

NTE985 Integrated Circuit TV Luminance Processor

Description:

The NTE985is a monolithic silicon integrated circuit that performs the luminance processing functions of amplification; contrast, brightness and peaking control; blanking; and black–level clamping.

Features:

- Black-Level Clamping
- Linear DC Controls for Brightness, Contrast and Peaking
- Horizontal and Vertical Blanking
- "Hermetic Chip" Construction
- Silicon Nitride Passivated
- Platinum Silicide Ohmic Contacts
- Operates with Standard or Tapped Delay Line

Absolute Maximum Ratings:

DC Supply Current 57mA
Device Dissipation:
Up to $T_A = +55^{\circ}C$ 750mW
Above $T_A = +55^{\circ}C$ derate linearly 7.9mW/°C
Operating Ambient Temperature Range, T _A 40° to +85°C
Storage Temperature Range, T _{stg} 65° to +150°C
Lead Temperature (During Soldering, 1/16" ±1/32" from case, 10sec max), T ₁ +265°C

Electrical Characteristics: $(T_A = +25^{\circ}C)$ unless otherwise specified)

Parameter	Bias	Test Conditions												Limits		
	Volts	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11		_		n i
		Switching Positions for Characteristics Measur									urem	irements Min		Тур	Max	t
Static Characteristics																
Voltage At Term. 13	6.5	2	1	1	2	2	4	1	2	2	1	1	11	12.3	13.2	V
Quiescent Voltage At Term. 4	6.5	2	1	1	2	2	3	1	2	2	1	1	3.3	4	5.7	٧
Quiescent Voltage At Term 7	6.5	2	1	1	2	2	2	1	2	2	1	1	7.1	7.7	8.3	٧
Current into Term. 13 (Term 13 Connected to 11V)	6.5	2	1	1	2	2	3	1	2	2	1	2	10	18	30	mA
Dynamic Characteristics														<u></u>	L.	-
Wide-Band Gain (Note 1)	7.3	1	1	1	2	1	2	1	1	1	2	1	1	3	5	dB
Contrast Gain Reduction (Note 2)	7.3	1	1	1	2	1	2	1	1	2	2	1	27	30	-	dB
Peaking Gain (Note 1)	7.3	1	1	2	2	1	2	1	1	1	2	1	9	13	17	dB
Peaking Gain Reduction (Note 3)	7.3	1	1	2	2	1	2	1	1	1	2	1	16	18	-	dB
Max. Intermodulation Distortion 3.8V (Note 4)	7.3	1	_	1	1	1	2	-	2	1	2	1	-	20	-	%
5V (Note 5)	7.3	1	_	1	1	1	2	-	2	1	2	1	_	40	_	%

- Note 1 Set 50kHz generator for 200mV_{rms}. Adjust R1 Peaking control for minimum setting, measure wide–band gain at terminal 7.
- Note 2 Set 50kHz generator for 200mV_{rms}. Adjust R1 for minimum setting, measure contrast gain reduction at terminal 7.
- Note 3 Set 50kHz generator for $200mV_{rms}$. Adjust R1 for minimum setting, measure peaking gain reduction at terminal 7.
- Note 4 Adjust R1 for minimum setting. With S2 at switch position 1 and S7 at switch position 3, set 50 kHz generator for $3.8 \text{V}_{\text{p-p}}$. Then with S2, set 1MHz generator for $200 \text{mV}_{\text{rms}}$. Then with S7 at switch position 2, measure downward modulation of the 1MHz signal due to the 50 kHz signal.

A = Amplitude of 50kHz signal at deepest trough

B = Peak amplitude of 50kHz signal

Downward Modulation = $\frac{B-A}{B}$

Note 5 Repeat step 4 except that the 50kHz generartor must be set at 5V_{p-p}

