

Rev D4, Page 1/39

FEATURES

Latency-free sine-to-digital conversion to 400 angle steps 500 kHz input frequency for interpolation factors of x1 and x2 (10 kHz for x100)

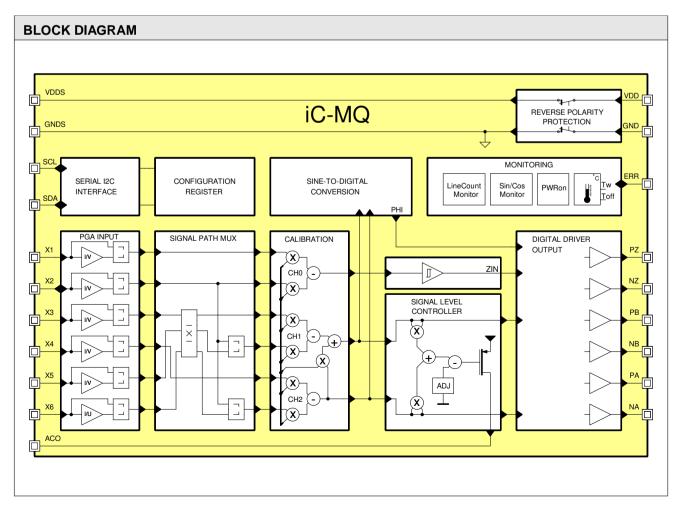
Flexible pin assignment due to signal path multiplexers PGA inputs for differential and single-ended signals Variable input resistance for current/voltage conversion Signal conditioning for offset, amplitude and phase Controlled 50 mA current source for LED or MR sensor supply Fault-tolerant RS422 outputs with 50 mA sink/source drive current

Preselectable minimum phase distance for spike-proof counter stimulus

Zero signal conditioning and electronic index pulse generation Signal and operation monitoring with configurable alarm output, output shutdown and error storage

I²C multimaster interface for in-circuit calibration and parameters (EEPROM)

Adjustable overtemperature alarm and shutdown Supply from 4.3 to 5.5 V, operation from -25(-40) to +100 °C Reverse polarity proof including the sub-system


APPLICATIONS

Optical and magnetic position sensors Angle encoders Linear scales

PACKAGES

TSSOP20

Rev D4, Page 2/39

DESCRIPTION

Interpolator iC-MQ is a non-linear A/D converter which digitizes sine/cosine sensor signals using a count-safe tracking conversion principle with selectable resolution and hysteresis. The angle resolution per sine period can be set using SELRES; up to 400 angle steps are possible (see page 26).

The angle position is output incrementally by differential RS422 drivers as an encoder quadrature signal with a zero pulse or, if selected, as a counter signal for devices compatible with 74HC191 or 74HC193.

The zero pulse is generated electronically when an enable has been set by the X1/X2 inputs. This pulse can be configured extensively: both in its relative position to the input signal with regard to the logic gating with A and/or B and in its width from 90° to 360° (1/4 to 1 T).

A preselectable minimum transition distance permits glitch-free output signals and prevents counting errors which in turn boosts the noise immunity of the position encoder.

Programmable instrumentation amplifiers with selectable gain levels allow differential or single-ended, referenced input signals; via input X2 the external reference can be used as reference voltage for the offset correction.

The modes of operation differentiate between high impedance (V modes) and low impedance (I modes). This adaptation of the iC to voltage or current signals enables MR sensor bridges or photosensors to be directly connected up to the device. The optical scanning of low resolution code discs is also supported by the reference function of input X2; these discs do not evaluate tracks differentially but in comparison with a reference photodiode.

The integrated signal conditioning unit allows signal amplitudes and offset voltages to be calibrated accurately and also any phase error between the sine and cosine signals to be corrected. The channel for the zero signal can be configured separately.

A control signal is generated from the conditioned signals which can track the transmitting LED of optical encoders via the integrated 50 mA driver stage (output ACO). If MR sensors are connected this driver stage can also track the power supply of the measuring bridges. By tracking the sensor energy supply any temperature and aging effects are compensated for, the input signals stabilized and the exact calibration of the input signals is maintained. This enables a constant accuracy of the interpolation circuit across the entire operating temperature range.

When control limits are reached, these can be indicated at the maskable error pin ERR. Faults such as overdrive, wire breakage, short circuiting, dirt or aging, for example, are logged.

iC-MQ includes extensive self-test and system diagnosis functions which check whether the sensor is working properly or not. For all error events the user can select whether the fault be displayed at error pin ERR or the outputs shutdown. At the same time errors can be stored in the EEPROM to enable failures to be diagnosed at a later stage. For encoder applications the line count of the code disc, the sensor signal regarding signal level and frequency and the operating temperature can be monitored, for example, the latter using an adjustable on-chip sensor.

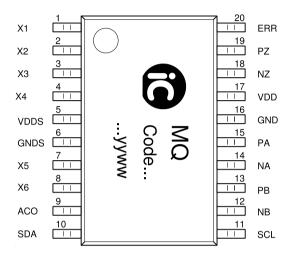
Display error pin ERR is bidirectional; a system fault recognized externally can be recorded and also registered in the error memory.

iC-MQ is protected against reverse polarity and offers its monitored supply voltage to the external circuit, thus extending the protection to the system (for load currents to 20 mA). Reverse polarity protection also covers the short-circuit-proof line drivers so that an unintentional faulty wiring during initial operation is tolerated.

On being activated the device configuration is loaded via the serial configuration interface from an external EEPROM and verified by a CRC. A microcontroller can also configure iC-MQ; the implemented interface is multimaster-competent and enables direct RAM access.

Rev D4, Page 3/39

CONTENTS


PACKAGES	4	Photodiode array connected to current inputs, LED supply with constant	
ABSOLUTE MAXIMUM RATINGS	5	current source	23
		2. Encoder supplying 100 mVpp to voltage	
THERMAL DATA	5	inputs	23
ELECTRICAL CHARACTERISTICS	6	SIGNAL CONDITIONING CH0	24
		Gain Settings CH0	24
PROGRAMMING	11	Offset Calibration CH0	24
REGISTER MAP	12	SIGNAL LEVEL CONTROL and SIGNAL MONITORING	25
SERIAL CONFIGURATION INTERFACE	14	SINE-TO-DIGITAL CONVERSION	26
Example of CRC Calculation Routine	14	SINE-10-DIGITAL CONVERSION	20
EEPROM Selection	14	OUTPUT SETTINGS AND ZERO SIGNAL	27
I ² C Slave Mode (ENSL=1)	15	Zero Signal Generation	27
		Description Of CFGABZ Setup	28
BIAS CURRENT SOURCE AND TEMPERATURE SENSOR CALIBRATION	16	Setup Example 1	28
	16	Setup Example 2	28
Bias Current	16	Output Driver Configuration	29
Temperature Sensor	10	Minimum Phase Distance	29
OPERATING MODES	17	ERROR MONITORING AND ALARM OUTPUT	30
Mode ABZ	17	Error Protocol	31
Mode 191/193	17	Line Count Error	31
Calibration 1, 2, 3	17	Temperature Monitoring	31
TEST 6	18		
System Test	18	REVERSE POLARITY PROTECTION	32
INPUT CONFIGURATION	19	TEST MODE	33
Current Signals	19	Quick programming in the	
Voltage Signals		single master system	34
		Quick programming in the multimaster system	34
SIGNAL PATH MULTIPLEXING	20	mullimaster system	34
SIGNAL CONDITIONING CH1, CH2	21	EXAMPLE APPLICATIONS	35
Gain Settings	21	APPLICATION HINTS	37
Offset Calibration CH1, CH2	22	In-circuit programming of the EEPROM	37
Phase Correction CH1 vs. CH2	22	Absolute angle accuracy and edge jitter	37
Signal Conditioning Examples		Information on the demo board	

Rev D4, Page 4/39

PACKAGES

PIN CONFIGURATION TSSOP20

PIN FUNCTIONS

No.	Name	Function
1	X1	Signal Input 1 (Index +)
2	X2	Signal Input 2 (Index -)
3	X3	Signal Input 3
4	X4	Signal Input 4
5	VDDS	Switched Supply Output
		(reverse polarity proof, load to 20 mA max.)
6	GNDS	Switched Ground
		(reverse polarity proof)
7	X5	Signal Input 5
_	X6	Signal Input 6
9	ACO	Signal Level Controller,
		high-side current source output
10	SDA	Serial Configuration Interface,
		data line
11	SCL	Serial Configuration Interface,
		clock line
	NB	Incremental Output B-
	PB	Incremental Output B+
	NA	Incremental Output A-
	PA	Incremental Output A+
	GND	
	VDD	+4.35.5 V Supply Voltage
_	NZ	Incremental Output Z-
	PZ	Incremental Output Z+
20	ERR	Error Signal (In/Out) / Test Mode Trigger Input

Rev D4, Page 5/39

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VDD, PA, NA, PB, NB, PZ, NZ, SCL, SDA, ACO		-6	6	V
G002	V()	Voltage at ERR		-6	8	V
G003	V()	Pin-Pin Voltage			6	V
G004	V()	Voltage at X1X6, SCL, SDA		-0.3	VDDS + 0.3	V
G005	I(VDD)	Current in VDD		-20	400	mA
G006	I()	Current in VDDS, GNDS		-50	50	mA
G007	I()	Current in X1X6, SCL, SDA, ERR		-20	20	mA
G008	I()	Current in PA, NA, PB, NB, PZ, NZ		-100	100	mA
G009	I(ACO)	Current in ACO		-100	20	mA
G010	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through 1.5 kΩ		2	kV
G011	Ptot	Permissible Power Dissipation			300	mW
G012	Tj	Junction Temperature		-40	150	°C
G013	Ts	Storage Temperature		-40	150	°C

THERMAL DATA

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range (extended range to -40 °C on request)		-25		100	°C
T02	Rthja	Thermal Resistance Chip to Ambient			80		K/W

