M64894FP/GP

Serial Input PLL Frequency Synthesizer for TV/VCR

Description

The M64894 is a semiconductor integrated circuit consisting of PLL frequency synthesizer for TV/VCR using I ${ }^{2}$ C BUS control. It contains the prescaler with operating up to 1.3 GHz .4 band drivers and tuning amplifier for direct tuning. Built-in 4 band drivers.

Features

- 4 integrated PNP band drivers $\left(\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}\right.$, Vsat $=0.2 \mathrm{~V}$ Typ@ $\mathrm{V}_{\mathrm{CC} 1}$ to 13.2 V$)$
- Built-in high-withstanding voltage tuning Amplifier
- Low power dissipation $\left(\mathrm{I}_{\mathrm{CC}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$
- Built-in prescaler with input amplifier (Fmax $=1.3 \mathrm{GHz}$)
- $\mathrm{I}^{2} \mathrm{C}$ bus control (Read and write mode)
- X'tal 4 MHz is used to realize 3 type of tuning steps (Division ratio $1 / 512,1 / 640,1 / 1024$)
- Built-in 5-level A/D converter
- Programmable chip address
- 16-pin small SOP/SSOP package

Function

- 2-modulus prescaler ($1 / 32$ and $1 / 33$)
- Built-in 4 MHz crystal oscillator and reference divider
- Programmable divider (10-bit M counter, 5-bit S counter)
- Tri-state phase comparator
- Lock detector
- Band switch driver
- Op.Amp for direct tuning
- $\mathrm{I}^{2} \mathrm{C}$ bus receiver
- 5-level A/D converter

Application

TV, VCR tuners

Recommended Operating Condition

- Supply voltage range
$-\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V
$-\mathrm{V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 1}$ to 13.2 V
$-\mathrm{V}_{\mathrm{CC} 3}=28$ to 35 V
- Rated supply voltage
$-\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{CC} 3}=33 \mathrm{~V}$

Block Diagram

Pin Arrangement

(Top view)
Outline: PRSP0016DA-A (16P2S-A) [FP] PRSP0016JA-A (16P2Z-A) [GP]

Pin Description

Pin No.	Symbol	Pin name	Function
1	fin	Prescaler input	Input for the VCO frequency.
2	GND	GND	Ground to 0 V .
3	$\mathrm{V}_{\mathrm{CC} 1}$	Power supply voltage 1	Power supply voltage terminal. $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
4	$\mathrm{V}_{\mathrm{CC} 2}$	Power supply voltage 2	Power supply for band switching, $\mathrm{V}_{\mathrm{CC} 1}$ to 13.2 V
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { BS4 } \\ & \text { BS3 } \\ & \text { BS2 } \\ & \text { BS1 } \end{aligned}$	Band switching outputs	PNP open collector method is used. When the band switching data is " H ", the output is ON . When it is " L ", the output is OFF.
9	Vin	Filter input (Charge pump output)	This is the output terminal for the LPF input and charge pump output. When the phase of the programmable divider output (f $1 / \mathrm{N}$) is ahead compared to the reference frequency ($\mathrm{f}_{\text {REF }}$), the "source" current state becomes active. If it is behind, the "sink" current becomes active. If the phases are the same, the high impedance state becomes active.
10	Vtu	Tuning output	This supplies the tuning voltage.
11	VCC3	Power supply voltage 3	Power supply voltage for tuning voltage 28 to 35 V
12	ADC/ftest	AD converter input/ Test port	A/D conversion of the input voltage. In control byte data input, the programmable freq. Divider output and reference freq. output is selected by the test mode.
13	SCL	Clock input	Data is read into the shift register when the clock signal falls.
14	SDA	Data input	Input for band SW and programmable freq. divider set up. In lead mode, it outputs lock detector output and power down flag and a state of 5 level A/D converter.
15	ADS	Address switching input	Chip address sets it up with the input condition of terminal.
16	Xin	This is connected to the crystal oscillator	4.0 MHz crystal oscillator is connected.

