

BCR08AM-14A

Triac

Low Power Use

REJ03G1200-0200 Rev.2.00 Nov 30, 2007

Features

 $\bullet \quad I_{T\,(RMS)}:0.8\;A$ V_{DRM} : 700 V

• $I_{FGT I}$, $I_{RGT I}$, $I_{RGT III}$: 5 mA Planar Passivation Type

Outline

RENESAS Package code: PRSS0003EA-A (Package name: TO-92) 1. T₁ Terminal 2. T₂ Terminal 3. Gate Terminal

Applications

Washing machine, electric fan, air cleaner, other general purpose control applications

Maximum Ratings

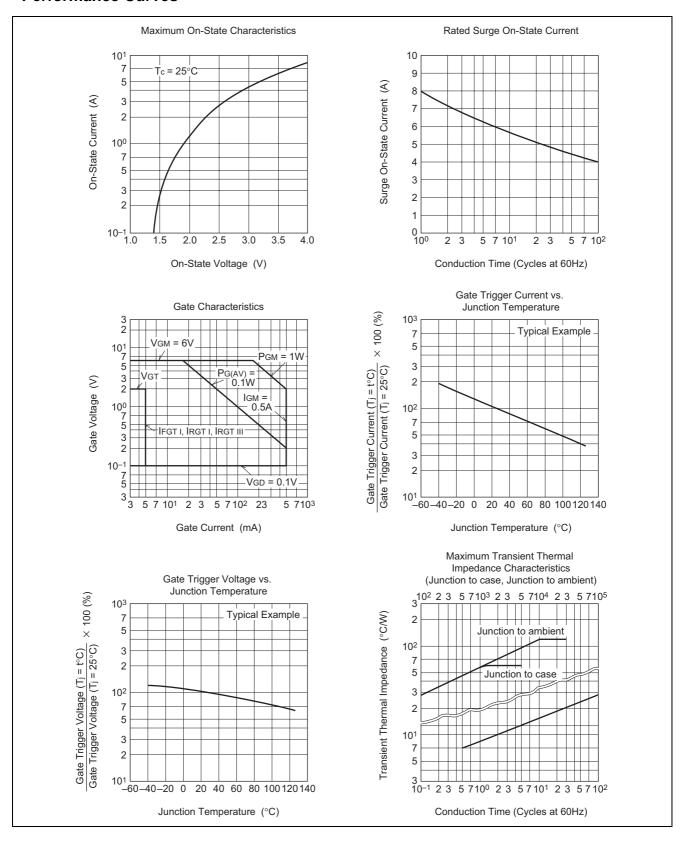
Parameter	Symbol	Voltage class	Unit	
Faranieter	Symbol	14	Offic	
Repetitive peak off-state voltage ^{Note1}	V_{DRM}	700	V	
Non-repetitive peak off-state voltage ^{Note1}	V_{DSM}	840	V	

