intel.
CHAPTER 3
FDI ARCHITECTURE AND API SPECIFICATION

3.1 INTRODUCTION

3.1.1 Scope

This chapter provides a detailed design description of the Flash Data Integrator (FDI) which
enables code plus data storage in a single flash component.

3.1.2 Purpose

The purpose of this chapter is to provide a general and detailed design description of the FDI.

3.1.3 System Overview

Many of today’s systems use flash for code storage and execution. These same systems use
EEPROMS to provide nonvolatile memory for system data and parameter storage even though
the flash device often has unused space. The FDI code plus data solution removes the
EEPROM from the system, thus reducing board space and product cost.

FDI allows the storage of data, and the execution of code from the same flash device. FDI also
allows for future code updates, upgrades, and extensions in flash. While the current FDI effort
is GSM-centric, many different system architectures can utilize the FDI software.

Figure 3-1 provides a highly simplificd diagram of a system software architecture which is a
good candidate for FDI. In this system, many tasks, such as protocol control, run on top of a
real- time operating system kernel. An EEPROM data storage request may be prompted by a
user pressing a key or a service routine which generates a system interrupt. An EEPROM
manager task handles the data storage request, and may queue the data in RAM until time is
available to write the data to EEPROM.

3-1

B L442bL175 0177581 491 WM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FD! ARCHITECTURE AND AP! SPECIFICATION I nte‘ ®

Interrupt Service Routines Tasks
MAC ISR I
Key Press
B O/S Kemel
EEPROM
Manager

FOI3

Figure 3-1. Simplified System Software Architecture

FDI is a complete flash media manager which includes an EEPROM manager type APL FDI
handles all aspects of storing and retrieving variable length parameters into flash memory. FDI

allows system designers to remove EEPROM and use existing flash for parameter data and
code storage.

Intel’s Advanced Boot Block Flash Memory products have been designed to maximize data
efficiency when using FDI. FDI takes advantage of Advanced Boot Block features including
small data blocks and program/erase suspend features.

3.1.4 Document Overview

The General Description in Section 3.3 contains the FDI APIs, and general implementation
considerations.

The Detailed Design in Section 3.4 contains the FDI software requirements to a level of detail

sufficient to enable system and firmware designers to design a system with FDI as a component
of their system.

BN 482L175 0177582 328 W

intel.

FD1 ARCHITECTURE AND API SPECIFICATION

3.2 FLASH DATA INTEGRATOR REFERENCES

3.2.1 Glossary

3.2.1.1 DEFINITIONS

Bitmask Set of bits

BYTE 8-bit value

DWORD 32-bit value

Granularity Minimum allocation unit size

Init Initialization

NIBBLE 4-bit value

NULL Zero

Unit A section of a flash block taking up one or more granular sizes
WORD 16-bit value

data parameters
data streams
data fragment

Instance

Information such as system variables, small arrays, etc.
Data such as SMS, voice messages, large arrays, etc.
A unit containing one of multiple data pieces of a data parameter or stream

One occurrence of a data parameter in a unit which can hold multiple
occurrences of the data parameter

3.21.2 ACRONYMS

APC

API
EEPROM
FDI

GSM

ISR
RAM

Advanced Personal Communication

Application Program Interface

Electrically Erasable Programmable Read Only Memory
Flash Data Integrator

Global System for Mobile communications

Interrupt Service Routines

Random Access Memory

3.2.1.3 ABBREVIATIONS

blk
blknum

block

block number

3-3

B 482175 0177583 2b4 WM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND API SPECIFICATION l nte‘ ®

3.2.2 References

European Digital Cellular Telecommunications System (Phase 2); Specification of the
Subscriber Identity Module-Mobile Equipment (SIM-ME) Interface (GSM 11.11) ETS 300
608 January 1995.

3.3 FLASH DATA INTEGRATOR GENERAL DESCRIPTION

3.3.1 Flash Data Integrator Product Perspective

The Flash Data Integrator (FDI) enables embedded systems to use flash memory for code
storage and execution as well as data storage FDI will replace EEPROM management software
in current systems. Figure 3-2 provides an overview of the software components necessary to
accomplish this and how these components interact with the existing system software.

Interrupt Service Routines Tasks
MAC ISR
.
FDI Foreground
Key Press APls: open,
close, read, write, —
delete

F— O/S Kernel

FDI Background
Manager: write, |—
delete, reclaim

FOI3-2

Figure 3-2. Simplified System Software Architecture Using FDI

All tasks and interrupts that need to store data into the flash, interface to functions provided in
the FDI Foreground API. These functions (such as open/close/read/write) allow the command
and corresponding data to be queued in memory for the FDI Background Manager.

3-4

B 442L175 0L77584 1TO HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

]
Intel ® FDI ARCHITECTURE AND API SPECIFICATION

The FDI Background Manager is responsible for executing pending data writes. When a write
is queued, and background processing time is available, the Background Manager manages
updating or creation of data in flash, The Background Manager also manages any reclaim of
invalid (deleted) data areas in flash for reuse.

The FDI Background Manager utilizes a small low level flash erase and programming routine
which resides in RAM. This low level routine responds to interrupts that occur during the flash
program/erase times by suspending the program/erase, and allowing the interrupt to then be
executed from flash. Worst case latencies from program and erase suspend are 7 ps and 20 us
respectively.

FDI implements robust power loss recovery mechanisms to protect the valuable data stored in
flash media.

Figure 3-3 provides a diagram of the information flow between flash and RAM. The system
calls the Foreground API function (1), with a command and data. The Foreground API function
either, stuffs the command and data into a RAM queue for operations which modify flash (1a),
or executes the command directly for commands which do not modify flash (1b). The
Background Manager (2), executing out of flash, manages the queued tasks during available
processor time. During a flash write or erase, intcrrupts with vectors in flash are disabled and
control is turned over to a small routine in RAM (3). This routine polls interrupts while
monitoring progress of the program or erase operation. If a higher priority interrupt occurs, the
polling routine suspends the program or erase operation, and allows the interrupt handler to
then execute from flash. Upon completion of the interrupt routine, the flash program or erase
operation is resumed by the RAM polling routine.

B 4826175 0177585 037 A

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I ntGI ®

EEPROM
data to be

Foreground
API: write, delete

Data Queues
< 1 Kbyte

i

stored

Foreground
APL read, open,
close

[1b

3

2 Background
Manager: write,
delete, reclaim

Flash program/
erase control &
Interrupt polling
< 1 Kbyte

Spare

Factory Data

User Data

Network
Parameters flash memory
Boot Code data blocks

——— e, e e ——————)

FOI3-3

Figure 3-3. Software Flash Data Integrator Data Flow Diagram

3.3.2 Foreground APIs

The Foreground API functions receive storage and read commands from other tasks in the
system The system calls the Foreground API function with a command and data. The
Foreground API function then either stuffs the command and data into a RAM queue for
operations which modify flash, or executes the command directly for commands which do not
modify flash. The Foreground API functions are the application interface for storing EEPROM
data types, factory data, network parameters and user alterable data to the flash media.

M 4826175 0177586 T73 M

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

=
Inte‘ ® FDI ARCHITECTURE AND API SPECIFICATION

3.3.3 Background Manager

The FDI Background Manager controls the actual writes into the flash media. The Background
Manager awaits the arrival of items into its Data Queue and then extracts the highest priority
item to act upon. When there is CPU time available, the Background Manager reads from the
queue and determines the information’s location in flash. During flash programming and erase
operations the Background Manager disables and polls interrupts. If an interrupt occurs, the
Background Manager suspends the program/erase in progress, and then relinquishes the flash to
the interrupt task. Once the interrupt handling is complete, the Background Manager continues
until it completes, or until interrupted again by other interrupts. The Background Manager
resumes the write/erase which then continues in this fashion until the RAM queue is empty.

The Background Manager is also responsible for reclaiming invalid (deleted or superseded)
data. Reclamation occurs upon a predetermined free space trigger, or a user-defined percentage
(default value of INVALID_PER_BLOCK is 70%) of a block that has been dirtied, or when
there is not enough free space to store a new piece of data. The Background Manager asks for
permission from the system, and when granted, executes the reclamation process to free up
invalid regions of flash memory and makes them available for reuse.

3.3.4 Initialization

The initialization process performs power loss recovery, and initializes all FDI hardware and
RAM variables. FDI implements robust power loss recovery mechanisms throughout the code.
This safeguards the valuable data stored in the flash media. By utilizing the unique
characteristics of flash media, the integrity of the existing data can be assured if power fails
while writing to flash.

The worst case power loss situations for FDI are:

® All data in the RAM queue (not yet written to flash) will be lost if a power failure occurs.
® Any operation in progress is considered not done.

If a power loss occurs during the operation, the partial data that has been written prior to power
loss is discarded. A reclamation in progress is identified and completed during the initialization
process at the next power on. Refer to the Power Loss Recovery Process section below.,

3.3.41 POWER LOSS RECOVERY PROCESS

Power loss recovery is done during initialization to guarantee all internal structures and data are
in a valid state. To validate all blocks, power loss recovery reads internal structures maintained
within each block. If a power loss has occurred during the reclaim of a block, the reclaim is
restarted and completed. To validate all data, power loss recovery reads the header structures. If

a power loss has occurred during a data modification, power loss recovery will restore the
original data.

BN 442L1L75 0177547 90T WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND API SPECIFICATION I nU ®

3.3.5 Low Level Code and Interrupt Handling

FDI performs all programs and erases to flash media through a RAM based low-level flash
driver.

The basic functions provided by the low-level flash driver are: program, erase, program/erase
suspend, and interrupt polling. During a flash program or erase, interrupts with vectors in flash
are disabled and control is turned over to a RAM based low-lcvel flash driver. This routine
polls interrupts while monitoring the progress of the flash program or erase operation. Upon the
occurrence of an interrupt, the RAM based routine suspends the flash program or erase
operation, and allows the interrupt handler to then execute from flash. Upon completion of the
internupt routine, the flash program or erase operation is resumed by the RAM flash driver.

Intel’s Advanced Boot Block product family provides Erase Suspend to Read (ESR) in 20 ps
maximum and Program Suspend to Read (PSR) in 10 ps maximum. This allows FDI to suspend
program or erase and re-enabling interrupts with minimal latency.

3.3.6 Implementation Constraints

FDI is coded in ANSI Standard C. Assembly language is used only for those processes that require
greater speed and optimization than a C compiler could provide.