Absolute Maximum Ratings

$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Ratings	Unit	Condition
Supply voltage 1	$\mathrm{V}_{\mathrm{CC} 1}$	6.0	V	Pin3
Supply voltage 2	$\mathrm{V}_{\mathrm{CC} 2}$	14.4	V	Pin4
Supply voltage 3	$\mathrm{V}_{\mathrm{CC} 3}$	36.0	V	Pin11
Input voltage	V_{I}	6.0	V	Not to exceed $\mathrm{V}_{\mathrm{CC} 1}$
Output voltage	V_{O}	6.0	V	$\mathrm{f}_{\mathrm{REF}}$ output
Voltage applied when the band output is OFF	$\mathrm{V}_{\mathrm{BSOFF}}$	14.4	V	
Band output current	$\mathrm{I}_{\mathrm{BSON}}$	50.0	mA	Per 1 band output circuit
ON the time when the band output is ON	$\mathrm{t}_{\mathrm{BSON}}$	10	s	50 mA per 1 band output circuit $3 c i r c u i t ~ a r e ~ p n ~ a t ~ s a m e ~ t i m e ~$
Power dissipation		Pd	mbO	$\mathrm{Ta}=+75^{\circ} \mathrm{C}$
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$	

Recommended Operation Conditions

$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted $)$

Item	Symbol	Ratings	Unit	
Supply voltage 1	$\mathrm{V}_{\mathrm{CC} 1}$	4.5 to 5.5	V	Pin3
Supply voltage 2	$\mathrm{V}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC} 1}$ to 13.2	V	Pin4
Supply voltage 3	$\mathrm{V}_{\mathrm{CC} 3}$	28 to 35	V	Pin11
Operating frequency (1)	fopr1	4.0	MHz	Crystal oscillation circuit
Operating frequency (2)	fopr2	80 to 1,300	MHz	
Band output current 5 to 8	$\mathrm{I}_{\mathrm{BDL}}$	0 to 40	mA	Normally 1 circuit is on. 2 circuits on at the same time are max. It is prohibited to have 3 or more circuits turned on at the same time.

Electrical Characteristics

Item		Symbol	Test Pin	Limits			Unit	Test Conditions	
		Min.		Typ.	Max.				
Input pin	"H" input voltage		V_{IH}	$\begin{aligned} & 13 \text { to } \\ & 14 \end{aligned}$	3.0	-	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC} 1}+ \\ 0.3 \end{gathered}$	V	
	"L" input voltage	VIL	$\begin{aligned} & 13 \text { to } \\ & 14 \end{aligned}$	-	-	1.5	V		
	"H" input current	I_{H}	$\begin{aligned} & 13 \text { to } \\ & 14 \end{aligned}$	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{Vi}=4.0 \mathrm{~V}$	
	"L" input current	IIL	13, 14	-	-4/-14	-10/30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{Vi}=0.4 \mathrm{~V}$	
SDA output	"H" output voltage	VoL	14	-	-	0.4	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{l}_{\mathrm{o}}=3 \mathrm{~mA}$	
	"L" output voltage	$\mathrm{V}_{\text {LO }}$	14	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	
Band SW	Output voltage	$\mathrm{V}_{\text {BS }}$	5 to 8	11.6	11.8	-	V	$\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{I}_{0}=-40 \mathrm{~mA}$	
	Leak current	loLk1	5 to 8	-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}$ band SW is OFF	
Tuning output	Output voltage "H"	$\mathrm{V}_{\text {TOH }}$	10	32.5	-	-	V	$\mathrm{V}_{\mathrm{CC} 3}=33 \mathrm{~V}$	
	Output voltage "L"	$\mathrm{V}_{\text {TOL }}$	10	-	0.2	0.4	V	$V_{C C 3}=33 \mathrm{~V}$	
Charge pump	"H" output current	IOH	9	-	270	370	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	
	"L" output current	l L	9	-	70	110	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	
	Leak current	$I_{\text {CPLK }}$	9	-	-	50	nA	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	
Supply current 1		$\mathrm{I}_{\mathrm{CC} 1}$	3	-	20	30	mA	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}$	
Supply current 2	4 circuits: OFF	$\mathrm{I}_{\text {CC2A }}$	4	-	-	0.3	mA	$\mathrm{V}_{\mathrm{CC2}}=12 \mathrm{~V}$	
	1circuits: ON, Output: OPEN	$\mathrm{I}_{\text {CC2B }}$	4	-	6.0	8.0	mA	$\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}$	
	Output current 40 mA	$\mathrm{I}_{\mathrm{CC2C}}$	4	-	46.0	48.0	mA	$\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V} \mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA}$	
Supply current 3		$\mathrm{I}_{\text {CC3 }}$	11	-	3.0	4.0	mA	$\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$ Output ON	

Note: Typical values are measured at $\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=33 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$.