Rev D4, Page 6/39

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device						II.
001	V(VDD)	Permissible Supply Voltage	Load current I(VDDS) to 10 mA	4.3		5.5	V
	` ′		Load current I(VDDS) to 20 mA	4.5		5.5	V
002	I(VDD)	Supply Current	Tj = -40125 °C, no load Tj = 27 °C, no load		12	25	mA mA
003	I(VDDS)	Permissible Load Current VDDS	,, _, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-20		0	mA
004	Vcz()hi	Clamp-Voltage hi at all pins				11	V
005	Vc()hi	Clamp-Voltage hi at Inputs SCL, SDA	Vc()hi = V() - V(VDD), I() = 1 mA	0.4		1.5	V
006	Vc()hi	Clamp-Voltage hi at Inputs X1X6	Vc()hi = V() - V(VDD), I() = 4 mA	0.3		1.2	V
007	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
		ing, Inputs X1X6 (CH1, CH2: i =	0	1.2		0.5	
101	Vin()sig		RINi() = 0x01	0.75		VDDS	V
101	VIII()Sig	remissible input voltage Kange				– 1.5	
400	11 - () - 1	Daniel de la control de la con	RINi() = 0x09	0		VDDS	V
102	lin()sig	Permissible Input Current Range	RINi(0) = 0; BIASi = 0 RINi(0) = 0; BIASi = 1	-300 10		-10 300	μA μA
103	lin()	Input Current	RINi() = 0x01	-10		10	μΑ
104	Rin()	Input Resistance vs. VREFin	Tj = 27 °C; RINi(3:0) = 0x09 RINi(3:0) = 0x00 RINi(3:0) = 0x02 RINi(3:0) = 0x04 RINi(3:0) = 0x06	16 1.1 1.6 2.2 3.2	20 1.6 2.3 3.2 4.6	24 2.1 3.0 4.2 6.0	kΩ kΩ kΩ kΩ kΩ
105	TC(Rin)	Temperature Coefficient of Rin			0.15		%/K
106	VREFin()	Reference Voltages VREFin0, VREFin12	RINi(0) = 0, BIASi = 1 RINi(0) = 0, BIASi = 0	1.35 2.25	1.5 2.5	1.65 2.75	V
107	G0, G12	Selectable Gain Factors	RINi(3) = 0, GRi and GFi = 0x0 RINi(3) = 0, GRi and GFi = max. RINi(3) = 1, GRi and GFi = 0x0		2 100 0.5		-
			RINi(3) = 1, GRi and GFi = max.		25		
108	Gdiff	Relative Gain Ratio CH1 vs. CH2	GF2 = 0x10, GF1 = 0x0 GF2 = 0x10, GF1 = 0x7F		39 255		% %
109	ΔG	Step Width Of Fine Gain Adjustment	for CH0 for CH1 for CH2		1.06 1.015 1.06		
110	INL(Gi)	Integral Linearity Error of Gain Adjustment		-1.06		1.06	
111	Vin()diff	Recommended Differential Input Voltage	Vin()diff = V(PCHx) - V(NCHx); RINi(3) = 0 RINi(3) = 1	10 40		500 2000	mVpp mVpp
112	Vin()os	Input Offset Voltage	referred to side of input		25		μV
113	VOScal	Offset Calibration Range	referenced to the selected source (VOS0 resp. VOS12), mode <i>Calibration 2</i> ; ORi = 00 ORi = 01 ORi = 10 ORi = 11		±100 ±200 ±600 ±1200		%V() %V() %V() %V()
114	∆OF0	CH0 Offset Calibration Step Width	referenced to the selected source VOS0; OR0 = 0x0		3.2		%
115	△OF12	CH1/2 Offset Calibration Step Width	referenced to the selected source VOS12; OR12 = 0x0		0.79		%
116	INL(OFi)	Integral Linearity Error of Offset Calibration	limited test coverage (guaranteed by design)	-5		5	LSB
117	PHI12	Phase Error Calibration Range	CH1 vs. CH2		±20.2		•

Rev D4, Page 7/39

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to $200 \,\mu\text{A}$, unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
118	ΔPHI12	Phase Error Calibration Step Width			0.63		0
119	INL(PHI12)	Integral Linearity Error of Phase Calibration	limited test coverage (guaranteed by design)	-0.8		0.8	0
120	fin()	Permissible Maximum Input Freq.	analog signal path	200			kHz
121	Vout(X2)	Output Voltage at X2	BIASEX = 10, I(X2) = 0, referenced to VRE- Fin12	95	100	105	%
122	Vin(X2)	Permissible Input Voltage Range at X2	BIASEX = 11	0.5		VDDS - 2	V
123	Rin(X2)	Input Resistance at X2	BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) = 0x01	20	27	30	kΩ
Sine-	To-Digital Co	onversion					
201	AAabs	Absolute Angle Accuracy	referenced to 360° input signal, ideal waveform, quasi static signals, adjusted signal conditioning, SELHYS=0		0.9	1.8	o
202	AArel	Relative Angle Accuracy	referenced to output period T (see Fig. 1), ideal waveform, quasi static signals; at 4 edges per period at 100 edges per period at 384 edges per period at 400 edges per period		<0.5 <2	10 10 10 10	% % % %
203	AAR	Repeatability	see 201; VDD = const., T _j = const.		0.1		٥
	-	ts PA, NA, PB, NB, PZ, NZ			1		1
501	Vs()hi	Saturation Voltage hi	Vs() = VDD - V(); SIK(1:0) = 00, I() = -1.2 mA SIK(1:0) = 01, I() = -4 mA SIK(1:0) = 10, I() = -20 mA SIK(1:0) = 11, I() = -50 mA			200 200 400 700	mV mV mV
502	Vs()lo	Saturation Voltage lo	SIK(1:0) = 00, I() = 1.2 mA SIK(1:0) = 01, I() = 4 mA SIK(1:0) = 10, I() = 20 mA SIK(1:0) = 11, I() = 50 mA			200 200 400 700	mV mV mV
503	Isc()hi	Short-Circuit Current hi	V() = 0 V; SIK(1:0) = 00 SIK(1:0) = 01 SIK(1:0) = 10 SIK(1:0) = 11	-4 -12 -60 -150		-1.2 -4 -20 -50	mA mA mA
504	Isc()lo	Short-Circuit Current lo	V() = VDD; SIK(1:0) = 00 SIK(1:0) = 01 SIK(1:0) = 10 SIK(1:0) = 11	1.2 4 20 50		4 12 60 150	mA mA mA mA
505	tr()	Rise Time	RL = 100Ω to GND; SSR(1:0) = 00 SSR(1:0) = 01 SSR(1:0) = 10 SSR(1:0) = 11	5 5 20 50		20 40 140 350	ns ns ns ns
506	tf()	Fall Time	RL = 100Ω to VDD; SSR(1:0) = 00 SSR(1:0) = 01 SSR(1:0) = 10 SSR(1:0) = 11	5 5 30 50		20 40 140 350	ns ns ns
507	llk()tri	Leakage Current	TRIHL(1:0) = 11 (tristate)		20	100	μA
508	Ilk()rev	Leakage Current	reversed supply voltage		100		μA
509	Rin()cal	Test Signal Source Impedance	Op. modes Calibration 1, 2, 3		2.5	4	kΩ
510	I()cal	Permissible Test Signal Load	Op. modes Calibration 1, 2, 3	-3		3	μΑ
511	tclk()lo	Clock Signal Low-Pulse Duration for CP, CPD, CPU	Op. mode <i>Mode 191/193</i> ; MTD = 0x0 MTD = 0x7		110 800		ns ns
512	tw()hi	Duty Cycle	referenced to output period T, see Fig. 1		50		%

Rev D4, Page 8/39

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
513	t _{AB}	Phase Shift A vs. B	see Fig. 1		25		%
514	t _{MTD}	Minimum Phase Distance	edge to edge, see Fig. 1; MTD = 0x0, IBN calibrated to 200 μA MTD = 0x0, IBN calibrated to 220 μA		220 200		ns ns
515	∆t()MTD	Minimum Phase Distance Tolerance	nominal values in Table 52	-18		13.5	%
516	∆t()MTD	Minimum Phase Distance Variation	variation versus VDD = 5 V, Tj = 27 °C due to VDD = 4.35.5 V or Tj = -40125 °C		+/- 2		%
Signa	I Level Cor	ntroller ACO					
601	Vs()hi	Saturation Voltage hi	Vs() = VDD - V(); ADJ(8:0) = 0x11F, I(ACO) = -5 mA ADJ(8:0) = 0x13F, I(ACO) = -10 mA ADJ(8:0) = 0x15F, I(ACO) = -25 mA ADJ(8:0) = 0x17F, I(ACO) = -50 mA			1 1 1 1.2	V V V
602	Isc()hi	Short-Circuit Current hi	V() = 0 VDD - 1 V; ADJ(8:0) = 0x11F ADJ(8:0) = 0x13F ADJ(8:0) = 0x15F V() = 0 VDD - 1.2 V; ADJ(8:0) = 0x17F	V() = 0 VDD - 1 V; ADJ(8:0) = 0x11F -10 ADJ(8:0) = 0x13F -20 ADJ(8:0) = 0x15F -50 V() = 0 VDD - 1.2 V;		-5 -10 -25	mA mA mA
603	It()min	Control Range Monitoring 1: lower limit	referenced to range ADJ(6:5)		3		%lsc
604	It()max	Control Range Monitoring 2: upper limit	referenced to range ADJ(6:5)		90		%lsc
605	Vt()min	Signal Level Monitoring 1: lower limit	referenced to Vscq()		40		%Vp _l
606	Vt()max	Signal Level Monitoring 2: upper limit	referenced to Vscq()		130		%Vp
Bias (Current Sou	urce and Reference Voltages					
801	IBN	Bias Current Source	Calibration 1, I(NB) vs. VDDS; CFGIBN = 0x0 CFGIBN = 0xF IBN calibrated at T = 25 °C	110	200	370	μA μA
000	VBG	Internal Bandgan Deference	IBN Calibrated at 1 = 25 C	180		220	μA V
802	-	Internal Bandgap Reference		1.2	1.25	1.3	%VDD
803	VPAH	Reference Voltage		45	50	55	-
804	V05	Reference Voltage V05		450	500	550	mV
805	V025	Reference Voltage V025			50		%V0
	r-Down-Res	Turn-on Threshold VDD, Power- Up-Enable	increasing voltage at VDD	3.6	4.0	4.3	V
902	VDDoff	Turn-off Threshold VDD, Power- Down-Reset	decreasing voltage at VDD	3.0	3.5	3.8	V
903	VDDhys	Hysteresis		0.4			V
Error	Signal Inpu	ut/Output, Pin ERR		"			
B01	Vs()lo	Saturation Voltage lo	versus GND, I() = 4 mA			0.4	V
B02	lsc()lo	Short-Circuit Current lo	versus GND, $V(ERR) \le VDD$	4	5	8	mA
B03	Isc()	Low-Side Current Source For Data Output	versus GND, V(ERR) > VTMon L state Z state		2 0		mA mA
B04	Vt()hi	Input Threshold Voltage hi	versus GND			2	V
B05	Vt()lo	Input Threshold Voltage lo	versus GND	0.8			V
B06	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
B07	lpu()	Input-Pull-Up-Current	V() = 0VDD - 1 V, EPU = 1	-400	-300	-200	μA
B08	Vpu()	Pull-Up-Voltage	$Vpu() = VDD - V(), I() = -5 \mu A, EPU = 1$			0.4	V
B09	VTMon	Test Mode Turn-on Threshold	increasing voltage at ERR			VDD +	V

Rev D4, Page 9/39

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
B10	VTMoff	Test Mode Turn-off Threshold	decreasing voltage at ERR	VDD + 0.5			V
B11	VTMhys	Test Mode Threshold Hysteresis	VTMhys = VTMon — VTMoff	0.15	0.3		V
B12	fclk()	Data Output Signal Frequency	ENFAST = 0 ENFAST = 1	120 480	160 640	200 800	kHz kHz
B13	tp(ERR)in	Process Delay for System Error Message at ERR	upon power up (VDD > VDDon)	400	10	000	ms
Rever	se Polarity	Protection and Supply Switches	VDDS, GNDS			l	
C01	C01 Vs() Saturation Voltage vs. VDD		Vs(VDDS) = VDD - V(VDDS); I(VDDS) = -100 mA I(VDDS) = -2010 mA			150 250	mV mV
C02	Vs()	Saturation Voltage vs. GND	Vs(GNDS) = V(GNDS) - GND; I(GNDS) = 010 mA I(GNDS) = 1020 mA			150 200	mV mV
C03	Irev(VDD)	Reversed Polarity Current	V(VDD) = -5.5V4.3 V	-1		0	mA
Serial	Configurat	ion Interface SCL, SDA		<u></u>			•
D01	Vs()lo	Saturation Voltage lo	I = 4 mA			400	mV
D02	lsc()lo	Short-Circuit Current lo		4		75	mA
D03	Vt()hi	Input Threshold Voltage hi				2	V
D04	Vt()lo	Input Threshold Voltage lo		0.8			V
D05	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
D06	lpu()	Input Pull-Up Current	V() = 0VDDS - 1 V	-600	-300	-60	μA
D07	Vpu()	Pull-Up Voltage	Vpu() = VDDS - V(), I() = -5 μA			0.4	V
D08	fclk()	Clock Frequency at SCL	ENFAST = 0 ENFAST = 1	60 240	80 320	100 400	kHz kHz
D09	tbusy()cfg	Duration of Startup Configuration	IBN not calibated, EEPROM access without read failure, time to outputs operational; ENFAST = 0 ENFAST = 1		36 24	48 34	ms ms
D10	tbusy()err	End Of I2C Communication; Time Until I2C Slave Is Enabled	IBN not calibrated; V(SDA) = 0 V V(SCL) = 0 V or arbitration lost no EEPROM CRC ERROR		4 indef. 45 95	12 135 285	ms ms ms ms
D11	tp()	Start Of Master Activity On I2C Protocol Error	SCL without clock signal: V(SCL) = constant; IBN not calibrated IBN calibrated to 200 µA	25 64	80 80	240 120	μs μs
Temp	erature Mon	nitoring	·			ı	
E01	VTs	Temperature Sensor Voltage	VTs() = VDDS - V(PA), Calibration 3, without Load; Tj = -40 °C Tj = 27 °C Tj = 100 °C	740 620 460	770 650 520	790 670 540	mV mV mV
E02	TCs	Temp. Co. Temperature Sensor Voltage			-1.8		mV/K
E03	VTth	Temperature Warning Activation Threshold	VTth() = VDDS - V(NA), Tj = 27 °C, Calibration 3, without Load; CFGTA(3:0) = 0x0 CFGTA(3:0) = 0xF 260 310 470 550		360 630	mV mV	
E04	TCth	Temp. Co. Temperature Warning Activation Threshold			0.06		%/K
E05	Tw	Warning Temperature	CFGTA(3:0) = 0x0 CFGTA(3:0) = 0xF	125	140 65	80	°C °C
E06	Thys	Warning Temperature Hysteresis	80 °C < T _j < 125 °C	10	15	25	°C
E07	ΔT	Relative Shutdown Temperature	$\Delta T = Toff - Tw$	5	15	25	°C