Documentation to assist users in porting processor specific areas will be provided with the
software.

3.3.7 Assumptions, Dependencies and Limitations

® Only one open Read/Write stream will be supported at any given time.
® Deletions of portions of stored data is not allowed.
® Data reads will not be interrupted.

B 482b175 0177588 &uL HE

Power ed

I nte‘ ® FDI ARCHITECTURE AND API SPECIFICATION
3.4 FLASH DATA INTEGRATOR DETAILED DESIGN

3.4.1 Media Control Structures

FDI manages code and data separately to enable code execution and data storage in the same
flash device. FDI provides a movable data/code partition, however, it must be on flash memory
block boundary. A movable partition allows the ratio of code vs. data throughout the life of a
system to evolve to match the systems needs. A symmetrically-blocked part is required to allow
a movable data/code partition. If using an asymmetrically-blocked flash device, the data/code
partition is fixed. This is a small block cannot be used as a spare block for a large block. FDI
requires a spare block in the Data Storage area for reclamation.

Boot Code
Data
Storage
- SpareBlock Movable
Data/Code
Boundary
Code
Storage

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Figure 3-4. Code + Data Storage Arrangement in Flash

FDI supports boot code block separate from Code and Data storage which can contain the
initialization code needed at startup. Some systems may have boot code stored external to the
flash device, and would then use the entire flash device for code and data storage.

B 4426175 0177589 782 W

]
FDI ARCHITECTURE AND AP! SPECIFICATION Int9I ®

The following control structures are used by FDI to manage data. FDI provides flash
read/write/modify capabilities with limited overhead and improved performance over
EEPROM.

34.11 CONTROL STRUCTURES USED BY FDI

Command Control structure-Interface between the system and the FDI. A pointer to this
structure enables the system and FDI to communicate and share information for reading,
writing, and managing flash.

Data Lookup table-FDI indexes into this table to provide quick access to header location.
During initialization, FDI recreates this array in RAM.

Unit Header structure-Describes the contents of the unit it points to with name, type, size, and
attribute fields.

Multiple Instance structure-Describes the number of instances of the data parameter which
can be contained within this unit, and the current valid instance.

Block Information structure-Used to track the logical block number, and power loss
information.

Sequence Table structure-Describes the location of multiple Unit Headers describing multiple
fragments of a data parameter of data stream.

Logical Block Table-Translation of logical block numbers from physical block numbers.
Data Location structure—Physical location of append data in the flash media.

Command structure—Contains the information needed to write data to or delete data from the
flash media.

3.4.1.2 HOW FDI USES CONTROL STRUCTURES

Each flash data block consists of a list of Unit Headers addressed from the top of the block, and
the data they describe addressed from the bottom of the block. Figure 3-5 shows the
arrangement of Unit Headers and data within a physical block. At the bottom of each block is
the Block Information structure. The Block Information structure maintains the logical block
number, and tracks reclamation status for the block.

B 4826175 0177590 4Ty HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
I ntel ® FDI ARCHITECTURE AND API SPECIFICATION

Unit Header 1
Unit Header 2

Unit Header 3

Headers
Grow
Down

Data
Grows
Up

Data 3

Data 2

Data 1

Block Information

Diagram of a single block showing the relationship between
Unit Headers and Data.

FDI3-5

Figure 3-5. Data Block Arrangement

For ease in data management, physical blocks are segmented into sections called units. A unit is
a segment of a block whose contents are described by a Unit Header. Units vary in size but

always have the same granularity. Granularity is the minimum allocation unit size defined at
compile time.

3-11

B 4825175 0177591 330 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND AP1 SPECIFICATION l ntel ®

3.4.1.21 Command Control Structure

The Command Control structure is the interface between the system and FDI. A pointer to
Command Control enables the system and FDI to communicate with each other, and share
information for reading, writing, and managing flash.

Command Control Structure Fields

typedef struct command_control {

DWORD buffer; /* buffer address */

DWORD count; /* number of bytes desired */

DWORD offset; /* beginning offset into the data */
DWORD actual; /* number of actual bytes acted on */
DWORD sub_cmd; /* sub-command to expand functionality */
DWORD aux; /* supplementary field */

WORD identifier; /* unique identity for each data or code */

BYTE type; /* command type: either data or code type */
BYTE ©priority:; /* each identifier is assigned a priority */

} COMMAND_CONTROL;

buffer-Pointer to a buffer to read data from, or write data to flash.

count-The number of bytes to read or write.

offset—The number of bytes into the Unit (offset) to begin reading or writing.
actual-The number of bytes FDI was able to read or write.

sub_cmd-Used for future or extended commands.

aux—Allows additional information to be passed between the application and FDI.
identifier-Unique identificr.

type-Used to define unique classes or types of information.

priority-The priority of the data determines the order data is written if data is queued for write.

3.4.1.2.2 Data Look-Up Table Structure

This look-up table increases the speed of accessing data. Since this table is located in RAM, it
must be recreated from the Unit Header structures at initialization, The index into this table is
based on the type and identifier value of each data parameter or stream.

3-12

M 4326175 0177592 277 M

-
I ntel ® FDI ARCHITECTURE AND APl SPECIFICATION

Data Look-Up Table Structure Fields

typedef struct data_lookup {

BYTE ptrUnitHeader; /* logical block and offset */

} DATA_LOOKUP;

ptrUnitHeader-Logical block and offset of the Unit Header whose name and type match the
offset into this table. ’

34.1.23 Unit Header Structure

The Unit Header describes the data unit within the physical block. It also tracks the status bits
of the data for reclamation and power loss recovery. Bit fields within the unit header structure
indicate whether the data unit is active, being transferred, or invalid. Unit size indicates
multiples of the base granularity.

Unit Header Structure Fields

typedef struct unit_header {

WORD identifier; /* unique identifier per parameter */
BYTE status; /* power-off recovery */
BYTE type:; /* data parameter, data stream, phone #,

* fax #, SMS, etc. */
WORD size; /* in multiples of granularity */

WORD ptrUnit; /* offset from the bottom of the block */
} UNIT_HEADER;

identifier-A unique identity.

status—A bit-mapped field that indicates the current status of the data parameter, data stream,

etc.
Table 3-1. Unit Header Structure Status Field Definitions
Name Condition Status Value Definition
“empty” 1111 111X Binary This is an empty granular unit. The system
can use this for the next unit header.
“allocating” 0111 111X Binary The unit header is in the process of being
written.
“allocated” 0011 111X Binary The unit data is in the process of being
written.
“valid” 0001 111X Binary This unit header describes valid data.
“invalid® 0000 111X Binary This unit header describes invalid data.

3-13

B 482b175 0177593 103 W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

n
FDI ARCHITECTURE AND API SPECIFICATION I nt9| ®

type-This field distinguishes the information associated with this header. The currently defined
types in the first nibble of this field are attributes: Multiple Instance, Single Instance,
Data Fragment and Sequence Table. The last nibble defines the associated data type:
data parameter, data stream, phone number, etc.

size-Size is a multiple of granularity in this unit. Granularity is defined at compile time as the
minimum number of bytes taken up by any unit.

ptrUnit-The offset from the beginning of the block to the start of the Unit data. PurUnit is in

multiples of granularity. ‘
Table 3-2. Unit Header Structure Type Field Definitions
Type Value Definition
XXXX 1110 Binary This header points to Multiple Instance unit.
XXXX 1100 Binary This header points to a sequence table.
XXXX 1000 Binary This header points to a Single Instance unit.
XXXX 0000 Binary This header points to a Data Fragment unit.
1110 XXXX Binary The data type is data parameter.
1101 XXXX Binary The data type is data stream.
1100 XXXX Binary The data type is phone number.
1010 XXXX Binary The data type is SMS.
3.4.1.24 Multiple Instance Structure

This structure describes multiple instances of small parameter data within a unit. Grouping the
data into multiple instances limits the overhead in managing small data parameters, and

improves the performance of updates. Figure 3-6 provides an example of a small data
parameter with four available instances.

Instance Instance #1 Instance #2 Instance #3 Instance #4
Information status = VALID status = UNUSED status = UNUSED | status = UNUSED

Valid Data Erased

FDI3-&

Figure 3-6. Example of Multiple Instances

B u4ad2hbl?5 0177594 OuT WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

l ntel ® FDI ARCHITECTURE AND API SPECIFICATION

Each instance has a corresponding status. New instances added have the status of “allocating,”
“allocated,” and *valid.” The old instances have the status of “invalid.” Figure 3-7 displays a
data parameter updated with a new instance. Note the status of the old instance is set to

“invalid.”
Instance Instance #1 Instance #2 Instance #3 Instance #4
Information status = INVALID status = VALID status = UNUSED status = UNUSED
Invalid Data Valid Data Erased Erased

Figure 3-7. Parameter Update with New Instance

The number of multiple instances of the parameters is based on the size of the parameter and
the size of the containing unit.

Multiple Instance Structure Fields
typedef struct data_info {

WORD sizeOfInst; /* size of this instance of *
* the data */
BYTE numOfInst; /* number of data instances

* available in this unit */

Bitmask validofInst([]; /* 4 bits of validation for
* each instance used */

} DATA_INFO;

sizeOfInst-The size in bytes of each data instance.
numOfInst-The number of instances available in this unit.

validOfInst[]-Contains four status bits for each instance in this unit.

Table 3-3. Multiple Instance Structure ValidOfinst Field Definitions

Name Condition Status Value Dafinition
“empty” 1111 Binary This is an unused data instance.
“allocated” 0011 Binary Thfa instance is in the process of being
written.
“valid“ 0001 Binary The instance holds valid data.
“invalid“ 0000 Binary The instance no longer holds valid data.

3-15

B 482L175 0177595 T4k W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND API SPECIFICATION IntGI ®

3.4.1.25 Block Information Structure

The Block Information Structure is located at the bottom of each physical block used for data
storage. It contains the logical block number, reclamation status, and current state of the block.
Figure 3-8 depicts the block information structure in a physical block.

Rest of the Block

status | logical block number | current state

last address
in block

Figure 3-8. Placement of Block Information

3-16

M 4426175 0177596 9ic WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

I ntGI ® FDI ARCHITECTURE AND API SPECIFICATION

Block Information Structure Fields
typedef struct block_info

BYTE status; /* includes: reclamation info */

BYTE logicalBlkNum; /* allows for movable spare block */

BYTE physicalCopy; /* physical block being copied during
* reclamation */

WORD currentState; /* this will demonstrate block

* integrity: FOFOH */

} BLOCK_INFO;

status—This field contains the information needed for the reclamation process.