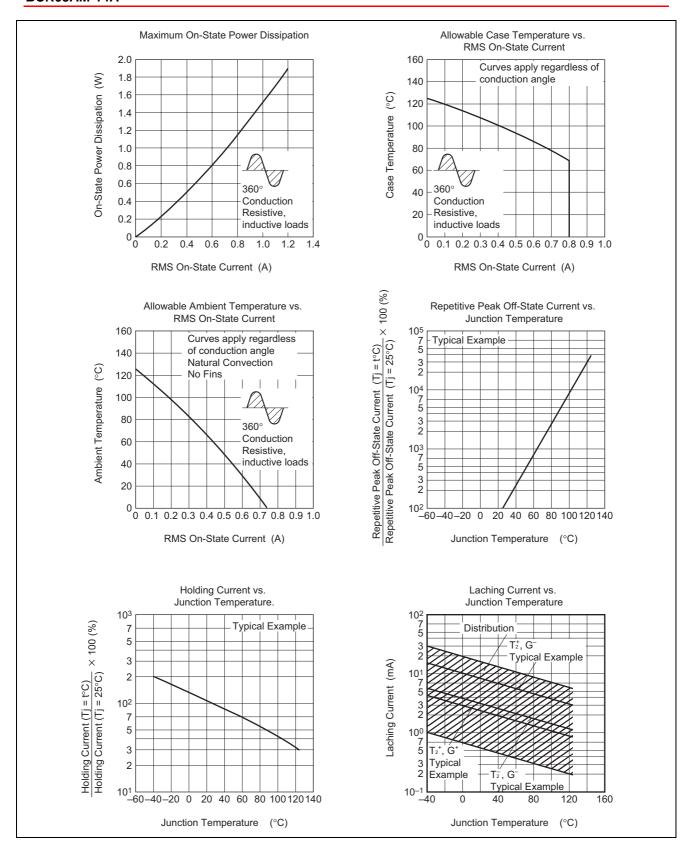
BCR08AM-14A

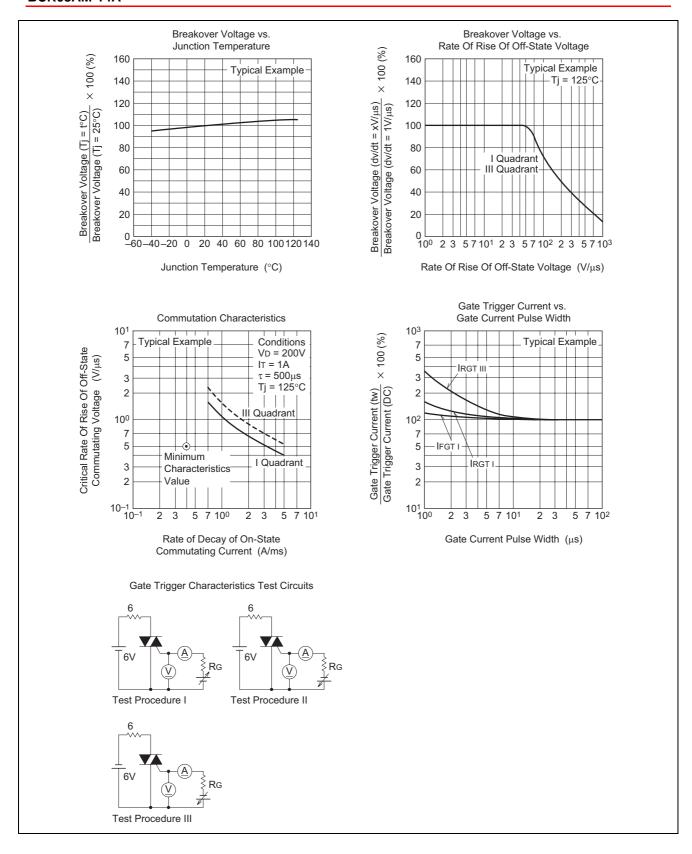
Parameter	Symbol	Ratings	Unit	Conditions
RMS on-state current	I _{T (RMS)}	0.8	Α	Commercial frequency, sine full wave 360° conduction, Tc = 67°C
Surge on-state current	I _{TSM}	8	A	60 Hz sinewave 1 full cycle, peak value, non-repetitive
I ² t for fusing	l ² t	0.26	A ² s	Value corresponding to 1 cycle of half wave 60 Hz, surge on-state current
Peak gate power dissipation	P_{GM}	1	W	
Average gate power dissipation	P _{G (AV)}	0.1	W	
Peak gate voltage	V_{GM}	6	V	
Peak gate current	I _{GM}	0.5	А	
Junction temperature	Tj	- 40 to +125	°C	
Storage temperature	Tstg	- 40 to +125	°C	
Mass	_	0.23	g	Typical value

Notes: 1. Gate open.

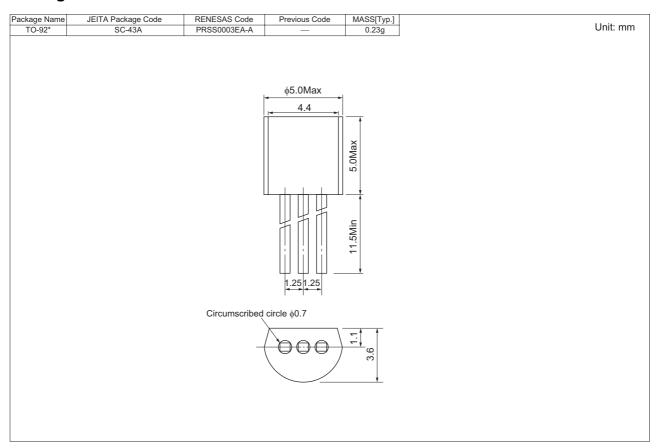
Electrical Characteristics


Parameter		Symbol	Min.	Тур.	Max.	Unit	Test conditions	
Repetitive peak off-state current		I _{DRM}	_	_	1.0	mA	Tj = 125°C, V _{DRM} applied	
On-state voltage		V_{TM}	_	_	2.0	V	$Tc = 25^{\circ}C$, $I_{TM} = 1.2 A$,	
							Instantaneous measurement	
Gate trigger voltage ^{Note2}	I	V_{FGTI}			2.0	V	$Tj = 25$ °C, $V_D = 6$ V, $R_L = 6$ Ω,	
	II	V_{RGTI}			2.0	V	$R_G = 330 \Omega$	
	III	V_{RGTIII}		_	2.0	V		
Gate trigger current ^{Note2}	I	I _{FGTI}			5	mA	$Tj = 25^{\circ}C, V_D = 6 V, R_L = 6 \Omega,$	
		I_{RGTI}			5	mA	$R_G = 330 \Omega$	
	III	I_{RGTIII}	_	_	5	mA		
Gate non-trigger voltage		V_{GD}	0.1	_	_	V	$Tj = 125^{\circ}C, V_D = 1/2 V_{DRM}$	
Thermal resistance		R _{th (j-c)}			50	°C/W	Junction to case ^{Note3}	
Critical-rate of rise of off-stat commutating voltage Note4	е	(dv/dt)c	0.5	_	_	V/μs	Tj = 125°C	


Notes: 2. Measurement using the gate trigger characteristics measurement circuit.


- 3. Case temperature is measured at the T_2 terminal 1.5 mm away from the molded case.
- 4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.

Test conditions	Commutating voltage and current waveforms (inductive load)		
1. Junction temperature Tj = 125°C	Supply → Time		
2. Rate of decay of on-state commutating current (di/dt)c = - 0.4 A/ms	Main Current → Time		
3. Peak off-state voltage $V_D = 400 \text{ V}$	Main Voltage (dv/dt)c VD		


Performance Curves

Package Dimensions

Order Code

Lead form	Standard packing	Quantity	Standard order code	Standard order code example
Straight type	Vinyl sack	500	Type name	BCR08AM-14A
Lead form	Vinyl sack	500	Type name – Lead forming code	BCR08AM-14A-A6
Form A8	Taping	2000	Type name – TB	BCR08AM-14A-TB

Note: Please confirm the specification about the shipping in detail.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510