Rev D4, Page 10/39

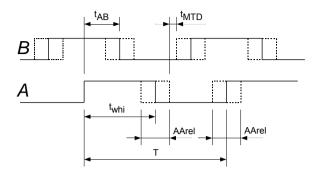


Figure 1: Definition of relative angle error and minimum phase distance

Rev D4, Page 11/39

PROGRAMMING

Register Map	o, Overview Page 12	-	itioning CH0 (X1, X2) Page 24
	luration Interface	GR0: GF0: VOS0: OR0: OF0:	Gain Range CH0 (coarse) Gain Factor CH0 (fine) Offset Reference Source CH0 Offset Range CH0 (coarse) Offset Factor CH0 (fine)
CHKSUM:	CRC of chip configuration data (address range 0x00 to 0x2F)	Signal Level ADJ:	Controller Page 25 Setup of ACO Output Function
CHPREL: END: Calibration .	Chip Release Configuration EnablePage 16	Sine-To-Digit SELRES: SELHYS:	tal ConversionPage 26 Resolution Hysteresis
CFGIBN: CFGTA: Operating Mo MODE:	Bias Current Temperature Monitoring Dides		Output LogicPage 27 Output Logic Zero Signal Positioning Zero Signal Synchronisation
Input Configuand Signal Part INMODE: RIN12: BIAS12:	uration ath Multiplexer	Quadrature (MTD: SIK: SSR: TRIHL:	Dutput Settings
RINO: BIASO: BIASEX: INVZ: MUXIN:	I/V Mode and Input Resistance CH0 Reference Voltage CH0 Input Reference Selection Index Signal Inversion Input-To-Channel Assignment: X3X6 to CH1, CH2	EMTD: EPH: EPU: EMASKA:	ring and Alarm Output Page 30 Minimal Alarm Indication Time Alarm Input/Output Logic Alarm Output Pull-Up Enable Error Mask For Alarm Indication (pin ERR)
Signal Condi GR12: GF1: GF2: VOS12: VDC1: VDC2: OR1:	tioning CH1, CH2 (X3X6) Page 21 Gain Range CH1, CH2 (coarse) Gain Factor CH1 (fine) Gain Factor CH2 (fine) Offset Reference Source CH1, CH2 Intermediate Voltage CH1 Intermediate Voltage CH2 Offset Range CH1 (coarse)	EMASKE: EMASKO: PDMODE: LINECNT: ERR1: ERR2: ERR3:	Error Mask For Protocol (EEPROM) Error Mask For Driver Shutdown Driver Activation After Cycling Power Line Count (Pulses) Between 2 Zero Pulses Error Protocol: First Error Error Protocol: Last Error Error Protocol: History
OF1: OR2: OF2: PH12:	Offset Range CH1 (coarse) Offset Range CH2 (coarse) Offset Factor CH2 (fine) Phase Correction CH1 vs. CH2	Test Mode EMODE: EMODE2:	Page 33 Test Mode Register And Address Selection For Test Mode

Rev D4, Page 12/39

REGISTER MAP

Regist	er Map							
Adr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Serial C	onfiguration	Interface		ı	1		1	
0x00	ENFAST				DEVID(6:0)			
Calibra	tion	1			· ·			
0x01		CFGIE	3N(3:0)			CFG1	TA(3:0)	
Operati	ng Mode		<u>, , , , , , , , , , , , , , , , , , , </u>				, ,	
0x02	END 1 0 ENZFF MODE(3:0)							
Input C	onfiguration	-						
0x03	0	0	0	0	INVZ	INMODE	MUXI	N(1:0)
Signalk	onditionierun	g CH1, CH2	<u> </u>		<u> </u>			, ,
0x04		,	GF2(4:0)				GR12(2:0)	
0x05		GF1	(3:0)		0	0	0	0
0x06	VDC1(0)	0	0	0	0		GF1(6:4)	
0x07	0	0	0			VDC1(5:1)	<u> </u>	
80x0	OR1(0)			VDC	2(5:0)			0
0x09		OF1	(3:0)		0	0	0	OR1(1)
0x0A	0	0	OR2	(1:0)		OF1	(7:4)	
0x0B				OF2(6:0)				0
0x0C		PH12(2:0)		0	0	0	0	OF2(7)
0x0D	BIASE	EX(1:0)	0	1	1		PH12(5:3)	
0x0E	1	BIAS12	VOS1	2(1:0)		RIN1	2(3:0)	
Signal I	Level Controll	er						
0x0F	ADJ(0)	_	0	1	0	0	0	0
0x10				ADJ	(8:1)			
Signal (Conditioning (CH0						
0x11			GF0(4:0)				GR0(2:0)	
0x12			OF0	. ,			1	(1:0)
0x13	0	BIAS0	VOS	0(1:0)		RIN	0(3:0)	
Error M	onitoring and	Alarm Outpu	t					
0x14			T		KA(7:0)	T		
0x15	EMOL	DE(1:0)		EMTD(2:0)	(0 (= 0)	EPH	EMASI	KA(9:8)
0x16		ENAGO	(F(0,0)	EMAS	KO(7:0)	T	ENA A OL	(0(0,0)
0x17	FMCDEO	T.	KE(3:0)		ENSL	EPU	EMASI	KO(9:8)
0x18	EMODE2	PDMODE			EMAS	KE(9:4)		
	gnal Output			0504	D7/7.0\			
0x19					BZ(7:0)			
0x1A	DI 1/ 10				OS(7:0)			
	-Digital Conve	ersion, Minim	um Phase Dis		-O(7: 0)			
0x1B					ES(7:0))\		
0x1C	_	 	1/2:0)		SELRES(14:8	,	VC(3·0)	
0x1D	<u> </u>		0(3:0)			SELH	YS(3:0)	
	Driver Setting	js –	0114	(4.0)	000	(4.0)	TOUL	L (4.0)
0x1E		_	SIK	(1:0)	SSR	(1:0)	I RIH	L(1:0)

Rev D4, Page 13/39

Registe	Register Map							
Adr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Line Co	e Counter							
0x1F				LINEC	NT(7:0)			
0x20	0	0			LINECN	NT(13:8)		
Reserve	ed	i						
0x21	0	0	0	0	1	0	0	0
0x22			0x00	(recommend	ded programr	ming)		
0x23			0x00	`	ded programr	ming)		
0x24					DEM data			
0x25					DEM data			
0x26					DEM data			
0x27					DEM data			
0x28					DEM data			
0x29					DEM data			
0x2A					DEM data			
0x2B					DEM data			
0x2C					DEM data			
0x2D					DEM data			
0x2E				free for C	DEM data			
Check S	Sum							
0x2F		CHKSU	M(7:0) of EEF	PROM data	[CHPREL	(7:0), refer to	Table 7]	
Error Re	egister							
0x30				ERR	1(7:0)			
0x31			ERR	2(5:0)			ERR ²	1(9:8)
0x32		ERR:	3(3:0)				2(9:6)	
0x33	_	ERR3(9:4)						
Notes	The device RA	M initially contai	ns random data	following power	-on.			

Table 4: Register layout (EEPROM)

Rev D4, Page 14/39

SERIAL CONFIGURATION INTERFACE

The serial configuration interface consists of the two pins SCL and SDA and enables read and write access to an EEPROM with an I²C interface. The readout clock rate can be selected using ENFAST.

ENFAST	Adr 0x00, bit 7
Code	Function
0	Regular clock rate, f(SCL) approx. 80 kHz
1	High clock rate, f(SCL) approx. 320 kHz
Notes	For in-circuit programming bus lines SCL and SDA require pull-up resistors. For line capacitances to 170 pF, adequate values are: $4.7 \ k\Omega \ \mbox{with clock frequency } 80 \ \mbox{kHz} \\ 2 \ \mbox{k}\Omega \ \mbox{with clock frequency } 320 \ \mbox{kHz}$
	The pull-up resistors may not be less than $1.5 \mathrm{k}\Omega$. To separate the signals a ground line between SCL and SDA is recommended. iC-MQ requires a supply voltage during EEPROM programming (5 V to VDD).

Table 5: Clock Frequency Configuration Interface

Once the supply has been switched on the iC-MQ outputs are high impedance (tristate*) until a valid configuration is read out from the EEPROM using device ID 0x50.

Bit errors in the 0x00 to 0x2F memory section are pinpointed by the CRC deposited in register CHK-SUM(7:0) (address 0x2F in the EEPROM; the CRC polynomial used is "'1 0001 1101"' with a start value of "1").

Should the read configuration data not be confirmed by the CRC, the readin process is repeated. If no valid configuration data is available after a fourth readin, iC-MQ terminates EEPROM access and switches to I²C slave mode. This switch takes place after 150 ms at the latest (see Electrical Characteristics, D11), for example when no EEPROM is connected.

For devices loading a valid configuration from the EEP-ROM register bit ENSL decides whether the I²C slave function is enabled or not.

ENSL	Adr 0x17, bit 3		
Code	Function		
0	Normal operation		
1	I ² C Slave Mode Enable (Device ID 0x55)		

Table 6: Config. Interface Mode

The device ID for the EEPROM can be entered in register DEVID(6:0) (address 0x00), from which iC-MQ will take its configuration after exiting test mode (see page 33). The DEVID stored therein is then accepted.