Table 3-4. Block Information Structure Status Field Definitions

Name Condition Status Value Definition

“erased” 1111 1111 Binary Indicates block has not been written to and all
bits are in the erased state.

“recover* 1111 1110 Binary Indicates that the process of placing data into
this block from a block being reclaimed has
begun.

“erasing” 1111 1100 Binary All data has been transferred from a block

being reclaimed to this block and the block
indicated is undergoing erase.

“write” 1111 1000 Binary This block is available for writing.

logicalBlkNum-Contains the logical block number.
physicalCopy-Contains the physical block number of the block being copied during reclaim.

currentState-Enables the FDI software to verify the block’s integrity. CurrentState is checked
to see if a block erase was interrupted by a power loss.

3.4.1.2.6 Sequence Table Structure

If data spans physical block boundaries, a sequence table is used to list each data fragment.
Figure 3-9 provides an example of using a sequence table with three separate fragments across
two physical blocks. Sequence tables contain an ordered list of data fragments. Unit Headers
for each data fragment are described by logical block number and occurrence in the block.

Notice in Figure 3-9 that the second fragment in the sequence table is associated to the second
instance in block 1.

3-17

M 442k175 0L77597 459 ma

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND AP! SPECIFICATION I ntQI ®

Sequence Table Contents
for Parameter X

:: Unit Header: Parameter X Sequence Table E m 4 Block0 Instance #1
- el Block 1 Instance #2

Block 1

Unit Header: Parameter X

Instance #1

Parameter X Instance #1 Data

k) Sequence Table: Parameter X
Block Info : Logical Block 0

Boundary

Unit Header: Parameter X

Unit Header: Parameter Y

Unit Header: Parameter X

Parameter X Instance #2 Data

Parameter Y Data

Parametsr X Instance #3 Data

Block Info : Logical Block 1

Figure 3-9. A Sequence Table Example

M 482b175 0177598 795 mm

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

]
l nt9I ® FDI ARCHITECTURE AND AP1 SPECIFICATION

Sequence Table Structure Fields
typedef struct sequence_table {

BYTE blockNum; /* virtual block number */
BYTE instance; /* the instance of this fragment */
WORD size; /* in multiples of granularity */

} SEQUENCE_TABLE;

blockNum-This is the block number of the parameter data.

instance-Because there can be multiple fragments in a single block, this field contains the
instance of this fragment in the unit header table.

size-This field describes each fragment’s size in multiples of granularity.

3.4.1.2.7 Logical Block Table
This table is a logical to physical block jump table where the index is the logical block number
and the physical block number is the element.

Logical Block Table Structure Fields
typedef struct logical_block_tag {

WORD freeSpace; /* the amount of free space in block */
WORD dirtySpace; /* invalid space in block */
BYTE physical; /* physical block identifier */

} LOGICAL_BLOCK;

freeSpace-The amount of free space available in the block measured in multipies of
granularity.

dirtySpace-The amount of invalid space used in the block measured in multiples of
granularity.

physical-This field is the physical block number of the logical block used as the index into this
table. "

B 4426175 0177599 L2l WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND API SPECIFICATION I nu ®

3.4.1.2.8 Data Location Structure
This structure contains information about a data parameter or stream. It is used internally by
FDI to assist with tracking information and improving performance.

Data Location Structure Fields
typedef struct data_location_tag {

DWORD ptrUnit; /* ptr to unit accessed by header */
IDTYPE identifier; /* identity of data accessed */
WORD size; /* the size of the data in

* multiples of granularity */
BYTE type; /* data and unit type accessed */
)} DATA_LOCATION;

ptrUnit-The physical address of this unit’s information structure.
identifier—A unique identity to validate stream open/close operations.
size—Size is a multiple of granularity in this unit.

type-This field distinguishes the information associated with this header. The currently defined
types in the first nibble of this field are attributes: Multiple Instance, Single Instance,
Data Fragment and Sequence Table. The last nibble defines the associated data type:
data parameter, data stream, phone number, etc.

Table 3-5. Data Location Structure Type Field Definitions

Type Value Definition

XXXX 1110 Binary This header points to Multiple Instance unit.
XXXX 1100 Binary This header points to a sequence table.
XXXX 1000 Binary This header points to a Single Instance unit.
XXXX 0000 Binary This header points to a Data Fragment unit.
1110 XXXX Binary The data type is data parameter.
1101 XXXX Binary The data type is data stream.
1100 XXXX Binary The data type is phone number.
1010 XXXX Binary The data type is SMS.

3.4.1.29 Data Queue Structure

The system writes to the Data Queue using FDI API functions to request flash reads, writes,
and modifications. Figure 3-10 depicts the Data Queue Structure.

3-20

BN 4826175 0177600 173 HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

n
I ntQI ® FDI ARCHITECTURE AND API SPECIFICATION

Elements in Priority QGueus
are ordered in decreasing
priority.
nuil
Command Queue Command Queus Node -
element Priority slemeant
null
Command Queue |/ Command Queue Command Queue Node
element I\ element Priority element
null
Command Queue Command Queue / Command Queus Node
slement \ element N Priority element
null
Elements in each
Command Queue have
same priority.
FDI3-10
Figure 3-10. Data Queue Structure
3-21

B 4826175 0177601 0OOT HM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

|
FDI ARCHITECTURE AND AP! SPECIFICATION Int9| ®

Command Queue Node Fields
typedef struct priority_element_tag {

PELEMENT_PTR ptrNextPriority; /* points to lower priority

* queue */
CELEMENT_PTR ptrFirsttCmd; /* points to command queue */
BYTE priority; /* priority of queue. */

} PELEMENT;

ptrNextPriority-Points to the next lower priority element in the Command Queue Node
priority queue. If there is no lower priority element, this field points to NULL.

ptrFirstCmd-Points to the first command element in the command queue of priority
“priority.”

priority—Data is accessed from the command queue in high to low priority order.

typedef struct command_element_tag {

CELEMENT_PTR ptrNextCmd; /* points to next command queue
* element */

WORD dataSize; /* size of data to read/write. */

COMMAND commandData; /* command data structure */

} CELEMENT;

ptrNextCmd-Points to the next element in the command queue. If the current element is the
last element, then ptrNextCmd is set to NULL.

dataSize-Indicates the size in bytes of the data buffer to be written/modified.

commandData-Contains the command, Id, offset into data unit, data unit type, and RAM data
pointer, as described below.

typedef struct command_data_tag {
IDTYPE identifier; /* identity of data accessed. */
WORD dataOffset; /* beginning offset into the data. */
BYTE sub_cmd; /* task execution sub commands. */
BYTE type; /* command type: either data

* parameter or a data stream. */

BYTE_PTR ptrContainer; /* array of data follows. */

} COMMAND;

B 482L175 DL77L02 TubL WE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

intel.

FDI ARCHITECTURE AND API SPECIFICATION

identifier—Unique identifier of a Unit to write/modify.

dataOffset-The number of bytes from the beginning of the Unit to begin operation.

sub_cmd-The type of data modification function requested.

type-Defines unique classes of data storage information,

ptrContainer-The ptrContainer field is a pointer to an allocated buffer which contains the data
to be written to flash.

3.4.1.3 RAM USAGE AND CONTROL STRUCTURES
Variable Name Data Type Description Size in Bytes
last_data_found DATA_LOCATION | Global loaded by the dataFind routine 9
get_data_found DATA_LOCATION | A copy of last_data_found used by 9
the FDI_get function
open_stream DATA_LOCATION | A copy of last_data_found used by 9

the FDI_open and FDI_close routines

command_element

CELEMENT

The information for each write or
delete function loaded in the
command queue. This includes
command_data structure also.

16 + data size

priority_element

PELEMENT

The priority information common for
each write or delete function of same
priority is loaded in this structure. This
is a dummy element acting as a node
for the command queue of that priority

qghead_ptr

PELEMENT

Points to the highest priority element
in the data Queue

data_q_node

COMMAND

The information for each write or
delete function loaded in the Data
Queue

18 + data size

logical_block

LOGICAL_BLOCK

The table contains the logical block
number, free space and dirty space
for each physical block

5/ block

M 4826175 0L77bL03 982 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

3-23

FDI ARCHITECTURE AND API SPECIFICATION I ntel ®

3.42 MODULES

3.4.21 FOREGROUND API SUB-SYSTEM

3.4.2.1.1 Opening a Data Parameter or Stream
FDI_open opens a data parameter or stream for reading, editing or creates a data stream for
writing. Only one data parameter or stream can be opened at any given time.

Open Data Stream Format
| int FDI_open(commann_conTrOL *cmd_cnerl); |

input Elements

identifier Description Data Data Limit /Range | Validity Input

Type Rep. Check Method

Performed
?

cmd_cntrl->sub_cmd | This field contains | DWORD flag yes
a command to reference
indicate the data
stream opening
method:

OPEN_READ: OPEN READ
Open for read
only.

OPEN_MODIFY: OPEN
Open for MODIFY
parameter data
modification.

OPEN
OPEN_CREATE:
Open for writing a CREATE
new parameter.

cmd_cntrl->aux unused

emd_cntrl->identifier | This is a unique WORD integer na yes by
data parameter or reference
stream identifier.

cmd_cntri->type This field indicates | BYTE id_type na yes by

a data type. The reference
options are:

DATA_
PARAMETER or
DATA_STREAM

emd_cntri->ptrBuffer unused

3-24

M 4826175 0177604 419 Hm

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

L]
I nté ® FDI ARCHITECTURE AND AP1 SPECIFICATION

Identifier Description Data Data Limit/Range | Validity Input
Type Rep. Check Method
Performed
?
cmd_cntri->count unused
cmd_cntri->offset unused
cmd_cntri->actual unused
cmd_cntrl->priority unused

Processes Characteristics

FDI_open improves performance when accessing a data stream multiple times by maintaining
location information in RAM. FDI_open stores the data location information in the global
open_stream structure (Section 3.4.1.2.8). FDI_open returns an error if the system attempts to
open multiple data parameters or streams. FDI_open calls dataFind to determine the existence
of data with a matching identifier and type. If data already exists and is being opened for
reading or modification, FDI_open gets the data size in multiples of granularity and updates the
open_stream structure size field. Successive calls to FDI_read or FDI_write by pass the call to
dataFind and the size update, thus reducing overhead.

