TOSHIBA Bipolar Linear Integrated Circuit SIlicon Monolithic

TA2120FNG

Low Consumption Current Stereo Headphone Power Amplifier for Portable CD (3V Use)

The TA2120FNG is a low consumption current stereo headphone power amplifier developed for portable CD players (3V). This IC has active bass boost, output limiter, input pin for beep sound.

Features

- Low consumption current: $\mathrm{ICCQ}=1.9 \mathrm{~mA}$ (C-CUP) (typ.)

$$
\text { ICCQ }=2.6 \mathrm{~mA}(\mathrm{OCL}) \text { (typ.) }
$$

- Two kinds of gain mode available: $\mathrm{GV}=16 \mathrm{~dB}$ or 8.5 dB

Weight: 0.14 g (typ.)

- Output power ($\mathrm{VCC}=2.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{R}_{\mathrm{L}}=16 \Omega$) $\mathrm{P}_{\mathrm{o}}=8 \mathrm{~mW}$ (typ.)
- Low noise: $\mathrm{V}_{\mathrm{no}}=-98 \mathrm{dBV}$ (typ.)
- Built-in the center amplifier ON/OFF function.
(Favorable for low dissipation current in the C-Couple output configuration)
- Built-in active bass boost system
- Built-in output limiter function
- Input pin for beep sound
- Excellent ripple rejection ratio
- Built-in capacitor for reducing buzz noise
- Built-in power mute
- Built-in a power on/off switch
- Operating supply voltage range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right): \mathrm{VCC}_{C C}=1.8 \sim 4.5 \mathrm{~V}$

Block Diagram

Terminal Explanation (Terminal voltage: Typical terminal voltage at no signal with test circuit, $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

	Terminal	Function	Internal Circuit	Terminal Voltage (V)
No.	Name			
1	BST NF	NF of BST amplifier		0.85
24	BST OUT	Output of BST amplifier (Terminal for filter)		0.85
2	ADD OUT	Output of ADD amplifier (Terminal for filter)		0.85
3	RF IN	Terminal for ripple filter circuit		1.44
21	BIAS	BIAS voltage		0.85
22	BIAS IN	Filter terminal for BIAS circuit		0.85

	Terminal	Function	Internal Circuit	Terminal Voltage (V)
No.	Name			
4	PWC SW	Center amplifier on/off switchover $\left(\begin{array}{cl} \mathrm{V}_{\mathrm{CC}}: & \begin{array}{l} \text { Center amplifier } \\ \text { off (C-CUP) } \end{array} \\ \text { OPEN: } & \text { Center amplifier } \\ \text { on (OCL) } \end{array}\right.$		-
7	OUTC	Output of center amplifier (Common terminal for OCL output configuration)		0.85
5	V_{CC}	-	-	2.4
6	$\mathrm{OUT}_{\mathrm{B}}$	Output of power amplifier		0.85
8	OUT $_{\text {A }}$			
14	$\mathrm{IN}_{\text {A }}$	Input of power amplifier		0.85
15	IN_{B}			
10	MIX OUT	Output of power amplifier (Mixed)		0.85
9	PWR GND	GND of power amplifier	-	0

Terminal		Function	Internal Circuit	Terminal Voltage (V)
No.	Name			
19	MT SW	Power mute switchover $\left[\begin{array}{l} \text { GND/OPEN: Mute off } \\ V_{\mathrm{CC}}: \text { Mute on } \end{array}\right.$		-
20	PW SW	Power on/off switchover $\left[\begin{array}{l} \mathrm{V}_{\mathrm{CC}} \text { : Power on } \\ \text { GND/OPEN: Power off } \end{array}\right.$		-
23	BST SW	Bst on/off switchover $\left[\begin{array}{l} \text { BST on: OPEN/ } V_{C C} \\ \text { BST off: GND } \end{array}\right.$		-

Application Note

1. Beep Sound

Beep sound signals from, for example, a micro controller can be received through the beep input pin 17. At power mute mode, PWA and PWB are turned off. The current of the beep signal input to been via beep amplifier is amplified at the output stage of PWA and PWB. The output from beep amplifier becomes the constant voltage source. As a result, the beep sound is output to the headphone load.
If the input signal for beep (Pin 17) is not, this terminal should be fixed GND level.

2. Power Switch

As long as the power switch is not connect to VCC, the IC does not operate.
If external noise causes malfunctions, we recommend to connect a pull-down resistor externally (Sensitivity of the power mute switch is high).

