BL)$	_	_	_	++R-	64
AND A,#do	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65
AND A, all	3	_	(· ·) · (· · -) · · (« ···)	_	_	_	1 1 1	03

(Continued)

(Continued)

Mnemonic	1	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R –	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \wedge (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R –	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R –	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (ŚP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	-	_	_		D1

Table 4 Branch Instructions (17 instructions)

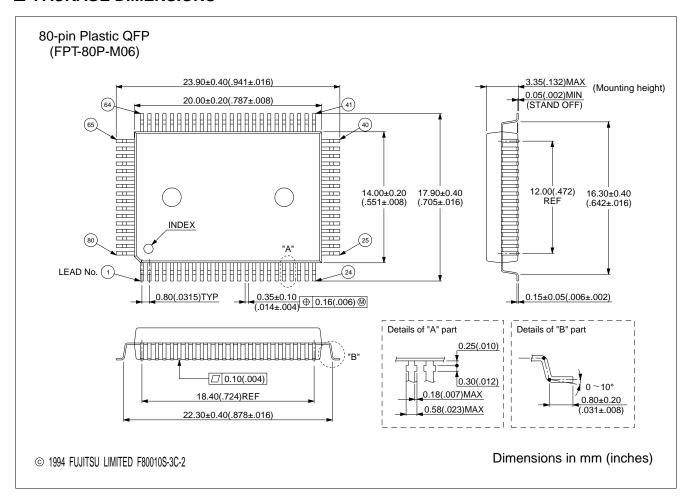
Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	-	_	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	ı	_	1	Restore	30

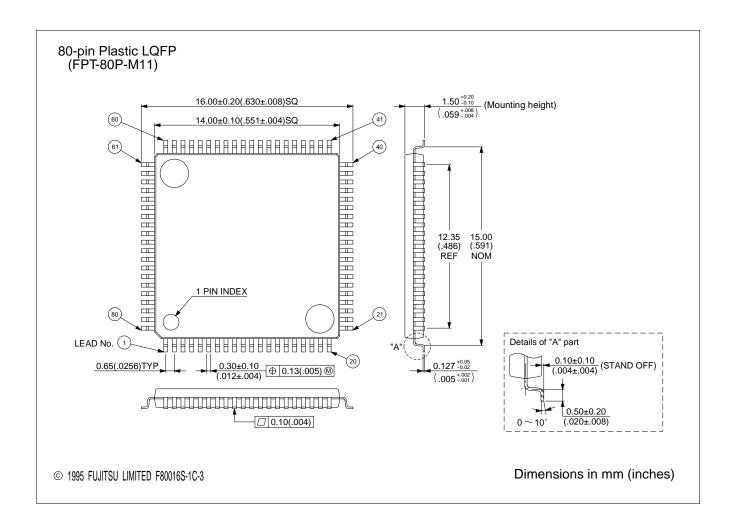
Table 5 Other Instructions (9 instructions)

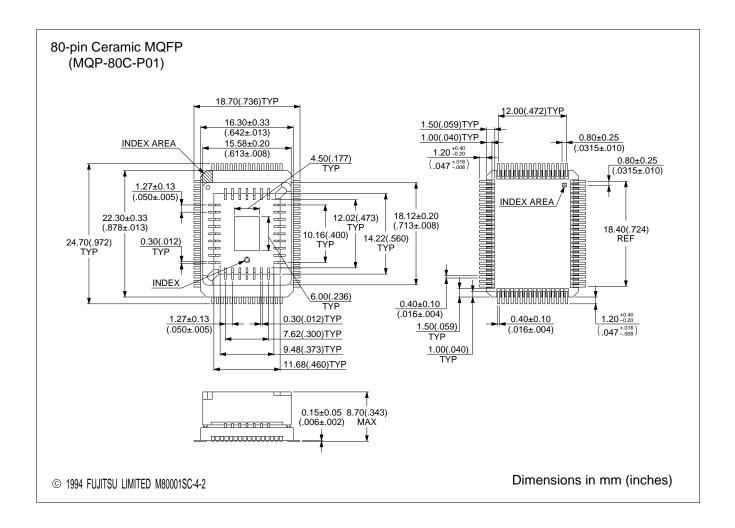
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