Error Handling

If during the open process there is an error, the return value will contain a descriptive error
code,

Utilization of Other Elements

FDI_open uses the dataFind routine defined in Section 3.4.2.5.1.

The global structure open_stream is from the Data Location Structure defined in Section
34.1.2.8.

Limitations

Only one data parameter or stream can be opened at any given time.

3-25

B 4326175 0177605 755 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I nt9I ®

Output Elements

Identifier Description Data Data Limit/ | Vvalidity Output
Type Representation | Range Check Method
Performed
?
cmd_cntri->ptrBuffer | Points to the DWORD | DATA_LOCATION no by
buffer which has pointer reference
a copy of the
open_stream
structure
information
error Refer to the BYTE count no function
retum codes in call
Section 3.5.
cmd_cntri->identifier reserved
cmd_cntr->type reserved
cmd_cntrl->count unused
cmd_cntr->offset unused
cmd_cntrl->actual unused
cmd_cntrl->aux unused
cmd_cntrl->priority unused
cmd_cntrl->sub_cmd reserved
3.4.21.2 Closing a Data Parameter or Stream

FDI_close closes an open data stream or parameter.

Close Call Format

| int FDI_close(commann contror *emd_entrl);

3-26

B 482L175 0177L0b L91 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
"Ttel ® FD1 ARCHITECTURE AND API SPECIFICATION

Input Elements

Identifier Description Data Data Limit/ | Validity Input
Type Rep. Range Check Msthod
Performed
?

cmd_cntri->identifier | Unique data parameter | IDTYPE | integer na no by
identifier reference

cmd_cntrl->type This field indicates a BYTE integer | ENUM yes by
data type. The aptions reference

are:
DATA_PARAMETER or

DATA_STREAM
cmd_cntrl->sub_cmd unused
cmd_cntrl->count unused
cmd_cntri->offset unused
cmd_cntri->actual unused
cmd_cntri->aux unused
cmd_cntri->priority unused
cmd_cntr->ptrBuffer reserved

Processing Characteristics

FDI_close determines if a data stream or parameter is open. FDI_close returns an error if no
data stream or parameter is open. FDI_close clears the open_stream structure to indicate
closing a data stream or parameter.

Error Handling

If during the close process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

The global structure open_stream is from the Data Location Structure defined in Section
3.4.1.2.8.

Limitations

Not applicable.

3-27

B 4826175 0177607 528 mA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API1 SPECIFICATION

Output Elements

Identifier Description Data Data Limit/ | Validity Output

Type Rep. Range Check Method
Performed
?
error Refer to the return codes | BYTE count no function
in Section 3.5. call

cmd_cntrl->identifier reserved
cmd_cntri->type reserved
cmd_cntrl->sub_cmd reserved
cmd_cntr->ptrBuffer unused
cmd_cntri->count unused
cmd_cntri->offset unused
cmd_cntrl->actual unused
cmd_catrl->priority unused
cmd_cntr->aux unused

3.42.13

Delete Parameter Data

The delete process invalidates a data parameter or stream in the flash media.

Delete Call Format

| int FDI_delete (COMMAND CONTROL *cmd_cntrl);

3-28

B 4826175 0177608 4buy HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

]
I nt6I ® FDI ARCHITECTURE AND API SPECIFICATION

Iinput Elements

Identitier Description Data Data Limit/ | Validity Input
Type Rep. Range Check Method
Performed
?
cmd_cntri->identifier | Unique data parameter IDTYPE | integer na no by
or stream identifier reference
cmd_cntri->type This field indicates a BYTE integer | ENUM yes by
data type. The options reference
are:

DATA_PARAMETER or
DATA_STREAM

cmd_cntrl->priority Used to indicate the BYTE integer na yes by
priority of the data reference
parameter or stream

cmd_cntrl->sub_cmd unused

cmd_cntri->count unused

cmd_cntri->offset unused

cmd_cntri->actual unused

cmd_cntri->aux unused

cmd_cntrl->ptrBuffer reserved

Processing Characteristics

FDI_delete loads all requests to modify the flash data into the Data Queue for the Background
Manager to execute in priority order. FDI_delete returns an error if the data parameter or
stream is open. Using the input identifier and type as parameters, a call to dataFind verifies the
data’s existence. FDI_delete fills a Data Queue entry structure buffer and calls dataQSend to
add the entry to the queue.

Error Handling

If during the delete process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

FDI_delete uses the dataFind routine defined in Section 3.4.2.5.1 and the dataQSend routine
defined in Section 3.4.2.4.2,

Limitations
Not Applicable.

B 4826175 0177L09 370 W

FD! ARCHITECTURE AND AP1 SPECIFICATION I nu ®

Output Elements

identitier Description Data Data Limit/ | Validity Output
Type Rep. Range Check Method
Performed
?
emd_cntr->ptrBuffer unused
error Refer to the retum codes | BYTE count no function
in Section 3.5. call

cmd_cntrl->identifier reserved
cmd_cntri->type reserved
cmd_cntrl->priority reserved
cmd_cntrl->count unused
cmd_cntrl->offset unused
cmd_cntri->actual unused
cmd_cntrl->aux unused
cmd_cntri->sub_cmd reserved
3.4.2.1.4 Getting Parameter Data

The get process locates the first or next data parameter or stream of the specified type or it will
find a matched data parameter or stream using the type and identifier fields. FDI_get places

information from the global last_data_found structure into the callers buffer if the ptrBuffer
parameter is non-zero.

Get Call Format
| int FDI_get (COMMAND CONTROL *cmd_cntrl);

3-30

B 4826175 0177610 DOl2 N

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

intel.

input Elements

FDI ARCHITECTURE AND API SPECIFICATION

Identifier

Description

Data
Type

Data Rep.

Limit /Range

Validity
Check
Pert.?

Input
Method

cmd_cntrl->sub_cmd

Contains a flag to
modify the functions
action:

GET_FIRST: finds
the first data
parameter of a given
type

GET_NEXT: finds
the matching data
parameter of a given
type and identifier
GET_MATCHED:
finds the matching
data parameter of a
given type and
identifier

DWORD

flag

commands listed
below:

GET_FIRST

GET_NEXT

GET_MATCHED

yes

by ref.

cmd_cntri->identifier

Unique data
parameter identifier

IDTYPE

integer

na

no

by ref.

cmd_cntri->type

This field indicates a
data type. The
options are:

DATA_PARAMETER
or DATA_STREAM

BYTE

integer

ENUM

yes

by ref.

cmd_cntrl->ptrBuffer

A pointer to a buffer
to contain the
get_data_found
information

DWORD

DATA_LO-
CATION
structure
pointer

cmd_cntri->count

unused

cmd_cntrl->offset

unused

cmd_cntrl->actual

unused

emd_cntrl->priority

unused

cmd_entri->aux

unused

Processing Characteristics

FDI_get calls the dataFind routine and saves the data location into the structure get_data_found
defined from the Data Location structure type. FDI_get uses get_data_found to find the next
data item of the same type if the input sub-command is GET_NEXT. FDI_get places
information from the global last_data_found structure into the callers buffer if the ptrBuffer
parameter is non-zero.

B 4826175 0177611 T59 mm

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

33

L3
FDI ARCHITECTURE AND API SPECIFICATION I nbl ®

Error Handling

If the dataFind routine returns an error, the function sets the input parameter buffer to zero and
returns the error. The error ERR_NOTEXISTS indicates the last id of a particular type has been
found or if the type is GET_MATCHED, indicates that the data does not exist.

Utilization of Other Elements
FDI_get uses the dataFind routine defined in Section 3.4.2.5.1.
The local structure get_data_found is from the Data Location Structure defined in Section

34.1.28.
Limitations
Not applicable.
Output Elements
identifier Description Data Data Limit/ | Validity Output
Type Representation | Range Check Method
Pertormed
?
cmd_cntri->ptrBuffer | A pointerto a DWORD | DATA_LOCATION na no by
buffer to contain structure pointer reference
the
get_data_found
information
error Refer to the BYTE count no function
return codes in call
Section 3.5.
cmd_cntri->identifier reserved
cmd_cntrl->type reserved
cmd_cntri->count unused
cmd_cntri->offset unused
cmd_cntri->actual unused
cmd_cntr->aux unused
cmd_cntrl->priority unused
cmd_cntri->sub_cmd reserved
3.4.2.1.5 Reading Parameter Data

The read process returns the specified portion of a data parameter or stream’s content into a
calling routine’s data buffer.

3-32

B 4826175 0177612 935 =W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

]
I nU ® FDI ARCHITECTURE AND APl SPECIFICATION

Read Call Format
| int FDI_read(COMMAND CONTROL *cmd_cntrl);]

Input Eilements

Identitier Description Data Data Limit/ | Validity Input
Type Rep. Range Check Method
Performed
?
cmd_cntri->ptrBuffer | This is a pointerto a DWORD| pointer na no by
buffer in which the data reference
content is placed.
cmd_cntri->count This field contains the DWORD| count na yes by
number of bytes to read. reference
cmd_cntri->offset This is the number of DWORD| index na yes by
bytes into the data reference
parameter or stream to
begin reading.
cmd_cntri->actual This field returns the DWORD| count na no by
actual number of bytes reference
read.
cmd_cntrl->sub_cmd unused
cmd_cntri->aux unused
cmd_cntri->identifier | This field indicates a data | WORD integer na yes by
type. The options are: reference
DATA_PARAMETER or
DATA_STREAM
cmd_cntr->type This field indicates a BYTE | id_type na yes by
parameter data type. reference
cmd_cntrl->priority Priority of the data. BYTE integer na yes by
reference

Processing Characteristics

FDI_read reads from the starting offset location in flash and writes count bytes of data into the
input buffer. Using the identifier and type input parameters, FDI_read verifies the data’s
existence in the open_stream structure. FDI_read calls dataFind to update the open_stream
structure if the data is not currently open. FDI_read gets the data size in multiples of granularity
and updates the open_stream structure size field. FDI_read validates the count and offset input
parameters against the data size to ensure the read does not go beyond the end of the data.
Otherwise FDI_read returns only the size of data stored in flash.

If the data stream or parameter is fragmented, the data fragments are read unit by unit for each
fragment in the sequence table until done reading. If no fragmentation exists, a single unit

3-33

B 482L175 0177L13 821 WE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION v Inté ®

needs to be read. To read information from any unit, a starting offset and data size are set up to
indicate the amount of data read within the current unit. FDI_read calls readUnit to read from
the starting offset location in flash and writes size bytes of data into the input buffer. FDI_read
calls readUnit for each unit of data requested.

