

2N4416 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix 2N4416 The 2N4416 is a N-Channel high frequency JFET amplifier

The 2N4416 N-channel JFET is designed to provide high-performance amplification at high frequencies.

The hermetically sealed TO-18 package is well suited for military applications and harsh environment applications.

2N4416 Benefits:

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

2N4416 Applications:

- High-Frequency Amplifier / Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX 2N4416					
EXCEPTIONAL GAIN (400 MHz)	10dB (min)				
VERY LOW NOISE FIGURE (400 MHz)	4dB (max)				
VERY LOW DISTORTION					
HIGH AC/DC SWITCH OFF-ISOLATION					
ABSOLUTE MAXIMUM RATINGS					
@ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-65°C to +200°C				
Operating Junction Temperature	-55°C to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation	300mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	10mA				
MAXIMUM VOLTAGES					
Gate to Drain or Gate to Source	-30V				

2N4416 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	-30		1	V	$I_{G} = -1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage			-6	V	$V_{DS} = 15V, I_{D} = 1nA$
I _{DSS}	Gate to Source Saturation Current	5	4-	1 5	mA	$V_{DS} = 15V, V_{GS} = 0V$
I _{GSS}	Gate <mark>Le</mark> akage Current			-0.1	nA	$V_{GS} = -20V, V_{DS} = 0V$
g _{fs}	Forward <mark>T</mark> rans <mark>co</mark> nd <mark>uc</mark> tance	4500		750 <mark>0</mark>	μS	$V_{DS} = 15V, V_{GS} = 0V, f = 1kHz$
g _{os}	Outp <mark>ut</mark> Con <mark>d</mark> uct <mark>an</mark> ce			50	μS	
C _{iss}	Input Capacitance ²			0.8	pF	
C_{rss}	Reverse Transfer Capacitance ²			4	pF	$V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$
C _{oss}	Output Capacitance ²			2	pF	
e _n	Equivalent Input Noise Voltage		6		nV/√Hz	$V_{DS} = 10V$, $V_{GS} = 0V$, $f = 1kHz$

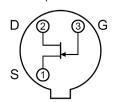
2N4416 HIGH FREQUENCY ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	100 Mhz		100 Mhz 400 Mhz		UNITS	CONDITIONS	
		MIN	MAX	MIN	MAX			
g _{Iss}	Input Conductance		100		1000			
b _{Iss}	Input Susceptance ²		2500		10000	115	$V_{DS} = 15V$, $V_{GS} = 0V$	
g _{oss}	Output Conductance		75		100	μS	V _{DS} - 13V, V _{GS} - UV	
b _{oss}	Output Susceptance ²		1000		4000			
G _{fs}	Forward Transconductance			4000				
G _{ps}	Power Gain ²	18		10		dB	$V_{DS} = 15V$, $I_D = 5mA$	
NF	Noise Figure ²		2		4		$V_{DS} = 15V$, $I_D = 5mA$, $R_G = 1k\Omega$	
NOTES	1. Absolute maximum ratings are limiting values above which 2NM16 serviceability may be impaired							

1. Absolute maximum ratings are limiting values above which 2N4416 serviceability may be impaired.

2. Not production tested, guaranteed by design

Micross Components Europe


Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution Available Packages:

2N4416 in TO-18 2N4416 in bare die.

Please contact Micross for full package and die dimensions

TO-18 (Bottom View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.