Example of CRC Calculation Routine

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x11D;
unsigned char ucCRC=0;
int i = 0;

ucCRC = 1; // start value !!!
for (iReg = 0; iReg<47; iReg ++)
{
   ucDataStream = ucGetValue(iReg);
   for (i=0; i<=7; i++) {
    if ((ucCRC & 0x80) != (ucDataStream & 0x80))
        ucCRC = (ucCRC << 1) ^ iCRCPoly;
   else
        ucCRC = (ucCRC << 1);
        ucDataStream = ucDataStream << 1;
}
</pre>
```

EEPROM Selection

The following minimal requirements must be fulfilled:

- Operation from 3.3 to 5 V, I²C interface
- At least 512 bits, 64x8 (address range used is 0x00 to 0x3F)
- Support of Page Write with Pages of at least 4 bytes. Errors can otherwise not be saved to the EEPROM (EMASKE = 0x0).
- Device ID 0x50 "1010000", no occupation of 0x55 (A2...A0 = 0). iC-MQ can otherwise not be accessed via 0x55 in I²C slave mode.

Recommended device: Atmel AT24C01B, ST M24C01W

Rev D4, Page 15/39

I^2C Slave Mode (ENSL = 1)

In this mode iC-MQ behaves like an I²C slave with the device ID 0x55 and the configuration interface permits write and read accesses to iC-MQ's internal registers.

For chip release verification purposes an identification value is stored under ROM address 0x2F; a write access to this address is not permitted.

CHPREL	Adr 0x2F, bit 7:0 (ROM)		
Code	Chip Release		
0x00	Not available		
0x04	iC-MQ 3		
80x0	iC-MQ X		
0x09	iC-MQ X1		

Table 7: Chip Release

END	Adr 0x02, bit 7
Code	Function
0	Sin/D converter and line driver disabled (RAM configuration data invalid)
1	Restart of Sin/D conversion, line driver active (RAM configuration data valid)

Table 8: Configuration Enable

Register	Read access via I ² C slave mode (ENSL=1)
RAM Addr	Content
0x00-0x21	Configuration data (see EEPROM addresses 0x00-0x21)
0x22-0x2A	Not available
0x2B-0x2E	Configuration data (see EEPROM addresses 0x2B-0x2E)
0x2F	Chip release CHPREL(7:0)
0x30-0x33	Configuration data (see EEPROM addresses 0x30-0x33)
0x34-0x3A	Not available
0x3B-0x3E	Configuration data (see EEPROM addresses 0x2B-0x2E)
0x3F	Chip release CHPREL(7:0)
0x40-0x43	Current error memory (only active when enabled by EMASKE; messages will be transferred to EEPROM Addresses 0x30-0x33)
0x44-0x7F	Not available

Table 9: RAM Read Access

Register	Write access via I ² C slave mode (ENSL = 1)		
RAM Addr	Access and conditions		
0x00	Changes possible, no restrictions		
0x01	Changes possible (wrong entries for CFGIBN can limit functions)		
0x02	Changes to bits 6:0 are permitted only when Sin/D conversion is halted (END=0, ie. bit 7); Restarting Sin/D conversion by changing END (bit 7) is permitted only with no changes of operating mode (bits 6:0 remain as set)		
0x03-0x16	Changes possible, no restrictions		
0x17	Changes to bits 7:4 and 2:0 are permitted (ENSL, bit 3 must be kept 1)		
0x18	Changes possible, no restrictions		
0x19-0x21	Changes possible when Sin/D conversion is halted (END = 0)		
0x2B-0x2E	Changes possible, no restrictions		
0x2F-0x3F	No write access permitted		
0x40-0x43	No write access permitted		
0x44-0x7F	Not available		

Table 10: RAM Write Access

Notes: The converter function should be halted by END=0 for the deletion of errors saved in the EEP-ROM (Dev-ID 0x50, Addresses 0x30-0x33). Otherwise active errors could be transferred to the EEP-ROM again (from addresses 0x40-0x43 if enabled by EMASKE).

Rev D4, Page 16/39

BIAS CURRENT SOURCE AND TEMPERATURE SENSOR CALIBRATION

Bias Current

The calibration of the bias current source in operation mode *Calibration 1* (see Table 13) is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. clock frequency at SCL). For setup purposes the IBN bias current is measured using a $10\,\mathrm{k}\Omega$ resistor by pin VDDS connected to pin NC. The setpoint is $200\,\mu\text{A}$ which is equivalent to a voltage drop of $2\,\mathrm{V}$.

CFGIBN	Adr 0x01, bit 7:4			
Code k	$IBN \sim \frac{31}{39-k}$	Code k	$IBN \sim \frac{31}{39-k}$	
0x0	79%	0x8	100 %	
0x1	81 %	0x9	103%	
0x2	84%	0xA	107%	
0x3	86 %	0xB	111%	
0x4	88 %	0xC	115%	
0x5	91 %	0xD	119%	
0x6	94%	0xE	124%	
0x7	97%	0xF	129 %	

Table 11: Calibration of Bias Current

Temperature Sensor

The temperature monitoring is calibrated in operating mode *Calibration 3*.

To set the required warning temperature T_2 the temperature sensor voltage VTs at which the warning message is generated is first determined. To this end a voltage ramp from VDDS towards GNDS is applied to pin PA until pin ERR displays the warning message. The following settings are required here: EMASKA=0x20, EMTD=0x00 and EPH=0x00.

The signal at ERR first switches from tristate to low (on reaching the warning threshold VTs) and then from low to tristate (on overshooting the internal hysteresis which is not relevant to calibration). To avoid confusion a clear change of state (from low to high) must be generated with the help of an external pull-up resistor at pin ERR.

Example: $VTs(T_1)$ is ca. 650 mV, measured from VDDS versus PA, with $T_1 = 25$ °C;

The necessary reference voltage $VTth(T_1)$ is then calculated. The required warning temperature T_2 , temperature coefficients TCs and TCth (see Electrical Characteristics, Section E) and measurement value $VTs(T_1)$ are entered into this calculation:

$$VTth(T_1) = \frac{VTs(T_1) + TCs \cdot (T_2 - T_1)}{1 + TCth \cdot (T_2 - T_1)}$$

Example: For $T_2 = T_1 + 100 \, \text{K VTth}(T_1)$ must be programmed to 443 mV.

Reference voltage VTth(T_1) is provided for a high impedance measurement (10 M Ω) at output pin NA (measurement versus VDDS) and must be set by programming CFGTA(3:0) to the calculated value.

Example: Altering VTth(T_1) from 310 mV (measured with CFGTA(3:0)= 0x0) to 443 mV is equivalent to 143 %, the closest value for CFGTA is 0x9;

CFGTA	Adr 0x01, bit 3:0			
Code k	$VTth \sim \frac{65+3k}{65}$	Code k	$VTth \sim \frac{65+3k}{65}$	
0x0	100 %	0x8	140 %	
0x1	105 %	0x9	145 %	
0x2	110 %	0xA	150 %	
0x3	115 %	0xB	155 %	
0x4	120 %	0xC	160 %	
0x5	125 %	0xD	165 %	
0x6	130 %	0xE	170 %	
0x7	135 %	0xF	175 %	
Notes	With CFGTA = 0xF Toff is 80 °C typ., with CFGTA = 0x0 Toff is 155 °C typ.			

Table 12: Calibration of Temperature Monitoring

Rev D4, Page 17/39

OPERATING MODES

iC-MQ has various modes of operation, for which the functions of outputs PA, NA, PB, NB, PZ, NZ and ERR are altered.

Two operating modes can be selected for the output of the angle position in normal operation. *Mode 191/193* provides control signals for devices compatible with 74HC191 or 74HC193, whereas in *Mode ABZ* the angle position is output incrementally as an en-

coder quadrature signal with a zero pulse. Only in these modes are the line drivers and the reverse polarity protection feature active.

In order to condition the input signals and to calibrate and test iC-MQ *Calibration* and *Test* modes are available. Digital and analog test signals are provided; the latter must always be measured at high load impedance.

MODE(3:0)		Addr. 0x02;	bit 3:0					
Code	Operating Mode	PA	NA	РВ	NB	PZ	NZ	ERR
0x00	Mode ABZ	А	not(A)	В	not(B)	Z	not(Z)	ERR
0x0F	Mode 191/193	CPD	CPU	CP	nU/D	MR	nPL	ERR
0x01	Calibration 1	TANAZ(2)	VREFIZ	VREFISC	IBN	PCH0	NCH0	IERR
0x02	Calibration 2	PCH1	NCH1	PCH2	NCH2	VDC1	VDC2	
0x03	Test 3*	VPAH	VPD	_	CGUCK	IPF	V05	IERR
0x04	Test 4*	PS_out	NS_out	PC_out	NC_out	PZO	NZO	IERR
0x05	Test 5*	PSIN	NSIN	PCOS	NCOS	PZO	NZO	IERR
0x06	Test 6*	PCH1I	NCH1I	PCH2I	NCH2I	VDC1	VDC2	res.
0x07	Calibration 3	VTs	VTth	_	_	VTTFE	VTTSE	ERR
0x08	Lo-Signal	All outputs a	nd SCL, SDA,	ERR to low le	evel			
0x09	Hi-Signal	All outputs to	high level					
0x0A	Test 10*	TP	CLK6	CLK1	CLK3/8	Z _{In}	CLK4	
0x0B	System Test*	A ₄	A ₈	B ₄	B ₈	Z _{In}	TP1	ERR
0x0C	Test 12*	Α	not(A)	В	not(B)	Z	not(Z)	ERR
0x0D	_	_	_	_	_	_	_	_
0x0E	IDDQ Test*	All PU/PD resistors, oscillator and analog supply voltage deactivated.						
	Hints	*) Test function for iC-Haus device test only.						

Table 13: Operating Modes

Mode ABZ

In *Mode ABZ* A/B signals are generated and output via PA, NA, PB and NB. A freely configurable zero signal is simultaneously provided at pins PZ and NZ. The differential RS422 line drivers are active; an Nx pin constantly supplies a complementary signal which is the inversion of pin Px.

Mode	Mode 191/193				
Pin	Signal	Description			
PA	CPD	Clock Down Pulse			
NA	CPU	Clock Up Pulse			
PB	СР	Clock Pulse			
NB	nU/D	Count Direction (0: up, 1: down)			
PZ	MR	Asynch. Master Reset (active high) Signal is '1' if index position is reached, otherwise '0'.			
NZ	nPL	Asynch. Parallel Load Input (active low) / Reset (active low) Signal is '0' if index position is reached, otherwise '1'.			

Table 14: Operating mode for counter devices compatible with 74HC191 or 74HC193.

Mode 191/193

In *Mode 191/193* the output pins provide control signals for counter devices compatible with 74HC191 or 74HC193 according to the following table. The driving capability (SIK) and the slew rate (SSR) of the output drivers must be selected so that the clock pulses can be output with a low pulse of typically 50 ns (see Electrical Characteristics, 511).

Calibration 1, 2, 3

These modes are used to condition the input signals and calibrate iC-MQ. In mode *Calibration 1* the user can measure the IBN bias current and the zero chan-

Rev D4, Page 18/39

nel analog signals are available following signal conditioning (PCH0 and NCH0).

In mode *Calibration 2* the conditioned sine and cosine signals are output (PCH1, NCH1, PCH2 and NCH2). In addition intermediate potential VDC1 is provided for compensating circuit CH1, as is intermediate potential VDC2 for CH2 (for a description of the calibration process, see page 21).

In mode *Calibration 3* the internal temperature monitoring signals are provided. Calibration of the bias current source and temperature monitoring is described on page 16 and calibration of the zero channel on page 24.

TEST 6

The input voltages at pins X3 to X6 can be checked in mode *Test 6*. The following settings are required here:

- GF1 = 0x0
- GF2 = 0x0
- Byte 0x05, bit 3:0 = '0000'
- Byte 0x0F, bit 3 = '1'
- Byte 0x0F, bit 4 = '0'

System Test

This mode enables the signal conditioning to be adjusted using comparated sine and cosine signals. To

this end at a resolution of 8 the interpolator generates a switchpoint every 45 degrees. The objective of the calibration procedure is a pulse duty cycle of exactly 50% respectively for A₄, B₄ und A₈, B₈. The following settings are required for mode *System Test*:

- MODE = 0x0B
- SELRES = 0x1B0
- SELHYS = 0xF
- CFGABZ(7:4) = '0000'

Syste	em Test			
Pin	Signal	Description		
PA	A ₄	Offset CH1		
NA	A ₈	Phase deviation from 90° between CH1 and CH2		
PB	B ₄	Offset CH2		
NB	B ₈	Amplitude deviation between CH1 and CH2		
PZ	Z _{In}	Digital zero signal, unmasked		
NZ	TP1	Verification of line count (pulses) between two zero pulses Low signal: verification running (state after power on reset) High signal: verification finished An error messaging at ERR is valid after the second zero signal (enable required).		

Table 15: Digital Calibration Signals

Rev D4, Page 19/39

INPUT CONFIGURATION

All input stages are configured as instrumentation amplifiers and thus directly suitable for differential input signals. Referenced input signals can be processed; input X2 can be configured as a reference input. Both current and voltage signals can be processed, selected using RIN12 and RIN0.

INMODE	Adr 0x03, bit 2			
Code	Function			
0	Differential input signals			
1	Single-ended input signals *			
Note	* Input X2 is reference for all inputs.			

Table 16: Input Signal Mode

P-Input OF VOS: 0.5 V 0.5 V 0.005 x V(ACO) N-Input RN OF VDC VVPAH VVPAH VVPAH VVPAH NOT VVPAH VVP

Figure 2: Signal Conditioning

Current Signals

In I Mode an input resistor Rin() becomes active at each input pin, converting the current signal into a voltage signal. Input resistance Rin() consists of a pad wiring resistor and resistor Rui() which is linked to the adjustable bias voltage source VREFin(). BIA-SEX must be set to '00'. The table besides shows the possible selections, with Rin() giving the typical resulting input resistance (see Electrical Characteristics for tolerances). The input resistor should be set in such a way that intermediate potentials VDC1 and VDC2 lie between 125 mV and 250 mV (verifiable in mode *Calibration 2*).

Voltage Signals

In V mode an optional voltage divider can be selected which reduces unacceptably large input amplitudes to ca. 25%. The circuitry is equivalent to the resistor chain in I mode; the pad wiring resistor is considerably larger here, however. For sensors whose offset calibration is to be proportional to an external DC voltage source the reference source can be selected using BI-ASEX; for all other sensors BIASEX should be set to '00'.

RIN12	Adr 0x0E, bit 3:0				
RIN0	Adr 0x13, bit 3:0				
Code	Nominal Rin() Internal Rui() I/V Mode				
-000	1.7 kΩ	1.6 kΩ	current input		
-010	2.5 kΩ	2.3 kΩ	current input		
-100	3.5 kΩ	3.2 kΩ	current input		
-110	4.9 kΩ	4.6 kΩ	current input		
1—1	20 kΩ	5 kΩ	voltage input		
0—1	high impedance	high $1 \mathrm{M}\Omega$ voltage input			

Table 17: I/V Mode and Input Resistance

BIAS12	Adr 0x0E, bit 6	
BIAS0	Adr 0x13, bit 6	
Code	VREFin()	Type of sensor
0	2.5 V	Lowside sink current (I Mode)
1	1.5 V	Highside current source (I Mode)
Note	Not valid with B	IASEX=11.

Table 18: Reference Voltage

BIASEX	Adr 0x0D, bit 7:6		
Code	VREFin()	Signal at X2	
00*	1.5/2.5 V (internal)	Neg. Zero Signal (Index -), input	
10	1.5/2.5 V (internal)	Ref. Voltage VREFin12, output	
11	external	Voltage at X2 supplies VREFin	

Table 19: Input Reference Selection

Rev D4, Page 20/39

SIGNAL PATH MULTIPLEXING

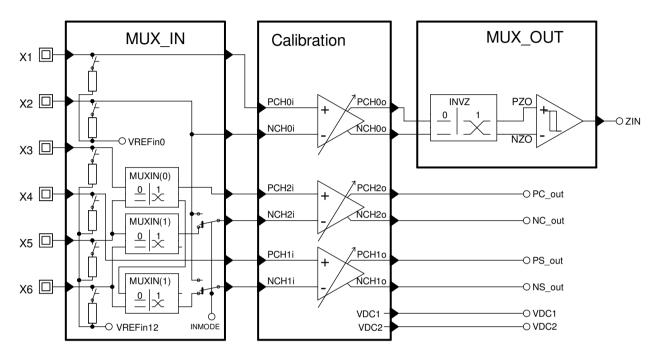


Figure 3: Principle Of Multiplexer Function

The signals for index channel CH0 are connected up to pins X1 and X2. Pins X3 to X6 are allocated to internal channels CH1 and CH2 via MUXIN. INMODE can be activated for referenced input signals; this then selects X2 as the reference signal input. For output purposes INVZ allows the index signal phase to be inverted for channel CH0.

MUXIN	Adr 0x03, bit 1:0			
Code	PCH1i	NCH1i	PCH2i	NCH2i
00	X4	X6	Х3	X5
01	not permitte	not permitted		
10	X4	X5	Х3	X6
11	X4	Х3	X5	X6

Table 20: Input Multiplexer for INMODE = 0

MUXIN	Adr 0x03, bit 1:0				
Code	PCH1i	PCH1i NCH1i PCH2i NCH2i			
00	X4	X4 X2 X3 X2			
01	not permitted				
10	not permitted				
11	X4	X2	X5	X2	

Table 21: Input Multiplexer for INMODE = 1

INVZ	Adr 0x03, bit 3	
Code	PZO	NZO
0	PCH0o	NCH0o
1	NCH0o	PCH0o

Table 22: Index Signal Inversion

Rev D4, Page 21/39

SIGNAL CONDITIONING CH1, CH2

The analog voltage signals necessary for the calibration of the sine signals can be measured in operation mode *Calibration 2*. Alternatively, characteristic digital test signals are also available for offset, amplitude and phase errors in operating mode *System Test*.

Gain Settings

The gain is set in four steps:

- 1. The sensor supply controller is shut down and the constant current source for the ACO output set to a suitable output current (register ADJ; current value close to the later operating point).
- 2. The coarse gain is selected so that differential signal amplitudes of ca. 1 Vpp are produced internally (signal Px versus Nx, see Figure).
- 3. Using fine gain factor GF2 the CH2 signal amplitude is then adjusted to 1 Vpp.
- 4. The CH1 signal amplitude can then be adjusted to the CH2 signal amplitude via fine gain factor GF1. This results in a total gain of GR12*GFi for differential input signals.

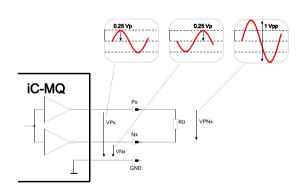


Figure 4: Definition of 1 Vpp signal. Termination R0 must be high-ohmic during all *Test* and *Calibration* modes.

GR12	Adr 0x04, bit 2:0		
Code	Range RIN12=0x9	Range RIN12≠0x9	
0x0	0.5	2.0	
0x1	1.0	4.1	
0x2	1.3	5.3	
0x3	1.7	6.7	
0x4	2.2	8.7	
0x5	2.6	10.5	
0x6	3.3	13.2	
0x7	4.0	16.0	

Table 23: Gain Range CH1, CH2

GF2	Adr 0x04, bit 7:3
Code	Factor
0x00	1.00
0x01	1.06
	6.25 ^{GF2} / ₃₁
0x1F	6.25

Table 24: Fine Gain Factor CH2

GF1	Adr 0x06, bit 2:0, Adr 0x05, bit 7:4	
Code	Factor	
0x00	1.0	
0x01	1.015	
	6.25 ^{GF1} / ₁₂₄	
0x7F	6.53	

Table 25: Fine Gain Factor CH1

Rev D4, Page 22/39

Offset Calibration CH1, CH2

In order to calibrate the offset the reference source must first be selected using VOS12. Two fixed voltages and two dependent sources are available for this purpose. The fixed voltage sources should be selected for external sensors which provide stable, self-regulating signals.

So that photosensors can be operated in optical encoders iC-MQ tracks changes in offset voltages via the signal-dependent source VDC when used in conjunction with the controlled sensor current source for LED supply (pin ACO). The VDC potential automatically tracks higher DC photocurrents. To this end intermediate potentials VDC1 and VDC2 must be adjusted to a minimal AC ripple using the selectable k factor (this calibration must be repeated when the gain setting is altered). The ideal DC voltage level of 0.125 V to 0.25 V is selected via input resistor Rui().

The feedback of pin voltage V(ACO) fulfills the same task as source VDC when MR bridge sensors are supplied by the controlled sensor current source. In this instance the VDC sources do not need adjusting.

VOS12	Adr 0x0E, bit 5:4
Code	Source
0x0	0.05 · V(ACO)
0x1	0.5 V
0x2	0.25 V
0x3	VDC (VDC1 for CH1, VDC2 for CH2)

Table 26: Offset Reference Source CH1, CH2

VDC1	Adr 0x07, bit 4:0; Adr 0x06, bit 7
VDC2	Adr 0x08, bit 6:1
Code	$VDC = k \cdot VPi + (1 - k) \cdot VNi$
0x00	k = 0.33
0x01	k = 0.335
	$k = 0.33 + VDCi \cdot 0.0052$
0x3F	k = 0.66

Table 27: Intermediate Voltages CH1, CH2

The offset calibration range for CH1 and CH2 is dependent on the selected VOS12 source and is set using OR1 and OR2. Both sine and cosine signals are then calibrated using factors OF1 and OF2. The calibration target is reached when the DC fraction of the differential signals PCHi versus NCHi is zero.

OR1	Adr 0x09, bit 0; Adr 0x08, bit 7
OR2	Adr 0x0A, bit 5:4
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 28: Offset Range CH1, CH2

OF1	Adr 0xA, bit 3:0; Adr 0x9, bit 7:4			
OF2	Adr 0xC, bit 0; Adr 0xB, bit 7:1			
Code	Factor	Code	Factor	
0x00	0	0x80	0	
0x01	0.0079	0x81	-0.0079	
	0.0079 · <i>OFi</i>		−0.0079 · <i>OFi</i>	
0x7F	1	0xFF	_1	

Table 29: Offset Factors CH1, CH2

Phase Correction CH1 vs. CH2

The phase shift between CH1 and CH2 can be adjusted using parameter PH12. Following phase calibration other calibration parameters may have to be adjusted again (those as amplitude compensation, intermediate potentials and offset voltages).

PH12	Adr 0xD, bit 2:0; Adr 0xC, bit 7:5		
Code	Correction angle	Code	Correction angle
0x00	+0	0x20	-0
0x01	+0.65	0x21	-0.65
	+0.65 · PH12		−0.65 · <i>PH</i> 12
0x1F	+20.2	0x3F	-20.2

Table 30: Phase Correction CH1 vs. CH2

Rev D4, Page 23/39

Signal Conditioning Examples

1. Photodiode array connected to current inputs, LED supply with constant current source

Step	Operating Mode	Calibration and Signal
1.		Presets VOS12= 0x3, GF1= 0x40, VDC1= 0x20, OF1= 0x0, GF2= 0x10, VDC2= 0x20, OF2= 0x0
		Example: LED current approx. 6.25 mA ADJ(8)= 1 (constant current source), ADJ(6:5)= 11 (range 50 mA), ADJ(4:0)= 0x04 (value 12.5)
2.	Calibration 2	Calibration of Channel 1: Parameter GR12: Adjust diff. signal at PA vs. NA to approx. 1 Vpp amplitude Parameter GF1: Adjust diff. signal at PA vs. NA to exactly 1 Vpp amplitude Parameter VDC1: Minimization of VDC1 AC fraction at output PZ (ripple < 10 mVpeak) Parameter OR1, OF1: Calibration of DC fraction to zero for diff. signal PA vs. NA (< 5 mVdc)
3.	Calibration 2	Calibration of Channel 2: Parameter GF2: Adjust diff. signal at PB vs. NB to exactly 1 Vpp amplitude Parameter VDC2: Minimization of VDC2 AC fraction at ouput NZ (ripple < 10 mVpeak) Parameter OR2, OF2: Calibration of DC fraction to zero for diff. signal PB vs. NB (< 5 mVdc)