3. Center Amplifier $\left(\mathrm{PW}_{\mathrm{C}}\right)$

Terminal for PWC output is common terminal for OCL output configuration. PWC ON/OFF mode is controlled by PWC switch (Pin 4).
To reduce the consumption current, PWC should be turned off by this switch.
PWC SW $\left[\begin{array}{l}\text { OPEN: OCL } \\ \text { VCC: C-Couple }\end{array}\right.$

4. Terminal of RF IN (3pin)

Adding Capacitor (Recommendation: $10 \mu \mathrm{~F}$) to terminal of RF IN (Pin 3), the ripple rejection ratio is improved by secondly ripple filter (In the C-Couple output configuration, this capacitor should be connected.)
5. Threshold Voltage of Each Switches
(1) PW SW, BST SW, ATT SW

(2) MT SW

	ATT SW $\left(\mathrm{V}_{13}\right)$	BST SW $\left(\mathrm{V}_{23}\right)$
"H" Open	ATT ON	BST ON
" $\mathrm{L} "$	ATT OFF	BST OFF

6. Exterminal capaciter

These capacitors which are prevent oscillation of power amplifier and de-coupled at terminals of BIAS and VCC need to be small temperature coefficient and excellent frequency characteristic.

Absolute Maximum Ratings ($\mathbf{~} \mathrm{a}=\mathbf{2 5 ^ { \circ }} \mathbf{}{ }^{\mathrm{C}}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	4.5	V
Output Current	I_{O} (peak)	100	mA
Power dissipation	$\mathrm{P}_{\mathrm{D}}($ Note $)$	550	mW
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-25 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: Derated above $25^{\circ} \mathrm{C}$ in the proportion of $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics

(Unless otherwise specified: $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{Rg}=\mathbf{6 0 0} \Omega, \mathrm{R}_{\mathrm{L}}=16 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, SW1: a, SW2: a, SW3: OPEN, SW4: a, SW5: a, SW6: OPEN, SW7: ON, SW8: ON)

	Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Quiescent supply current		ICC1	-	IC OFF (C-Couple) SW1: b, SW2: b, SW3: ON	-	0.1	5	$\mu \mathrm{A}$
		ICC2	-	IC OFF (OCL) SW1: b, SW2: b	-	0.1	5	
		I_{CC}	-	MUTE ON (C-Couple) SW2: b, SW3: ON	-	1	2	mA
		ICC4	-	MUTE ON (OCL) SW2: b	-	1.7	3	
		$\mathrm{I}_{\mathrm{CC} 5}$	-	No signal (C-Couple) SW3: ON	-	1.9	3.5	
		ICC6	-	No signal (OCL)	-	2.6	4.5	
Consumption supply current		ICC7	-	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~mW}+0.5 \mathrm{~mW}(\mathrm{C}-\mathrm{CUP}), \\ & \mathrm{SW3:ON} \end{aligned}$	-	6.6	-	mA
		$\mathrm{I}_{\mathrm{CC8}}$		$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~mW}+0.5 \mathrm{~mW}(\mathrm{OCL})$	-	12.1	-	
	Voltage gain (1)	$\mathrm{G}_{\mathrm{V} 1}$	-	$\mathrm{V}_{0}=-22 \mathrm{dBV}$, SW6: GND	5.5	8.5	10.5	dB
	Voltage gain (2)	$\mathrm{G}_{\mathrm{V} 2}$	-	$\mathrm{V}_{0}=-22 \mathrm{dBV}$	14	16	18	dB
	Output power	$\mathrm{P}_{\text {omax }}$	-	THD $=10 \%, \mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	5	8	-	mW
	Total harmonic distortion	THD	-	$\mathrm{V}_{\mathrm{O}}=-12.2 \mathrm{dBV}$	-	0.1	0.5	\%
	Output noise voltage	V_{no}	-	$\mathrm{Rg}=600 \Omega$, Filter: IHF- A, SW5: b	-	-98	-92	dBV
	Crosstalk	CT	-	$\mathrm{V}_{\mathrm{O}}=-12.2 \mathrm{dBV}$	24	40	-	dB
	Ripple rejection ratio	RR	-	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{f}_{\mathrm{r}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{r}}=-20 \mathrm{dBV}$	69	75	-	dB
	Mute attenuation	MUTE	-	$\mathrm{V}_{\mathrm{o}}=-12.2 \mathrm{dBv}$, SW2: b	80	90	-	dB
	Beep voltage	VBEEP	-	V Beep IN = OdBV, SW2: b	-56	-51	-46	dBV
Boost gain		Bst	-	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=-30 \mathrm{dBV}, \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { SW7: ON } \rightarrow \text { OPEN } \end{aligned}$	9	11.5	14	dB
Output limiter level		$\mathrm{V}_{\text {ALC }}$	-	$V_{\text {in }}=-20 d B V$, SW8: OPEN	-41.5	-39.5	-37.5	dBV

Test Circuit

Application Circuit 1 (C-Couple mode)

Application Circuit 2 (OCL mode)

Characteristics (Unless otherwise specified: $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 4} \mathrm{V}, \mathrm{R}_{\mathrm{L}}=16 \Omega, \mathrm{Rg}=\mathbf{6 0 0} \Omega, \mathrm{f}=\mathbf{1 k H z}$, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{OCL}$, ATT OFF)

Package Dimensions

Weight: 0.14 g (typ.)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
(1) Use of Sn-37Pb solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