Finally, FDI_read determines if more data writes of the same identifier and type are pending in
the Data Queue by calling dataQPeek. If matching data is in the queue, this routine returns a
pointer to the queue buffer. FDI_read updates the input buffer data if commands in the Data
Queue overwrite the same data. FDI_read repeatedly calls dataQPeck until there are no more
matching data modification items in the Data Queue.

Error Handling

If during the read process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

FDI_read uses the dataFind routine defined in Section 3.4.2.5.1, the dataQPeek routine defined
in Section 3.4.2.4.5 and the readUnit routine defined in Section 3.4.2.5.2.

The global structure open_stream is from the Data Location Structure defined in Section
34.1.2.8.

Limitations
Not Applicable.

Output Elements

Identifier Description Data [Daia Rep] Limit/ | Vaiidity Output
Type Range Check Method
Performed?
cmd_cntrl->ptrBuffer | Points to the buffer into DWORD| pointer na no by
which the data is read reference
efror Refer to the retumn codes BYTE count na no function
in Section 3.5. call
cmd_cntr->identifier reserved
cmd_cntrd->type reserved
cmd_cntri->count unused
cmd_cntr->offset unused

3-34

B 4826175 0177bl4 763 MR

-
I nu ® FDI ARCHITECTURE AND API SPECIFICATION

Identifier Description Data |[Data Rep{ Limit/ | Validity Output
Type Range Check Method
Performed?|
cmd_cntrl->actual The actual number of DWORD| count na no by
bytes read reference
cmd_cntrl->aux unused
cmd_cntrl->priority unused
cmd_cntrl->sub_cmd reserved
3.4.2.1.6 Writing Parameters and Streams

The write process queues data to be written or replaced by the Background Manager.

Write Call Format
{int FDI_write(COMMAND CONTROL *cmd_catrl);

Input Elements

Identifier Description Data Data Limit /Range Validity | Input
Type Rep. Check | Method
Pert.?

cmd_cntri->ptrBuffer | This points to the BYTE_PTR| byte | 1006 bytes no by ref.
data to be written pointer

cmd_cntrl->count The number of DWORD | integer | 1006 (queuse limit) yes | by ref.
bytes to write.

cmd_cntri->offset The index into the DWORD | integer na yes |by ref.
data at which the
new data is written

cmd_cntri->sub_cmd | Contains a flag to DWORD flag |commands listed yes | by ref.
modify the below:
function’s action:

WRITE_REPLACE: WRITE_REPLACE
replaces existing
data in flash

WRITE_APPEND: WRITE_APPEND
writes after existing
or creates new data
WRITE_MODIFY: WRITE_MODIFY
modifies existing
data in place

cmd_cntrl->identifier | Unique data IDTYPE integer na no by ref.
parameter or
stream identifier.

3-35

B 482L1L75 0177b15 LTy HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I nt6| ®

Identifier Description Data Data Limit /Range Validity | Input
Type Rep. Check | Method
Pert.?

cmd_cntri->type This field indicates BYTE integer ENUM yes | by ref.
a data type. The
options are:
DATA_PARAM-
ETER or
DATA_STREAM

cmd_cntr->priority | Priority value of the BYTE integer 0-255 yes | by ref.
data.

cmd_cntr->aux unused

cmd_cntrl->actual unused

Processing Characteristics

FDI_write loads all requests to modify the flash data into the Data Queue for the Background
Manager to execute in priority order. FDI_write allocates memory space for each command
element and the Background Manager will free the space upon completion of executing the
request.

FDI_write checks the open_stream structure to see if the data is already opened. Otherwise
FDI_write calls dataFind to see if the data exists in the flash media. FDI_write creates the data
if the sub-command type is WRITE_APPEND and dataFind returns error ERR_NOTEXIST.

A call to dataQSend loads the command element information into the Data Queue.

Error Handling

If during the write process there is an error, the return value will contain a descriptive error
code.

Utilization of Other Elements

The malloc library function is needed to dynamically allocate memory for the command
element and the data container. DataQSend (Section 3.4.2.4.2) loads the command element
information into the Data Queue. FDI_write uses dataFind defined in Section 3.4.2.5.1.

Limitations
Not applicable.

B 4426175 0177blbk 530 E

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

]
I nu ® FDI ARCHITECTURE AND API SPECIFICATION

Output Elements

Identifier Description Data Data Limit/ { Validity Output
Type Representation | Range Check Method
Performed
?
error Refer to the BYTE count no function
retum codes in cal
Section 3.5.
3.4.21.7 Reclaim Request Enable

FDI_reclaimEnable unblocks the reclaim process pending on the reclaimEnable Semaphore. A
reclaim can be invoked by the system at any time.

Reclaim Call Format
I void FDI_reclaimEnable (void);

input Elements

None.

Processing Characteristics

FDI_reclaimEnable grants reclaim permission by asserting the reclaimEnable semaphore.
reclaimEnable: Used to control flash reclamation. When reclaimEnable is asserted, reclamation
is unblocked and proceeds to reclaim invalid (written to but superseded) areas of flash.

Error Handling

None.

Utilization of Other Elements

FDI_reclaimEnable uses the reclaimEnable semaphore.

Limitations
Not applicable.

Output Elements

None.

3-37

M 482L1L75 0177617 477 M

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND APi SPECIFICATION

34218 Memory Statistics

This memory statistics process calculates the memory statistics of the media and returns the
values to the calling function.

Memory Statistics Call Format

l void FDI_statistics (WORD *freeUnits, WORD *IinvalidUnits);

Input Elements

Identifier Description Data Data Limit/ | Validity Input
Type Representation | Range Check Method
Performed
?

freeUnits Pointer to WORD pointer no by
number of free reference
units.

invalidUnits Pointer to WORD pointer no by
number of reference
invalid units.

Processing Characteristics

FDI_statistics provides a way to monitor the FDI usage of the entire media. These values
represent FDI usage for the Flash Data Integrator structures and application data. The total
number of clean units remaining does not include those units held in reserve (system_threshold
and FDI_threshold). Each entry of the Logical Block table tracks the statistics of individual
blocks. FDI_statistics adds up the free_space field of the Logical Block table to get the
total_free_space and the dirty_space field to get the total_invalid_space. FDI_statistics returns
these values by filling in the variables pointed to by the pointers that were passed in by the

calling function.

Error Handling
Not applicable.

Utilization of Other Elements

FDI_statistics uses the Logical Block table defined in Section 3.4.1.2.7.

Limitations

Not applicable.

3-38

B 43826175 0177618 303 =

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
I nu ® FDI ARCHITECTURE AND AP1 SPECIFICATION

Output Elements
Identitier Description Data Data Limit/ | Validity Output
Type Representation | Range Check Method
Performed
?
freeUnits Number of free | WORD count no by
units in terms of ’ reference
granularity.
invalidUnits Number of WORD count no by
invalid units in reference
terms of
granularity.
3.4.21.9 Data Queue Status

FDI_status returns the queue status and the reclamation status to the calling function.

Status Call Format
| BYTE FDI_status(void);

Input Eilements

None.

Processing Characteristics
FDI_status returns whether reclamation is in progress and whether the data queue is empty.

The table below indicates all possible values that can be returned by this function and its

interpretation.
Bit mask Interpretation
0000 No pending reclamation. Queue is empty.
0001 Reclamation is pending. Queue is empty.
0010 No pending reclamation. Message pending in the queue.
0011 Reclamation is pending. Message pending in the queue.

Error Handling

None.

Utilization of Other Elements

None.

3-39

B 4826175 0177k19 2uT WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND APt SPECIFICATION I nt9| ®

Limitations
Not applicable.

Output Elements

Identifier Description Data Data Limit/ | Validity Output
Type Representation | Range Check Method
Performed
?
value Return value BYTE integer 03 no function

indicates the call
status of the
queue and
reciamation.

3.4.2.2 BACKGROUND MANAGER SUB-SYSTEM

34221 Background Task

BkgrdTask is the FDI Background Manager which performs any modifications/writes to flash.
BkgrdTask pends on data available in the Data Queue, and then reads the highest priority
Command Queue element. BkgrdTask disables system interrupts before issuing program or
erase commands. BkgrdTask then polls interrupts while waiting for the program or erase to
complete. If an interrupt is asserted during this time, bkgrdTask suspends the flash program or
erase in progress, and then relinquishes the system to the interrupting task. Once the interrupt
handler has completed executing, bkgrdTask continues until it completes, or until it is
interrupted again by another interrupt. BkgrdTask continues in this fashion until the Data Queue

is empty. BkgrdTask also determines when a reclaim is necessary by checking predetermined
thresholds.

Background Task Call Format
I int bkgndTask(void);

Input Elements
Not applicable.

Processing Characteristics

‘When pending on the queuecCount semaphore, bkgndTask looks for the highest priority item in
the Data Queue. When an item arrives in the Data Queue, bkgndTask gets a pointer to the item
by calling dataQReceive. BkgndTask uses the Data Queue command information pointed to by
dataQReceive to modify the flash media. BkgndTask determines the location of the data in
flash by calling dataFind if the data is not already opened. BkgndTask modifies the Data

3-40

B 4826175 0177620 Thl HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

I nu ® FDI ARCHITECTURE AND API SPECIFICATION

Header status field if the operation is a DELETE sub-command. For the cases of
WRITE_REPLACE and WRITE_MODIFY commands bkgndTask determines the storage

method of the data, either a Multiple Instance unit, a Single Instance unit, or a fragmented data
unit.

If the data is in a Multiple Instance unit and there is available space, bkgndTask creates a new
instance of the data within the existing Multiple Instance unit. The old data instance in the unit
is marked invalid. If there is not enough space in the Muitiple Instance unit, bkgndTask creates
a new unit with corresponding Unit Header with the replacement or modified data. The old
Muliiple Instance unit and associated Unit Header is invalidated.

If the storage method is a Single Instance unit and there is available space, bkgndTask creates a
new unit with corresponding Unit Header with the replacement or modified data. The old
Single Instance unit and associated Unit Header is invalidated.