Switching Characteristics

$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=33 \mathrm{~V}$, unless otherwise noted $)$

Item	Symbol	Test Pin	Limits			Unit	Test Conditions	
			Min.	Typ.	Max.			
Prescaler operating frequency	fopr	1	80	-	1300	MHz	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC} 1}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Vin}=\text { Vinmin to Vinmax } \end{aligned}$	
Operating input voltage	Vin	1	-24	-	4	dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	80 to 100 MHz
			-27	-	4			100 to 200 MHz
			-30	-	4			200 to 800 MHz
			-27	-	4			800 to 1000 MHz
			-18	-	4			1000 to 1300 MHz
Clock pulse frequency	tscL	13	0	-	100	kHz	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Bus free time	$\mathrm{t}_{\text {BuF }}$	14	4.7	-	-	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Data hold time	thdsta	13	4	-	-	$\mu \mathrm{S}$	$\mathrm{V}_{\text {CC } 1}=4.5$ to 5.5 V	
SCL low hold time	tow	13	4.7	-	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
SCL high hold time	thigh	13	4	-	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Set up time	tsusta	13, 14	4.7	-	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Data hold time	thdiat	13, 14	0	-	-	S	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Data set up time	$\mathrm{t}_{\text {SUDAT }}$	13, 14	250	-	-	ns	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Rise time	t_{r}	13, 14	-	-	1000	ns	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Fall time	t_{f}	13, 14	-	-	300	ns	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	
Set up time	tsusto	13, 14	4	-	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5$ to 5.5 V	

Method of Setting Data

The input information to consist of 2 or data of 4 bytes to lead to chip address is received in $\mathrm{I}^{2} \mathrm{C}$ bus receiver. It shows a definition of bus protocol admitted in the following.

1_STA	CA	CB	BB	STO		
2_STA	CA	D1	D2	STO		
3_STA	CA	CB	BB	D1	D2	STO
4_STA	CA	D1	D2	CB	BB	STO
STA : Start condition						
STO : Stop condition						
CA : Chip address						
CB : Control data byte						
BB : Band SW data byte						
D1 : Divider data byte						
D2 : Divider data byte						

The information of 5 bytes necessary for circuit operation is chip address and control data, band SW data of 2 bytes and divider byte of 2 bytes. After the chip address input, 2 or data of 4 bytes are received.

Function bit is contained the first and the third data byte to distinguish between divider data and control data, band data, and " 0 " goes ahead of divider data, and " 1 " goes ahead of control data, band SW data.

Write Mode Format

Byte	MSB								LSB
Address byte	1	1	0	0	0	MA1	MA0	0	A
Divider byte 1	0	N14	N13	N12	N11	N10	N9	N8	A
Divider byte 2	N7	N6	N5	N4	N3	N2	N1	N0	A
Control byte1	1	CP	T2	T1	T0	RSa	RSb	OS	A
Band SW byte	X	X	X	X	BS4	BS3	BS2	BS1	A

Read Mode Format

Byte	MSB								LSB
Address byte	1	1	0	0	0	MA1	MA0	1	A
Status byte 1	POR	FL	X	X	X	A 2	A 1	A 0	A

Data Cording Example

Write Mode Format Example

Byte	MSB								LSB	Condition in Data Setting
Address Byte	1	1	0	0	0	1	1	0	1	ADS input $\mathrm{V}_{\mathrm{CC} 1}$
Divider byte 1	0	1	0	0	0	0	0	0	1	Dividing ratio $\mathrm{N}=16544$
Divider byte 2	1	0	1	0	0	0	0	0	1	
Control byte 1	1	1	0	0	0	0	1	0	1	C.P.current 270 A fref division ratio 1/1024
Band SW byte	0	0	0	0	1	0	0	0	1	BS4 output ON

Note: $\mathrm{f}_{\mathrm{vco}}=\mathrm{N} 8 \mathrm{f}_{\text {REF }}=165448(4 \mathrm{MHz} / 1024)=517 \mathrm{MHz}$