L H	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	BBC dir: 0,rel	INCW A	DECW A	JMP @A	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	PUSHW IX	POPW IX	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW SP	DECW SP	MOVW SP,A	MOVW A,SP
2	ROLC A	CMP A	ADDC A	SUBC A	XCH A, T	XOR A	AND A	OR A	MOV @A,T	MOV A,@A	CLRB dir: 2	BBC dir: 2,rel	INCW IX	DECW IX	MOVW IX,A	MOVW A,IX
3	RORC A	CMPW A	ADDCW A	SUBCW A	XCHW A, T	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	BBC dir: 3,rel	INCW EP	DECW EP	MOVW EP,A	MOVW A,EP
4	MOV A,#d8	CMP A,#d8	ADDC A,#d8	SUBC A,#d8		XOR A,#d8	AND A,#d8	OR A,#d8	DAA	DAS	CLRB dir: 4	BBC dir: 4,rel	MOVW A,ext	MOVW ext,A	MOVW A,#d16	XCHW A,PC
5	MOV A,dir	CMP A,dir	ADDC A,dir	SUBC A,dir	MOV dir,A	XOR A,dir	AND A,dir	OR A,dir	MOV dir,#d8	CMP dir,#d8	CLRB dir: 5	BBC dir: 5,rel	MOVW A,dir	MOVW dir,A	MOVW SP,#d16	XCHW A,SP
6	MOV A,@IX +d	CMP A,@IX+d	ADDC A,@IX +d	SUBC A,@IX+d	MOV @IX +d,A	XOR A@,IX +d	AND A,@IX +d	OR A,@IX +d	MOV @IX+d,#d8	CMP @IX+d,#d8	CLRB dir: 6	BBC dir: 6,rel	MOVW A,@IX +d	MOVW @IX +d,A	MOVW IX,#d16	XCHW A,IX
7	MOV A,@EP	CMP A,@EP	ADDC A,@EP	SUBC A,@EP	MOV @EP,A	XOR A,@EP	AND A,@EP	OR A,@EP	MOV @EP,#d8	CMP @EP,#d8	CLRB dir: 7	BBC dir: 7,rel	MOVW A,@EP	MOVW @EP,A	MOVW EP,#d16	XCHW A,EP
8	MOV A,R0	CMP A,R0	ADDC A,R0	SUBC A,R0	MOV R0,A	XOR A,R0	AND A,R0	OR A,R0	MOV R0,#d8	CMP R0,#d8	SETB dir: 0	BBS dir: 0,rel	INC R0	DEC R0	CALLV #0	BNC rel
9	MOV A,R1	CMP A,R1	ADDC A,R1	SUBC A,R1	MOV R1,A	XOR A,R1	AND A,R1	OR A,R1	MOV R1,#d8	CMP R1,#d8	SETB dir: 1	BBS dir: 1,rel	INC R1	DEC R1	CALLV #1	BC rel
A	MOV A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,#d8	CMP R2,#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	DEC R2	CALLV #2	BP rel
В	MOV A,R3	CMP A,R3	ADDC A,R3	SUBC A,R3	MOV R3,A	XOR A,R3	AND A,R3	OR A,R3	MOV R3,#d8	CMP R3,#d8	SETB dir: 3	BBS dir: 3,rel	INC R3	DEC R3	CALLV #3	BN rel
С	MOV A,R4	CMP A,R4	ADDC A,R4	SUBC A,R4	MOV R4,A	XOR A,R4	AND A,R4	OR A,R4	MOV R4,#d8	CMP R4,#d8	SETB dir: 4	BBS dir: 4,rel	INC R4	DEC R4	CALLV #4	BNZ rel
D	MOV A,R5	CMP A,R5	ADDC A,R5	SUBC A,R5	MOV R5,A	XOR A,R5	AND A,R5	OR A,R5	MOV R5,#d8	CMP R5,#d8	SETB dir: 5	BBS dir: 5,rel	INC R5	DEC R5	CALLV #5	BZ rel
E	MOV A,R6	CMP A,R6	ADDC A,R6	SUBC A,R6	MOV R6,A	XOR A,R6	AND A,R6	OR A,R6	MOV R6,#d8	CMP R6,#d8	SETB dir: 6	BBS dir: 6,rel	INC R6	DEC R6	CALLV #6	BGE rel
F	MOV A,R7	CMP A,R7	ADDC A,R7	SUBC A,R7	MOV R7,A	XOR A,R7	AND A,R7	OR A,R7	MOV R7,#d8	CMP R7,#d8	SETB dir: 7	BBS dir: 7,rel	INC R7	DEC R7	CALLV #7	BLT rel


■ MASK OPTIONS


No.	Part number	MB89673R MB89673AR MB89675R MB89675AR MB89677AR	MB89P677A	MB89PV670A Setting not possible		
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer			
1	Pull-up resistors P10 to P17, P30 to P37, P40 to P47, P70 to P76	Selectable by pin	Selectable by pin	Fixed to "without		
2	Pull-up resistors P00 to P03	resistors Selectable by pin Selectable in 4-pin		pull-up resistor"		
3	Pull-up resistors P04 to P07	Selectable by pin	Selectable in 4-pin unit			
4	Power-on reset With power-on reset Without power-on reset	Selectable	Selectable	Fixed to "with power-on reset"		
5	Oscillation stabilization time selection (at 10 MHz) Approx. 218/Fc (approx. 26.2 ms) Approx. 217/Fc (approx. 13.1 ms) Approx. 214/Fc (approx. 1.6 ms) Approx. 24/Fc (approx. 0 ms) Fc: Clock frequency	Selectable	Selectable	Fixed to Approx. 2 ¹⁸ /Fc (Approx. 26.2 ms)		
6	Reset pin output With reset output Without reset output	Selectable	Selectable	Fixed to "with reset output"		


■ ORDERING INFORMATION

Part number	Package	Remarks
MB89673RPF MB89673ARPF MB89675RPF MB89675ARPF MB89677ARPF MB89P677APF	80-pin Plastic QFP (FPT-80P-M06)	
MB89673RPFM MB89673ARPFM MB89675RPFM MB89675ARPFM MB89677ARPFM MB89P677APFM	80-pin Plastic LQFP (FPT-80P-M11)	
MB89PV670ACF	80-pin Ceramic MQFP (MQP-80C-P01)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9803

© FUJITSU LIMITED Printed in Japan