If the storage method is a fragmented data unit, this requires writing the replacement or
modified data to a new unit and corresponding Unit Header. BkgndTask recreates the Sequence
Table and associated Unit Header to reflect the changed data. In the case of the
WRITE_APPEND command, bkgndTask determines the storage method of the data. If the
method is a Multiple Instance unit, bkgndTask creates a new unit with the additional data
added. The old vnit and associated Unit Header is invalidated. If the storage method is a
fragmented data unit, bkgndTask creates a new unit and Unit Header with the additional data
and updates the Sequence Table.

Before a data write takes place, it is necessary to determine if enough space exists on the flash
media, If the data size is greater than the available space above the system_threshold,
bkgndTask checks the condition of the reclaimDone semaphore. If reclaimDone semaphore is
asserted, bkgndTask asserts the reclaimRequest semaphore and resets the reclaimDone
semaphore. The write command completes if the data size fits within the available space and
that headroom exists between the system_threshold and the FDI_threshold. Otherwise,
bkgndTask is pending on reclaimDone semaphore. Once the reclamation function asserts the
reclaimDone semaphore, bkgndTask continues with the write or delete operation.

Before modifying flash media, bkgndTask determines if there is enough time to execute the
command. BkgndTask delays if there is not enough time until the next interrupt occurs. A call
to the flashLowLevel function executes the command from within RAM. If an error occurs
during this low-level function, bkgndTask gives an error semaphore to indicate the error to the
system. If the low-level operation completes, a call to dataQDelete removes the item from the
queue and bkgndTask is again pending on items in the Data Queue.

Error Handling

If an error is returned the semaphore describing the error and location is given to the system.

Utilization of Other Elements

BkgndTask uses dataQReceive defined in Section 3.4.2.4.3, dataQDelete defined in Section
34244 and flashLowLevel defined in Section 3.4.2.5.5. The semaphores used are
queueCount, reclaimRequest and reclaimDone.

3-41

M 432k175 017721 9T4 mE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION "Ttel ®

Limitations
Not applicable.

Output Elements
Not applicable.

3.4222 Low-Level Iinterrupt and Status Polling
RAM_flashModify exists in RAM and allows a real-time multi-tasking system flash “read
while write” capabilities.

Low-Level Polling Call Format
| int RAM flashModify (LOWLVL_INFO_PTR ptrLowlvlInfo);

Input Elements

The input parameter structure is defined as follows:

typedef struct lowlvl_info_tag {
DWORD address; /* identity of data accessed */
DWORD ptrBuffer; /* pointer to actual data */
WORD count; /* number of bytes to write to flash */
BYTE command ; /* task execution sub-commands */
} LOWLVI_INFO;

Identifier Description Data Data Rep. Limit/ Validity Input
Type Range Check Method
Pert.?
ptrLowlviinfo->address | Beginning DWORD address no by
address of pointer reference
flash media
data.
ptrLowiviinfo->count Number of WORD | byte counter | 0—-OXFFFF yes by
bytes if reference
programming.
ptri.owlvlinfo->command | Either program | BYTE command 0-1 yes by
or erase. flag reference
ptrLowlivlinfo->ptrBuffer | Pointer to BYTE array of no by
buffer pointer bytes reference
containing data
for
programming.

3-42

M 482L175 0L77b22 834 A

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
I nbl FDI ARCHITECTURE AND API SPECIFICATION

Processing Characteristics

RAM_flashModify disables the system Task Scheduling so the scheduler does not interrupt the
write process. The Data Queue still contains the current data element being acted upon. Next,
RAM_flashModify disables the interrupts. This is the point of worst case interrupt latency, after
the interrupts have been disabled. RAM_flashModify calculates the “time until next interrupt”
using the last interrupt time-stamp and the current time. There must be available time for a
minimum run, overhead and command suspend time. If there is not enough time
RAM_flashModify re-enables the interrupts and the task scheduler. RAM_flashModify then
delays until the next interrupt occurs and the process begins again.

If enough time exists, RAM_flashModify gives the program or erase command to start or
continue the operation. Checking the status register verifies the command is complete.

If the operation is a programming command the byte counter is decrements and the address
pointer increments to the next location. RAM_flashModify checks the status register for errors
if there are no more bytes to write and sets the status variable to indicate correct command
completion or error. Verification of the status register ensures the completion of the operation.
RAM _flashModify analyzes the available time if the command has not completed.
RAM_flashModify sets the status variable to the suspended state if there is not enough time to
poll the status register or an interrupt has occurred. This is the point of best case interrupt
latency, after the interrupt polling. RAM_flashModify suspends the program or erase command
and waits for the operation to complete. RAM_flashModify re-enables the interrupts and the
task scheduler. The system will vector to the address of the interrupt handler. After the system
interrupt completes and the Background Manager is allowed CPU time, the process is
continued until interrupted again or until complete.

If the status variable indicates that the program/erase command was suspended,
RAM_flashModify disables the Task Scheduling, disables the interrupts and verifies the
available time. RAM_flashModify resumes the previously interrupted command until the
variable status indicates completion or error.

Error Handling

RAM_flashModify returns the status value to the calling function.

Utilization of Other Elements

None.

Limitations
Not applicable.

3-43

I 442k175 0177623 770 W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

FDI ARCHITECTURE AND API SPECIFICATION

Output Elements
identifier Description Data | Data Rep. Limit/ Validity | Output
Type Range Check Method
Pert.?
status Returns the status of the BYTE unsigned |0 - okay no function
d letion. har]
command upon completi chai 1 - suspended cal
2 - an error

3.4.2.2.3

Reclamation Management

Reclamation is the process used to make invalid regions of flash memory available for reuse for
parameter storage. The FDI system uses a spare block for reclaiming valid headers and data.
This spare is not used for parameter storage but is used for reclamation only. When there is no
more room to write updated or new data, the system finds a block with the greatest amount of
invalid space and finds the spare block.

Figure 3-11 displays the reclaim candidate and the spare block prior to the reclaim process.

Logical
Block #4

Valid and
Invalid Data
and Headers ¢

Physical
Block #2

Block with
the greatest
amount of
invalid
space

status =
"erased”

Spare Block

Physical

Block #7

FDI3-11

3-44

Figure 3-11. Reclaim Candidate and Spare

B 482L175 017?7b24% LO7? WM

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

intel.

FDI ARCHITECTURE AND API SPECIFICATION

Transfer of valid data and headers from the block being reclaimed to the spare block is the next
step. The status of the spare block indicates the valid data is being transferred. Figure 3-12
demonstrates this process. Notice invalid data and headers do not transfer to the spare block.

Block #4

Valid and
Invalid Data
and Headers

Physical

Spare Block

status =
"recover”

transfer only valid
data and headers

Physical

Block #2 Block #7
FOR-12

Figure 3-12. Transferring Valid Data to the Spare Block
3-45

B 4826175 0L77b25 543 EE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I nt9| ®

Upon completion of the data transfer the next step is to prepare the spare block to logically take
the original block’s place. The FDI writes the original block’s logical block number to the spare
block’s block information structure. For power off recovery purposes the status of the spare
block indicates the original block is about to be erased. The old block begins to crase after all
valid data exists in the spare block. Figure 3-13 shows the status of the spare and reclaim blocks

at this time.
Place the
logical block
status =
Unknown [nu::g;:;;he "erasing"”
state/content B
&% block into the
spare
Physical Physical
Block #2 Block #7
FDI3-13
Figure 3-13. Erasing the Reclaim Block
3-46

B 482L175 0177b2b 44T WM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

[3
I nu ® FDI ARCHITECTURE AND API SPECIFICATION

When the erase of the original block completes, the status of the spare block changes to indicate
that the block is now a writable block. All of the valid data and headers have been transferred
successfully and the old locations have been erased. The new status of the blocks is shown in

Figure 3-14.
New Spare Logical
Block Biock #4
status = Ready for Contains valid
"erased" another headers and
reclamation data
Physical Physical
Block #2 Block #7
FDI3-14
Figure 3-14. Status after Reclamation
Reclamation Call Format
I void reclamation(void), —I

input Elements

None.

Processing Characteristics

Flash is byte alterable. However, to rewrite a flash location which has already been written
requires a block erase. Flash blocks are typically large — several Kbytes. Any valid information
in a block to be erased must be moved from the block before “reclaiming” invalid flash
memory by erasing the block. Reclamation copies all the valid data from a block with invalid
data to reclaim to an empty “spare”block and then erases the block.

On Initialization installs reclamation as a task which runs in the background. The reclamation
task pends on the reclaimEnable semaphore. When this semaphore is asserted by the system

3-47

B 4426175 0177k2? 31L HH

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I nbl ®

through the Foreground API FDI_reclaimEnable function, the reclamation process begins. The
following semaphores are used to control reclamation:

reclaimRequest: BbkgndTask uses this semaphore to request the system to enable
reclaim at the next available instant.

reclaimEnable: The system asserts this semaphore to grant reclaim permission. The
reclamation function awaits this binary semaphore.

reclaimDone: The reclamation function uses this semaphore to indicate the
completion of the reclamation process. If bkgndTask is pending on
the reclaimDone semaphore, this indicates that memory is full and
that it cannot continue the write or delete operation until reclaim is
complete.

Reclamation selects the reciaim block by finding the block with the least amount of erase
counts or the highest percentage of dirty space. Reclaiming the block with the least amount of
erase counts distributes the erases across the blocks for maximum reliability. This process is
called wear-leveling.

Reclamation first reads all the erase count information stored in each block and stores them in a
local array and calculates the difference between the fewest erase counts and the most erase
counts. If the difference is greater than a pre-defined value, reclamation reclaims the block with
smallest erase count. If the difference is less than or equal to a pre-defined value, reclamation

reads the invalid count of each block from the Logical Block table and selects the block with
most invalid data.

Once reclamation selects the block to reclaim, reclamation writes the erase count value of that
block as a data parameter with a unique identifier directly bypassing the Data Queue.

Then reclamation finds the spare block from the Logical Block table and marks the spare block
to indicate the start of data transfer.

After finding the spare block, reclamation transfers the valid units from the reclaim block to the
spare block. Once the data transfer is complete, reclamation writes the logical block number

and the physical block number of the reclaimed block into the block information area of the
spare block.

After completion of the data transfer, reclamation marks the spare block to indicate that the
erase of the old block has begun.

Reclamation then erases the old block. Upon erase completion, reclamation retrieves the cycle
count by doing a parameter read, increments it by one and writes this value into the block
information area of the reclaimed block. The reclamation function then writes the complete
block information into the spare block and marks it as a valid block. Then reclamation deletes

the parameter cycle count to free up its RAM space. Finally, reclamation updates the logical
block table and asserts the reclaimDone semaphore.