Read Mode Format Example

Byte	MSB								LSB	Condition in Data Setting
Address byte	1	1	0	0	0	1	1	1	1	
Status byte 1 input	1	1	1	1	1	1	1	1	1	
Status byte 1 output	0	1	1	1	1	0	1	1	1	FL "1" output at locked ADC input at open

Test Mode Data Set Up Method

Test Mode Bit Set Up

X
: Random, 0 or 1. normal "0"
MA1, MA0 : Programmable address bit

Address Input Voltage	MA1	MA0
0 to $0.1 \pm \mathrm{V}_{\mathrm{CC} 1}$	0	0
Always valid	0	1
$0.4 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $0.6^{*} \mathrm{~V}_{\mathrm{CC} 1}$	1	0
$0.9 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $\mathrm{V}_{\mathrm{CC} 1}$	1	1

Note: N14 to N0: How to set dividing ratio of the programmable the divider
Dividing ratio $\mathrm{N}=\mathrm{N} 14\left(2^{14}=16384\right)++\mathrm{N} 0\left(2^{0}=1\right)$
Therefore, the range of division N is 1,024 to 32,768

Example) $\mathrm{f}_{\mathrm{VCO}}=\mathrm{f}_{\text {REF }} \bullet 8 \bullet \mathrm{~N}$

$$
\begin{aligned}
& =3.90625 \cdot 8 \cdot \mathrm{~N} \\
& =31.25 \cdot \mathrm{~N}(\mathrm{kHz})
\end{aligned}
$$

CP: Setting Up The Charge Pump Current of The Phase Comparator

CP	Charge pump current	Mode
0	$70 \mu \mathrm{~A}$	Test
1	$270 \mu \mathrm{~A}$	Normal

T2, T1, T0: Setting Up for The Test Mode

T2	T1	T0	Charge Pump	Pin 12 Condition	Mode
0	0	X	Normal operation	ADC input	Normal operation
0	1	X	High impedance	ADC input	Test mode
1	1	0	Sink	ADC input	Test mode
1	1	1	Source	ADC input	Test mode
1	0	0	High impedance	f REF $^{\text {f1/ output }}$	Test mode
1	0	1	High impedance	f1/N output	Test mode

RSa, RSb: Set Up for The Reference Frequency Division Ratio

RSa	RSb	Division Ratio
1	1	$1 / 512$
0	1	$1 / 1024$
X	0	$1 / 640$

OS: Set Up The Tuning Amplifier

OS	Tuning Voltage Output	Mode
0	ON	Normal
1	OFF	Test

POR : Power on reset flag. " 1 " output at reset
FL : Lock detector flag. " 1 " output at locked, " 0 " output at unlocked

A2, A1, A0: 5 Level A/D Converter Output Data

ADC Input Voltage	A2	A1	A0
$0.6 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $\mathrm{V}_{\mathrm{CC} 1}$	1	0	0
$0.45 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $0.6 \pm \mathrm{V}_{\mathrm{CC} 1}$	0	1	1
$0.3 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $0.45 \pm \mathrm{V}_{\mathrm{CC} 1}$	0	1	0
$0.15 \pm \mathrm{V}_{\mathrm{CC} 1}$ to $0.3 \pm \mathrm{V}_{\mathrm{CC} 1}$	0	0	1
0 to $0.15 \pm \mathrm{V}_{\mathrm{CC} 1}$	0	0	0

Note: The voltage accuracy allowance range: $0.03 \pm \mathrm{V}_{\mathrm{CC} 1}(\mathrm{~V})$

Power On Reset Operation

(Initial state the power is turned ON)

BS4 to BS1	$:$ OFF
Charge pump	$:$ High impedance
Tuning amplifier	$:$ OFF
Charge pump current	$: 270 \mu \mathrm{~A}$
Frequency division ratio	$: 1 / 1024$

Timing Diagram

Crystal Oscillator Connection Diagram

16	
Crystal oscillator characteristics	
In pF	Actual resistance: less than 300Ω
Load capacitance: 20 pF	

Application Example

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble

1. Renesas Technology Corp. puts the maximer may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the tim publication of these mat that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, inc
 450 Holger Way, San Jose, CA 95134-1368, U.S.A
 Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