4.	System Test	1. Iteration, Calibration of Channel 1 vs. Channel 2: Parameter OF1: Adjust duty ratio of A ₄ at PA to 50 % Parameter OF2: Adjust duty ratio of B ₄ at PB to 50 % Parameter PH12: Adjust duty ratio of A ₈ at NA to 50 % Parameter GF1: Adjust duty ratio of B ₈ at NB to 50 %
5.	Calibration 2	Repeated Adjustment of Intermediate Voltages, VDC1 and VDC2: Parameter VDC1: Minimization of VDC1 AC fraction at ouput PZ Parameter VDC2: Minimization of VDC2 AC fraction at ouput NZ
6.	System Test	2. Iteration, Calibration of Channel 1 vs. Channel 2: Parameter OF1: Adjust duty ratio of A ₄ at PA to 50 % Parameter OF2: Adjust duty ratio of B ₄ at PB to 50 % Parameter PH12: Adjust duty ratio of A ₈ at NA to 50 % Parameter GF1: Adjust duty ratio of B ₈ at NB to 50 %

Table 31: Conditioning example 1

2. Encoder supplying 100 mVpp to voltage inputs

Step	Operating Mode	Calibration and Signal	
1.		Presets VOS12= 0x1, GF1= 0x40, OF1= 0x0, GF2= 0x10, OF2= 0x0	
2.	Calibration 2	Calibration of Channel 1: Parameter GR12: Adjust diff. signal at PA vs. NA to approx. 1 Vpp amplitude Parameter GF1: Adjust diff. signal at PA vs. NA to exactly 1 Vpp amplitude Parameter OR1, OF1: Calibration of DC fraction to zero for diff. signal PA vs. NA (< 5 mVdc)	
3.	Calibration 2	Calibration of Channel 2: Parameter GF2: Adjust diff. signal at PB vs. NB to exactly 1 Vpp amplitude Parameter OR2, OF2: Calibration of DC fraction to zero for diff. signal PB vs. NB (< 5 mVdc)	
4.	System Test	Calibration of Channel 1 vs. Channel 2: Parameter OF1: Adjust duty ratio of A_4 at PA to 50 % Parameter OF2: Adjust duty ratio of B_4 at PB to 50 % Parameter PH12: Adjust duty ratio of A_8 at NA to 50 % Parameter GF1: Adjust duty ratio of B_8 at NB to 50 %	

Table 32: Conditioning example 2

Rev D4, Page 24/39

SIGNAL CONDITIONING CHO

The voltage signals needed to calibrate the zero channel are available in mode *Calibration 1*. The relative phase position of the ungated zero signal Zin compared to A and B can be determined in mode *System Test*.

Gain Settings CH0

Parallel to the conditioning process for the CH1 and CH2 signals the CH0 gain is also set in the following steps:

- 1. The sensor supply controller is shut down and the constant current source for the ACO output set to the same output current as in the calibration of CH1 and CH2 (register ADJ; current value close to the later operating point).
- 2. The coarse gain is selected so that a differential signal amplitude of ca. 1 Vpp is produced internally (signal PCHi versus NCHi).
- 3. GF0 then permits fine gain adjustment to 1 Vpp. The total gain is accrued from GR0 x GF0.

GR0	Adr 0x11, bit 2:0	
Code	Range RIN0 = 0x9	Range RIN0 ≠ 0x9
0x0	0.5	2.0
0x1	1.0	4.1
0x2	1.3	5.3
0x3	1.7	6.7
0x4	2.2	8.7
0x5	2.6	10.5
0x6	3.3	13.2
0x7	4.0	16.0

Table 33: Gain Range CH0

GF0	Adr 0x11, bit 7:3
Code	Factor
0x00	1.00
0x01	1.06
	6.25 ^{GF0} / ₃₁
0x1F	6.25

Table 34: Fine Gain Factor CH0

Offset Calibration CH0

To calibrate the offset the reference source must first be selected using VOS0 (see Offset Calibration CH1 and CH2 for further information). For the CH0 path the dependent source VDC1 is identical to source VDC1.

VOS0	Adr 0x13, bit 5:4
Code	Source
0x0	0.05 · V(ACO)
0x1	0.5 V
0x2	0.25 V
0x3	VDC (i.e. VDC1)

Table 35: Offset Reference Source CH0

OR0	Adr 0x12, bit 1:0
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 36: Offset Range CH0

OF0	Adr 0x12, bit 7:2		
Code	Factor	Code	Factor
0x00	0	0x20	0
0x01	0.0322	0x21	-0.0322
	0.0322 · OF0		-0.0322 · OF0
0x1F	1	0x3F	-1

Table 37: Offset Factor CH0

Rev D4, Page 25/39

SIGNAL LEVEL CONTROL and SIGNAL MONITORING

Via the controlled sensor current source (pin ACO) iC-MQ can keep the input signals for the internal sine-to-digital converter constant regardless of temperature and aging effects by tracking the sensor supply.

Both the controller operating range and input signal amplitude for the controller are monitored and can be enabled for error messaging. A constant current source can be selected for the ACO output when setting the signal conditioning; the current range for the highside current source is adjusted using ADJ(6:5).

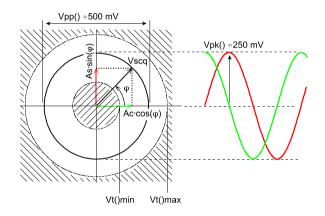


Figure 5: Internal signal level monitoring and test signals in *Calibration 2* mode (example for ADJ(8:0) = 0x19; see Elec. Char. Nos. 605 and 606 regarding Vt()min and Vt()max).

ADJ (8:7)	Adr 0x10, bit 7:6
Code	Function
00	Sine/cosine square control
01	Sum control
10	Constant current source
11	Not permitted (device test only)

Table 38: Controller Operating Modes

ADJ (6:5)	Adr 0x10, bit 5:4
Code	Function
00	5 mA - Range
01	10 mA - Range
10	25 mA - Range
11	50 mA - Range

Table 39: ACO Output Current Range (applies for control modes and constant current source)

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7
Code	Square control ADJ(8:7) = 00
0x00	Vpp() ca. 300 mV (60 %)
0x01	Vpp() ca. 305 mV (61 %)
	$Vpp() \approx 300 \ mV \frac{77}{77 - (1.25 * Code)}$
0x19	Vpp() ca. 500 mV (98 %)
0x1F	Vpp() ca. 600 mV (120 %)

Table 40: Internal Sin/Cos Signal Amplitude For Square Control

In operation with the active square control mode ADJ(4:0) sets the internal signal amplitudes according to the relation (PCH1-NCH1)² + (PCH2-NCH2)²; these should be set to 0.25 Vpk.

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7
Code	Sum control ADJ(8:7) = 01
0x00	VDC1+VDC2 ca. 245 mV
0x01	VDC1+VDC2 ca. 249 mV
	$VDC1 + VDC2 \approx 245 mV \frac{77}{77 - (1.25*Code)}$
0x1F	VDC1+VDC2 ca. 490 mV

Table 41: DC Setpoint For Sum Control

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7
Code	Constant current source ADJ(8:7) = 10
0x00	I(ACO) ca. 3.125% Isc(ACO)
0x01	I(ACO) ca. 6.25% Isc(ACO)
	I(ACO) ≈ 3.125% * (Code + 1) * Isc(ACO)
0x1F	I(ACO) ca. 100% Isc(ACO)
Notes	See Elec. Char. No. 602 for Isc(ACO)

Table 42: I(ACO) With Constant Current Source

Rev D4, Page 26/39

SINE-TO-DIGITAL CONVERSION

SELRES	Adr 0x1C, bit 6:0; Adr 0x1B, bit 7:0		
Value	STEP Angle Steps Per Period	IPF Interpolation Factor	fin()max Permissible Input Frequency (MTD=0x8)
0x00E0	4	1	500 kHz
0x01B0	8	2	500 kHz
0x02A0	12	3	200 kHz
0x0398	16	4	200 kHz
0x0414	20	5	200 kHz
0x0590	24	6	166 kHz
0x078C	32	8	125 kHz
0x090A	40	10	100 kHz
0x0B88	48	12	83 kHz
0x0F86	64	16	62.5 kHz
0x1305	80	20	50 kHz
0x1784	96	24	40 kHz
0x1804	100	25	40 kHz
0x1F83	128	32	30 kHz
0x2F82	192	48	20 kHz
0x3102	200	50	20 kHz
0x5F81	384	96	10 kHz
0x6301	400	100	10 kHz

Table 43: Converter Resolution

iC-MQ's converter resolution can be set using SEL-RES. For a resolution of 4, four angle steps per input signal period are generated so that the switching frequency at the A and B output matches the sine frequency at the input.

The programmable converter hysteresis is determined by SELHYS. It is set in multiples of the increment size and may have a maximum of 45° of the input signal period.

SELHYS	Adr 0x1D, bit 3:0
Code	Function
0x0	Nearly no hysteresis
0x1	1 increment (≈ 0.9°)
0x2	2 increments (≈ 1.8°)
0x3-0xD	3-13 increments (≈ 2.7°-11.7°)
0xE	SELRES(6:1) increments (0.5 LSB)
0xF*	SELRES(6:0) increments
Notes	*) Not permissible with SELRES = 0x00E0

Table 44: Converter Hysteresis

Rev D4, Page 27/39

OUTPUT SETTINGS AND ZERO SIGNAL

The set interpolation factor IPF determines the number of A/B signal cycles generated internally which are counted via register POS to enable the positioning of the zero pulse. At a sine/cosine phase angle of zero degree the A/B cycle count starts at POS = 0, and the highest cycle count is reached when POS $_{max}$ = IPF-1. The internal A/B signal cycle adheres to the following pattern:

Α	1	1	0	0
В	1	0	0	1

Table 45: Internal A/B Signal Cycle

Inversions and reversals can be selected for the output of the A/B/Z signals and any logic combination for the output of the zero signal. The output logic pairs parameters CFGABZ in accordance with the table below:

CFGABZ	Adr 0x19, bit 7:0
Bit	Function and Description
7	Output inversion for channel A: PA<>NA PA = P1i xor CFGABZ(7)
6	Output inversion for channel B: PB<>NB PB = P2i xor CFGABZ(6)
5	Output inversion for index channel: PZ<>NZ PZ = P0i xor CFGABZ(5)
4	Exchange of A/B signal assignation 0: P1i = A, P2i = B 1: P1i = B, P2i = A
	Zero Signal Logic CFGABZ(3:0)
3	Enable for A = 1, B = 1
2	Enable for $A = 1$, $B = 0$
1	Enable for $A = 0$, $B = 0$
0	Enable for $A = 0$, $B = 1$

Table 46: Output Logic

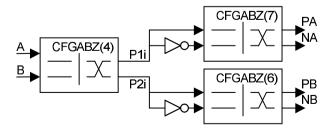


Figure 6: Signal Path from A and B to PA/NA and PB/NB

Zero Signal Generation

The generation of the zero signal is dependant on the internal enable signal Z_{ln} which is produced by comparing the processed X1 and X2 input signals. The offset calibration of CH0 influences the width of the enable signal so that the correct position of Z_{ln} should be checked before the zero signal logic is configured. In *Mode ABZ* this is possible at the error signal output (pin ERR; required settings are EMASKA = 0x010 and EMTD = 0x0).

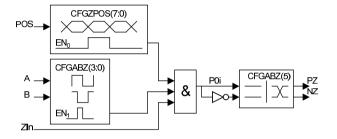


Figure 7: Signal path from Z_{ln} to PZ/NZ

The positioning of the zero signal by CFGZPOS is relative to the internal A/B cycle count POS. A cycle must be selected across which enable signal Z_{ln} is centered as far as is possible. For cycle counts which cannot be achieved due to a smaller interpolation factor no zero signal is generated.

CFGZPOS	Adr 0x1A, bit 7:0
Bit	Description
7	Mask Enable (zero signal position determined by POS)
(6:0)	POS = A/B cycle count nl (releases zero signal output)

Table 47: Zero Signal Positioning

ENZFF	Adr 0x02, bit 4
Bit	Description
0	Zero signal output with state change of P0i
1	Zero signal output synchronized with A/B signal

Table 48: Zero Signal Synchronization

Rev D4, Page 28/39

Description Of CFGABZ Setup

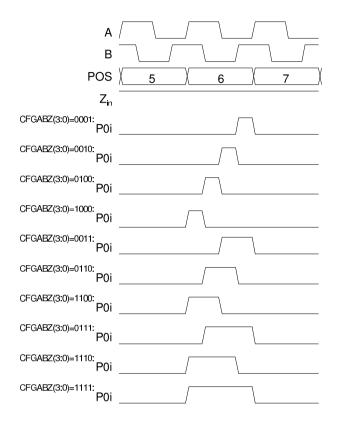


Figure 8: Function of zero signal logic CF-GABZ(3:0) (Example for CFGZPOS(7)=1, CFGZPOS(6:0)=0x6)

Setup Example 1

Incremental ABZ output with a zero signal of 180° synchronous with the A signal at PA:

CFGABZ = "0000 1100"

Setup Example 2

Incremental ABZ output with a zero signal of 270° which can be synchronized externally with a 90° zero pulse for PA = 1 und PB = 1: CFGABZ = "1100 0111"

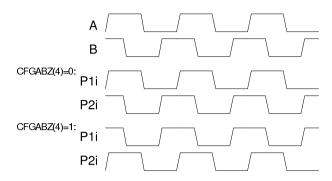


Figure 9: Function of CFGABZ(4)

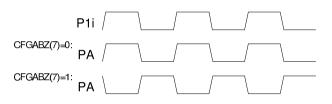


Figure 10: Function of CFGABZ(7)

Rev D4, Page 29/39

Output Driver Configuration

The output drivers can be used as push-pull, lowside or highside drivers; the mode of operation is determined by TRIHL(1:0).

In order to avoid steep edges when transmitting via short wires the slew rate can be set using SSR to suit the length of the cable. This can result in a limiting of the maximum permissible output frequency if at the same time the RS422 specification is to be adhered to (for example, to 300 kHz at a slew rate of 300 ns; the tolerances in Electrical Characteristics, numbers 506/507, must be observed).

The driver output short-circuit current can be set by SIK and can be minimized when connecting to logic or to an external 24 V line driver. If the outputs are used as RS422-compatible 5 V drivers, it is recommended that SIK = 11 to keep the power dissipation of iC-MQ low.

TRIHL	Adr 0x1E, bit 1:0
Code	Function
00	Push-pull operation
01	Highside driver mode (P channel open drain)
10	Lowside driver mode (N channel open drain)
11	Not permitted

Table 49: Output Drive Mode

SSR	Adr 0x1E, bit 3:2
Code	Function
00	Nominal value 12 ns
01	Nominal value 25 ns
10	Nominal value 80 ns
11	Nominal value 220 ns
Note	See Elec. Char. Nos. 506/507

Table 50: Output Slew Rate

SIK	Adr 0x1E, bit 5:4
Code	Function
00	typ. 2 mA, linking logic or driver ICs
01	typ. 8 mA
10	typ. 40 mA
11	typ. 100 mA, recommended for RS422
Note	See Elec. Char. Nos. 503/504

Table 51: Output Short-Circuit Current

Minimum Phase Distance

The minimum phase distance for A/B/Z and CPD/CPU/CP output signals can be preselected using MTD(3:0). This setting limits the maximum possible output frequency for safe transmission to counters which cannot debounce spikes or only permit a low input frequency.

When preselecting the minimum edge distance the configuration of the RS422 output drivers (with regard to the driver current and slew rate) and the length of cable used must be taken into account.

MTD	Adr 0x1D, bit 7:4	
Code	Mode ABZ: t _{MTD}	Mode 191/193: tclk()lo
0x0	220 ns	110 ns
0x1	410 ns	205 ns
0x2	600 ns	300 ns
0x3	800 ns	400 ns
0x4	1.0 µs	500 ns
0x5	1.2 µs	600 ns
0x6	1.4 µs	700 ns
0x7	1.6 µs	800 ns
0x8	220 ns	50 ns
0x9	410 ns	50 ns
0xA	600 ns	50 ns
0xB	800 ns	50 ns
0xC	1.0 µs	50 ns
0xD	1.2 µs	50 ns
0xE	1.4 µs	50 ns
0xF	1.6 µs	50 ns
Note	All timing specifications are nominal values, see Elec. Char. No. 515 for tolerances.	

Table 52: Minimum Phase Distance

Rev D4, Page 30/39

ERROR MONITORING AND ALARM OUTPUT

iC-MQ monitors the input signals, the internal interpolator and the sensor supply controller via which the input signal levels are stabilized. If the sensor supply tracking unit reaches its control limits this can be interpreted as an end-of-life message, for example.

Three separate error masks stipulate whether error events are signaled as an alarm via the current-limited open drain I/O pin ERR (mask EMASKA), whether they cause the RS422 line drivers to shutdown or not (mask EMASKO) or whether they are stored in the EEPROM (mask EMASKE).

The display logic (via EPH) and the minimum alarm indication time (via EMTD) can be set for I/O pin ERR; an internal pull-up current source can be switched in via EPU. ERR pin also has an input function for switching iC-MQ to test mode (see page 33) and for the acceptance of a system error message in normal operation (only for EPH = 0).

EPH	Adr 0x15, bit 2
Code	Pin Logic
0	Low on error (otherwise Z)
1	Z on error (otherwise low)

Table 53: Alarm Input/Output Logic

EMTD	Adr 0x15, bit 5:3		
Code	Indication Time	Code	Indication Time
0x0	0 ms	0x4	50 ms
0x1	12.5 ms	0x5	62.5 ms
0x2	25 ms	0x6	75 ms
0x3	37.5 ms	0x7	87.5 ms

Table 54: Minimum Alarm Indication Time

EPU	Adr 0x17, bit 2
Code	Function
0	No internal pull-up active
1	Internal 300 µA pull-up current source active

Table 55: Pull-Up Enable for Alarm Output ERR

PDMODE	Adr 0x18, bit 6
Code	Function
0	Line driver active when no error persists
1	Line driver active only after cycling power

Table 56: Driver Activation

EMASKA	Adr 0x15, bit 1:0; Adr 0x14, bit 7:0
Bit	Error event
9	Line count error (wrong count of sine periods between two zero pulses)
8	Temporal tracking error (out-of-sync: position output differs from actual angle, e.g. after cycling power)
7	Loss of tracking (excessive input frequency)
6	Configuration error* (SDA or SCL pin error, no acknowledge signal from EEPROM or invalid check sum)
5	Excessive temperature warning
4	Ungated index enable signal Z_{ln} (comparated X1/X2 inputs for CFGABZ and CFGZPOS adjustment)
3	Control error 2: range at max. limit
2	Control error 1: range at min. limit
1	Signal error 2: clipping due to excessive input level
0	Signal error 1: loss of signal (poor input level or s/c phase out of range)
Code	Function
1	Enable: event will be displayed
0	Disable: event will not be displayed
Notes	*) The line drivers remain high impedance (tristate) when cycling power.

Table 57: Error Event Mask for Alarm Output

EMASKO	Adr 0x17, bit 1:0; Adr 0x16, bit 7:0
Bit	Error event
9	Line count error (wrong count of sine periods between two zero pulses)
8	Temporal tracking error (out-of-sync: position output differs from actual angle, e.g. after cycling power)
7	Loss of tracking (excessive input frequency)
6	Configuration error* (ROM bit with fixed value = 1) SDA or SCL pin error, no acknowledge signal from EEPROM or invalid check sum
5	Excessive temperature warning
4	System error: I/O pin ERR pulled to low by an external error signal (only permitted with EPH=0)
3	Control error 2: range at max. limit
2	Control error 1: range at min. limit
1	Signal error 2: clipping due to excessive input level
0	Signal error 1: loss of signal (poor input level or s/c phase out of range)
Code	Function
1	Enable: event triggers tri-state
0	Disable: event does not cause tri-state
Notes	*) The line drivers remain high impedance (tristate) when cycling power.

Table 58: Error Event Mask for Driver Shutdown

Rev D4, Page 31/39

Error Protocol

Out of the errors enabled by EMASKE both the first (under ERR1) and last error (under ERR2) which occur after the iC-MQ is turned on are stored in the EEP-ROM.

The EEPROM also has a memory area in which all occurring errors can be stored (ERR3). Only the fact that an error has occurred can be recorded, with no information as to the time and count of appearance of that error given. Error recording can be used to statistically evaluate the causes of system failure, for example.

EMASKE	Adr 0x18, bit 5:0; Adr 0x17, bit 7:4
Bit	Error event
9	Line count error (wrong count of sine periods between two zero pulses)
8	_
7	Loss of tracking (excessive input frequency)
6	_
5	Excessive temperature warning
4	System error: I/O pin ERR reads low by an external error signal (only permitted with EPH = 0)
3	Control error 2: range at max. limit
2	Control error 1: range at min. limit
1	Signal error 2: clipping due to excessive input level
0	Signal error 1: loss of signal (poor input level or s/c phase out of range)
Code	Function
1	Enable: event will be latched
0	Disable: event will not be latched

Table 59: Error Event Mask for EEPROM Savings

ERR1	Adr 0x31, bit 1:0; Adr 0x30, bit 7:0
ERR2	Adr 0x32, bit 3:0; Adr 0x31, bit 7:2
ERR3	Adr 0x33, bit 5:0; Adr 0x32, bit 7:4
Bit	Error Event
6:0	Assignation according to EMASKE
Code	Function
0	No event
1	Registered error event

Table 60: Error Protocol

Line Count Error

The line count error feature is particularly interesting for encoder systems. The disc is checked anew with each zero pulse, with the number of sine cycles counted until the next zero pulse occurs. If the direction of rotation is changed, the check is aborted.

The line count is then stored under LINECNT minus 1, i.e. for a code disc with 256 lines LINECNT records a value of 255. If the counted line number does not match the number already stored in LINECNT, a line count error is set. In mode System Test signal TP1 indicates when the line count check is first ended.

Temperature Monitoring

If the temperature warning threshold is exceeded an excessive temperature message is generated which is processed in the temperature monitor block (T_w corresponds to T_2).

Exceeding the temperature warning threshold can be signaled at pin ERR or used to shut down the line drivers (via mask EMASKO). The temperature warning is deleted when the temperature drops below T_w - T_{hys} .

If the temperature shutdown threshold $T_{off} = T_w + \Delta T$ is exceeded the line drivers are shut down independent of EMASKO.

Rev D4, Page 32/39

REVERSE POLARITY PROTECTION

iC-MQ is protected against a reversal of the supply voltage and has short-circuit-proof, error-tolerant line drivers. A defective device cable or one wrongly connected is tolerated by iC-MQ. All circuitry components which draw the monitored supply voltage from VDDS and GNDS are also protected.

The following pins are also reverse polarity protected: PA, NA, PB, NB, PZ, NZ, ERR, VDD, GND and ACO.

Conditions: This is based on the condition that GNDS only receives load currents from VDDS. The maximum voltage difference between GNDS and another pin should not exceed 6 V, the exception here being pin ERR (see *Test Mode* page 33).

Rev D4, Page 33/39

TEST MODE

iC-MQ switches to test mode when a voltage greater than VTMon is applied to pin ERR (precondition: EMODE(0) = 1). In response iC-MQ transmits its setup settings as current-modulated data using error signal I/O pin ERR either directly from the RAM (for EMODE2 = 1) or after re-reading the EEPROM (for EMODE2 = 0). Should the voltage at the ERR pin fall below VTMoff test mode is terminated and data transmission aborted.