3-48

Bl 48PL175 0177L28 252 WA

I nU ® FDI ARCHITECTURE AND API SPECIFICATION

Error Handling

If during the process there is an error, a special semaphore that indicates that an error has
occurred in the system is set by reclamation.

Utilization of Other Elements

None.

Limitations
Not applicable.

Output Elements

identifier Description Data Data Rep. Limit/ Validity Output
Type Range Check Method
Pert.?
reclaimDone | Indicate the completion of | semaphore no by
reclamation to the pending reference
background write task if
any.
reclaimError | Indicate an error occurs semaphore no by
during the reclamation reference
process.

3.4.23 BOOT CODE MANAGER SUB-SYSTEM

3.4.2.3.1 Power On Initialization
The initialization process initializes all the FDI control structures and performs necessary
power loss recovery.

Initiallzation Call Format
[int PDI_init(void);]

Input Elements

None.

Processing Characteristics

FDI_init calls the initUnit routine to validate all the blocks and to validate all the units of each
block. FDI_init also updates all the control structures and the global variables used by the FDI
functions. FDI_init scans through all the Unit Header entries to build the Data lookup table by

3-49

B 4826175 0177629 199 mm

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION Inu ®

scanning through all the Unit Header entries. FDI_init also builds the Logical Block Table
scanning through the Block Information entries at the end of each block. Finally, FDI_init
installs the Background Manager task as well as the reclamation task.

Error Handling

Any error during the initialization process will be returned to the application layer.

Utilization of Other Elements
FD1_init uses initUnit defined in Section 3.4.2.5.3, and dataQCreate in Section 3.4.2.4.1.

Limitations

Care must be taken to avoid repeated calls to FDI_init from the application or OS interface.

Mutltiple calls to FDI_init can create undesired results, such as trashing existing global
variables.

Output Eilements

Identitier Description Data Data Rep. Limit/ Validity Output
Type Range Check Method
Perf.?
error Refer to the return codes in BYTE count no function
Section 3.5. call

3.4.24 COMMAND DATA QUEUE SUB-PROGRAMS

The queue is implemented as a counting semaphore as well as a mutual exclusion semaphore.
The queue functions implemented in this library are:

® dataQCreate—initializes the queue structure and necessary variables.

® dataQSend-adds the new command information to the equal priority queue.

® dataQReceive-reads the highest priority item from the queue.

¢ dataQDelete-removes the highest priority item from the queue.

® dataQPeek—scans through the queue and finds the matching command of same identifier

and offsct range.
3.4.241 Creating a Queue

This queue creating process initializes the queue element structure and the necessary variables.

3-50

B 4826175 0177630 900 W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
I nU ® FDI ARCHITECTURE AND API SPECIFICATION

dataQCreate Call Format
Lvoi d dataQCreate(void};

Input Elements

None.

Processing Characteristics

DataQCreate initializes the queue structure and the necessary variables. This includes the
variables that are used to maintain the semaphore protection for the queue, variable Q_Size
which is used to limit the queue size to a user defined size. The system defined variable
maxQSize is defaulted to 1K. The queue size includes the memory occupied by the queue
structure as well as the data pointed by its elements. DataQCreate also sets the global pointer
ghead_ptr to null. DataQCreate should be called once by the FDI_init function only during the
initialization process.

Error Handling

Not applicable.

Utilization of Other Elements

None.

Limitations

None.

Output Elements

None.

34242 Sending Information to the Queue

DataQSend puts the information into the data queue.

Queue Send Call Format
| int datapSend (CLEMENT_PTR Queue, BYTE priority);

3-51

B 4626175 0177631 au7? W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND APl SPECIFICATION I nu e

Input Elements

Identifier Description Data Data Limit/ | Validity | !nput
Type Rep. Range | Check { Method
Perf.?
CELEMENT->commandData | Actual COMMAND structure na yes
command
structure.
CELEMENT->ptrNextCmd Pointer to the | CELEMENT_PTR| pointer na yes

next command
element on the
command
queue.

CELEMENT->dataSize The data WORD count na no
container size.

priority Data priority. BYTE integer na yes

Processing Characteristics

DataQSend puts the data command information into the data queue. DataQSend makes sure
that the queue has been created successfully during the initialization process. This is done by
verifying if the global variables are properly initialized. Then dataQSend makes sure that the
node count has not yet reached the maximum count. DataQSend checks if adding this element
will exceed the maxQSize, which is a pre-defined value. If 50, returns an error code to indicate
that the queue is full.

If the data and the command element will fit into the limit, dataQSend scans the queue in the
order of highest to lowest priority looking for a match. If dataQSend does not find a matching
priority element, it creates a priority element which also acts as a node to the same priority
command queue. To create a new priority element, dataQSend allocates and fills the memory
with the appropriate information from the buffer whose pointer is passed by the calling
function. Then dataQSend adds a command element to the command queue of that priority. If
dataQSend finds a match, it scans through the same priority looking for the last command
element. Once dataQSend hits the last command element, it adds the new command element to
the last command element. To add a new command element, dataQSend fills the allocated

memory with the appropriate information from the buffer whose pointer is passed by the calling
function.

queueProtect: DataQSend uses this semaphore to protect the queue from being accessed
by any other task at the same time the queue pointers are being redirected.

queueCount: DataQSend uses the counting semaphore queueCount to keep track of the
number of entries in the queue.
Error Handling

If any error occurs during this process, dataQSend returns an descriptive error code.

3-52

M 4826175 0177632 743 M

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

intel.

Utilization of Other Elements

Not applicable.

Limitations

Not applicable.

Output Elements

FDI ARCHITECTURE AND API SPECIFICATION

Identifier Description Data Data Rep. Limit/ Validity Output
Type Range Check Method
Pert.?
error Refer to the retum code in BYTE count no function
Section 3.5. call
3.4.24.3 Receiving Information from the Queue
This queue data read process receives the information from the queue.
Queue Receive Call Format
I void dataQReceive (BYTE_PTR pbuffer), l
Input Elements
identifier Description Data Data Rep. Limit/ Validity Input
Type Range Check Method
Pert.?
pbuffer Pointer to the buffer in BYTE_PTR pointer no by
which data is read. reference

Processing Characteristics

DataQReceive reads the information from the queue. The calling function passes the pointer to
the buffer into which dataQReceive reads. DataQReceive returns a pointer to the Data Queue’s

ghead_ptr.

Error Handling

None.

Utilization

None.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

of Other Elements

B 482L175 0177633 LLT MR

3-53

FDI ARCHITECTURE AND API SPECIFICATION Intel ®
Limitations
None.

Output Elements

None.

34244 Deleting Information from the Queue

This queue delete process deletes the information from the queue.

Queue Delete Call Format

[void dataQDelete (void); —l

input Elements

None.

Processing Characteristics

DataQDelete deletes the first command element from the highest priority command queue from
the data queue.

queueProtect: DataQDelete uses this semaphore to protect the queve from being
accessed by any other task at the same time the queue pointers are being redirected.

DataQDelete redirects the pointers to proper elements pulling out the first command element
from the highest priority queue. If this is the only command element left in the queue before
deletion, dataQDelete pulls out the first priority element also. After this pointer redirection the
protection semaphore can be released. Then it frees the memory of the data container pointed
by this command element. At last, it frees the memory occupied by the pulled out command
element and the priority element if pulled out.

queueCount: DataQDelete uses this counting semaphore to keep track of the number of
existing elements in the queue. The semaphore count decrements automatically when
this semaphore is given.

DataQDelete decrements the Q_Size by a total of the element size and the data container size.

Error Handling

None.

Utilization of Other Elements

None.

3-54

B 4825175 D177b34 556 WM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

InU ® FD1 ARCHITECTURE AND API SPECIFICATION

Limitations

None.

Output Elements

None.

3.4245 Peeking through the Queue

DataQPeek scans the queue looking for matching type and identifier. If the command is
WRITE, dataQPeck also looks for the matching offset range. DataQPeek returns a null pointer
if it did not find a match. Otherwise, dataQPeek returns the pointer to the queue buffer of the
matching element to the calling function.

Queue Peek Calling Format
Lim‘: dataQPeek (CELEMENT_PTR Node, BYTE priority); j

Input Elements

Identifier Description Data Data Rep. Limit/ Validity Input
Type Range Check Method
Perf.?

Node A pointer to a queue CELEMENT_PTR pointer n.a. yes by
element from which reference
peek should start
peeking through or a

null pointer if the
scanning should start
from the head of the
queue.

priority Data priority. BYTE integer n.a. yes by
reference

Processing Characteristics

The calling function of dataQPeck function passes in two pointers. If the Node pointer passed
in is a null pointer, dataQPeek scans the queue from the ghead_ptr in the order highest to lowest
priority looking for a priority match that was passed in through the Queue pointer and finds a
match. If the Node pointer is pointing to a same priority element, dataQPeck scans from that
element. DataQPeek scans over the same priority command elements in the queue looking for a
matching identifier field. DataQPeek returns the pointer to the queue buffer if it finds a match.
Otherwise, dataQPeck returns a null pointer.

B 442LL75 0177b35 492 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND API SPECIFICATION I ntel ®

Error Handling

None.

Utilization of Other Elements
None.

Limitations

None.

Output Elements

Identifier Description Data Data Rep. Limit/ Validity Output
Type Range Check Method
Perf.?
pointer Pointer to the queue pointer DWORD yes function
buffer or a null pointer call
is retumed.

3.4.25 SUPPORTING SUB-PROGRAMS

3.4.25.1 Finding Data

DataFind locates the first or next data parameter of the specified type or it will find a matched
parameter using the type and identifier fields. DataFind fills the ptrBuffer with the
last_data_found global structure if the ptrBuffer parameter is a non-zero.

Data Find Call Format
| int dataFind (COMMAND CONTROL *cmd_cntrl);

3-56

B 4826175 0L?7?b3bL 329 W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

I nt9I ® FDI ARCHITECTURE AND API SPECIFICATION

Input Elements

Identifier Description Data Data Limit /Range Validity | input
Type Rep. Check | Method
Perf.?

cmd_cntri->sub_cmd | Contains a flag to DWORD flag |commands listed yes | by ref.
modify the below:
functions action:

GET_FIRST: finds GET_FIRST
the first data
parameter of a

given type.

GET_NEXT: finds GET_NEXT
the matching data
parameter of a
given type and
identifier.
GET_MATCHED: GET_MATCHED
finds the matching
data parameter of a

given type and
identifier.

cmd_cntri->identifier | Unique data IDTYPE integer n.a. no by ref.
parameter
identifier.

cmd_cntr->type Indicates a data BYTE integer n.a. yes by ref.
type.

cmd_cntr->count unused

cmd_cntri->offset unused

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntri->ptrBuffer reserved

Processing Characteristics
DataFind handles three different cases of sub-commands.

If the sub_cmd is FIND_FIRST dataFind looks in the Data Lookup Table (Section 3.4.1.2.2)
for the first type listed that matches the input field. If the cmd_cntrl->type parameter is an
illegal value, dataFind returns ERR_NOTEXISTS.

DataFind uses the last_data_found structure’s identifier field as the starting index into the Data
Lookup table if the sub_cmd is FIND_NEXT. The Data Location structure in Section 3.4.1.2.8
defines the global last_data_found structure. From there dataFind looks for the next type listed

that matches the input type. If the type parameter is an illegal value, dataFind returns
ERR_NOTEXISTS.

3-57

Bl 482L175 0L77L37 2L5 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND APl SPECIFICATION

intel.

If the sub_cmd is FIND_MATCHED dataFind indexes into the Parameter Lookup Table by the
identifier input field. If there are no matching identifiers or types dataFind returns error
ERR_NOTEXISTS.

The following is done in all cases: The Data Lookup Table locates the logical block and the
Unit Header offset for the data. The physical block is located using the logical block number as
an index into the Logical Block Table.

The physical block number and the offset define the location of the Unit Header within the
flash memory. The Unit Header (Section 3.4.1.2.3) provides the location of the corresponding
data within the block. DataFind fills the structure last_data_found with the information
provided by the Unit Header structure.

Error Handling

If an error is returned by the dataFind function, the input parameter puBuffer is set to zero and
the error is returned.

Utilization of Other Elements

The global structure last_data_found is from the Data Location Structure defined in Section
34.1.2.8.

Limitations

The FIND_FIRST sub-command must be executed before the FIND_NEXT sub-command
otherwise an error will be returned.

Output Elements
Identifier Description Data Data Rep. Limit/ | Validity | Output
Type Range | Check | Method
Perf.?
cmd_cntr->ptrBuffer | Points to the DWORD | DATA_LOCATION| n.a. no by ref.
last_data_found pointer
structure.
error Refer to the return BYTE count no function
codes in Section 3.5. call
cmd_cntrl->identifier reserved
cmd_cntrd->type reserved
cmd_cntrl->count unused
cmd_cntri->offset unused

3-58

M 482L175 017738 LTL WE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

FDI ARCHITECTURE AND AP1 SPECIFICATION

Identifier Description Data Data Rep. Limit / | Validity | Output
Type Range | Check | Method
Pert.?

cmd_cntrl->actual unused

cmd_cntrl->aux unused

cmd_cntrl->sub_cmd reserved

3.4.25.2 Read Unit

The readUnit function reads the data from the media into the input buffer.

Read Unit Call Format

| BYTE readUnit (DWORD startloc, DWORD size, BYTE *buffer);
Input Elements
Identitier Description Data Data Rep. Limit/ | Validity | Input
Type Range | Check | Method
Peort.?

startioc Indicates the starnt DWORD | block offset location no by
location of the unit from reference
which the data is to be
read

size Indicates the size in DWORD number of bytes no by
bytes to be read reference

buffer Indicates the address of BYTE * pointer no by
the buffer into which the reference
data is read

Processing Characteristics

ReadUnit goes to the starting location in flash and writes size bytes of data into the input buffer.

Error Handling

A descriptive error is returned if there is any problem during execution of this function.

Utilization of Other Elements

Not applicable.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

B 482L175 0177L39 032 A

3-59

=
FDI ARCHITECTURE AND API SPECIFICATION I ntel ®

Limitations
Not applicable.

Output Elements

identifier Description Data Data Rep. Limit/ | Validity | Output
Type Range | Check | Method
Pert.?
buffer Data is read into this BYTE * pointer no by
buffer. reference
error Error while reading this BYTE count no function
unit cause this value to call
be retumed.
3.4.2.53 Unit Initialization

The initUnit validates all the blocks and all the units in each block.

Unit Initialization Call Format
|int initunie(void);

Input Elements

None.

Processing Characteristics

The initUnit function scans all the available blocks in the media to verify the validity of each
block by reading the Block Information structure. If initUnit encounters a block in the process
of being erased, initUnit completes the erase and prepares the blocks for reuse. InitUnit also
scans all internal data management structures and performs any necessary power loss recovery.
Error Handling

Any error during the initialization process will be returned to the API layer.

Utilization of Other Elements

None.

Limitations

None.

3-60

B 4826175 0L?7b40 B5T EM

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

L]
InU ® FD1 ARCHITECTURE AND AP1 SPECIFICATION

Output Elements

Identifier Description Data Data Rep. Limit/ | Validity | Output
Type Range | Check | Method
Perf.?
error Refer to the retum codes | BYTE count no function
in Section 3.5. call
3.4.254 Downloading RAM Code

The downloadCode function loads the Interrupt and Status Polling code into RAM at
Initialization. The low-level function RAM_flashModify is literally copied directly from its
code location in flash and copied to RAM.

Downloading RAM Code Call Format
I void downloadCode (void) ;

Input Eilements

tdentifier Description Data Data Limit/ Validity Output
Type Representation Range Check Method
Perf.?
RAM_START | Pointer to RAM detined address pointer n.a. defined at
destination. address compile time

Processing Characteristics

The downloadCode function marks the beginning and end of the low-level function by storing
the RAM_flashModify function pointer as the begin pointer and the next function pointer as the
end pointer. The low-level function RAM_flashModify is copied byte by byte from the begin
pointer to the end pointer, into the RAM destination address.

Error Handling
Not applicable.

Utilization of Other Elements
The function RAM_flashModify and the next function in memory.

Limitations

None.

3-61

B 4826375 0L?7641l 79:

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-
FDI ARCHITECTURE AND APl SPECIFICATION I nu ®

Output Elements

None.

3.4.255 Interface to Low Level Functions

The flashLowLevel function executes the low-level polling function located in RAM.

RAM interface Call Format
BYTE flashLowLevel (BYTE function, BYTE_PTR ptrAddr,

WORD length, WORD offset, BYTE_PTR ptrData);

Input Elements

Identifier Description Data Data Limit/ Validity | Input Method
Type Representation Range Check
Pert.?
function Type of BYTE integer value 0,1 yes by value
command
erase or
program.
ptrAddr Pointer to the BYTE * address pointer n.a. no by reference
address in
flash.
length Size of data to WORD integer value no by value
write.
offset Offset into data WORD integer value no by value
to write.
ptrData Pointer to the BYTE* address pointer no by reference
data in RAM.

Processing Characteristics

The input parameters for flashLowLevel describe the data item and the flash location for the
polling function. FlashLowlLevel places the input parameters into a LOWLVL_INFO structure
(Section 3.4.2.2.2) and calls the RAM_flashModify function located at the RAM_START
address in RAM to perform the command.

Error Handling

Returns forwarding errors to the calling function.

Utilization of Other Elements

None.

3-62

B 482b175 0L77b42 L22 W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

intal.

FDI ARCHITECTURE AND APl SPECIFICATION

Limitations
None.
Output Elements
identifier Description Data | Data Rep. Limit/ Validity Output
Type Range Check Method
Pert.?
status Returns the status of the BYTE unsigned | O - okay no function
nd ion.
command upon completion char 1 - suspended call
2 - an error
3-63

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

B 4826175 017?643 569 W

»
FDi ARCHITECTURE AND API SPECIFICATION I n@ ®

3.5 RETURN ERROR CODES

The following list of error codes may possible be returned from any interface function of the

FDI system
Return Error Code Meaning

ERR_NONE 0 | Indicates command was successful

ERR_READ 1 | Indicates an error reading the flash component

ERR_WRITE 2 | Indicates an error in the status register when writing to the flash
component. Potentially due to a locked block if the flash component
has this capability.

ERR_PARAM 3 | Indicates an incorrect parameter to a function.

Reserved for future use.

ERR_OPEN 5 | Indicates an operation is attempted on an open file when the file
should be closed.

ERR_EXISTS 6 | Indicates the attempt to create a file or directory that already exists.

ERR_NOTEXISTS 7 |Indicates an error in attempting to perform an operation on a file that
does not exist.

ERR_QFULL 8 | Indicates the Data Queue is full and cannot accept additional
elements.

ERR_SPACE 9 | Indicates that there is no available clean fiash space left. This
indicates that a manual reclaim needs to occur before re-attempting
the command.

10 | Reserved for future use.

ERR_NOTOPEN 11 | Indicates an error in performing an operation on a file that is not open
but must be to complete the operation.

ERR_ERASE 12 | Indicates an error erasing the flash block. Potentially due to a locked
block if using flash with this capability.

13 | Reserved for future use.
14 | Reserved for future use.
ERR_MAX_PARAMS 15 | Indicates that the maximum number of objects has been reached.
16 | Reserved for future use.
17 | Reserved for future use.
18 [Reserved for future use.
19 | Reserved for future use.
20 | Reserved for future use.
21 | Reserved for future use.
3-64

M 4826175 0177b4y4 4TS Em

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

intel.

FDI ARCHITECTURE AND APl SPECIFICATION

Return Error Code Meaning

ERR_FORMAT 22 {Indicates the detection of an error in the card format structures.

ERR_MEDIA _TYPE 23 |Indicates the media type is identified as a media that is unsupported
{such as RAM if RAM_SUPPORT is disabled)

ERR_NOT_DONE 24 |Indicates that a function was aborted before completion due to an
abort capability such as that used in the REVERSE_SEEK_SETUP.

25 | Reserved for future use.
26 | Reserved for future use.
27 | Reserved for future use.
28 | Reserved for future use.
29 | Reserved for future use.

ERR_WRITE_PROTECT | 30 [Indicates the media is write protected. Retumned at in initialization
{which should not be treated as an error, only a flag) and when a write
is attempted.

ERR_DRV_FULL 31 |Indicates that the flash media is full.

ERR_MAX_OPEN 32 }indicates that the maximum number of objects open consecutively has
already been reached. This is determined by the MAX_OBJECTS
define in type.h.

33 | Reserved for future use.

B 4326175 0177Lu5 331 M

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