The clock rate for the data output is determined by ENFAST. Two clock rates can be selected: $780\,\text{ns}$ for ENFAST=1 or $3.125\,\mu\text{s}$ for ENFAST=0 (see Electrical Characteristics, B12, for clock frequency and tolerances).

Data is output in Manchester code via two clock pulses per bit. To this end the lowside current source switches between a Z state (OFF = 0 mA) and an L state (ON = 2 mA).

The bit information lies in the direction of the current source switch:

Zero bit: change of state $Z \rightarrow L$ (OFF to ON) One bit: Change of state $L \rightarrow Z$ (ON to OFF)

Transmission consists of a start bit (a one bit), 8 data bits and a pause interval in Z state (the timing is identical with an EEPROM access via the I²C interface).

Example: byte value = 1000 1010

Transmission including the start bit: 1 1000 1010 In Manchester code: LZ LZZL ZLZL LZZL LZZL

Decoding of the data stream:

EMODE	Adr 0x15, bit 7:6	
Code	Function during test mode	Function following test mode
00	Normal operation	Normal operation
01	Transmission of error and OEM data*	Repeated read out of EEPROM
10	Normal operation	Repeated read out of EEPROM
11	Transmission of EEPROM contents (0x0-0x7F)	Repeated read out of EEPROM
Notes	*) Selectable address ranges: EMODE2 = 0: EEPROM addresses 0x24 to 0x7F EMODE2 = 1: RAM addresses 0x3B to 0x43	

Table 61: Test Mode

EMODE2	Adr 0x18, bit 7	
Code	Register selection	Address range for EMODE = 01
0	Reading/sending external configuration data (DEVID is device address)	EEPROM address range 0x24-0x7F
1	Sending internal configuration data (ENSL = 1)	RAM address range 0x3B-0x43

Table 62: Register And Address Selection For Test Mode

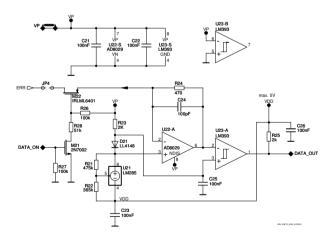


Figure 11: Example circuit for the decoding and conversion of the current-modulated signals to logic levels.

Rev D4, Page 34/39

Quick programming in the single master system

For the purpose of signal conditioning it is possible to reprogram iC-MQ quickly. If test mode is quit and EMODE \neq 00, iC-MQ reads the configuration data in again. In place of the standard EEPROM (DEVID 0x50) an EEPROM with a different device address can be read in which can be stored under DEVID (address 0x00, bit 6:0).

In operating modes *Mode ABZ*, *System Test* and *Mode 191/193* the content of the EEPROM is read in its entirety. For other modes the address area is limited to 0x0-0x31 so that the configuration time for either calibration or IC testing is shortened.

If the setup is switched to test mode during the readin procedure, readin is aborted and only repeated once test mode has been terminated.

Quick programming in the multimaster system

Fast programming of iC-MQ, byte for byte, is possible with a multimaster-competent programming device. To this end the integrated I²C slave mode must be enabled by ENSL; iC-MQ then reacts to the device ID 0x55.

If no EEPROM is connected, iC-MQ automatically sets the I^2C slave mode enable (after a maximum of 150 ms, see Electrical Characteristics, D11) and deactivates the digital section (ENSL=1 and END=0 are set). Any number of bytes can be written at any one time; the received data is accepted directly into the RAM register. The conditions given in the following table must be taken into consideration here. After programming END=1 must be set to restart sine-to-digital conversion in the selected mode of operation.

Rev D4, Page 35/39

EXAMPLE APPLICATIONS

Figure 12 is a circuit diagram of an optical encoder with an incremental output of quadrature signals as RS422-compatible differential signals which can be terminated by $100\,\Omega$ at the controller end. By way of an alterna-

tive the magnetic encoder in Figure 13 uses magnetoresistive sensor bridges. An external overvoltage protection circuit may be realized employing TVS diodes plus a PolyFuse in the VDD line, for instance.

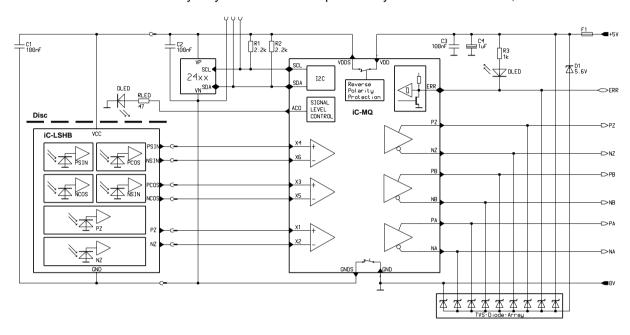


Figure 12: Example application with an optical encoder

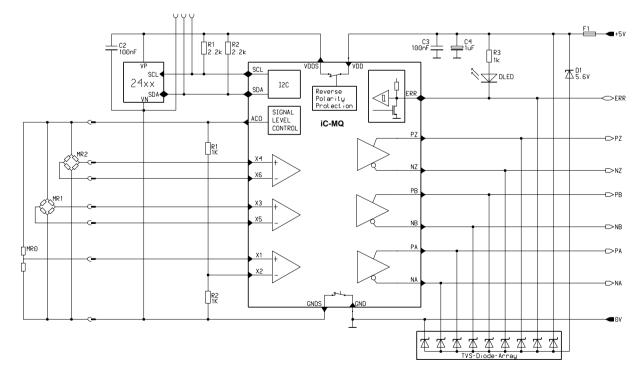


Figure 13: Example application with a magnetic encoder

Rev D4, Page 36/39

When iC-MQ is used in 24 V systems, with supply voltages of 5 V to 30 V for example, it can be combined with iC-DL which acts as a line driver with an integrated line adaptation feature (Figure 14).

A reduced driving capability of iC-MQ is sufficient (SIK = 00) to operate iC-DL so that the current required is reduced at the 5 V end. If an LDO voltage regulator is selected, the circuit is suitable for a supply range of $4.5 \, \text{V}$ to $30 \, \text{V}$ without any changes having to be made.

The wiring of the iC-DL error message output (pin NER) to the PLC is not necessary if the iC-MQ error

mask is set for output shutdown (EMASKO). In the event of error the pull-down current sources ensure that a low signal is produced at the iC-DL inputs on all lines which the controller recognizes as an error. If there is an overload at the outputs, via its temperature protection unit iC-DL itself makes sure that the driver outputs are shutdown (tristate) - which the controller also classes as an error. In addition iC-MQ can transmit the overload to the error memory as a system error when information is returned to the bidirectional I/O pin ERR (as shown).

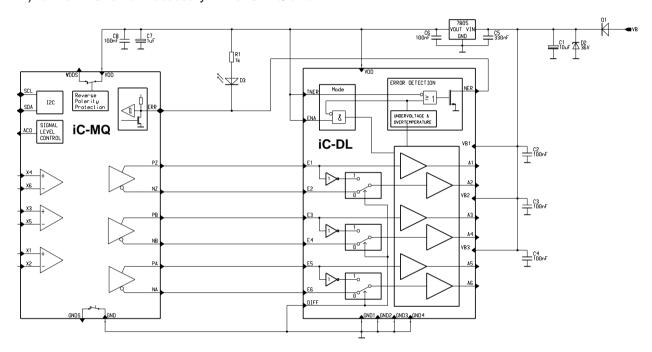


Figure 14: Example application with a 24 V line driver

Rev D4, Page 37/39

APPLICATION HINTS

In-circuit programming of the EEPROM

Access to the EEPROM is unhindered when the iC-MQ supply voltage is kept below power down reset threshold VDDoff. In this case an EEPROM which operates at a supply voltage of 2.5 V and above is required. If 3.3 V are necessary to power the EEPROM, iC-MQ's supply voltage can be raised at a maximum to power on threshold VDDon; this must occur without overshooting.

The supply voltage provided by pins VDDS and GNDS can be used to power the EEPROM; shutdown only occurs with reverse polarity. Here, the load-dependent voltage drop at both switches must be taken into account; see Vs(VDDS) and Vs(GNDS) in the Electrical Characteristics, C01 and C02.

Absolute angle accuracy and edge jitter

The precise setting of the signal conditioning unit for correction of the analog input signals is crucial to the result of interpolation; the absolute angle error obtained determines the minimum signal jitter. Here, the effect on the transition distance of the A/B output signals is not always the same but instead dependent on the absolute phase angle of the input signals. The following gives an example for an interpolation factor of 100, i.e. 400 edges per sine period.

The offset error in the cosine signal has the strongest effect on the absolute angle error at 90° and 270° ; at 0° and 180° its influence on the transition distance is the most marked. With a range setting of OR1 = OR2 = 00 and VOSSC = 01 the offset error can be compensated for by an increment of $3.9\,\text{mV}$. If the offset has been compensated for incorrectly by one step (1 LSB), the absolute angle error would increase by ca. 0.45° and the transition distance vary by approximately +/- $0.8\,\%$. Similar conditions apply to the sine signal, with the sole difference that the maxima would be shifted by 90° .

An error in amplitude has the strongest effect on the absolute angle error at 45° , 135° , 225° and 315° ; the biggest change in the transition distance can be observed at 0° , 90° , 180° and 270° . iC-MQ can compensate for the amplitude ratio in steps of 1.5% so that incorrect compensation by 1 LSB would increase the absolute angle error by ca. 0.42° . The transition distance would then vary by +/-1.5%.

A phase error between the sine and cosine signals (a deviation in phase shift from the ideal 90°) has the most marked influence on the absolute angle error at 0°, 90°, 180° and 270°. The greatest effect on the transition distance is noted at 45°, 135°, 225° and 315°. iC-MQ's phase correction feature permits a step size of 0.64° so that incorrect compensation by 1 LSB would increase the absolute angle error by ca. 0.64°. The transition distance would then vary by +/- 1.1 %.

In a perfect signal conditioning procedure it can be assumed that the residual error constitutes half a compensation step respectively. With this, in theory iC-MQ would achieve an absolute angle accuracy of ca. 0.5°, with the transition distance varying by ca. +/-1.5%. The linearity error of the interpolator must also be taken into consideration; this increases the absolute angle error by ca. 0.12° and the variation in transition distance by 0.4%. With ideal, almost static input signals iC-MQ then obtains an absolute angle accuracy of 0.62° and a variation in transition distance of under 2%.

Information on the demo board

The default delivery status of demo board EVAL MQ1D is such that it expects differential sine/cosine signals at inputs X3 to X6 with an amplitude of 125 mV, i.e.

$$V(X4) = 2.5 V + 0.125 V sin(\varphi t)$$

 $V(X3) = 2.5 V - 0.125 V sin(\varphi t)$
 $V(X5) = 2.5 V + 0.125 V sin(90 + \varphi t)$
 $V(X6) = 2.5 V - 0.125 V sin(90 + \varphi t)$

Outputs PA, NA, PB and NB generate a differential A/B signal with an angle resolution of 4 (an interpolation factor of 1). When high sine input frequencies are applied or the resolution is increased, the minimum phase distance (MTD), short-circuit current limit (SIK) and driver slew rate (SSR) must be adjusted to meet requirements. For example, a minimum phase distance of MTD=8 should be selected with a resolution of 200 (an interpolation factor of 50) when input frequencies of up to 20 kHz are to be applied.

Rev D4, Page 38/39

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev D4, Page 39/39

ORDERING INFORMATION

Туре	Package	Order Designation
iC-MQ Evaluation Board iC-MQ		iC-MQ TSSOP20 iC-MQ EVAL MQ1D

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners