inta

Intel[®] E8870IO Server I/O Hub (SIOH) Datasheet

Product Features

- Scalability Port (SP):
 - Two SPs with 3.2 GB/s peak bandwidth per direction per SP.
 - Bi-directional SPs for a total bandwidth of 12.8 GB/s.
- Four Hub Interface 2.0 Ports:
 - For connecting to Intel[®] 82870P2 PCI/ PCI-X 64-bit Hub 2 (P64H2).
 - 16-bit, 533 MHz interface.
 - 1 GB/s peak data rate.
- One Hub Interface 1.5 Port:
 - For connecting to Intel[®] 82801DB. Legacy I/O Controller Hub 4 (ICH4).
 - 8-bit, 266 MHz interface.
 - 266 MB/s peak data rate.
- Supports peer-to-peer write traffic between Hub Interface Ports.
- Dedicated read cache for each Hub Interface Port:
 - 32 128-byte cache lines.
 - Dedicated prefetch engines for Hub Interface 2.0 ports.
- Supports caching of frequently used and prefetched data residing in main memory.
- 64-line write cache.

- Aggressive prefetching algorithm optimized for PCI-X functionality supported by the 82870P2 component:
 - Utilizing enhanced features such as read-streaming, and prefetch horizon.
- Supports multiple unordered inbound traffic streams:
 - Two unordered streams per Hub Interface 2.0 port.
 - One stream for the Hub Interface 1.5 port.
- System Management Bus (SMBus) 2.0 slave interface for server management with Packet Error Checking.
- Reliability, Availability, and Serviceability (RAS):
 - Sideband access to configuration registers via SMBus SMBus or JTAG.
 - End-to-end ECC for all interfaces.
 - Fault detection and logging.
 - Signal connectivity testing via. boundary scan.
- Packaging:
 - 42.5 mm x 42.5 mm
 - 1012-pin organic LAN grid array (OLGA) package-2B.

Document Number: 251111-001 August 2002

intel

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL[®] PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium 2 processor, E8870 chipset and E8870IO (SIOH) component may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium 2, E8870 and E8870IO are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2002, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel[®] E8870IO Server I/O Hub (SIOH) Datasheet

2

intel® Contents

1	Introdu	ction	1-1
	1.1 1.2 1.3 1.4 1.5	Overview Server I/O Hub Architectural Overview Interfaces Scalability Port Interface Hub Interface	1-1 1-1 1-2 1-4 1-4
	1.6 1.7 1.8 1.9	SMBus Interface JTAG Tap Port Terminology Reference Documents	1-4 1-5 1-5 1-6
	1.10	Revision History	1-6
2	Signal	Description	2-1
	2.1	Conventions	2-1
	2.2	Scalability Port (SP) Interface	2-1 2_3
	2.3	Reset and Miscellaneous Signals	2-3 2-4
	2.5	Clock Signals	2-5
	2.6	JTAG and SMBus Signals	2-6
3	Config	uration Registers	3-1
	3.1	Register Access Mechanisms	3-1
		3.1.1 Scalability Port Initiated Register Access	3-1
		3.1.2 JTAG Initiated Register Access	3-1
		3.1.3 SMBus Operation	3-2
	3.2	Device Mapping	3-2
	3.3	Kegister Attributes	
	3.4	Vendor ID Register (VID)	3-4 2 E
	3.5	PCI Command Registers (PCICMD)	3-D 3-5
	3.0	PCI Status Registers (PCISTS)	3-5 3-6
	3.8	Revision ID Register (RID)	
	3.9	Class Code Registers (CCR)	
	3.10	Header Type Registers (HDR)	
	3.11	Subsystem Vendor ID Register (SVID)	3-7
	3.12	Subsystem ID Register (SID)	3-8
	3.13	Hub Interface Control Registers (HLCTL)	3-8
	3.14	Hub Interface Command Control Registers (HLCMD)	3-9
	3.15	Hub Interface Recoverable Error Control Registers (RECHUB)	3-11
	3.16	Hub Interface Recoverable Error Data Registers (REDHUB)	3-12
	3.17	Hub Interface Non-Recoverable Error Control Register (NRECHUB)	3-13
	3.18	Hub Interface ECC Mask Register (HECCMSK)	3-13
	3.19	Hub Interface Performance Monitor Response and Control Registers (HL_PMR[1:0])	3-14
	3.20	Hub Interface Performance Monitor Event Registers – Low	
	0.04	(HL_PME_LO[1:0])	3-16
	3.21	Hub Interrace Performance Monitor Event Registers – High (HL_PME_HI[1:0])	3-18

intel®

3.22	Hub Interface Performance Monitor Resource Event Registers (HL PME RSC[1:0])3-18			
3.23	Hub Interface Performance Monitor Data Registers (HL_PMD[1:0])			
3.24	Hub Interface Performance Monitor Compare Register	3-10		
3 25	SIOH Control Registers (IOCTL)	3-20		
2.20	System Reset Register (SYRF) 3-			
3.20	Memory-Manned I/O Base Low Address Register (MMIORI) 3-21			
3.Z1	Memory Mannad I/O Limit Law Address Register (MMIOL)	ا ∠-د		
3.20	Memory Mapped I/O Limit Low Address Register (MMIOLL)			
3.29	Memory-Mapped I/O Segment Low Register (MMIOSL(5:0))	3-22		
3.30	Memory-Mapped I/O Base High Address Register (MMIOBH)	3-22		
3.31	Memory-Mapped I/O Limit High Address Register (MMIOLH)	3-23		
3.32	Memory-Mapped I/O Segment High Address Register (MMIOSH[5:0])	3-23		
3.33	PCI Configuration Bus Base Register (BUSNO[5:0])	3-24		
3.34	SAPIC Segment Registers (SSEG[5:0])	3-24		
3.35	I/O Link Registers (IOL[5:0])	3-24		
3.36	Chip Boot Configuration Registers (CBC)	3-25		
3.37	Boot Flag Registers (BOFL)	3-26		
3.38	Scratch Pad Register (SPAD)	3-26		
3.39	Scratch Pad Register Sticky (SPADS)	3-26		
3.40	Performance Monitor Control Registers (PERFCON)	3-27		
3.41	SP Performance Monitor Response and Control Registers			
	(SP_PMR[1:0])	3-28		
3.42	SP Performance Monitor Event Registers (SP_PME[1:0])	3-31		
3.43	SP Performance Monitor Resource Event Registers			
	(SP PME RSC[1:0])	3-32		
3.44	SP Performance Monitor Data Registers (SP_PMD[1:0])	3-32		
3.45	SP Performance Monitor Compare Register (SP_PMCMP[1:0]) 3-33			
3.46	Error Command Registers (ERRCOM) 3-33			
3.47	First Error Status Registers (EFRRST) 3-34			
3.48	Two or More Errors Status Register (SERRST) 2-34			
3 4 9	Fror Mask Registers (ERRMASK)	3-38		
3 50	SPP Recoverable Error Control Register (RECSPP)	3-38		
3.51	SPP Non-Recoverable Error Control Register (NEECSPP)	3-39		
3 5 2	SP Interface Control Registers (SPINCO[1:0])	3-39		
3 5 3	SPI Recoverable Error Control Register (RECSPI [1:0])	3-41		
3.50	SPI Recoverable Error Data Registers (REDSPI [1:0])			
5.54				
Addre	ss Map	4-1		
4 1	Address Ranges	4-1		
	4.1.1 Memory-Manned I/O			
	4.1.2 I/O Space			
	4.1.2 I/O Opace			
	4.1.4 Compatibility Ruc			
4.0	4.1.5 VGA Space			
4.2	niegal Addresses			
Clocki	ng	5-1		
51	SIOH Clocking	5-1		
5.2	Beference Clock (SVSCLK) 5-1			
53	Clock Outputs 5-2			
5.0	Glock Oulpuls			
0.7	reeuback and Matching			

4

6

5.5	JTAG Test Access Port5-2				
5.6	SMBus Clocking				
5.7	Spread Spectrum Support	5-2			
5.8	No Stop Clock or Thermal Shutdown				
5.9	Deterministic Systems	5-3			
Reset	t	6-1			
6.1	Reset Sequence Overview	6-1			
6.2	Power-Up Sequence	6-2			
	6.2.1 PWRGOOD Deasserted	6-2			
	6.2.2 PWRGOOD Assertion	6-2			
	6.2.3 First RESETI# Deassertion	6-2			
6.3	Hard Reset	6-2			
	6.3.1 Hard Reset Assertion	6-3			
	6.3.2 Hard Reset Deassertion	6-3			
	6.3.3 Non-Existent Hub Interface Devices	6-3			
6.4	Reset Signals				
••••	641 PWRGOOD	6-4			
	642 RESETI#	6-4			
	6 4 3 RESET66#	6-4			
	644 DFT	6-4			
Doliok	bility Availability and Sanviacability (PAS)	7 1			
Reliat					
7.1	Data Integrity				
	7.1.1 End-to-End Error Correction				
	7.1.2 Error Reporting	7-2			
	7.1.3 Interface Details	7-4			
	7.1.4 Time-Out	7-5			
Electr	rical Specifications	8-1			
8.1	Non-Operational Maximum Rating	8-1			
8.2	Operational Power Delivery Specification	8-1			
8.3	Scalability Port (SP) Signal Group	8-2			
8.4	Hub Interface 2.0 (HI 2.0) Signal Group	8-3			
	8.4.1 Hub Interface 2.0 DC Specifications	8-3			
8.5	Hub Interface 1.5 (HI 1.5) Signal Group	8-4			
	8.5.1 HI 1.5 Signal Groups	8-4			
	8.5.2 Hub Interface 1.5 DC Specifications	8-4			
8.6	Analog Inputs	8-5			
	8.6.1 Hub Interface Impedance Compenstation (RCOMP)	8-5			
	8.6.2 Hub Interface Vref/Vswing Decoupling	8-6			
8.7	SMBus and TAP Signal Group	8-6			
	8.7.1 SMBus and TAP DC Specifications				
	8.7.2 SMBus and TAP AC Specifications	8-8			
	87.3 SMBus and TAP AC Timing Waveforms	8-9			
88	Miscellaneous Signal Group	8-Q			
0.0	8 8 1 Miscellaneous Signal DC Specifications	R_10			
	8.8.2 Miscellaneous Signal & C Specifications	0-10 ₽_11			
80	Clock Signal Groups	וו=ט ג_10			
0.9	801 AC Specification	0 12			

7

intel®

9

Package and Ballout9-			
9.1	1012-Ball OLGA2b Package Information	9-1	
9.2	Ballout – Signal List	9-4	
9.3	Signal – Ball Number List	9-17	

Figures

1-1	Typical Intel [®] E8870 Chipset-Based Eight-Way Itanium [®] 2 Server	
	System Configuration	1-2
1-2	SIOH Interfaces	1-3
1-3	SIOH Functional Blocks	1-3
4-1	SIOH Memory-Mapped I/O Space Example	4-2
4-2	SIOH I/O Space	4-3
4-3	SIOH SAPIC Space	4-5
5-1	SIOH Platform Clocking Example	5-1
6-1	SIOH Reset Sequence	6-1
8-1	TAP DC Thresholds	8-7
8-2	TAP and SMBus Valid Delay Timing Waveform	8-9
8-3	TCK and SM_CLK Clock Waveform	8-9
8-4	Generic Differential Clock Waveform	8-13
9-1	1012-Ball OLGA2b Package Dimensions – Top View	9-1
9-2	1012-Ball OLGA2b Package Dimensions - Bottom View	9-2
9-3	1012-Ball OLGA2b Solder Ball Detail	9-3

Tables

1-1	Chipset Component Markings	1-1
2-1	Scalability Port (SP) Signals	2-1
2-2	Hub Interface 2.0 Signals	2-3
2-3	Hub Interface 1.5 Signals	2-3
2-4	Reset and Miscellaneous Signals	2-4
2-5	Input and Output Clock Signals	2-5
2-6	JTAG and SMBus Signals	2-6
3-1	JTAG Read to Configuration Space	3-1
3-2	JTAG Write to Configuration Space	3-2
3-3	Outbound Configuration Cycle Routing	3-3
3-4	SIOH Function Mapping	3-3
3-5	Register Attributes Definitions	3-4
3-6	Error Log Register Grouping	3-37
4-1	Memory-Mapped I/O Cycle Routing	4-2
4-2	I/O Cycle Routing	4-4
4-3	I/O Space Programming Example	4-4
4-4	SAPIC/IOAPIC and PCI Hot-Plug Cycle Routing	4-5
6-1	Power-Up and Hard Reset Timings	6-1
8-1	Absolute Maximum Non-Operational DC Ratings at the Package Pin	8-1
8-2	Voltage and Current Specifications	8-1
8-3	Scalability Port Interface Signal Group	
8-4	Hub Interface 2.0 Signal Groups	8-3
8-5	Hub Interface 2.0 DC Parameters	8-3
8-6	Hub Interface 2.0 Reference Voltages	8-4
8-7	Hub Interface 1.5 Signal Group	8-4
8-8	Hub Interface 1.5 DC Signaling Specifications	8-4
8-9	SIOH Hub Interface 1.5 Reference Voltages	8-5

8-10	Table of Values for the RCOMP Resistor	8-5
8-11	SMBus and TAP Interface Signal Group	8-6
8-12	TAP Signal Terminations	8-6
8-13	TAP DC Parameters	8-7
8-14	SMBus DC Parameters	8-7
8-15	SMBus Signal Group AC Specifications	8-8
8-16	TAP Signal Group AC Specifications	8-8
8-17	Miscellaneous Signal Group	8-9
8-18	VREFFBCLK66 Reference Voltage	8-10
8-19	CMOS 1.3V DC Parameters	8-10
8-20	CMOS 1.5V Open Drain DC Parameters	8-10
8-21	CMOS 1.5V DC Parameters	8-11
8-22	CMOS 1.3V Open Drain AC Parameters	8-11
8-23	CMOS 1.5V Open Drain AC Parameters	8-11
8-24	CMOS 1.5V Input AC Parameters	8-12
8-25	CMOS 1.5 I/O Open Drain AC Parameters	8-12
8-26	Clock Signal Groups	8-12
8-27	LVHSTL Clock DC Parameters	8-13
8-28	LVHSTL Differential Clock AC Specification	8-13
9-1	SIOH Ball List	9-4
9-2	SIOH Signal – Ball Number	9-17

www.DataSheet4U.com

intel

Introduction

1.1 Overview

The Intel[®] E8870 chipset delivers new levels of availability, features, and performance for servers. It provides flexible common modular architecture support for the Intel[®] Itanium[®] 2 processor family. The E8870 chipset up to four processors in a single node configuration, and up to eight processors in a multi-node configuration using the Scalability Port Switch (SPS) component, delivering stability to platforms through reuse and common architecture support.

The component names used throughout this document refer to the component markings listed in Table 1-1.

Component Name	Product Marking
SNC	E8870
SIOH	E8870IO
SPS	E8870SP
DMH	E8870DH
P64H2	82870P2
ICH4	82801DB
FWH	82802AC

Table 1-1. Chipset Component Markings

1.2 Server I/O Hub Architectural Overview

The Intel[®] E8870IO Server I/O Hub (SIOH) component provides connectivity between the I/O bridge components and the other components in the E8870 chipset. The SIOH is capable of interfacing to a total of five I/O bridges via Hub Interface ports. The E8870 chipset may include up to two SIOH components, depending on the configuration.

The example in Figure 1-1 illustrates a typical eight-way configuration. A four-way single node configuration would consist of one SIOH and one SNC component. The SIOH is capable of interfacing up to four P64H2 I/O bridge devices via the 16-bit Hub Interface 2.0 compliant ports. The 8-bit Hub Interface 1.5 compliant port is used to connect an ICH4 bridge device, providing legacy I/O functionality.

Note: One ICH4 is used in both single and multi-node configurations.

Introduction

Figure 1-1. Typical Intel[®] E8870 Chipset-Based Eight-Way Itanium[®] 2 Server System Configuration

1.3 Interfaces

The SIOH component functions as a hub between multiple I/O ports (Hub Interfaces) and the other host bridge components. The SIOH connects the multiple I/O ports to the memory subsystem, the host processors, and other SIOH components. This section provides an overview of the SIOH functionality as three high-level functional blocks:

- Hub Interface
- Internal Interconnect
- Scalability Port Interface

Refer to Figure 1-2 and Figure 1-3.

Figure 1-2. SIOH Interfaces

The SIOH is responsible for routing traffic between the different Hub Interfaces and Scalability Ports.

Introduction

1.4 Scalability Port Interface

The Scalability Port (SP) interface is responsible for accepting and sending packets between the SIOH and either the SPS or SNC components. The SIOH SP interface consists of two SP ports. The SP is a cache-coherent interface optimized for scalable multi-node systems that maintain coherency between all processors and their caches.

The SP uses a point-to-point bus topology using source-synchronous data transfer. In order to reduce pin counts, the SP uses Simultaneous Bi-directional (SBD) signalling technology. SBD technology eliminates any arbitration delays since data can be transmitted in both directions simultaneously. The SP interface includes a 40-bit data interface (32-bits of data and 8-bits of ECC) operating at 800MHz, resulting in 3.2 GB/s in each direction per SP.

1.5 Hub Interface

The Hub Interface is responsible for accepting and sending Hub Interface packets between the SIOH and an I/O bridge. The I/O bridges supported are P64H2 (Hub Interface-to-PCI bridge), ICH4 (Hub Interface-to-Compatibility bridge).

For the SIOH, there are four Hub Interface 2.0 ports and one 8-bit Hub Interface 1.5 port.

All Hub Interface ports support parallel termination. Parallel termination is required for the routing distances required for E8870 chipset-based platforms.

Hub Interface uses a point-to-point bus topology using source-synchronous data transfer. Hub Interface uses impedance matching techniques (RCOMP) for optimal signal integrity. It dynamically adjusts the driver impedance to match the impedance of the traces on the board throughout thermal variations. Impedance adjustment is accomplished using a dedicated pin (HLxRCOMP) connected to an external resistor that equals the impedance of the Hub Interface traces.

For optimal scalability, the Hub Interface cluster is replicated for each Hub Interface port.

1.6 SMBus Interface

The SIOH supports a SMBus 2.0 compatible slave interface to provide register visibility for a server management subsystem. This low cost port is a two-pin (SDA, SCL) serial interface useful for communicating with a baseboard management controller. The interface supports 100 kHz.

The interface allows for a multi-master subsystem, which means more than one device can initiate data transfers at the same time. To support this feature, the SMBus bus arbitration relies on the wired-AND connection of all SMBus interfaces. Two masters can drive the bus simultaneously provided they are driving identical data. The first master drives SDA high, while another master drives SDA low loses the arbitration. The SCL signal consists of a synchronized combination of clocks generated by the masters using the wired-AND connection to the SCL signal.

The SMBus serial operation uses an open-drain wired-AND bus structure that allows multiple devices to drive the bus lines and to communicate status about events such as arbitration, wait states, error conditions and so on. For example, when the slave is unable to accept or drive data at the rate that the master is requesting, the slave can hold the clock line low between the high states to insert a wait interval. The master's clock can only be altered by a slower slave peripheral keeping the clock line low or by another master during arbitration.

1.7 JTAG Tap Port

The SIOH supports the IEEE 1149.1 (JTAG) Test Access Port (TAP) for test and debug. The TAP interface is a serial interface comprised of five signals: TDI, TDO, TMS, TCK, and TRST#. The JTAG interface will operate from 4 to 25 MHz.

1.8 Terminology

Differential	Input buffer logic that requires a voltage reference or the signal complement.		
Direct Connect/Single Node	Up to 4-way Itanium [®] 2 processor/E8870 chipset platform configuration that consists of one SIOH and SNC that are directly connected by Scalability Ports.		
Dirty Node	The SNC or SIOH that owns a modified cache line.		
FWH	Firmware Hub. This is the chipset Flash Memory component that typically provides the BIOS firmware code.		
Hinted Peer-to-Peer	A transaction initiated by one of the P64H2 PCI/PCI-X buses destined for a target on the other PCI/PCI-X bus on the same P64H2.		
Home Node	The SNC that controls the memory on which a particular cache line resides.		
HVCMOS	3.3V CMOS I/O buffer logic.		
Inbound Transactions	Transactions initiated on Hub Interface destined for the Scalability Port interface.		
iGTL	Inverted GTL buffer logic.		
IOxAPIC	I/O Advanced Programmable Interrupt Controller. Intel authored an interrupt specification that covers various methods for interrupting a host processor. Each I/O bridge contains an IOxAPIC controller for issuing these interrupts on behalf of their child devices.		
Local Peer-to-Peer	A transaction initiated by one of the P64H2 PCI buses destined for a target on another Hub Interface port on the same SIOH.		
LVHSTL	Low Voltage High Speed Tranceiver Logic		
LVPECL	Low Voltage Positive Emitter Coupled Logic		
Outbound Transactions	Transactions initiated on a Scalability Port destined for Hub Interface.		
Phit	Physical unit of data transfer consisting of 40 bits of protocol level information.		
PHP	PCI Hot-Plug.		
Remote Peer-to-Peer	A transaction initiated by one of the P64H2 PCI buses destined for a target on another Hub Interface port on a different SIOH.		

Introduction

SAPIC	Streamlined Advanced Programmable Interrupt Controller. Implemented in Itanium [®] 2 processor-based platforms, this interrupt mechanism uses inbound writes to specific addresses to interrupt the host processor.
SAR	I/O APIC Controller and Hot Plug Controller Range.
SBD	Simultaneous Bi-Directional.
SIOH	Server I/O Hub. This component is used for server platform configurations requiring high bandwidth and high connectivity I/O bus connectivity.
SNC	Scalable Node Controller. Includes the processor, memory, and Scalability Port interfaces.
SP	Scalability Port.
SPCMOS	Low speed SP I/O buffer logic.
SPS	Scalability Port Switch. The crossbar/central snoop filter that connects the SNCs and SIOHs.

1.9 Reference Documents

- Intel[®] E8870 Scalable Node Controller (SNC) Datasheet
- Intel[®] E8870DH DDR Memory Hub (DMH) Datasheet
- Intel[®] E8870SP Scalability Port Switch (SPS) Datasheet
- Intel[®] 82870P2 64-bit Hub 2 (P64H2) Datasheet
- Intel[®] 82801DB I/O Controller Hub4 (ICH4) Datasheet
- SMBus Specification, Revision 2.0
- PCI Local Bus Specification, Revision 2.2
- PCI-X Local Bus Specification, Revision 1.0

1.10 Revision History

Revision Number	Description	Date
-001	Initial release of the document.	August 2002

2.1 Conventions

The terms *assertion* and *deassertion* are used extensively when describing signals, to avoid confusion when working with a mix of active-high and active-low signals. The term *assert*, or *assertion*, indicates that the signal is active, independent of whether the active level is represented by a high or low voltage. The term *deassert*, or *deassertion*, indicates that the signal is inactive.

Signal names may or may not have a "#" appended to them. The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name the signal is asserted when at the high voltage level.

The exception to the "#" symbol convention lies in the Hub Interface 1.5 signal description. Active is not applicable to HI 1.5. The reader is cautioned against attaching any meaning to the "#" symbol in HI 1.5 mode.

When discussing data values used inside the component, the logical value is used; i.e. a data value described as "1101b" would appear as "1101b" on an active-high bus and as "0010b" on an active-low bus. When discussing the assertion of a value on the actual pin, the physical value is used; i.e. asserting an active-low signal produces a "0" value on the pin.

The following notations are used to describe the signal types:

- I: Input pin
- O: Output pin
- I/O: Bi-directional (input/output) pin
- ASYNC: Asynchronous pin

2.2 Scalability Port (SP) Interface

The SP is the interface between the SIOH to the SPS and SNC components of the E8870 chipset (refer to Table 2-1).

Signal Name	Туре	Clock Domain	Description
SP{0/1}ZUPD[1:0]	l Analog	N/A	Impedance Update: Used to adjust the impedance of I/O drivers.
SP{0/1}SYNC	I/O CMOS1.5	ASYNC	Reset Synchronization: Provides synchronization between ports for impedance control and reference voltage adjustment. This signal is also used by the SP reset logic to determine when SP comes out of reset. SP{0/1}SYNC is released when ports at both ends of the link are ready.
SP{0/1}PRES	I CMOS1.5	N/A	SP Present: Signals the SP of an impending hot-plug event.

Table 2-1. Scalability Port (SP) Signals

Table 2-1. Scalability Port (SP) Signals (Continued)

Signal Name	Туре	Clock Domain	Description
SP{0/1}AVREFH[3:0]	l Analog	N/A	Strand A Voltage Reference High: 3/4 VCC reference.
SP{0/1}AVREFL[3:0]	l Analog	N/A	Strand A Voltage Reference Low: 1/4 VCC reference.
SP{0/1}ASTBP[1:0]	I/O SBD	400 MHz	Strand A P Strobes: Positive phase data strobes for Strand A to transfer data at the 2x rate (800 MHz).
SP{0/1}ASTBN[1:0]	I/O SBD	400 MHz	Strand A N Strobes: Negative phase data strobes for Strand A to transfer data at the 2x rate (800 MHz).
SP{0/1}AD[15:0]	I/O SBD	800 MHz	Strand A Data Bus: 16-bits of the data portion of a PHIT on Strand A. These bits are SSO encoded. SP{0/1}ASSO determines if these are out of an inverter or not.
SP{0/1}AEP[2:0]	I/O SBD	800 MHz	Strand A Parity/ECC: Two of these signals carry the ECC information for the data flits (AEP[1:0]). There are four bits of ECC for each data PHIT. The header flits are not ECC protected. The third signal is for parity (AEP[2]). Each PHIT is always protected by two bits of parity.
SP{0/1}ALLC	I/O SBD	800 MHz	Strand A Link Layer Control: For each PHIT these signals carry two of the four bits of link layer control information.
SP{0/1}ASSO	I/O SBD	800 MHz	Strand A SSO Encode: This signal is asserted to indicate that the data bits over Strand A are inverted.
SP{0/1}BVREFH[3:0]	l SBD	N/A	Strand B Voltage Reference High: 3/4 VCC reference.
SP{0/1}BVREFL[3:0]	l SBD	N/A	Strand B Voltage Reference Low: 1/4 VCC reference.
SP{0/1}BSTBP[1:0]	I/O SBD	400 MHz	Strand B P Strobes: Positive phase data strobes for Strand B to transfer data at the 2x rate (800 MHz).
SP{0/1}BSTBN[1:0]	I/O SBD	400 MHz	Strand B N Strobes: Negative phase data strobes for Strand B to transfer data at the 2x rate (800 MHz).
SP{0/1}BD[15:0]	I/O SBD	800 MHz	Strand B Data Bus: 16-bits of the data portion of a PHIT on Strand B. These bits are SSO encoded. SP{0/1}BSSO determines if these are out of an inverter or not.
SP{0/1}BEP[2:0]	I/O SBD	800 MHz	Strand B Parity/ECC: Two of these signals carry the ECC information for the data flits (BEP[1:0]). There are 4-bits of ECC for each data PHIT. The header flits are not ECC protected. The third signal is for parity (BEP[2]). Each PHIT is always protected by two bits of parity.
SP{0/1}BLLC	I/O SBD	800 MHz	Strand B Link Layer Control: For each PHIT these signals carry two of the four bits of link layer control information.
SP{0/1}BSSO	I/O SBD	800 MHz	Strand B SSO Encode: This signal is asserted to indicate that the data bits over Strand B are inverted.
SP{0/1}GPIO[1:0]	I/O CMOS 1.5 OD	ASYNC	General Purpose I/O Signals: These pins are asynchronous open drain I/O signals. To filter glitches on the inputs, the value of the input only changes when the same value has been sampled over four consecutive 200 MHz clock cycles. Similarly, to ensure accurate sampling of these signals by other devices, the output value will be asserted for a minimum of 6 consecutive 200 MHz cycles.
vccsp	Analog	N/A	VCC for the SP.

The Hub Interface 2.0 connects the SIOH to a maximum of four P64H2 PCI/PCI-X bridge components (refer to Table 2-2).

Table 2-2. Hub Interface 2.0 Signals

Signal Name	Туре	Clock Domain	Description
HL{4/3/2/1}PD[17:0]	I/O iGTL	533 MHz	Packet data signals: PD[16] is connected to PD[20] on P64H2, and PD[17] is connected to PD[21] on P64H2.
HL{4/3/2/1}PSTRBF HL{4/3/2/1}PUSTRBF	I/O iGTL	533 MHz	Hub Interface Strobe First: HL{n}PSTRBF strobes are used for HL{n}PD[7:0] & HL{n}PD[16].
			HL{n}PUSTRBF strobes are used for HL{n}PD[15:8] & HL{n}PD[17].
HL{4/3/2/1}PSTRBS HL{4/3/2/1}PUSTRBS	I/O iGTL	533 MHz	Hub Interface Strobe Second: HL{n}PSTRBS strobes are used for HL{n}PD[7:0] & HL{n}PD[16].
			$HL\{n\}PUSTRBS$ are the strobes used for $HL\{n\}PD[15:8]$ & $HL\{n\}PD[17]$.
HL{4/3/2/1}RQOUT	O iGTL	66 MHz	Hub Interface Request Out: This must be connected to HI[16] of the P64H2.
HL{4/3/2/1}RQIN	l iGTL	66 MHz	Hub Interface Request In: This must be connected to HI[17] of the P64H2.
HL{4/3/2/1}STOP	I/O iGTL	66 MHz	Hub Interface Stop: This must be connected to HI[18] of the P64H2.
HL{4/3/2/1}VSWING	I/O Analog	N/A	Hub Interface voltage swing.
HL{4/3/2/1}RCOMP	I/O iGTL	N/A	Hub Interface Compensation: Connects to the external RCOMP resistor and used for impedance matching.
HL{4/3/2/1}VREF	l Analog	N/A	Hub Interface voltage reference.

2.3 Hub Interface 1.5

The Hub Interface 1.5 connects the SIOH to the legacy I/O ICH4 component (refer to Table 2-3).

Table 2-3. Hub Interface 1.5 Signals

Signal Name	Туре	Clock Domain	Description
HL0PD[7:0]#	I/O iGTL	266 MHz	Packet data pins.
HL0PSTRBS	I/O iGTL	266 MHz	Second PD Interface Strobe.
HL0PSTRBF	I/O iGTL	266 MHz	First PD Interface Strobe.
HL0RQOUT#	O iGTL	66 MHz	Hub Interface Request Out: This must be connected to HI[8] on ICH4.
HL0RQIN#	l iGTL	66 MHz	Hub Interface Request In: This must be connected to HI[9] on ICH4.
HL0STOP#	I/O iGTL	66 MHz	Hub Interface Stop Signal: This must be connected to HI[10] on ICH4.
HL0PAR#	I/O iGTL	66 MHz	Hub Interface Parity Signal: This must be connected to HI[11] on ICH4.

Table 2-3. Hub Interface	1.5 Signals	(Continued)
--------------------------	-------------	-------------

Signal Name	Туре	Clock Domain	Description
HL0VREF[1:0]	l Analog	N/A	Hub Interface Voltage Reference.
HL0RCOMP	I/O iGTL	N/A	Hub Interface Compensation: Connects to the external RCOMP resistor and used for impedance matching.
HLOVSWING	I/O Analog	N/A	Hub Interface Voltage Swing.

2.4 Reset and Miscellaneous Signals

Signal Name	Туре	Clock Domain	Description
RESETI#	I CMOS1.5	200 MHz	Reset Input: Reset input driven by the system.
RESET66#	O CMOS1.5	200 MHz Reset 66: Reset signal output for the downstream I/O components. Synchronized to the SIOH reset input (RESETI#) signal.	
PWRGOOD	I CMOS1.5	ASYNC	Power Good: Clears the SIOH. This signal is held low until all power supplies are within specification. This signal is followed by RESETI# Deassertion.
INT_OUT#	O CMOS 1.5 OD	ASYNC	Interrupt Output: SIOH interrupt output pin for SP Hot- Plug and performance. This pin is asynchronous and is driven for a minimum of six consecutive SYSCLKs before transitioning.
EV[3:0]#	I/O CMOS1.5 OD	ASYNC	Event In/Out: Open-drain event pins connected to the performance monitors. As inputs they are used in signal conditioning the PerfMon's trigger selection. As an output they indicate that the target condition has been met for a particular monitor.
			To filter glitches on the inputs, the value of the input only changes when the same value has been sampled over four consecutive 200 MHz clock cycles. Similarly, to ensure accurate sampling of these signals by other devices, these output value will be asserted for a minimum of twelve consecutive 200 MHz cycles.
ERR[2:0]#	I/O CMOS1.5 OD	ASYNC	Error Out: Open-drain error indicator pins to indicate the severity level of an error that has occurred internally or observed by this chip.
BUSID[2:0]	I CMOS1.5	N/A	Bus Number Identification: Static inputs to set the PCI equivalent of bus ID.
NODEID[4:0]	I CMOS1.5	N/A	Device Node Identification: Static inputs to set the PCI equivalent of device ID. NODEID[3:0] specifies the SMBus slave address for the component.

Table 2-4. Reset and Miscellaneous Signals

2.5 Clock Signals

The SIOH requires a 200 MHz LVHSTL clock source. The SIOH also generates 66 MHz and 33 MHz output clocks that can be used as source clocks by the downstream I/O components (refer to Table 2-5).

Table 2-5. Input and Output Clock Signals

Signal Name	Туре	Clock Domain	Description
SYSCLK/SYSCLK#	l Differential	200 MHz	System Clock: Input clock source (and complement) to the SIOH.
DET	l CMOS1.5	N/A	PLL Determinism Pin: DET pin is strapped high to enable determinism in the E8870 chipset. If high, CLK33 and CLK66 references are reset on First Hard Reset Deassertion.
FBCLK66	I CMOS 3.3	66 MHz	66 MHz Feedback Clock: External 66 MHz PLL feedback input.
VREFFBCLK66	l Analog	66 MHz	Voltage Reference for FBCLK66: Reference voltage for the 66 MHz PLL feedback.
CLK66	O CMOS 3.3	66 MHz	Clock 66: 66 MHz clock for all I/O subsystem common clock signals.
CLK33	O CMOS 3.3	33 MHz	Clock 33: Can be used as 33 MHz clock for ICH4 PCI bus.
LVHSTLODTEN	I CMOS1.5	200 MHz	LVHSTL On Die Termination Enable: Enables the on die termination resistors for the LVHSTL input buffers used on clock inputs.
VccaCore	Analog	N/A	VCC for Core clock.
VssaCore	Analog	N/A	VSS for Core clock.
VCCASP	Analog	N/A	VCC for SP clock.
VSSASP	Analog	N/A	VSS for SP clock.
VCCAHL	Analog	N/A	VCC for HI clock.
VSSAHL	Analog	N/A	VSS for HI clock.
VCCACom	Analog	N/A	VCC for Common clock.
VSSACom	Analog	N/A	VSS for Common clock.
Vcc33	Analog	N/A	3.3 VCC for all HVCMOS drivers.

Signal Description

2.6 JTAG and SMBus Signals

Table 2-6. JTAG and SMBus Signals

Signal Name	Туре	Clock Domain	Description
ТСК	l JTAG	ТСК	JTAG Test Clock: Clock input used to drive Test Access Port (TAP) state machine during test. TCK = 20 MHz max.
TDI	I JTAG	ТСК	JTAG Test Data In: Data input for test mode, used to serially shift data and instructions into the TAP.
TDO	O JTAG	ТСК	JTAG Test Data Out: Data output for test mode, used to serially shift data out of the TAP.
TMS	I JTAG	ТСК	JTAG Test Mode Select: This signal is used to control the state of the TAP controller.
TRST#	I JTAG	ASYNC	JTAG Test Reset: This signal resets the TAP controller logic.
SCL	I/O SMBus OD	SCL	SMBus Clock: Provides synchronous operation of the SMBus.
SDA	I/O SMBus OD	SCL	SMBus Addr/Data: Used for data transfer and arbitration on the SMBus.

Configuration Registers

The SIOH is viewed by the system as a single PCI device with seven different functions. While the standard PCI header is defined in the *PCI Local Bus Specification*, Revision 2.2, the remaining configuration registers typically reside above 40h.

3.1 Register Access Mechanisms

The SIOH configuration registers can be accessed from the following sources:

- Configuration Read/Write from Scalability Port (SP)
- System Management Bus (SMBus)
- JTAG

3.1.1 Scalability Port Initiated Register Access

SIOH will accept only one configuration access from the SPs at a time. Subsequent accesses experience back pressure until the previous configuration access is finished.

3.1.2 JTAG Initiated Register Access

The SIOH provides a JTAG configuration access mechanism that allows a user to access any register in the chipset. This is accomplished by using a mechanism similar to the PCI CF8/CFC data structure. The flow to read and write configuration space via JTAG is shown in Table 3-1 and Table 3-2.

Table 3-1. JTAG Read to Configuration Space

Field of Serial Chain	Bit#	Phase 1	Phase 2	Phase 3 ¹
Data [31:0]	63:32			Read the data.
Register Number	31:24			
Device	23:19	Write with address to		
Function	18:16	read.		
Bus Number	15:8			
Error	7			Read for proper termination.
Reserved	6:5			
Busy	4	Set to 1	Poll until cleared.	
Enable Access	3	Set to 1		
Byte Enable Command	2:0	Set command: • 100 - read dword Address must be dword aligned.		

1. Software could choose to merge Phase 2 and Phase 3 into one operation.

Field of Serial Chain	Bit#	Phase 1	Phase 2	Phase 3 ¹
Data [31:0]	63:32			
Register Number	31:24			
Device	23:19	Write with data and address to write.		
Function	18:16			
Bus Number	15:8			
Error	7			Read for proper termination.
Reserved	6:5			
Busy	4	Set to 1	Poll until cleared.	
Enable Access	3	Set to 1		
Byte Enable Command	2:0	 Set command: 001 - write byte. 010 - write word Address must be word aligned. 011 - write dword Address must be dword aligned. 		

Table 3-2. JTAG Write to Configuration Space

1. Software could choose to merge Phase 2 and Phase 3 into one operation.

The bus, function, device, and register numbers are similar to the CF8 structure. This mechanism may be used in run-time and in the middle of any other traffic.

Note: The JTAG port on the SIOH can only be used to access its own configuration registers.

3.1.3 SMBus Operation

The SIOH allows a server management subsystem to read and write its configuration registers. This is accomplished through an "out-of-band", slave-only SMBus 2.0 port.

The SIOH claims address 11X0_XXX where XXXX specifies NODEID[3:0] pin strappings (sampled upon the deassertion of RESETI#).

Note: It is possible for software to change the default Node ID by programming the CBC register. This reprogramming will *not* affect the SMBus address assignment.

3.2 Device Mapping

The device number for each device connected to an SP is captured from pins upon the rising edge of hard reset. In the CBC register, Bus[2:0] is captured from the BUSID[2:0] pins. Bus[7:3] are assigned by software. Bus[7:0] are intended for truly large systems where the total # of devices on the cross-bar network may exceed the 32 device limit on a given PCI bus. Software must set Bus[7:0] to FF for the SIOH when using an SP switch.

Note: The compatibility bus must be programmed to Bus 0. Therefore, the SIOH Bus ID should never get assigned to 0 by software.

In the CBC register, Node ID[4:0] are also captured from external pins on the Node ID[4:0] pins. Those bits are compared with the device number field in the PCI configuration access. The device number can be any value between 0 and 31. Software must set Node ID[4:3] to 11 in the E8870 chipset.

The SIOH has a PCI bus range per Hub Interface. Each Hub Interface is assigned a bus number (BUSNO[x]) and is accessed with Type 0 configuration cycles. Bus range BUSNO[x] +1 to BUSNO[x+1] of SIOH encompasses all PCI buses behind Hub Interface[x] and is accessed with Type 1 configuration cycles.

Table 3-3 describes how configuration cycles are routed by the SIOH.

Table 3-3. Outbound Configuration Cycle Routing

Configuration Cycle	Route
Bus[7:0] == Bus[7:0] (in CBC) AND Device[4:0] == Node ID[4:0]	Configuration cycle targets this SIOH so service it locally and return the completion to source.
Bus[7:0] == BUSNO[x] ¹	Forward Type 0 configuration cycle to Hub Interface x.
$BUSNO[x] < Bus[7:0] < BUSNO[x+1]^1$	Forward Type 1 configuration cycle to Hub Interface x.
None of the above.	Master Abort.

1. This test is performed only if the first row tests false.

Even if a Hub Interface is unpopulated, it must be assigned to a bus number. Any configuration cycles to this bus number will Master Abort.

Table 3-4 maps the function assignments for the SIOH.

Table 3-4. SIOH Function Mapping

Function Number	SIOH Description
0	Hub Interface Port 0 registers (8-bit compatibility port).
1	Hub Interface Port 1 registers.
2	Hub Interface Port 2 registers.
3	Hub Interface Port 3 registers.
4	Hub Interface Port 4 registers.
5	General SIOH registers.
6	RAS registers.

3.3 Register Attributes

The Default column in the following register definitions (refer to Table 3-5) indicates the register will be set to this value after a hard reset. (Refer to Chapter 6, "Reset" for the definition of a hard reset.) Start-up BIOS software is responsible for setting all register values that is dependent on the particular platform. Each of the following registers uses the following conventions for the bit attribute column.

Table 3-5. Register Attributes Definitions

Attribute	Abbreviation	Description
Read Only	RO	The bit is set by the hardware only and software can only read the bit. Writes to the register have no effect. A hard reset will set the bit to its default value.
Read/Write	RW	The bit can be read and written by software. A hard reset will set the bit to its default value.
Read/Write Once	RWO	The bit can be read by software. It can also be written by software but the hardware prevents writing it more than once without a prior hard reset. This protection applies on a bit-by-bit basis, e.g. if the RWO field is two bytes and only one byte is written, then the written byte cannot be rewritten (unless reset). However, the unwritten byte can still be written once.
Read/Clear	RC	The bit can be either read or cleared by software. In order to clear an RC bit, the software must write a one to it. Writing a zero to an RC bit will have no effect. A hard reset will set the bit to its default value.
Sticky	RWS, RCS, ROS	The bit is "sticky" or unchanged by a hard reset. Read/Write, Read/Clear, and Read Only bits may be sticky. Refer to Chapter 6, "Reset" for the definition of a hard reset. These bits are only reset with PWRGOOD.
Reserved	RV	This bit is reserved for future expansion and must not be written. The <i>PCI Local Bus Specification</i> , Revision 2.3 requires that reserved bits must be preserved. Any software that modifies a register that contains a reserved bit is responsible for reading the register, modifying the desired bits, and writing back the result.

3.4 Vendor ID Register (VID)

These registers latch Syndrome and ECC information for the first non-fatal error detected inside the SPL cluster. Not all errors have logs.

```
        Device:
        Node_ID

        Function:
        0, 1, 2, 3, 4, 5, 6

        Offset:
        00h
```

Bit	Attr	Default	Description
15:0	RO	8086h	Vendor Identification Number: This is the standard 16-bit value assigned to Intel.

intel®

3.5 Device ID Register (DID)

The Device ID (DID) register identifies the SIOH component and adheres to the *PCI Local Bus Specification*, Revision 2.2. Since this register is part of the standard PCI header, there is a DID register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4, 5, 6 Offset: 02h

Bit	Attr	Default	Description
15:0	RO	F0 - 0510h F1 - 0511h	Device Identification Number : This value is the device ID for the SIOH component. In order for proper driver functionality, each SIOH function has a different value for the DID register (En = function n)
		F2 - 0512h F3 - 0513h F4 - 0514h F5 - 0515h	

3.6 PCI Command Registers (PCICMD)

The PCI Command (PCICMD) registers follow a subset of the *PCI Local Bus Specification*, Revision 2.2. These registers provide the basic control for the SIOH to initiate and respond to Hub Interface cycles and maintain compatibility with PCI configuration space. Since these registers are part of the standard PCI header, there is a PCICMD register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 04h

Bit	Attr	Default	Description
15:9	RV	0	Reserved.
8	RO	0	SERR# Enable: The SIOH never issues a DO_SERR special cycle.
7	RV	0	Reserved.
6	RW	0	Parity Error Response (IERRE): Controls the SIOH response when a parity error (on function 0) or multi-bit ECC error is detected on the Hub Interface. This bit only controls the detection in PCISTS[15] and PCISTS[8].
			"First Error Status Registers (FERRST)" for details on parity error reporting.
5:4	RV	0	Reserved.
3	RO	0	Special Cycle Enable: Controls the ability to forward PCI-type (legacy) special cycles. Devices on the Hub Interface are not capable of accepting legacy special cycles. This bit does not apply to Hub Interface specific special cycles.
2	RO	1	Bus Master Enable: Controls the ability for the SIOH to initiate Hub Interface cycles. The SIOH can always issue Hub Interface bus cycles.
1	RO	1	Memory Access Enable: Controls the ability for the SIOH to respond to memory transactions initiated on the Hub Interface. The SIOH can always accept memory transactions.
0	RO	0	I/O Access Enable: Controls the ability for the SIOH to respond to I/O transactions initiated on the Hub Interface. The E8870 chipset does not support inbound I/O cycles.

Configuration Registers

3.7 PCI Status Registers (PCISTS)

The PCI Status (PCISTS) registers follow a subset of the *PCI Local Bus Specification*, Revision 2.2. These registers provide the basic status of this device in response to Hub Interface cycles and maintain compatibility with PCI configuration space. Since these registers are part of the standard PCI header, there is a PCISTS register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 06h

Bit	Attr	Default	Description
15	RC	0	Detected Integrity Error: This bit indicates different conditions for SIOH function 0 versus functions 1 - 4.
			For function 0, this bit indicates that a parity error was observed on the Hub Interface. This bit is not affected by the state of PCICMD[6].
			For functions 1 -4, this bit indicates that a multi-bit ECC error was detected on the Hub Interface. If PCICMD[6] is enabled, single-bit errors will also set this bit.
14	RO	0	Signalled System Error: This bit indicates if a system error special cycle (DO_SERR) is initiated by the SIOH component. This bit should never be asserted since the SIOH never initiates DO_SERR.
13	RC	0	Received Master Abort Status: This bit indicates if the SIOH receives a Master Abort completion cycle or an unimplemented Special Cycle command.
12	RC	0	Received Target Abort Status: This bit indicates if the SIOH receives a Target Abort completion cycle in response to an SIOH-initiated Hub Interface cycle.
11	RC	0	Signalled Target Abort Status: The SIOH sets this bit when it issues a Target Abort completion cycle to the Hub Interface agent.
10:9	RV	0	Reserved.
8	RC	0	 Master Data Integrity Error: This bit indicates that a <i>data</i> parity or multi-bit ECC error was detected on the Hub Interface. This bit is set when all of the following conditions are met: The SIOH detected a data parity (function 0) or multi-bit ECC error on data (functions 1 - 4) for an outbound read completion.
7.0	P\/	00b	POLOND[0] IS SET to 1. Reserved
1.0	nv.	0011	Neserveu.

3.8 Revision ID Register (RID)

The Revision ID (RID) register tracks the specific revision of this component. Since this register is part of the standard PCI header, there is one RID register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4, 5, 6 Offset: 08h

Bit	Attr	Default	Description
7:0	RO	XXh	Revision Identification Number:20H = C0 stepping of the SIOH21H = C1 stepping of the SIOH

3.9 Class Code Registers (CCR)

The Class Code (CCR) registers identify the SIOH component as a host bridge. These registers adhere to the *PCI Local Bus Specification*, Revision 2.2. Since these registers are part of the standard PCI header, there is a CCR register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4, 5, 6 Offset: 09h

Bit	Attr	Default	Description
23:16	RO	06h	Base Class Code: This code indicates that the SIOH is a bridge device.
15:8	RO	00h	Sub-Class Code: This code indicates that the SIOH bridge is part of a host bridge.
7:0	RO	00h	Register-Level Programming Interface: This field identifies a specific programming interface that device independent software can use to interact with the device. There are no such interfaces defined for host bridges.

3.10 Header Type Registers (HDR)

The SIOH follows the standard PCI Configuration space header format and maintains seven functions. The Header-Type Registers (HDR) adhere to the *PCI Local Bus Specification*, Revision 2.2. Since these registers are part of the standard PCI header, there is an HDR register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4, 5, 6 Offset: 0Eh

Bit	Attr	Default	Description
7	RO	1	Multi-Function Device: This bit indicates if the SIOH is a multi-function device. The SIOH is a multi-function device.
6:0	RO	00h	Configuration Layout: This field identifies the format of the standard PCI configuration header space. A value of zero indicates that it follows the standard PCI model.

3.11 Subsystem Vendor ID Register (SVID)

The Subsystem Vendor ID (SVID) register identifies the SIOH component and adheres to the *PCI Local Bus Specification*, Revision 2.2. Since this register is part of the standard PCI header, there is a SVID register per PCI function.

 Device:
 Node_ID

 Function:
 0, 1, 2, 3, 4, 5, 6

 Offset:
 2Ch

Bit	Attr	Default	Description
15:0	RWO	8086h	Subsystem Vendor Identification Number: This value is the subsystem vendor ID for the SIOH component. The value can only be assigned once after reset.

Configuration Registers

3.12 Subsystem ID Register (SID)

The Subsystem ID (SID) register adheres to the *PCI Local Bus Specification*, Revision 2.2. Since this register is part of the standard PCI header, there is a SID register per PCI function.

Device: Node_ID Function: 0, 1, 2, 3, 4, 5, 6 Offset: 2Eh

Bit	Attr	Default	Description
15:0	RWO	8086h	Subsystem Identification Number: This value is the subsystem ID for the SIOH component. The value can only be assigned once after reset.

3.13 Hub Interface Control Registers (HLCTL)

These registers specify certain behavior for each Hub Interface. There is one register per interface.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 40h

Bit	Attr	Default	Description
15:11	RV	0	Reserved.
10:9	RW	0	Inactivity Timer: These bits program the upper two bits of the Hub Interface cluster's inactivity timer. This 10-bit timer counts 200 MHz clocks and is used to determine when inbound read stream structures are active or inactive. 00 - 1.28 us 01 - 2.56 us 10 - 3.84 us 11 - 5.12 us
8	RO	See Description	Hub Interface Presence: Device detection is done via Hub Interface REQ# line. For function 0, presence is determined with a successful reset handshake.
			0 = No device is connected on this Hub Interface
			1 = A device is connected on this Hub Interface
			The default state of this bit depends on whether a component is present on the other end of the Hub Interface. If this interface detects that no component is present, the default state of this bit will be zero. If a component is present, the bit defaults to one.
7:6	RW	0	Outstanding Completion-Required Requests: This bit enables the number of outbound requests that require a completion the SIOH will attempt to the Hub Interface target. Such transactions include outbound read requests, outbound I/O reads and writes, and outbound configuration reads and writes. The SIOH can support up to four. The P64H2 can support four, and the ICH4 can support one. Programming this field correctly optimizes the Hub Interface bandwidth by matching the capabilities of the interfacing component.
			00 - Only one outbound delayed request attempted on this Hub Interface port at a time.
			01 - Two outbound delayed requests can be attempted simultaneously on this Hub Interface port.
			10 - Reserved
			11 - Four outbound delayed requests can be attempted simultaneously on this Hub Interface port.
			Each Hub Interface cluster can always accept four outbound delayed requests from the SP cluster. This register only specifies how many of those four the SIOH will attempt before waiting for the completion to return from the I/O bridge.

intel

Device: Eunction:	Node_ID 0 1 2 3 4	
Offset:	40h (Continued)	

Bit	Attr	Default	Description
5	RW	0	Read Streaming Disable: This bit disables the SIOH ability to use the Hub Interface 2.0 read streaming feature.
			For function 0, Read Streaming is not a supported feature and this bit is always read as zero.
4	RW	0	ECC/Parity Check Enable: This bit enables the ECC checking/correction logic for the Hub Interface 2.0 ports and the parity checking logic for function 0. When this bit is cleared, any ECC or parity errors detected on the Hub Interface are not reported or corrected and do not affect the routing of the packet (e.g. dropping errors on header).
			This bit should be enabled after the ECC/parity generation logic is enabled on the Hub Interface component.
			This bit does not affect the SIOH's ECC/Parity generation logic.
3	RW	0	Serial PipeID Enable: The SIOH issues outbound read requests with different PipeIDs. Setting this bit forces the SIOH to issue all outbound reads and writes with the same PipeID of 0.
2	RWS	See Description	Disable Hub Interface: When set, this bit tri-states the corresponding Hub Interface outputs and masks the Hub Interface's inputs. Any internal transactions that are routed to the disabled interfaces will be master-aborted.
			The default state of this bit depends on whether a component is present on the other end of the Hub Interface (see HLCTL[8]). If this interface detects that a component is present, the default state of this bit will be zero. If no component is present, the bit defaults to one. Hardware does not protect against enabling an interface that does not have an interfacing component.
1	RW	0	Read Cache Disable: This bit disables the read cache for the Hub Interface.
			If the read caches are disabled, prefetching should also be disabled. Otherwise, the SIOH will prefetch data it will never deliver from the cache. If the read caches are disabled and the port interfaces a P64H2, restreaming also needs to be disabled in the P64H2.
0	RW	0	Prefetch Disable: This bit disables read prefetching for the Hub Interface port. If disabled, inbound reads initiated on the Hub Interface port will request only the line requested and no more.

3.14 Hub Interface Command Control Registers (HLCMD)

The Hub Interface Command/Control (HLCMD) registers specify the basic functionality of the SIOH on each Hub Interface.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 44h

Bit	Attr	Default	Description
31:29	RO	0	HUB_SUB_FIRST: This field stores the lowest subordinate Hub Interface hub number. This information is compared with the Hub ID to determine whether a completion packet should be forwarded further down the Hub Interface hierarchy. <i>This field is not applicable for components other than a Hub Interface-to-Hub</i> <i>Interface bridge.</i>
28	RV	0	Reserved.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 44h (Continued)

Bit	Attr	Default	Description
27:25	RO	0	HUB_SUB_LAST: This field stores the highest subordinate Hub Interface hub number. This information is compared with the Hub ID to determine whether a completion packet should be forwarded further down the Hub Interface hierarchy.
			This field is not applicable for components other than a Hub Interface-to-Hub Interface bridge.
24	RV	0	Reserved.
23:21	RO	0	HUB_ID: This field identifies the Hub Interface ID number for the SIOH. The SIOH uses this field to determine when to accept a Hub Interface request packet and send any corresponding completion packets.
			This field is not applicable for components other than a Hub Interface-to-Hub Interface bridge.
20	RV	0	Reserved.
19:16	RW	0	HL_TIMESLICE: This field sets the Hub Interface arbiter timeslice value with four base-clock granularity. A value of zero means that the timer immediately expires and the SIOH will allow the agent interfacing Hub Interface access to the bus every other transaction.
15:14	RO	0	HL_WIDTH : This field sets the Hub Interface data bus width. A value of 01 indicates a 16-bit data bus and 00 indicates an 8-bit data bus. This field only applies for function 0.
			For functions 1 - 4 of the SIOH (Hub Interface 2.0 ports) this field is reserved and always returns 00.
13	RO	1 (0)	HL_RATE_VALID: This bit is sampled by software and indicates when the Hub Interface bus rate is valid. This bit is cleared when the Hub Interface bus rate is being changed. This field only applies for function 0.
			For functions 1 - 4 of the SIOH (Hub Interface 2.0 ports) this field is reserved and always returns 0.
12:10	RO	010 (000)	HL_RATE: This field indicates the Hub Interface data rate. Function 0 supports a 4x data rate encoded with 010. This field only applies for function 0.
			For functions 1 - 4 of the SIOH (Hub Interface 2.0 ports) this field is reserved and always returns 000.
9:4	RV	00h	Reserved.
3:1	RW	111	MAX_DATA: This field is programmed with the longest data stream the SIOH is permitted to send on the Hub Interface. MAX_DATA applies to both write request cycles and read completion cycles.
			000 = 32-bytes
			001 = 64-bytes
			01X = 128-bytes
			1XX = 256-bytes
			If software attempts to program HLCMD[3:1] to 000 for functions 1 to 4, any subsequent reads will return 001 indicating 64-bytes.
0	RV	0	Reserved.

3.15

Hub Interface Recoverable Error Control Registers (RECHUB)

These registers latch control information for the first non-fatal error detected inside the Hub Interface cluster. Not all errors have logs.

This is the bit mapping for Hub Interface *Requests* (RECHUB[31] = 0).

Node_ID Device: Function: 0, 1, 2, 3, 4 Offset: 4Ch

Bit	Attr	Default	Description
127:120	ROS	0	Hub Interface header ECC (Upper): This ECC code covers Header [127:64].
	(RV)		
119:112	ROS	0	Hub Interface header ECC (Lower): This ECC code covers Header [63:0]. For function 0, this field is reserved except for the following bits:
			114:112, which records the parity bits when AF=1 and EA = 1 (3D-word header).
			113:112, which records the parity bits when AF=1 and EA = 0 (2 D-word header).
			112, which records the parity bit when $AF = 0$ and $EA = 0$ (1 D-word header).
111:99	ROS	0	Prefetch Horizon ¹ .
98	ROS	0	Reserved Field of the packet.
97:96	ROS	0	Elen ¹ : Extended Length.
95:64	ROS	0	Addr[63:32] ¹ : Address bits 63:32 of the address. The SIOH does not support all upper address bits. If the SIOH detects an inbound illegal address error because one or more of these bits are set, then Addr[63] will be set and Addr[62:32] will be zero.
63:34	ROS	0	Addr[31:2] ² : Address bits 31:2 of the address.
33	ROS	0	EH: Extended Header.
32	ROS	0	EA/CT: Extended Address/Configuration type.
31	ROS	0	Rq/Cp: Request/completion field.
30	ROS	0	R/W: Read/Write field.
29	ROS	0	CR: Completion required field.
28	ROS	0	AF: Address format.
27	ROS	0	LK: Lock cycle.
26:21	ROS	0	TD Routing: Transaction Description routing field.
20	ROS	0	Reserved Field on the packet.
19:16	ROS	0	TD Attribute: Transaction Descriptor Attribute.
15:14	ROS	0	Space: Address space.
13:8	ROS	0	Data Length: D-word data length.
7:0	ROS	0	Byte Enables: 7:4 is the Last D-word Byte Enables and 3:0 is the First Byte Enables.
			Special Cycle Encoding: When Space field indicates a Special Cycle.

 For Special Cycles, RECHUB[111:64] does not use this encoding and should be padded with zeroes by the initiator.
 For Special Cycles, RECHUB[63:31] might have data if required by the Special Cycle. Otherwise, it should be padded with zeroes by the initiator.

Configuration Registers

This is the bit mapping for Hub Interface *Completions* (RECHUB[31] = 1).

Offset:	4Ch	, 4	
Bit	Attr	Default	Description
127:120	ROS (RV)	0	Hub interface header ECC (Upper): This ECC code covers Header[128:64]. For function 0, this field is reserved.
119:112	ROS	0	Hub interface Header ECC (Lower): This ECC code covers Header[63:0]. For function 0, this field is reserved except for bit 112, which records the parity bit.
111:32	ROS	0	Reserved Field on the packet.
31	ROS	0	Rq/Cp: Request/completion field.
30	ROS	0	R/W: Read/Write field.
29:28	ROS	0	Reserved Field of the packet.
27	ROS	0	LK: Lock cycle.
26:21	ROS	0	TD Routing: Transaction Description routing field.
20	ROS	0	Reserved Field on the packet.
19:16	ROS	0	TD Attribute: Transaction Descriptor Attribute.
15:14	ROS	0	Space: Address space.
13:8	ROS	0	Data Length: D-word data length.
7:0	ROS	0	Completion Status: Indicates the status of the request.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 4Ch

3.16 Hub Interface Recoverable Error Data Registers (REDHUB)

This register latches data information for the first non-fatal error detected inside the Hub Interface cluster. Not all errors have logs.

Device:Node_IDFunction:0, 1, 2, 3, 4Offset:5Ch

Bit	Attr	Default	Description
95:72	RV	0	Reserved.
71:64	ROS	0	ECC/Parity Field: For inbound functions 1 - 4, there are eight bits of ECC per 64 bits of data. For function 0, there is one parity bit per 32 bits of data.
63:0	ROS	0	Data Field.

3.17 Hub Interface Non-Recoverable Error Control Register (NRECHUB)

This register latches data information for the first non-fatal error detected inside the Hub Interface cluster. Not all errors have logs.

 Device:
 Node_ID

 Function:
 0, 1, 2, 3, 4

 Offset:
 68h

Bit	Attr	Default	Description
127:0	ROS	0	Hub Interface Header or Internal Request/Response Header: See the RECHUB register for contents.

3.18 Hub Interface ECC Mask Register (HECCMSK)

This register is used to force an ECC error (parity for function 0) affecting only data packets flowing into the SIOH (inbound writes and outbound read completions). After this register is written with a masking function, all subsequent *inbound* Hub Interface data packets will generate a masked version of the ECC code. To disable testing, the mask value is left at 0h (the default). The mask is bit-wise XOR with the received ECC.

Note: Even if ECC checking is disabled with the HLCTL register, this mask is still applied.

For function 0 (HI1.5), only parity is supported and only HECCMSK[0] applies. This bit acts as a mask for the parity bit affecting only data packets flowing into the SIOH (inbound writes and outbound read completions). The mask is bit-wise XOR with the received parity bit.

Device: Node_ID Function: 0, 1, 2, 3, 4 Offset: 84H

Bit	Attr	Default	Description
7:0	RW	00h	ECC/Parity Mask: For 64 bits of data. For function 0, bit 0 acts as a mask for the parity bit.

3.19 Hub Interface Performance Monitor Response and Control Registers (HL_PMR[1:0])

The Performance Monitor Response (PMR) registers control operation of their associated counter, and provide overflow or max compare status information.

Device: Node_ID Function: 1, 2, 3, 4 Offset: 8Ch (HL_PMR[0]), 90h (HL_PMR[1])

Bit	Attr	Default	Description
31:25	RV	0	Reserved.
24	RW	0	Event Register Select:
			The PME_LO & PME_HI registers select events based on the Hub Interface header fields. The PME_RSC register selects resource specific events that are mutually exclusive of the Hub Interface header events. One or the other of the event sets can be selected.
			0 = Hub Interface events (PME_LO, PME_HI).
			1 = Hub Interface resources (PME_RSC).
23:22	RW	0	Compare Mode:
			This field defines how the PMCMP (compare) register is to be used.
			00 - Compare mode disabled (PMCMP register not used).
			01 - Max compare only: The PMCMP register value is compared with the counter value. If the counter value is greater, the Count Compare Status (bit 13) of the "Event Status" field of this register will be set.
			10 - Max compare with update of PMCMP at end of sample: The PMCMP register value is compared with the counter value, and if the counter value is greater, the PMCMP register is updated with the counter value. Note, the Event Status field is not affected in this mode.
			11 - Address compare mode where the PMCMP register is compared with the address field. Counter 0 of a counter pair will compare on an address greater than the register, and counter 1 will compare on an address equal to or lesser than the register (inverse of greater than). When both comparisons are valid, an address range comparison qualification is generated. This mode will cause the address range comparison to be AND'ed with the event qualification specified in the selected PME register of each counter. The Event Status field is not affected in this mode. The address comparison range is A[38:7].
21:19	RW	0	Reset Event Select:
			Counter and event status will reset and counting will continue.
			000 - No reset condition.
			001 - Partner event status: When the partner counter causes an event status condition to be activated, either by a counter overflow or max comparison, then this counter will reset and continue counting.
			010 - Partner PME register event: When the partner counter detects a match condition that meets its selected PME register qualifications, then this counter will reset and continue counting.
			011 - Reserved
			100 - EV0 pin
			101 - EV1 pin
			110 - EV2 pin
			111 - EV3 pin

Device:Node_IDFunction:1, 2, 3, 4Offset:8Ch (HL_PMR[0]), 90h (HL_PMR[1]) (Continued)

Bit	Attr	Default	Description
18:16	RW	0	Count Event Select:
			This field determines the counter enable source.
			000 - PME register event.
			001 - Partner event status (max compare or overflow).
			010 - All clocks when enabled.
			011 - Reserved
			100 - EV0 pin
			101 - EV1 pin
			110 - EV2 pin
			111 - EV3 pin
15:14	RW	0	Count Mode:
			00 - Count event selected by Count Event Select field.
			01 - Count clocks after event selected by Count Event Select field.
			10 - Count transaction length of event selected by Count Event Select field.
			11 - Reserved
13:12	RW	0	Event Status:
			This status bit captures an overflow or count compare event. The Event Status Output field can be programmed to allow this bit to be driven to an external EV pin.
			x1 - Overflow - The PMD counter overflow status.
			1x - Count compare - PMD counter greater than PMCMP register when in compare mode.
			This bit is sticky in that once an event is reported the status remains even though the original condition is no longer valid. This bit can be cleared by software or by starting a sample. Event status is always visible in the PERFCON register, except if "Event Status Output" field is in cascade mode. If in address compare mode (compare mode = 11), the count compare bit is not activated.
11:9	RW	0	Event Status Output:
			This field selects which pin to report event status, or an address compare if in address compare mode (compare mode = 11).
			000 - Event status reported only in PERFCON register.
			001 - Event status (overflow) reported to partner only. Used for cascading event counters.
			100 - Event status or address comparison in PERFCON and on EV0 pin.
			101 - Event status or address comparison in PERFCON and on EV1 pin.
			110 - Event status or address comparison in PERFCON and on EV2 pin.
			111 - Event status or address comparison in PERFCON and on EV3 pin.

Configuration Registers

intel

Bit	Attr	Default	Description
8:5	RW	0	CD_Src: Counter disable source.
			These bits control which input disables the counter. Note, if the enable source is inactive, counting is also disabled.
			1xxx - EV3 pin
			x1xx - EV2 pin
			xx1x - EV1 pin
			xxx1 - EV0 pin
4:2	RW	0	CE_Src: Counter enable source.
			These bits identify which input enables the counter. Default value disables counting.
			000 - Disabled.
			001 - PERFCON local_count_enable field.
			010 - Partner event status (max compare, overflow, or cascade).
			011 - Reserved
			100 - EV0 pin
			101 - EV1 pin
			110 - EV2 pin
			111 - EV3 pin
1	RW	0	Clear Overflow: This bit clears the overflow bit in the associated PMD counter. The counters continue counting. This bit is cleared by hardware when the operation is complete.
0	RW	0	Reset: Setting this bit to a one sets all registers associated with this counter to the default state. It does not change this PMR register since any desired value can be loaded while setting the Reset bit. This Reset bit will clear itself after the reset is completed. For diagnostic purposes, the contents of the other registers can be read to verify operation of this bit. There is also a reset bit in the PERFCON register that clears all counter registers including the PMR.

 Device:
 Node_ID

 Function:
 1, 2, 3, 4

 Offset:
 8Ch (HL_PMR[0]), 90h (HL_PMR[1]) (Continued)

3.20

Hub Interface Performance Monitor Event Registers – Low (HL_PME_LO[1:0])

Selections in these registers correspond to fields within the Hub Interface packet header. Each field selection is AND'ed with all other fields in these registers and the HL_PME_HI registers. These registers are selected for match decoding via the Event Register Select field in the PMR registers.

Device: Node_ID Function: 1, 2, 3, 4 Offset: 94h (HL_PME_LO[0]), 98h (HL_PME_LO[1])

Bit	Attr	Default	Description
31	RW	0	Incoming/Outgoing: 0 = Incoming (from PCI bus).
30:29	RW	0	Request/Completion Packet:
			00 - Request packet
			01 - Completion packet
			1x - Either

Device:Node_IDFunction:1, 2, 3, 4Offset:94h (HL_PME_LO[0]), 98h (HL_PME_LO[1]) (Continued)

Bit	Attr	Default	Description
28:27	RW	0	Write/Read:
			00 - Read
			01 - Write
			1x - Either read or write
26:25	RW	0	Completion Required: (Request packet only)
			00 - No completion required
			01 - Completion required
			1x - Either
24:23	RW	0	Lock:
			00 - No lock
			01 - Lock
			1x - Either
22:20	RW	0	TD Attributes:
			0xx - Any attribute
			100 - Asynchronous and snoop required
			101 - Isochronous and snoop required
			110 - Asynchronous and no snoop required
			111 - Isochronous and no snoop required
19:18	RW	0	Configuration Type: (If Config Cycle Space selected)
			00 - Туре 0
			01 - Туре 1
			1x - either type
17:16	RW	0	Prefetch: Extended header bit set in packet header and horizon field non-zero
			00 - Non prefetch
			01 - Prefetch
			1x - Either
15:12	RW	0	Space: (OR'ed group)
			xxx1- Memory
			xx1x - IO
			x1xx - Configuration
			1xxx - Special Cycles
11:8	RW	0	Data Length:
			0xxx - Any length
			1000 - 8-bytes or less
			1001 - 16 bytes
			1010 - 32-bytes
			1011 - 64-bytes
			1100 - 128-bytes
			1101 - 256-Dytes
			1110 - 512-Dytes
7.0			
7:0	KW	U	Request Packet):
			00h - Any completion status or special cycle.

3.21 Hub Interface Performance Monitor Event Registers – High (HL_PME_HI[1:0])

These registers are an extension of the HL_PME_LO register. Each field selection is AND'ed with all other fields in these registers and the HL_PME_LO registers. Note that inbound retry events are AND'ed with all other match conditions. These registers are selected for match decoding via the Event Register Select field in the PMR registers.

Device: Node_ID Function: 1, 2, 3, 4 Offset: 9Ch (HL_PME_HI[0]), A0h (HL_PME_HI[1])

Bit	Attr	Default	Description
31:14	RV	0	Reserved.
13:12	RW	0	Retry: For inbound transactions this field is AND'ed with match from all other fields, and for outbound transactions this field OR'ed with match from all other fields. Inbound vs. outbound transaction selected in bit 31 of HL_PME_LO register. 00 - All transactions selected, both retried and non-retried. x1 - Complete retry (entire inbound or outbound packet retried). 1x - Partial retry (part of packet retried - only for outbound transactions).
11:0	RW	0	Routing and Mask:
			"xxxxxmmmmmm" - where x is the routing value field and m is the bit mask for each individual bit in the routing field ('1' is mask,'0' is select).

3.22 Hub Interface Performance Monitor Resource Event Registers (HL_PME_RSC[1:0])

These registers contain resource selections that are mutually exclusive to the event selections. These selections are not qualified by the event selections. Each individual field selection is OR'ed with the other fields to generate the counter match condition. This register is selected via the Event Register Select Field in the PMR registers.

```
        Device:
        Node_ID

        Function:
        1, 2, 3, 4

        Offset:
        A4h (HL_PME_RSC[0]), A8h (HL_PME_RSC[1])
```

Bit	Attr	Default	Description
31:2	RV	0	Reserved.
1:0	RW	0	Read Cache:
			00 - Disable count
			01 - Hit
			10 - Miss
			11 - Invalidate

3.23 Hub Interface Performance Monitor Data Registers (HL_PMD[1:0])

These registers are the counter value. The overflow bit can be cleared via the PMR registers without perturbing the value of the counter. This counter is reset at the beginning of a sample period unless it has been preloaded since a prior sample.

Device: Node_ID Function: 1, 2, 3, 4 Offset: ACh (HL_PMD[0]), B0h (HL_PMD[1])

Bit	Attr	Default	Description
31	RW	0	Overflow.
30:0	RW	0	Current counter value.

3.24 Hub Interface Performance Monitor Compare Register (HL_PMCMP[1:0])

The compare register can be used three ways as selected in the "Compare Mode" field of the PMR register. First, when PMD is incremented, the value of PMD is compared to the value of PMCMP. If PMD is greater than PMCMP, this status is reflected in the PERFCON register and/or on EV pins as selected in the "Event Status Output" field of the PMR register. Secondly, update the PMCMP register with the value of PMD if the PMD register exceeds the contents of PMCMP.

The third mode is an address comparison mode. PMD0 compares on addresses greater than the PMCMP0 register, and PMD1 compares on addresses less than or equal to PMCMP1. The "AND" of these two comparisons is the address range comparison and it qualifies the other match event conditions for both counters. Note that the contents of PMCMP are compared to A[38:7].

Device: Node_ID Function: 1, 2, 3, 4 Offset: B4h (HL_PMCMP[0]), B8h (HL_PMCMP[1])

Bit	Attr	Default	Description
31:0	RW	FFFF_ FFFFh	Counter compare value.

3.25 SIOH Control Registers (IOCTL)

The SIOH Control Registers specify the basic functionality of the SIOH feature set.

Offset:	40h			
Bit	Attr	Default	Description	
15	RW	0	MDA Enable: This bit specifies whether or not a monochrome adapter card resides on the platform. If enabled, then any inbound writes that target B_000 to B_7FFF in legacy DOS space will get automatically routed to the compatibility bus. The monochrome adapter card (if one exists) must reside on the compatibility bus.	
14:12	RV	0	Reserved.	
11	RW	0	Multi-Node Enable: The SIOH has slightly different behavior when in a single-node configuration:	
			0 = Single node configuration.	
			1 = Multi-node configuration.	
			In a single-node configuration, PCLR commands are never issued and Lock/PHOLD handling is different.	
10	RW	1	Compatibility Bus Enable: This bit identifies if this SIOH interfaces the compatibility bus (ICH4 component). All reads or writes to the compatibility space will be routed to the 8-bit Hub Interface 1.5 port (Hub Interface port 0) if this bit is set (see Section 4.1.4, "Compatibility Bus").	
			0 = The compatibility bus does not interface this SIOH component.	
			1 = The compatibility bus interfaces this SIOH component (on Hub Interface port 0).	
9:7	RW	000	VGA Port: This bit field identifies which Hub Interface port interfaces the VGA device for the system. All reads or writes to the legacy VGA space will be routed to the Hub Interface port specified with this field (see Section 4.1.5, "VGA Space").	
			000 = Hub Interface Port 0 (compatibility port)	
			001 = Hub Interface Port 1	
			010 = Hub Interface Port 2	
			011 = Hub Interface Port 3	
			100 = Hub Interface Port 4	
			101 = On Remote SIOH (forward inbound VGA accesses to SP with VGA attribute)	
			11x = Not on <i>any</i> SIOH (forward inbound VGA accesses to SP with DRAM attribute)	
6	RW	0	Write Cache Flush: Setting this bit causes the SIOH to evict all write cache lines which are in Modified state. When the SIOH evicts all the Modified lines, this bit is cleared by the hardware. Software can poll this bit after setting it to know when the flush operation is complete.	
5	RV	0	Reserved.	
4	RW	0	ICH Destination ID Copy Disable : For interrupts issued by the ICH4, the SIOH copies address bits [19:15] to address bits [8:4]. Setting this bit disables that functionality.	
3	RV	0	Reserved.	
2	RW	0	Default SP:	
			0 = SP0 is selected as the default SP.	
			1 = SP1 is selected as the default SP.	
1:0	RV	00	Reserved.	

Device: Node_ID Function: 5

3.26 System Reset Register (SYRE)

This register allows system software to reset the SIOH component.

Device: Node_ID Function: 5 Offset: 42h

Bit	Attr	Default	Description
7:2	RV	0	Reserved.
1	RW	0	Boot Flag Reset : The rising edge of this bit will reset the boot flag register (BOFL) back to the default value.
0	RW	0	SIOH Reset: The rising edge on this bit will reset the entire SIOH. A reset sequence is initiated. This bit is used to reset the SIOH and asserts RESET66# during an SP Hot-Plug event.

3.27 Memory-Mapped I/O Base Low Address Register (MMIOBL)

The MMIOBL register with the MMIOLL register specifies one of the two address ranges allocated for Hub Interface-destined transactions. MMIOBL and MMIOLL are intended to specify a memory-mapped I/O window below the 4 GB boundary. The transaction address is compared against the base field for proper disposition. (Refer to Table 4-1 for how this register is decoded.)

For comparison purposes, address bits 23:0 are ignored and 43:32 must be zero.

Bit	Attr	Default	Description
7:0	RW	00h	Memory-Mapped I/O Base: This field specifies the lower limit for the low MMIO address range assigned to the Hub Interface buses for this and any other SIOHs in the system. These bits are compared against bits 31:24 of the transaction address. Bits 43:32 of the transaction address must be decoded as '0'.

3.28 Memory-Mapped I/O Limit Low Address Register (MMIOLL)

The MMIOBL register with the MMIOLL register specifies one of the two address ranges allocated for Hub Interface-destined transactions. MMIOBL and MMIOLL are intended to specify a memory-mapped I/O window below the 4 GB boundary. (Refer to Table 4-1 for how this register is decoded.)

For comparison purposes, address bits 23:0 are ignored and 43:32 must be zero.

Note: For E8870 chipset-based platforms, the upper limit of the MMIOL range is FDFF_FFF. Therefore, this value should only be programmed to FD. (MMIOLL is inclusive for address decoding purposes.) More extensive programmability allows larger systems to implement their own address map restrictions.

Device:Node_IDFunction:5Offset:45h			
Bit	Attr	Default	Description
7:0	RW	00h	Memory-Mapped I/O Limit: This field specifies the upper limit for the low MMIO address range assigned to the Hub Interface buses for this and any other SIOHs in the system. These bits are compared against bits 31:24 of the transaction address. Bits 43:32 of the transaction address must be decoded as '0'.

3.29 Memory-Mapped I/O Segment Low Register (MMIOSL[5:0])

The six MMIOSL registers specify the address ranges allocated for memory-mapped I/O transactions. The transaction address is compared to these boundaries for proper disposition to the low window. For comparison purposes, address bits 23:0 are ignored and 43:32 must be zero. For this decode, bits 43:32 must all be '0'. (Refer to Table 4-1 for how this register is decoded.)

The memory-mapped I/O space between MMIOSL[1] and MMIOSL[0] (port 0) is defined to be the compatibility port (interface to the ICH4 legacy bridges).

Note: It is assumed that the SIOH will never receive an address from a port that is destined for itself.

Device: Node_ID Function: 5 Offset: 48h, 49h, 4Ah, 4Bh, 4Ch, 4Dh

Bit	Attr	Default	Description
7:0	RW	00h	Memory-Mapped I/O Segment: This field specifies the boundary between each of the five Hub Interface regions for <i>this</i> SIOH. These bits are compared against bits 31:24 of the transaction address.

3.30 Memory-Mapped I/O Base High Address Register (MMIOBH)

The MMIOBH registers with the MMIOLH registers specify the address range allocated for Hub Interface-destined transactions. MMIOBH and MMIOLH are intended to specify a MMIO window above the 4 GB boundary with a 64 MB granularity. The transaction address is compared against the base field for proper disposition. (Refer to Table 4-1 for how this register is decoded.)

Note: High MMIO space should always be programmed above the 4 GB boundary.

For comparison purposes, address bits 25:0 are ignored.

Device: Node_ID Function: 5 Offset: 50h

Bit	Attr	Default	Description
15:0	RW	0000h	Memory-Mapped I/O Base: This field specifies the lower limit for the memory address range assigned to the Hub Interface buses for this and any other SIOHs in the system. These bits are compared against bits 41:26 of the transaction address.

3.31 Memory-Mapped I/O Limit High Address Register (MMIOLH)

For comparison purposes, address bits 25:0 are ignored. MMIOLH is inclusive for address decoding purposes. (Refer to Table 4-1 for how this register is decoded.)

Note: High MMIO space should always be programmed above the 4 GB boundary.

Device:	Node_ID
Function:	5
Offset:	52h

Bit	Attr	Default	Description
15:0	RW	0000h	Memory-Mapped I/O Limit: This field specifies the upper limit for the memory address range assigned to the Hub Interface buses for this and any other SIOHs in the system. These bits are compared against bits 41:26 of the transaction address.

3.32 Memory-Mapped I/O Segment High Address Register (MMIOSH[5:0])

The six MMIOSH registers specify the address ranges allocated for memory-mapped I/O transactions. The transaction address is compared to these boundaries for proper disposition to the high window. For comparison purposes, address bits 25:0 are ignored. (Refer to Table 4-1 for how this register is decoded.)

Notice that MMIOSH[0] specifies the top of the high MMIO window assigned to this SIOH component. The address compared to in this table is the transaction address from any port: five Hub Interface 2.0 ports, the Hub Interface 1.5 port, or either SP.

Note: High MMIO space should always be programmed above the 4 GB boundary.

For the SIOH, MMIOSH[0] and MMIOSH[1] should be programmed to the same value since the ICH4 cannot accept outbound accesses above the 4 GB boundary.

It is assumed that the SIOH will never receive an address from a port that is destined for itself.

Device: Node_ID Function: 5 Offset: 54h, 56h, 58h, 5Ah, 5Ch, 5Eh

Bit	Attr	Default	Description
15:0	RW	0000h	Memory-Mapped I/O Segment: This field specifies the boundary between each of the five Hub Interface regions for <i>this</i> SIOH. These bits are compared against bits 41:26 of the transaction address.

3.33 PCI Configuration Bus Base Register (BUSNO[5:0])

These registers define the base (starting) PCI bus for the PCI configuration space for each Hub Interface port.

Device: Node_ID Function: 5 Offset: 60h, 62h, 64h, 66h, 68h, 6Ah

Bit	Attr	Default	Description
15:8	RV	00h	Reserved.
7:0	RW	00h	Start Bus Number: The start PCI bus number of PCI configuration space to this port. This register is compared with BUS[7:0] of the configuration cycle (refer to Table 3-3).

3.34 SAPIC Segment Registers (SSEG[5:0])

The six SSEG registers specify the address ranges allocated for the memory-mapped I/O SAPIC, I/OAPIC, and PCI Hot-Plug regions. The transaction address is compared to these boundaries for proper disposition. For comparison purposes, address bits 43:20 are 000FECh (refer to Section 4.1.3, "SAPIC/IOAPIC and PCI Hot-Plug Ranges" for how these registers are decoded by the SIOH).

 Device:
 Node_ID

 Function:
 5

 Offset:
 70h, 72h, 74h, 76h, 78h, 7Ah

Bit	Attr	Default	Description
15:13	RV	0	Reserved.
12:0	RW	0	SAPIC Segment Register: This field specifies the boundaries between the five SAPIC/Hot-Plug regions for <i>this</i> SIOH. These bits are compared against bits 19:8 of the transaction address.

3.35 I/O Link Registers (IOL[5:0])

The IOL registers specify the address range allocated for I/O space PCI transactions. The upper five bits of the transaction address (bits 15:11) is compared against the IOL registers for proper disposition. The I/O space for a given Hub Interface port has a 2 KB granularity.

If only one SIOH resides in the system, all of the 64K I/O space should be accounted for with the IOL registers. If two SIOHs reside in the system, both IOL register sets must be programmed so they do not overlap. In addition, the combination of both SIOH IOL register sets should account for the entire 64K I/O space. If there are two SIOH components in the system, IOL[0] of SIOH1 should be programmed to IOL[5] of SIOH0 (where SIOH0 interfaces the ICH4).

Refer to Section 4.1.2, "I/O Space" for how these registers are decoded for proper transaction routing.

Device:	Node_ID
Function:	5
Offset:	80h, 81h, 82h, 83h, 84h, 85h

Bit	Attr	Default	Description
7:6	RV	0	Reserved.
5:0	RW	0	I/O Port Base: This field specifies the base I/O address of a particular Hub Interface port.

3.36 Chip Boot Configuration Registers (CBC)

These registers are used to relocate this chipset's configuration space to a different PCI bus. Information captured from the idle flits is valid only when the idle detection bit in the SPINCO register is set.

Note: BUS[7:0] should always be set to FF and Node ID[4:3] should always be set to 11.

Device:Node_IDFunction:5Offset:98h

Bit	Attr	Default	Description
95:77	RV	0	Reserved.
76:72	RW	See Description	Node ID[4:0]: These bits define the device # of this SIOH. The default value is captured from the NODEID[4:0] pins on the rising edge of hard reset. These bits are sent in the idle flits.
71:67	RW	11111h	Bus[7:3]: The top five bits of this SIOH's configuration bus number. These bits are sent in the idle flits.
66:64	RW	See Description	Bus[2:0]: The lower 3 bits of this SIOH's configuration bus number. The default value is captured from BUSID[2:0] pins on the rising edge of hard reset. These bits are sent in the idle flits.
63:45	RV	0	Reserved
44:40	RO	11111h	SP1 Node ID[4:0]: Device number received from SP1's idle flits.
39:32	RO	FFh	SP1 Bus[7:0]: Bus number received from SP1's idle flits.
31:16	RV	0	Reserved
15	RWS	0	StopOnErr:
			0 If an agent has detected an error and has sent an LLRReq and its local retry state machine is in RETRY_LOCAL_IDLE state, then it should not send any info or idle flits and sends a Ctrl flit with LLRIdle.
			1 An agent will send idle or info flits when in RETRY_LOCAL_IDLE state.
14	RWS	0	SndMultAck:
			0 LCC[7] = 0. Up to 25 ACKs will be sent in Byte D[4:0] of idle flits. Idle flits are forced whenever there are multiple acks.
			1 0 or 1 ACK is sent in LCC[7] of idle flits. Byte D = 0.
13	RWS	0	RcvMultAck:
			0 Up to 25 ACKs may be extracted from idle flits. Ack[4:0] = LCC[7] bit-wise OR'ed with Byte D[4:0]. Any particular idle flit will use either LCC[7] or Byte D, but not both.
			1 0 or 1 ACK is extracted from LCC[7] of idle flits.
12:8	RO	11111h	SP0 Node ID[4:0]: Device number received from SP0's idle flits.
7:0	RO	FFh	SP0 Bus[7:0]: Bus number received from SP0's idle flits.

3.37 Boot Flag Registers (BOFL)

To reset these registers back to the default value, system software writes to the SYRE register.

Device: Node_ID Function: 5 Offset: A4h

Bit	Attr	Default	Description
31:8	RV	0	Reserved.
7:0	RO	A5h	Signature: This register is used to select boot strap CPU node. The first time this register is read, it will return a non-zero signature. All reads thereafter will return zeroes.

3.38 Scratch Pad Register (SPAD)

This scratch pad register is available for power-on software usage before any memory is available for use. This register is used during the boot process and SP Hot-Plug.

Device: Node_ID Function: 5 Offset: B0h

Bit	Attr	Default	Description
31:0	RW	0	System Scratch Pad.

3.39 Scratch Pad Register Sticky (SPADS)

This scratch pad register is available for power-on software usage before any memory is available for use. The contents of this register remains sticky through reset. This register is used during the boot process and SP Hot-Plug.

Device: Node_ID Function: 5 Offset: B4h

Bit	Attr	Default	Description
31:0	RWS	0	System Scratch Pad: The contents of this register is sticky.

3.40 **Performance Monitor Control Registers (PERFCON)**

These registers are the common control and status registers for all of the performance monitor counters in the component. They have one control to enable all counters and another control to reset all performance monitor counters and registers to their default state. One status bit for each performance monitor module (two counters per module) is reflected in this register. The PMR registers for the specific module provide detailed status information. The status bit is activated by a count comparison event or an overflow from either counter of the module.

Device: Node_ID Function: 5 Offset: BCh

Bit	Attr	Default	Description
31:11	RV	0	Reserved.
10	RO	0	SPP_PM Count Status: Status reported by the SP0_PM module.
			The OR of both "Event status" bits reported by either SP0_PM module for an overflow or max comparison condition.
9	RO	0	HL4_PM Count Status: Status reported by the HL3_PM module.
			The OR of both "Event status" bits reported by either HL3_PM module for an overflow or max comparison condition.
8	RO	0	HL3_PM Count Status: Status reported by the HL2_PM module.
			The OR of both "Event status" bits reported by either HL2_PM module for an overflow or max comparison condition.
7	RO	0	HL2_PM Count Status: Status reported by the HL1_PM module.
			The OR of both "Event status" bits reported by either HL1_PM module for an overflow or max comparison condition.
6	RO	0	HL1_PM Count Status: Status reported by the HL0_PM module.
			The OR of both "Event status" bits reported by either HL0_PM module for an overflow or max comparison condition.
5:2	RV	0	Reserved.
1	RW	0	Local Count Enable: Enables any counters on this component that have this bit assigned as the enable control in its individual PMR register. Each component counter can be programmed, via its PMR register, to be enabled by this bit or by an external EV pin.
0	RW	0	Reset: Reset all performance monitor registers in this component to default state. This will put every counter in an inactive state and allow programming only the counters of interest. The PERFCON register is not affected by this bit since it can be set to any desired value while setting the Reset control. This bit will automatically be cleared after the reset is completed so a separate programmed operation is not needed to clear it. For diagnostic purposes, the other registers can be read to verify proper operation.

3.41 SP Performance Monitor Response and Control Registers (SP_PMR[1:0])

The PMR registers control operation of their associated counter, and provide overflow or max compare status information.

Device: Node_ID Function: 5 Offset: C0h (SP_PMR[0]), C4h (SP_PMR[1])

Bit	Attr	Default	Description
31:26	RV	0	Reserved.
25	RW	0	Req/RspType Bus Select:
			0 = Request Bus
			1 = Response Bus
24	RW	0	Event Register Select:
			The PME register select events based on the SP header fields. The SP_PME_RSC register selects resource specific events that are mutually exclusive of the SP header events. One or the other of the event sets can be selected.
			0 = SP events
			1 = SP resources
23:22	RW	0	Compare Mode:
			This field defines how the PMCMP register is to be used.
			00 - Compare mode disabled (PMCMP register not used).
			01 - Max compare only: The PMCMP register value is compared with the counter value. If the counter value is greater then Count Compare Status (bit 13) of the "Event Status" field of this register will be set.
			10 - Max compare with update of PMCMP at end of sample: The PMCMP register value is compared with the counter value, and if the counter value is greater, the PMCMP register is updated with the counter value. The Event Status field is not affected in this mode.
			11 - Address compare mode where the PMCMP register is compared with the address field. Counter 0 of a counter pair will compare on an address greater than the register, and counter 1 will compare on an address equal to or lesser than the register (inverse of greater than). When both comparisons are valid, an address range comparison qualification is generated. This mode will cause the address range comparison to be AND'ed with the event qualification specified in the selected PME register of each counter. The Event Status field is not affected in this mode. The Address comparison range is A[38:7].
21:19	RW	0	Reset Event Select:
			Counter and event status will reset and counting will continue.
			000 - No reset condition.
			001 - Partner's event status: When the partner counter causes an event status condition to be activated, either by a counter overflow or max comparison, then this counter will reset and continue counting.
			010 - Partners PME register event: When the partner counter detects a match condition that meets its selected PME register qualifications, then this counter will reset and continue counting.
			011 - Reserved
			100 - EV0 pin
			101 - EV1 pin
			110 - EV2 pin
			111 - EV3 pin

Offset:	C0h	(SP_PMR	{[0]), C4h (SP_PMR[1]) (Continued)			
Bit	Attr	Default	Description			
18:16	RW	0	Count Event Select:			
			This field determines the counter enable source.			
			000 - PME register event.			
			001 - Partner event status (max compare or overflow).			
			010 - All clocks when enabled.			
			011 - Reserved			
			100 - EV0 pin			
			101 - EV1 pin			
			110 - EV2 pin			
			111 - EV3 pin			
15:14	RW	0	Count Mode:			
			00 - Count event selected by Count Event Select field.			
			01 - Count clocks after event selected by Count Event Select field.			
			10 - Count transaction length of event selected by Count Event Select field.			
			11 - Reserved			
13:12	RW	0	Event Status:			
			This status bit captures an overflow or count compare event. The Event Status Output field can be programmed to allow this bit to be driven to an external EV pin.			
			00 - No event.			
			x1 - Overflow -The PMD counter overflow status.			
			1x - Count compare - PMD counter greater than PMCMP register when in compare mode.			
			This bit is sticky in that once an event is reported the status remains even though the original condition is no longer valid. This bit can be cleared by software or by starting a sample. Event status is always visible in the PERFCON register, except if "Event Status Output" field is in cascade mode. Note, if in address compare mode (compare mode = 11), the count compare bit is not activated.			
11:9	RW	0	Event Status Output:			
			This field selects where event status is reported, or an address compare if in address compare mode (compare mode = 11).			
			000 - Event status reported only in PERFCON register.			
			001 - Event status (overflow) reported to partner only. Used for cascading event counters.			
			100 - Event status or address comparison in PERFCON and on EV0 pin.			
			101 - Event status or address comparison in PERFCON and on EV1 pin.			
			110 - Event status or address comparison in PERFCON and on EV2 pin.			
			111 - Event status or address comparison in PERFCON and on EV3 pin.			

Device: Node_ID Function: 5 Offset: C0h (SP_PMR[0]), C4h (SP_PMR[1]) (Continued)

Configuration Registers

Bit	Attr	Default	Description		
8:5	RW	0	Counter Disable Source:		
			These bits control which input disables the counter. Note, if the "Enable Source" is inactive counting is also disabled.		
			1xxx - EV3 pin		
			x1xx - EV2 pin		
			xx1x - EV1 pin		
			xxx1 - EV0 pin		
4:2	RW	0	Counter Enable Source:		
			These bits identify which input enables the counter. Default value disables counting. 000 - Disabled		
			001 - PERFCON local_count_enable field.		
			010 - Partner event status (max compare, overflow, or cascade).		
			011 - Reserved		
			100 - EV0 pin		
			101 - EV1 pin		
			110 - EV2 pin		
			111 - EV3 pin		
1	RW	0	Clear Overflow: This bit clears the overflow bit in associated PMD counter. The counter continues counting. This bit is cleared by hardware when the operation is complete.		
0	RW	0	Reset: Setting this bit resets all registers associated with this counter to the default state. It does not change this PMR register since any desired value can be loaded while setting the Reset bit. This Reset bit will clear itself after the reset is completed. For diagnostic purposes, the contents of the other registers can be read to verify operation of this bit. There is also a reset bit in the PERFCON register that clears all counter registers including the PMR.		

Device: Node_ID Function: 5 Offset: C0h (SP_PMR[0]), C4h (SP_PMR[1]) (Continued)

3.42 SP Performance Monitor Event Registers (SP_PME[1:0])

The SP performance counter logic provides the ability to monitor packets received by the SP interface of the SIOH. Events related to processor-generated PCI device requests and responses to PCI-initiated memory reads can be monitored.

The PME register is divided into major sub-groups. For some sub-groups, the events within a group are OR'ed together.

Bit	Attr	Default	Description	
31:28	RW	0	DFT Events Mask (OR'ed group)	
27:25	RW	0	DLEN Field: Encodes the length of the transaction.	
			111 - Any length	
			000 - 0-8 bytes	
			001 - 16 bytes	
			010 - 32-bytes	
			011 - 64-bytes	
			100 - 128-bytes	
			101 to 110 - Reserved	
24:21	RW	0	Attribute:	
			1111 - All attributes selected.	
			xxxx - Value of the attribute field of the packet used to select (except 1111).	
20:16	RW	0h	Packet Src Node:	
			11111 - All sources.	
			xxxxx - Value of the Src Node ID used to select (except 11111).	
15:14	RW	00	SP Port Select:	
			00 - Reserved	
			01 - SP0	
			10 - SP1	
			11 - SP0 or SP1	
Packet	Type Se	election G	roup	
13:7	RW	0	Type_Data:	
			ххххууz	
			For request packets, the fields are:	
			 xxxx is the request type major encoding. 	
			 yy is the request type minor encoding. 	
			z is the coherency bit.	
			For response packets, the fields are:	
			xxxx is the response type.	
			 yy indicates the completion bit value (0y). 	
			z is the coherency bit.	
6:0	RW	0	Type_Mask: Determines which bits of the Type_Data field to be used in selecting the event. A value of 7Fh (all 1's) selects all packets.	

Device: Node_ID Function: 5 Offset: C8h (SP_PME[0]), CCh (SP_PME[1])

3.43 SP Performance Monitor Resource Event Registers (SP_PME_RSC[1:0])

These registers contain resource selections that are mutually exclusive to the event selections. These selections are not qualified by the event selections. Each individual field selection is OR'ed with the other fields to generate the counter match condition. These registers are selected via the Event Register Select Field in the PMR register.

Bit	Attr	Default	Description	
31:3	RW	0	Reserved.	
2:0	RW	0	Write Cache:	
			000 - Disable count.	
			001 - Miss - Inbound write (request for ownership) results in a miss of the write cache.	
			010 -Inbound Hit Modified (unowned by any IOQ)- An inbound write hits a modified line in the write cache.	
			011 - Inbound Hit Modified, Stolen (different IOQ steals the line owned by another IOQ) - An inbound write hits a modified line in the write cache.	
			100 - Inbound Hit Exclusive (different IOQ steals the line)- An inbound write hits an exclusive line in the write cache.	
			101 - Outbound Invalidate Modified - Results in an implicit writeback.	
			110 - Outbound Invalidate Exclusive - SIOH gives up ownership of the line to the initiator on the SP.	
			111 - Line Eviction - Results in an explicit writeback.	

Device: Node_ID Function: 5 Offset: D0h (SP_PME_RSC[0]), D4h (SP_PME_RSC[1])

3.44 SP Performance Monitor Data Registers (SP_PMD[1:0])

These registers are the actual counter value. The overflow bit can be cleared via the PMR register without perturbing the value of the counter. This counter is reset at the beginning of a sample period. The counter can be preloaded to cause an early overflow, otherwise it will be reset at the start of a sample period.

Device: Node_ID Function: 5 Offset: D8h (SP_PMD[0]), DCh (SP_PMD[1])

Bit	Attr	Default	Description			
31	RW	0	Overflow.			
30:0	RW	0	Current counter value.			

3.45 SP Performance Monitor Compare Register (SP_PMCMP[1:0])

The compare register can be used three ways as selected in the "Compare Mode" field of the PMR register. First, when PMD is incremented, the value of PMD is compared to the value of PMCMP. If PMD is greater than PMCMP, this status is reflected in the PERFCON register and/or on EV pins as selected in the "Event Status Output" field of the PMR register. Secondly, update the PMCMP register with the value of PMD if the PMD register exceeds the contents of PMCMP.

The third mode is an address comparison mode. PMD0 compares on addresses greater than the PMCMP0 register, and PMD1 compares on addresses less than or equal to PMCMP1. The "AND" of these two comparisons is the address range comparison and it qualifies the other match event conditions for both counters. Note that the contents of PMCMP are compared to A[38:7].

Device: Node_ID Function: 5 Offset: E0h (SP_PMCMP[0]), E4h (SP_PMCMP[1])

Bit	Attr	Default	Description
31:0	RW	FFFF_FFFh	Counter compare value.

3.46 Error Command Registers (ERRCOM)

These registers enable error checking and flagging on various error conditions.

Device: Node_ID Function: 6 Offset: 40h

Bit	Attr	Default	Description			
15	RV	0	Reserved.			
14:10	RW	11111	SP Timer Duration: Time-out = 2^{size} cycles, where <i>size</i> is determined by the value of this field. Maximum value is 24 (the timer is a 24-bit counter, incrementing at core clock divided by 8, or 25 MHz). The maximum time-out is approximately 2X the timer duration. If this field is all ones, the SP Timer is disabled.			
9:3	RV	0	Reserved.			
2	RW	0	Error Freeze on Fatal Error:			
			0 = Normal operation.			
			1 = Disable Hub Interfaces and SP interfaces when a fatal error is signaled or observed on the ERR[2:0]# pins.			
1	RW	0	Error Freeze Upon Non-Correctable Error:			
			0 = Normal operation.			
			1 = Disable Hub Interfaces and SP interfaces when a non-correctable error is signaled or observed on the ERR[2:0]# pins.			
0	RW	0	Error Freeze Upon Correctable Error:			
			0 = Normal operation.			
			1 = Disable Hub Interfaces and SP interfaces when a correctable error is signaled or observed on the ERR[2:0]# pins.			

Configuration Registers

3.47 First Error Status Registers (FERRST)

Errors are classified into two basic types: fatal (or non-recoverable) and non-fatal (or recoverable). Non-fatal errors are further classified into correctable and non-correctable errors. First fatal and/or non-fatal errors are flagged in the FERRST register. At most two errors can be reported by the FERRST; one for non-recoverable (or fatal) errors, one for recoverable (or uncorrectable and correctable) errors.

Associated with some of the errors flagged in the FERRST register are control and data logs. In some cases, the logs are duplicated for the same error. Fields in the FERRST register identify which unit has the corresponding error. Once a first error for a type of error has been flagged (and logged), the log registers for that error type remain fixed until either the bit associated with the error type in the FERRST is cleared, or a power-on reset. Contents of the error logs are not reliable unless an error associated with the log is reported in FERRST.

When the first error of a type is detected (fatal, uncorrectable, correctable), the value of the error status pin associated with this error type is latched in the FERRST register.

Device: Node_ID Function: 6 Offset: 44h

Bit	Attr	Default	ERR Type	Description
63	ROS	Last State of ERR[2]# (inverted)	N/A	Last Fatal Error State: The value on the ERR[2]# pin input (inverted for active high indication) is captured here immediately when a fatal error is latched in the FERRST. This allows software to identify the component that drove the first <i>fatal</i> error when the ERR[2:0]# pins are wired-or together with the other components.
62	ROS	State of last ERR[1]# (inverted)	N/A	Last Uncorrectable Error State: The value on the ERR[1]# pin input (inverted for active high indication) is captured here immediately when an Uncorrectable error is latched in the FERRST. This allows software to identify the component that drove the first <i>uncorrectable</i> error when the ERR[2:0]# pins are wired-or together with the other components.
61	ROS	State of last ERR[0]# (inverted)	N/A	Last Correctable Error State: The value on the ERR[0]# pin input (inverted for active high indication) is captured here immediately when a correctable error is latched in the FERRST. This allows software to identify the component that drove the first <i>correctable</i> error when the ERR[2:0]# pins are wired-or together with the other components.
60:57	RV	0	N/A	Reserved.
Start of	SPP Erro	or Bits		
56	RCS	0	Fatal	SP Protocol Error: Set when the SP protocol state machines wind up in an indeterminate state, or for protocol errors.
55	RCS	0	Fatal	SP Queue/Buffer (LRB) Time-out Error: Refer to the ERRCOM register.
54	RCS	0	Fatal	Received <i>Failed</i> or Unexpected Unsupported Response: Set if a Failed or Unexpected unsupported response is received on the SP.
53	RCS	0	Fatal	Strayed SP Transaction: Set when strayed transactions are detected on SP cluster. A "strayed" transaction is one where a completion returns for a transaction that was never requested.
52	RV	0	N/A	Reserved.

Device: Node_ID

Offset:	Offset: 44h (Continued)				
Bit	Attr	Default	ERR Type	Description	
51	RCS	0	Unc	Partial Merge Multi-Bit Data ECC Error: A partial write occurs to the write cache (requiring a RMW) and a multi-bit ECC error is detected on the data. ECC checking, correction and/or poisoning is done within the 8-byte boundary of the partial write.	
50	RCS	0	Corr	Partial Merge Single-Bit Data ECC Error: A partial write occurs to the write cache (requiring a RMW) and a multi-bit ECC error is detected on the data. ECC checking, correction and/or poisoning is done within the 8-byte boundary of the partial write.	
49	RCS	0	Corr	 Illegal SP Address Error: Set when an illegal address is detected on the SP. This includes an inbound access when: Both SP ports are disabled. 	
				• An inbound access targeting an inoperative SP port (unframed).	
				Outbound SP requests with illegal attributes.	
				 Outbound addresses that miss all the SIOH address range registers. 	
48	RCS	0	Corr	Received Master Abort Response: Set if a master abort response is received on the SP.	
Start of	Hub Inte	rface Error	Bits		
47:45	ROS	000	N/A	Hub Interface Fatal Error Pointer: If a Hub Interface cluster has reported the first fatal error, this field indicates which cluster has reported the error.	
				000 - Hub Interface Port 0	
				001 - Hub Interface Port 1	
				010 - Hub Interface Port 2	
				011 - Hub Interface Port 3	
				100 - Hub Interface Port 4	
				101 to 111 - Reserved	
44:42	ROS	0	N/A	Hub Interface Uncorrectable Error Pointer: If a Hub Interface cluster has reported the first non-fatal error and the error is uncorrectable, this field indicates which cluster has reported the error.	
				000 - Hub Interface Port 0	
				001 - Hub Interface Port 1	
				010 - Hub Interface Port 2	
				011 - Hub Interface Port 3	
				100 - Hub Interface Port 4	
				101 to 111 - Reserved	
41:39	ROS	0	N/A	Hub Interface Correctable Error Pointer: If a Hub Interface cluster has reported the first non-fatal error and the error is correctable, this field indicates which cluster has reported the error.	
				000 - Hub Interface Port 0	
				001 - Hub Interface Port 1	
				010 - Hub Interface Port 2	
				011 - Hub Interface Port 3	
				100 - Hub Interface Port 4	
				101 to 111 - Reserved	
38	RCS	0	Fatal	Hub Interface Header Multi-Bit ECC Error (Hub Interface 2.0) or Parity Error (Compatibility Port): Set if a multi-bit ECC error (Hub Interface 2.0)or parity error (Hub Interface 1.5) is detected in the header of a Hub Interface packet.	

Offset:	44h (Continued)		
Bit	Attr	Default	ERR Type	Description
37	RCS	0	Fatal	Hub Interface - Received DO_SERR# Message: The SIOH received a DO_SERR# special cycle on the Hub Interface.
36	RCS	0	Fatal	 Received Illegal Hub Interface Request, Unexpected or Invalid Response: The SIOH received an unsupported transaction: Inbound I/O read or write transaction. Inbound Configuration read or write transaction. Inbound Unsupported Special cycle. Inbound Locked read or write transactions. Any inbound write with a completion required. Any outbound completion that does not match with any pending outbound request.
35	RV	0		Reserved.
34	RCS	0	Unc	Received Hub Interface Target Abort: A Hub Interface outbound read or delayed write receives a Target Abort completion.
33	RCS	0	Unc	Inbound Hub Interface Multi-Bit Data ECC Error (Hub Interface 2.0) or Parity Error (Compatibility Port): Set if a multi-bit ECC error (Hub Interface 2.0) or parity error (Hub Interface 1.5) is detected in the data of a Hub Interface packet. This bit applies to data flowing inbound (inbound write and outbound read completion).
32	RCS	0	Unc	Outbound Multi-Bit Data ECC Error at Hub Interface 1.5 Cluster: Before forwarding a packet on Hub Interface 1.5 (SIOH end points), the Hub Interface cluster detects a multi-bit ECC error on the <i>data</i> . This bit applies to data flowing outbound (outbound write and inbound read completion).
31	RV	0		Reserved.
30	RCS	0	Corr	Inbound Hub Interface 2.0 Single-Bit Data ECC Error: Set if a single-bit ECC error is detected in the data of a Hub Interface packet. This bit applies to data flowing inbound (inbound write and outbound read completion).
29	RCS	0	Corr	Received Hub Interface 2.0 Header Single-Bit ECC Error : Set if a single-bit ECC error is detected in the header of a Hub Interface packet.
28	RCS	0	Corr	Outbound Single-Bit Data ECC Error at Hub Interface 1.5Cluster: Before forwarding an outbound write or inbound read completion packet on Hub Interface 1.5 (SIOH end points), the Hub Interface cluster detects a single bit ECC error on the <i>data</i> .
27	RCS	0	Corr	Hub Interface Illegal Address Error: Set when an inbound illegal address is detected at the Hub Interface interface.
26	RCS	0	Corr	Received Master Abort on Hub Interface or unimplemented special cycle: This bit is asserted when the SIOH receives a master abort termination on the bus for an outbound transaction, or a special cycle that is not implemented by the interfacing component.
25:18	RV	0	N/A	Reserved.

Device: Functio	Device: Node_ID Function: 6					
Offset:	Offset: 44h (Continued)					
Bit	Attr	Default	ERR Type	Description		
Start of	Start of SPL Error Bits					
17:15	RV	0		Reserved.		
14	ROS	0	N/A	 SPL Fatal Error Pointer: If an SPL has reported the first fatal error, this field indicates which SP has reported the error. 0 = SP 0 1 = SP 1 		
13	ROS	0	N/A	SPL Uncorrectable Error Pointer: If an SPL has reported the first non-fatal error and the error is an uncorrectable error, this field indicates which SP has reported the error.		
12	ROS	0	N/A	SPL Correctable Error Pointer: If an SPL has reported the first non-fatal error and the error is a correctable error, this field indicates which SP has reported the error.		
11	RCS	0	Fatal	Link Error: Failed SP LLR, LLR not enabled, or strobe glitch error.		
10	RCS	0	Unc	SP Multi-Bit Data ECC Error.		
9	RCS	0	Corr	Idle Flit Duplication Error.		
8	RCS	0	Corr	Parity Error on the Link.		
7	RCS	0	Corr	SP Single-Bit Data ECC Error.		
Start of	Configu	ration Error	Bits	•		
6:2	RV	0h		Reserved.		
1	RCS	0	Fatal	Configuration Multi-Bit Data ECC Error: This bit is set when a multi-bit ECC error was detected on data written to the SIOH configuration registers.		
0	RCS	0	Corr	Configuration Single-Bit Data ECC Error: This bit is set when a single-bit ECC error was detected on data written to the SIOH configuration registers.		

Refer to Table 3-6 for the logging registers used with each group.

Table 3-6. Error Log Register Grouping

Error Bit Group	Logging Registers
SPP	RECSPP, NRECSPP
Hub Interface	RECHUB, REDHUB, NRECHUB, PCISTS
SPL	RECSPL[1:0], REDSPL[1:0]
Configuration	RECSPP

3.48 **Two or More Errors Status Register (SERRST)**

This register indicates that two or more instances of errors have happened in the SIOH. Multiple bits can be set in this register. Each bit in this register (except FERRST[63:61]) corresponds to the same bit descriptions in the FERRST register.

Note: Multiple error occurrences cause the pointer fields of this register (SERRST[14:12] and SERRST[47:39]) to be invalid.

Device: Node_ID Function: 6 Offset: 4Ch					
Bit	Attr	Default	ERR Type	Description	
63:57	RV	0	N/A	Reserved.	
56:0	See the FERRST register for the definition, attribute and default state of each bit.				

3.49 Error Mask Registers (ERRMASK)

The size of this register exactly matches the size of FERRST register. Each bit in this register will mask the corresponding bit in FERRST and SERRST. "Mask" here means that while the corresponding bit in FERRST or SERRST register can still be set or cleared, it won't trigger events on ERR[2:0]#.

Device: Node_ID Function: 6 Offset: 54h

Bit	Attr	Default	Description	
63:57	RV	0	Reserved.	
56:0	RW	All 1's	No effect.Mask the corresponding bit in the FERRST and SERRST registers.	

3.50 SPP Recoverable Error Control Register (RECSPP)

This register latches control information for the first non-fatal error detected inside the SP cluster. Not all errors have logs.

Device: Node_ID Function: 6 Offset: 64h

Bit	Attr	Default	Description	
63:0	ROS	0	SP request/response header or internal request/response header.	

3.51 SPP Non-Recoverable Error Control Register (NRECSPP)

This register latches control information for the first fatal error detected inside the SPP cluster. Not all errors have logs.

Device: Node_ID Function: 6 Offset: 78H

Bit	Attr	Default	Description	
63:0	ROS	0	SP request/response header or internal request/response header.	

3.52 SP Interface Control Registers (SPINCO[1:0])

These registers are common across all E8870 chipset components, and they provide the control and status for each SP. Two GPIO pins (GPIO[1:0]) are associated with each SP. These pins are open drain, and are observable and controllable from this register.

Device: Node_ID Function: 6

Offset: 80h (SPINCO[0]), A0h (SPINCO[1])

Bit	Attr	Default	Description	
31:26	RWS	0	Scratch Bits: These bits may be used by software to record information specific to this SP. For example, hot-plug sequencing history.	
25	RO	GPIO[1]	GPIO[1] State: This bit reflects the state of GPIO[1].	
		state	0 = GPIO[1] pin is high.	
			1 = GPIO[1] pin is low.	
24	RO	GPIO[0]	GPIO[0] State: This bit reflects the state of GPIO[0].	
		state	0 = GPIO[0] pin is high.	
			1 = GPIO[0] pin is low.	
23	RWS	0	GPIO[1] Output Enable: This bit configures GPIO[1] as an input or output signal.	
			0 = Do not drive the GPIO[1] pin (input only).	
			1 = Drive the GPIO[1] pin low (open drain output).	
22	RWS	0	GPIO[0] Output Enable: This bit configures GPIO[0] as an input or output signal.	
			0 = Do not drive the GPIO[0] pin (input only).	
			1 = Drive the GPIO[0] pin low (open drain output).	
21	RW	0	INT_OUT:	
			0 = Do not drive the INT_OUT# pin low.	
			1 = Drive the INT_OUT# pin low (open drain output).	
20:19	RO	0	SPAlign: The value of this field reflects the staging delays through the scalability port input mux to frame the transfer of data from the SP source synchronous data transfer to the core clock of the component.	
18:16	RWS	101	Response Credits: Credits supported by this SP port on the response VC. Credit = 2^{size} except that when size >= 101, credit = 25 instead of 32. These bits are sent in the idle flits. Must be set to a value <= 25 for reliable SP operation.	

Configuration Registers

intel®

Device: Node_ID Function: 6 Offset: 80h (SPINCO[0]), A0h (SPINCO[1]) (Continued)

Bit	Attr	Default	Description	
		Delaun		
15:13	RWS	101	except that when size $>= 5$ (101b), credit = 25 instead of 32. These bits are sent in the idle flits. Must be set to a value <= 25 for reliable SP operation.	
12	RW	0	Disable SP Link Level Retry (LLR): When set, this bit will disable link level retry on SP. Note: SP LLR is always disabled during framing/initialization.	
11:9	RO	0	Connecting SP Response Credits: Credits supported by the response VC of the device connected to this SP port. Credit = 2^{size} except that when size= 5 (101b), credit = 25 instead of 32. This field is captured and updated from the idle flits.	
8:6	RO	0	Connecting SP Request Credits: Credits supported by the request VC of the device connected to this SP port. Credit = 2^{size} except that when size = 5 (101b), credit = 25 instead of 32. This field is captured and updated from the idle flits.	
5	RWS	1	Enable SP:	
			0 = The port is disabled. The outputs of the SP excluding SPSync are tri-stated. Deassertion will cause the port to deassert SPSync and enter initialization sequence. Disabling an SP should not be done with a configuration transaction from the same SP as the one being disabled. The configuration write will not complete.	
			1 = Enable SP output drivers. The port must complete initialization and framing before data can be transferred.	
4	RO	0	Idle Flit Acknowledgment Detected: Detected idle_ack from the idle flits received by this SP. This bit is cleared at the beginning of the initialization sequence.	
3	RO	0	Idle Flit Detected: Set during framing when 256 valid idle flits in a row are detected by the SP receiver. This bit is cleared at the beginning of the initialization sequence.	
2	RW	0	Interrupt on SP Idle Flit State Change:	
			1 = A 0->1 transition of the idle-flit-detected bit in the above field will trigger an interrupt from this chip via INT_OUT#.	
			 De-assert the interrupt request controlled by this bit. The open drain interrupt pin (INT_OUT#) may remain asserted if other interrupt conditions exist. 	
			Note that the detection mechanism is initialized at the start of port framing only.	
1	RO	See Description	SP_PRES State: This bit follows the SP_PRES pin associated with this SP. When deasserted, the output of the SP are tri-stated, and transactions targeting the SP are master-aborted.	
0	RW	0	Interrupt on Pin SP_PRES State Change:	
			1 = A 0->1 or 1->0 transition in the above field will trigger an interrupt from this chip (via INT_OUT#).	
			0 = De-assert the interrupt request controlled by this bit. The open drain interrupt pin (INT_OUT#) may remain asserted if other interrupt conditions exist.	

3.53 SPL Recoverable Error Control Register (RECSPL[1:0])

This register latches control information for the first non-fatal error detected inside the SPL cluster. Not all errors have logs.

Device: Node_ID Function: 6 Offset: 84h (RECSPL[0]), A4h (RECSPL[1])

Bit	Attr	Default	Description
63:0	ROS	0	SP request/response header or SP PHIT#, PHIT parity and PHIT, SP LLR retry counts.

3.54 SPL Recoverable Error Data Registers (REDSPL[1:0])

These registers latch Syndrome and ECC information for the first non-fatal error detected inside the SPL cluster. Not all errors have logs.

Device: Node_ID Function: 6 Offset: 84h (REDSPL[0]), A4h (REDSPL[1])

Bit	Attr	Default	Description
15:8	ROS	00h	Syndrome: This field is the calculated syndrome. This field points to the error type (multi or single-bit) and the data bit in error for single-bit errors.
7:0	ROS	00h	ECC: This field is the ECC packet received on the SP for the flit in error.

Configuration Registers

intel

int_{el} Address Map

Address Ranges 4.1

Relatively few memory spaces are positively decoded by the SIOH. Any inbound address that falls outside the regions described in this chapter is routed to the SP interface.

4.1.1 Memory-Mapped I/O

Figure 4-1 shows the memory-mapped I/O map as seen by the SIOH component. There are two MMIO regions for the SIOH. One region is programmed to a window below 4 GB with MMIOBL, MMIOLL, and MMIOSL[5:0] while the other is programmed above 4 GB with MMIOBH, MMIOLH, and MMIOSH[5:0]. The registers defining each of these regions are described in Chapter 3, "Configuration Registers". These registers restrict the low MMIO granularity to 16 MB and the high MMIO granularity to 64 MB.

The purpose for two regions is to support the added requirement of PCI-X, which inherently supports addressing above 4 GB (greater than 32-bit). Applications such as clustering require large MMIO spaces so that one server has a window into the other server's memory space.

Note: Figure 4-1 illustrates an image when there is no memory-mapped I/O space associated with Hub Interface Port 1. In addition, since the ICH4 cannot support MMIO space greater than 32-bits, Port 0 will not be programmed to have a high MMIO range.

For E8870 chipset-based platforms, the MMIOLL register will be programmed to an upper limit of FDFF FFFFh. For ease of BIOS PCI enumeration, the compatibility bus MMIO space is at the top. BIOS sets up the MMIO space for the compatibility bus (bus 0) first. If this space was not at the top, it would need to be first programmed to the top and continually reprogrammed (moved down) throughout the enumeration process.

When the platform supports two SIOH components, MMIOBL, MMIOBH, MMIOLL, and MMIOLH must be programmed identically in both SIOH components. For proper peer-to-peer operation, the MMIOS registers of the second SIOH component must be programmed within MMIOB $\{H/L\}$ and MMIOL $\{H/L\}$.

In order to allow an SIOH to manage a contiguous MMIO space, the base $(MMIOB{H/L})$ or limit Note: register (MMIOL{H/L}) must be programmed to the same value as either MMIOS{H/L}[0] or $MMIOS\{H/L\}[5].$

Figure 4-1 illustrates a correct programming example. Programming the base and limit registers outside of the aperture defined by the contiguous segment registers is an invalid programming model.

Address Map

Figure 4-1. SIOH Memory-Mapped I/O Space Example

To determine where to forward a memory-mapped I/O cycle, refer to Table 4-1.

Table 4-1. Memory-Mapped I/O Cycle Routing

Forward to	Address Comparison	
SPS (inbound only)	MMIOLH >= Address[41:26] > MMIOSH[0] (Address[63:42] = 0)	
	MMIOSH[5] >= Address[41:26] > MMIOBH (Address[63:42] = 0)	
	MMIOLL >= Address[31:24] > MMIOSL[0] (Address[63:32] = 0)	
	MMIOSL[5] >= Address[31:24] > MMIOBL (Address[63:32] = 0)	
Hub Interface Port 0	MMIOSH[0] >= Address[41:26] > MMIOSH[1] (Address[43:42] = 0)	
	MMIOSL[0] >= Address[31:24] > MMIOSL[1] (Address[43:32] = 0)	
Hub Interface Port 1	MMIOSH[1] >= Address[41:26] > MMIOSH[2] (Address[43:42] = 0)	
	MMIOSL[1] >= Address[31:24] > MMIOSL[2] (Address[43:32] = 0)	

Forward to	Address Comparison	
Hub Interface Port 2	MMIOSH[2] >= Address[41:26] > MMIOSH[3] (Address[43:42] = 0)	
	MMIOSL[2] >= Address[31:24] > MMIOSL[3] (Address[43:32] = 0)	
Hub Interface Port 3	MMIOSH[3] >= Address[41:26] > MMIOSH[4] (Address[43:42] = 0)	
	MMIOSL[3] >= Address[31:24] > MMIOSL[4] (Address[43:32] = 0)	
Hub Interface Port 4	MMIOSH[4] >= Address[41:26] > MMIOSH[5] (Address[43:42] = 0)	
	MMIOSL[4] >= Address[31:24] > MMIOSL[5] (Address[43:32] = 0)	

Table 4-1. Memory-Mapped I/O Cycle Routing (Continued)

For example, assume that MMIOSL[0] is programmed to FD and MMIOSL[1] is programmed to F9. This programming indicates that Hub Interface Port 0 claims the range from FA00_0000h to FDFF_FFFFh.

To disable an MMIO range, the base and limit registers for that segment are programmed to the same value. For example, to disable Hub Interface Port 2, program MMIOSH[2] and MMIOSH[3] to the same value and MMIOSL[2] and MMIOSL[3] to the same value.

4.1.2 I/O Space

Figure 4-2 shows the I/O memory map seen by the SIOH. There is a total of 64 KB of legacy I/O space for the system. The SIOH component must be programmed so that I/O spaces do not overlap.

Note: Figure 4-2 illustrates the image when there is no I/O space associated with Hub Interface Port 3.

Refer to Table 4-2 to determine where to forward an I/O cycle based on the I/O address. If the SIOH receives an I/O transaction where the address does not fall within any of the I/O spaces and the attribute is set to DND, then the transaction should be master aborted.

Figure 4-2. SIOH I/O Space

Table 4-2. I/O Cycle Routing

Forward to	Address Comparison
Hub Interface Port 0	IOL[0] <= Address[15:11] < IOL[1]
Hub Interface Port 1	IOL[1] <= Address[15:11] < IOL[2]
Hub Interface Port 2	IOL[2] <= Address[15:11] < IOL[3]
Hub Interface Port 3	IOL[3] <= Address[15:11] < IOL[4]
Hub Interface Port 4	IOL[4] <= Address[15:11] < IOL[5]

Note: The IOL registers have one bit more than the address bits they compare with (15:11). This is necessary since the upper boundary (IOL[5] for example) actually points to one block *above* the port it indicates.

The compatibility port is required to have a 4 KB region allocated to it. The highest dedicated I/O address required for legacy is 0CF9 (reset generator) and therefore exceeds the 2 KB granularity of the SIOH.

4.1.2.1 I/O Space Programming Example

Assume that a single SIOH consumes the entire I/O space (0000 - FFFFh). Table 4-3 lists an example of I/O space partitioning and how the IOL registers would be programmed. In terms of comparison, IOL[5:0] is compared with I/O address[16:11], even though for I/O addresses, A[16] doesn't exist.

Table 4-3. I/O Space Programming Example

Hub Interface	I/O Region	IOL Programming
0	0000 - 3FFFh	IOL[0] = 00h
1	4000 - BFFFh	IOL[1] = 08h
2	C000 - D7FFh	IOL[2] = 18h
3	D800 - EFFFh	IOL[3] = 1Bh
4	F000 - FFFFh	IOL[4] = 1Eh IOL[5] = 20h

4.1.3 SAPIC/IOAPIC and PCI Hot-Plug Ranges

There are five SAPIC/IOAPIC/PCI Hot-Plug ranges (SAR ranges) programmed for the SIOH. Each Hub Interface port correlates with one range implying that the P64H2's two SAPIC and PCI Hot-Plug controllers (one per PCI-X bus) must reside within the same contiguous region.

Refer to Table 4-4 to determine where to forward SAR transactions.

Note: System software must ensure that both the SAPIC and Hot-Plug ranges for the PCI bridge are within the same region.

Figure 4-3. SIOH SAPIC Space

Table 4-4. SAPIC/IOAPIC and PCI Hot-Plug Cycle Routing

Forward to	Address Comparison ¹
SPS (inbound only)	Address[19:8] < SSEG[0]
	SSEG[5] <= Address[19:8]
Hub Interface Port 0	SSEG[0] <= Address[19:8] < SSEG[1]
Hub Interface Port 1	SSEG[1] <= Address[19:8] < SSEG[2]
Hub Interface Port 2	SSEG[2] <= Address[19:8] < SSEG[3]
Hub Interface Port 3	SSEG[3] <= Address[19:8] < SSEG[4]
Hub Interface Port 4	SSEG[4] <= Address[19:8] < SSEG[5]

1. Address[43:20] must match 000FECh.

For example, assume that SSEG[0] is programmed to 000h, and SSEG[1] is programmed to 100h. This programming indicates that Hub Interface Port 0 claims the range from FEC0_0000h to FEC0_FFFFh.

To disable a range, the base and limit registers for that segment are programmed to the same value. For example, to disable Hub Interface Port 2, program SSEG[2] and SSEG[3] to the same value.

Note: The SSEG registers have one bit more than the address bits they compare with (19:8). This is necessary since the upper boundary (SSEG[5] for example) actually points to one block *above* the port it indicates.

Address Map

4.1.4 Compatibility Bus

The IOCTL register defines if the compatibility bus interfaces *this* SIOH component. The compatibility bus is defined as the Hub Interface port interfacing the ICH4 component and is always Hub Interface Port 0 throughout this document. (Refer to Section 3.25, "SIOH Control Registers (IOCTL)" for details.)

4.1.5 VGA Space

The IOCTL register defines the Hub Interface port that connects to the bridge interfacing the video adapter. The SIOH uses this register as a pointer to send accesses to the legacy VGA space. This register allows the VGA adapter to reside on any Hub Interface port. (Refer to Section 3.25, "SIOH Control Registers (IOCTL)" for details.)

4.1.5.1 MDA Space

The IOCTL register defines a bit that enables the legacy Monochrome Display Adapter space on the compatibility bus. This legacy MMIO space comprises 000B_0000h to 000B_7FFFh. If enabled, all inbound MDA accesses are routed to the compatibility port. This routing allows a monochrome adapter to reside on the compatibility bus whereas the VGA adapter might reside wherever the IOCTL indicates. If the bit is disabled, accesses to this range are sent to the VGA port.

4.2 Illegal Addresses

For most illegal accesses, the transaction is master aborted. Master Abort has different specifics depending on the initiating interface.

5.1 SIOH Clocking

This chapter describes the external clocking required for the SIOH. Figure 5-1 illustrates an example of how the SIOH receives and provides clocks between other E8870 chipset components.

Figure 5-1. SIOH Platform Clocking Example

5.2 Reference Clock (SYSCLK)

In all E8870 chipset-based systems, a 200 MHz system clock is provided to the SIOH. This clock has no required phase relationship with respect to the SNC clock. This is possible because there are no common clock signals across the SP. This is the reference clock for all SIOH PLLs. The SIOH has multiple external interfaces: SP, 8-bit Hub Interface and 16-bit Hub Interface. The Hub Interfaces have a base frequency of 66 MHz.

These interfaces have common clock signals and require an in-phase clock at both sides of the interface. In addition, the 8-bit Hub Interfaces require clocks for quad-pumping the source-synchronous data and 16-bit Hub Interfaces require octal-pumping of the source-synchronous data. The SIOH supplies external Hub Interface components with a 66 MHz clock. To minimize cascaded jitter effects, the E8870 chipset requires a 200 MHz system clock be provided to the P64H2 components.

Clocking

5.3 Clock Outputs

For the downstream Hub Interface components, the SIOH provides external 66 MHz and 33 MHz clock outputs, with the 66 MHz clock in phase with the reference clock, and the 33 MHz delayed from the 66 MHz output by 1 to 3.5 ns. The SIOH also provides 266 MHz and 533 MHz source-synchronous clock outputs that are in-phase with the reference. The 33 MHz external clock is the only clock signal NOT guaranteed to rise when the synchronization signal indicates rising edge alignment, due to its lower frequency.

5.4 Feedback and Matching

The external 66 MHz clock output also serves as a feedback path to the PLL in the external Hub Interface clock unit. The path from the pad of the external clock and the feedback off of the external clock tree to the clock unit must be matched. The delay of all output legs should be matched. This will put all external devices in-phase with the reference clock and the Hub Interface internal clocks. The external feedback must be matched to the distribution to the P64H2s and ICH4. Mismatches will degrade or break I/O timings.

5.5 JTAG Test Access Port

Logic circuits exist in the JTAG unit to accommodate metastability and synchronization of TCK to SIOH core clocks for private instructions. Two synchronizers are used to provide rising and falling edge detection of the JTAG clock.

5.6 SMBus Clocking

Logic circuits exist in the SIOH to accommodate metastability and synchronization of the serial clock line (SCL) and the serial data line (SDA) to the SIOH core clocks for processing serial data streams. Also included is a 4-bit counter to suppress glitches less than 60 ns in width.

5.7 Spread Spectrum Support

Spread Spectrum Clocking (SSC) is a frequency modulation technique for EMI reduction. Instead of maintaining a constant frequency, SSC modulates the clock frequency/period along a predetermined path (i.e. the modulation profile), with a predetermined modulation frequency.

The chipset supports SSC. The modulation will be done with a frequency modulation of 30 kHz with a downspread of 0.5%.

5.8 No Stop Clock or Thermal Shutdown

Clocks in the SIOH can not be stopped. There are no power reduction features in the SIOH. However, the E8870 chipset does support power reduction features through other components such as the processor and ICH4.

5.9 Deterministic Systems

In any SIOH system, the core clock and all SP clocks will be deterministic by default, since they are generated off of the 200 MHz system clock and their frequencies are either equal to that 200 MHz, or a multiple of it.

The external CLK33 is CLK66 divided by two. The divider is non-deterministic, so this clock could be non-deterministic as well. It is pointless to clear this divider at the determinism synch-point, since CLK66 will subsequently lose lock, and the 33 MHz phase will not be deterministic when lock is regained.

The phase of this signal can still be made deterministic by creating a reference pulse every sixth 200 MHz clock. After the synchronizing event, this pulse occurs at the same time as every other pulse used to qualify 200 MHz edges for comparison with CLK66. If the 33 MHz clock is ever high on the rising edge of the 200 MHz core clock qualified by the divide-by-6, the 33 MHz clock will be inverted, thus generating a deterministic CLK33. To ensure the proper operation of this scheme, the external trace delay of CLK66 (also CLK33) must be no longer than 8 ns from the point where it leaves the SIOH to its point of delivery.

The above synchronization is not performed if the DET pin is strapped low.

Clocking

intel®
intel Reset

Reset Sequence Overview 6.1

The following sections describe the power-up and reset sequences illustrated in Figure 6-1. The timing parameters are listed in Table 6-1.

Figure 6-1. SIOH Reset Sequence

Table 6-1. Power-Up and Hard Reset Timings

	Description	Min	Max	Unit	Comments
T1	PWRGOOD assertion to RESETI# deassertion.	1	2	ms	PWRGOOD is asserted by the system.
T2	RESETI# deassertion to Hub Interface PLL locked.	0	1000	SYSCLK	Applies only to first RESETI# deassertion when DET is asserted.
Т3	First RESETI# deassertion to start of initial Hub Interface RCOMP.	1024		SYSCLK	A 10-bit counter from PWRGOOD initiates the first RCOMP. Subsequent resets will not affect the periodic RCOMP and this initial RCOMP is not generated.
T4	Hub Interface RCOMP sequence.	0	T5-T3	SYSCLK	
T5	RESETI# complete to RESET66# deassertion.	4002	4007	SYSCLK	
Т6	RESET66# deassertion to NOP request.	16	20	CLK66	Hub Interface 2.0 requires a minimum of 16 clocks. For the ICH4 there is no requirement.
Τ7	NOP request to NOP completion.	0	32	CLK66	ICH4 specification. When NOP returns, HLCTL[8] set.
Т8	NOP completion to CPU_RST_DONE request.	0	10	CLK66	No ICH4 requirement.
Т9	CPU_RST_DONE request to CPU_RST_DONE completion.	0	32	CLK66	ICH4 specification.
T10	CPU_RST_DONE completion to first valid outbound transaction.	0	N/A	CLK66	No ICH4 requirement.
T11	CPU_RST_DONE completion to first valid inbound transaction.	16	N/A	CLK66	SIOH requirement.

Reset

6.2 Power-Up Sequence

When the SIOH sees PWRGOOD asserted, it begins a power-up sequence. PWRGOOD is typically initiated by system power supplies or local DC/DC converter circuits. PWRGOOD resets all system components to a known reset state (except for some battery back-up circuits). PWRGOOD clears all sticky bits.

6.2.1 PWRGOOD Deasserted

The SIOH asserts RESET66# asynchronously.

Internal clocks will not be within specifications while PWRGOOD is deasserted and, therefore, must be treated as asynchronous. All E8870 chipset components will reset any core logic that can be asynchronously reset, and all logic must be forced into a non-destructive state. For example, multiple drivers must not attempt to drive the same signal to different logic values. JTAG chains and any logic clocked by TCK should be cleared. The TAP will not be operational until PWRGOOD is asserted. TCK may or may not be active at this time. All outputs (except for any reset outputs) are placed in a high impedance state.

6.2.2 PWRGOOD Assertion

RESETI# must be asserted by the system for 1 ms after PWRGOOD rises to allow E8870 chipset PLLs to lock. All logic in E8870 chipset components may be reset while RESETI# is asserted the first time after PWRGOOD. Fuse bits are sensed and parallel loaded during PWRGOOD assertion. Fuse bit download that requires sequential operation is not performed at this point as internal clocks are not stable. Clocks stabilize at some point before RESETI# rises, so the parallel loaded fuse information is valid by the time RESETI# rises. Public JTAG chains and any logic clocked by TCK must be operational (even though RESETI# is still asserted). Private JTAG chains need not be operational while RESETI# is asserted.

All logic reset by PWRGOOD may be held in reset until Hard Reset Deassertion. The SIOH drives RESET66# asynchronously to CLK66 to reset Hub Interface devices.

6.2.3 First RESETI# Deassertion

The SIOH continues to assert RESET66# (see Figure 6-1). The SIOH resets all clocks lower than 200 MHz on the synchronization point created by first RESETI# deassertion.

Sticky configuration bits are cleared, and a Hard Reset Deassertion sequence is started to initialize all SIOH states (see Section 6.3.2, "Hard Reset Deassertion"). When RESETI# is deasserted, reset straps (e.g. NodeID and BusID) are sampled and latched.

6.3 Hard Reset

Hard Reset is triggered by setting the SIOH reset bit in the SYRE register or RESETI# assertions. For resets initiated with the SIOH SYRE register, Hard Reset of the SIOH is delayed until T5 after SYRE[0] is set. This allows the configuration write to the SYRE register to complete back to the initiator before the SIOH state machines are reset.

The SIOH behaves the same for all types of Hard Reset. (There is no difference in the SIOH response to a Local or Domain Hard Reset.) Since a Hard Reset Assertion response and a Hard Reset Deassertion response always occur together in the SIOH, they may be combined into a single flow.

6.3.1 Hard Reset Assertion

All logic reset by PWRGOOD may be held in reset between Hard Reset Assertion and Hard Reset Deassertion. Sticky configuration bits are not cleared. RESET66# is driven by the SIOH synchronous to CLK66 to reset Hub Interface devices.

6.3.2 Hard Reset Deassertion

After RESET66# deasserts synchronous to CLK66, the SIOH begins a CPU_RESET_DONE handshake with the ICH4:

- 1. SIOH is done with reset (deassertion of RESET66# and PWRGOOD).
- 2. Send a NOP transaction down the ICH4 Hub Interface. If no completion is received for the NOP transaction (normal or unsupported special cycle), HLCTL[8] is not set and any subsequent transactions targeting the Hub Interface will be master-aborted.
- 3. If a completion is received for the NOP transaction, issue a CPU_RST_DONE special cycle to the ICH4.
- 4. After the SIOH receives the CPU_RST_DONE completion (normal or Unsupported Special Cycle) the SIOH remains idle and begins normal operation. HLCTL[8] for function 0 is set, indicating a present Hub Interface component.

While the SIOH reset sequence is being performed the SIOH cannot issue other transactions to the ICH4.

For a waveform illustrating the above sequence, refer to Figure 6-1.

All other logical outputs of the SIOH should be deterministic from Hard Reset. That is, all storage elements in IOs, PLLs, and synchronous logic (except for sticky configuration bits) should be cleared by Hard Reset. During the Hard Reset sequence, any logic feeding into sticky configuration bits should not change the state of those bits.

Hard Reset Deassertion also invalidates all the read caches, the write cache, LRB, RRB, and all queues throughout the SIOH component.

6.3.3 Non-Existent Hub Interface Devices

It is possible that the SIOH could have Hub Interface 2.0 ports that are not populated by any components. When RESETI# is deasserted, the SIOH samples REQ# on the Hub Interface 2.0 ports. If no component exists, then HLCTL[8] is not set. Once presence is detected, the HLCTL[2] default value is set appropriately. Any further transactions targeting a disabled interface are master aborted.

Note: The default state of the Hub Interface enable bits (HLCTL[2]) is determined by whether a Hub Interface device is detected on the port or not. Software could choose to override this default setting by enabling or disabling that port.

Reset

6.3.3.1 Non-Existent ICH4

For a large system implementing two SIOH components, only one of the SIOHs will interface a ICH4 component. Therefore, the SIOH without an ICH4 will attempt the reset handshake and the NOP will never complete. The default state of HLCTL[2] for function 0 is based on a successful or unsuccessful reset handshake. If the Hub Interface reset state machine completes normally, the interface is enabled. Otherwise, the interface remains disabled and any transactions targeting it are Master Aborted.

Note: The default state of the Hub Interface enable bits (HLCTL[2]) is determined on whether a Hub Interface device was detected on the port or not. Software could choose to override this default setting by enabling or disabling that port.

6.4 Reset Signals

This section describes the different reset signals interfacing the SIOH.

6.4.1 **PWRGOOD**

PWRGOOD will be deasserted as the voltage supplies come up, or may be pulsed after power-on to clear the system. Slew rate requirements are specified in Section 8.8, "Miscellaneous Signal Group". The assertion of power-good signal indicates that external clocks and power at the SIOH is stable.

6.4.2 **RESETI#**

This pin is the Hard Reset input to the SIOH. It may be driven by the ICH4 PCIRST# signal or, if determinism is required, by system reset control logic.

6.4.3 **RESET66#**

This pin is asserted in combination, while RESETI# is asserted asynchronously after PWRGOOD assertion or if the Hard Reset bit is set in the SIOH SYRE register. RESET66# will rise synchronous to CLK66. This pin will be driven to the P64H2 RSTIN# pin, requiring voltage level translation from 1.5V to 3.3V.

6.4.4 DET

The DET pin is strapped high to enable determinism in the SIOH. If high, CLK33 and CLK66 references are reset on first Hard Reset Deassertion.

If this pin is low, the dividers that provide references for these clocks can come up at an arbitrary phase relative to the same clocks on other SIOHs and SNC memory maintenance operations.

Reliability, Availability and Serviceability (RAS)

7.1 Data Integrity

Errors are classified into two basic types: fatal (or non-recoverable) and non-fatal (or recoverable).¹ Fatal errors include protocol errors, parity errors on header fields, time-outs, failed link-level retry, etc. For fatal errors, continued operation of the chipset may be compromised.

The SIOH can continue operations (transactions are completed, resources de-allocated, etc.) with non-fatal errors. Non-fatal errors are further classified into correctable and non-correctable errors. Non-correctable errors are those that are not "corrected" by the SIOH. Non-correctable errors may or may not be correctable by software. Correctable errors include single bit ECC errors, successful link level retry, and those transactions where the SIOH performs a *master abort* of the transaction.

The SIOH indicates an error condition on external pins. A pin (open drain) is provided for each error type (fatal, uncorrectable, and correctable). It is up to the system to decide what is the best course of action upon the detection of an error.

The SIOH provides error logging and error status for the first error detected by the component and error status for subsequent errors. Errors are detected and logged at intermediate entry points (on the inbound SP interface, for example). Errors are also detected and logged at the end points (where the packet is consumed or translated to another interface with different error coverage/detection). For data errors, the end-point is where the error is corrected or the data is poisoned². This method of error correction and error logging is called *end-to-end* error correction.

The data that is logged and the name of the error log is also listed. Some errors may be detected in more than one component, as is the case for many of the SP related errors.

7.1.1 End-to-End Error Correction

ECC errors are passed along to the end point. If the data path does not have ECC all the way, single-bit errors will be corrected just before the first ECC-less interface. Intermediate interfaces will not correct single-bit ECC errors. The ECC check bits and parity check bits are always passed along with data internally. A typical error will leave a trail behind in each component it passes. The system can use this to pinpoint source of error and recover from error conditions.

The SIOH has the following end points for data:

Hub Interface 1.5

- Outbound data cycles:
 - If no ECC error, generate good parity.
 - If SBE, correct the error and generate good parity.
 - If MBE, generate bad parity.

^{1.} These are hardware definitions used by the E8870 chipset, and are not the same error types that are used by software (MCA).

^{2.} ECC data is poisoned by flipping ECC check bits 7:1, which will result in a syndrome value of 11111110. Parity data is poisoned by flipping all of the parity bits associated with the data. Parity data is poisoned by flipping the parity bit.

intəl®

- Inbound data cycles:
 - If no parity error, generate good ECC.
 - If parity error, generate poisoned ECC.

PCI/PCI-X (performed by the P64H2)

- Outbound data cycles:
 - If no ECC error, generate good parity.
 - If SBE, correct the error and generate good parity.
 - If MBE, generate bad parity.
- Inbound data cycles:
 - If no parity error, generate good ECC.
 - If parity error, generate poisoned ECC.

Configuration Registers

- Writes:
 - If no ECC error, write the configuration register with data.
 - If SBE, correct the error and write the configuration register with corrected data.
 - If MBE, drop the write.
- Reads:
 - Generate good ECC from the data.

Partial (unaligned to 8-byte boundary) Write Merge Buffers

- If no ECC error, merge the new data with the old and re-generate ECC.
- If SBE on one or more 8-byte chunks, correct errors, merge the new data with the old and re-generate ECC for the 8-byte chunks.
- If MBE on one or more 8-byte chunks, merge the new data with the old and poison the 8-byte chunks.

7.1.2 Error Reporting

The SIOH provides error status and logging registers that are specific to the E8870 chipset. The E8870 chipset specific registers are implemented in a similar manner across the chipset. In addition, the SIOH provides error status and log registers that are defined as part of the PCI standard interface. Below is a description of the E8870 chipset specific implementations. For details regarding the PCI specific registers, see the *PCI Local Bus Specification*, Revision 2.2.

7.1.2.1 Error Status and Log Registers

Error status registers are provided per component; FERRST (first error status register), and SERRST (second, or subsequent error status register). First fatal and/or first non-fatal errors are flagged in the FERRST register, subsequent errors are indicated in the SERRST. Associated with some of the errors flagged in the FERRST register are control and data logs. In some cases, the logs are duplicated for the same error (for example, two Hub Interfaces on the SIOH may have the same error log registers). When error logs are duplicated, a pointer to the cluster that reported the first error is provided.

The contents of FERRST and SERRST are "sticky" across a reset (where power remains good). This provides the ability for firmware to perform diagnostics across reboots. Note that only the contents of FERRST effects the update of the any error log registers.

To summarize, the rules for the FERRST and SERRST registers and error logs are as follows:

- 1. First fatal and first non-fatal (uncorrectable, correctable) errors are flagged in the FERRST. For example, if a correctable error has been flagged, and a fatal error is detected, the FERRST should be updated to indicated that a fatal error has been detected as well. Both errors will be flagged in the FERRST. At most two bits will be asserted in the FERRST.
- 2. If more than one fatal error is detected simultaneously, the error with the MSB in the FERRST will be selected. If more than one non-fatal error is detected, uncorrectable errors will be selected to be flagged before correctable errors. If two errors of the same sub-type are detected, the MSB algorithm is applied.
- 3. If more than one fatal error is detected simultaneously, one is selected to be flagged in the FERRST, the other is flagged in the SERRST. The same algorithm applies to non-fatal errors.
- 4. In the case where there are multiple duplicate log registers for an error, a pointer to the unit reporting the error is updated in FERRST.
- 5. FERRST, SERRST and error log registers are sticky across reset (where PWRGOOD remains asserted).

7.1.2.2 Error Signaling

Three open-drain error pins are associated with each of FERRST/SERRST registers, one for each error type: fatal, uncorrectable and correctable (ERR[2:0]# respectively). If not masked (ERRMSK register), these pins will reflect the error status of each type in the two error status registers.

The value of the error pins when an error is flagged is also stored in the FERRST to facilitate the identification of the first error in the system. For example, when a first fatal error detected on the component, the value of the error status pin associated with fatal errors is also latched into the FERRST.

For reliable signaling of errors in the system, each component guarantees that the pin associated with the error is asserted within four system clock cycles (200 MHz) after the error is detected by the component. For example, if a multi-bit ECC error is detected at the SP interface in cycle x, the uncorrectable error pin (ERR[1]#) is asserted in cycle x+3. The error pins are asynchronous I/O signals.

7.1.2.3 Error Logs

Control and/or data logs are provided for some errors. The "non-recoverable" error logs are used to log information associated with first fatal errors. The "recoverable" error logs are used for first non-fatal errors.

Once a first error for a type of error has been flagged (and logged), the log registers for that error type remain fixed until either 1) all bits associated with the error type in the FERRST are cleared, or 2) a power-on reset. More specifically, when the status bits associated with fatal errors are cleared in FERRST, updates to the non-recoverable error logs are enabled. When the status bits associated with non-fatal errors are cleared in FERRST, updates to the recoverable error logs are enabled.

7.1.3 Interface Details

Major interfaces in the chipset can be enabled/disable via software to aid fault isolation. Any requests routed to a disabled interface will be master-aborted. Any responses will be absorbed. That is, no issue is required on the disabled interface, but the disabled interface must not assert internal flow control.

Scalability Port

- Data is protected by ECC. ECC is checked only on entry of packets.
- Flits transfers are protected by parity.
- The information contained in the SP control and idle flits packet are protected by both parity and duplication (each field is duplicated on different wires to enhance error detection).
- Link level retry is supported on the SP. Link level retry is entered when parity errors are detected on flits, or when phits within an idle flit have a duplication error.
- Whenever the SIOH returns a Master Abort status, a PCMP_D completion is returned where the data length is zero. In the case where the SIOH receives a *failed* response status, the error is reported immediately to FERRST/SERRST but the transaction continues as if the completion was normal. When a *failed* response status is received, the transaction may not be able to complete. (For instance, a PRIL may receive the data, but never the PCMP due to the failure).

Hub Interface 2.0 Interfaces

- Protected by ECC:
 - ECC checking disabled with HLCTL.
- Inbound transactions that receive a failed response are discarded. A Target Abort will be returned to the initiator with enough data phases to match the initial request.
- Special cycle errors are logged by the SIOH.

Hub Interface 1.5 Interfaces

- 1 parity bit per 32-bit data:
 - Parity checking disabled with HLCTL.
- Special cycles will be logged by SIOH.
- Inbound transactions with fatal errors are discarded. A hard fail completion packet will be returned to the initiator.
- Outbound transactions that encounter fatal errors like target abort should be terminated with hard fail completion (needs support from ICH4).

PCI-X/PCI

- Parity bits are generated and checked independently for each PCI bus:
 - Parity checking disabled with PCICMD.
- Standard PCI checking for aborts, PERR# and SERR# are also done.
- Parity errors or aborts can be configured to assert SERR# special cycles on Hub Interface. The SIOH will log the SERR cycles and assert its error pins.
- Upon receiving hard fail completion from Hub Interface, the failed transaction on PCI-X/PCI will be terminated with target abort (needs support from P64H2 and ICH4).

Configuration Register

• ECC is checked on configuration writes.

Partial Write Merge Buffer

• ECC is checked before the merge.

SMBus

• The SMBus port supports the optional Packet Error Correction feature of *SMBus Specification*, Revision 2.0. This feature allows the slave to append an 8-bit CRC to read completions.

7.1.4 Time-Out

When an entry in the LRB is allocated, it becomes valid and is tracked by the master timer logic. The timer is a 24-bit wrap-around counter, incrementing at 25 MHz (200 MHz core clock divided by 8). The time-out period is programmable (a value in the ERRCOM register that determines the size of the counter). The timer interval must be greater than the worst case latency required in the system to de-allocate the queue entry. For example, the LRB interval must be set to greater than the worst case latency form the SP issue to the response, including contention scenarios for all resources the request must acquire.

An entry times-out if the counter wraps around (toggles the high-order) bit twice. As a result, the time-out period can be from 1x to 2x the timer value.

It is possible for multiple entries in a queue to time-out simultaneously. When a time-out occurs, the hardware selects one entry as the "first error" for logging. The presence of more than one error is indicated in the SERRST registers.

Reliability, Availability and Serviceability (RAS)

intel®

Electrical Specifications

Non-Operational Maximum Rating 8.1

The absolute maximum non-operational DC ratings are provided in Table 8-1. Functional operation at the absolute maximum and minimum ratings is neither implied nor guaranteed. The SIOH should not receive a clock while subjected to these conditions. Functional operating conditions are given in the AC and operational DC tables. Furthermore, although the SIOH contains protective circuitry to resist damage from static discharge, one should always take precautions to avoid high static voltages or electric fields.

Table 8-1. Absolute Maximum Non-Operational DC Ratings at the Package Pin

Symbol	Parameter	Min	Max	Unit	Notes
Tstorage	SIOH Storage Temperature	-10	45	°C	
Vcc (All)	SIOH Supply Voltages with Respect to Vss	-0.50	Operating voltage + 0.50	V	
Vcc (CMOS)	CMOS Buffer DC Input Voltage with Respect to Vss	-0.50	Vcc (CMOS) + 0.50	V	

Operational Power Delivery Specification 8.2

The SIOH power requirements are outlined in this section. All parameters in Table 8-2 are specified at the pin of the component package.

Symbol	Parameter	Min	Typical	Max	Unit	Notes
Vcc15	Core Voltage	1.425	1.5	1.575	V	
ICC _{Core}	Core Current			12.6	Α	а
dICC/dt _{Core}	Core Transient Slew Rate			2.0	A/ns	
Vccsp	Scalability Port Supply Voltage	1.209	1.30	1.391	V	b, c, d
lsp	Scalability Port Current			0.50	А	e, f
dlsp/dt	SP Transient Slew Rate			1.0	A/ns	g
Vcc18= Vth1	1.8 Supply Voltage	1.71	1.8	1.89	V	
Vcc18-I _{CC} = Ith1	1.8 Supply Voltage Transient Current			0.70	A	
dlvcc18=dlth1/dt	1.8 Supply Voltage Transient Slew Rate			1.00	A/ns	
Vcc33	3.3 Volt Supply	3.135	3.3	3.465	V	h
Vcc33-I _{CC}	3.3 Volt Transient Supply Current			0.10	A	1

Table 8-

The maximum ICC current is the worst case specification, (i.e. Vcc max, low temperature and application mix) intended for a. power supply design.

Vccsp budget is ±3% DC, and (DC + AC) at ±7% noise delivered at the pin. b.

- c. The power pins are separated at the package from the Vcc core or other supplies on-die.
- d. The power supply must be local to each component. The SP power supply between two communicating ports needs to be separate.
- e. The current requirement per scalability port (SP) port.
- f. Under normal operating conditions. However, under certain test conditions, Isp might exceed the specification.
- g. The specification is per SP port at the package pin.
- h. I²C circuitry does not contribute significantly to the 3.3V transient load.

8.3 Scalability Port (SP) Signal Group

The SP interface is a source-synchronous interface with coincident data and continuous strobe transmission. The data and strobe signals are launched simultaneously and are expected to arrive at the receiver with the same timing relationship to one another.

Each SP port consists of two strands that are further subdivided into two bundles. Each SP port consists of thirty-two data bits, four 4 ECC bits, two parity bits, two SSO coding bits, two link layer control (LLC) bits, four strobe pairs (eight signal pins), reserved pins, and eight reference voltage pairs (sixteen signal pins).

The simultaneous bi-directional (SBD) signaling can create conditions for three logic levels on the interconnect (0, 0.65, 1.3)V, depending on the data values driven from each end of the trace.

All SBD signals are terminated via on-die termination. The reference voltages are generated on die and are set to 1/4Vccsp and 3/4Vccsp, so no external logic is needed to generate these reference voltages.

Each SP voltage reference pin is required to be interlinked to the corresponding SP port.

Table 8-3 summarizes the signal grouping of the SP interface. The "x" in the signal names is replaced with the specific SP port on the SIOH (0 or 1).

Table 8-3. Scalability Port Interface Signal Group

Signal	Signal Description
SBD I/O	SPxAD[15;0],SPxBD[15;0], SPxASTBP[1:0], SPxASTBPN[1:0], SPxBSTBP[1:0], SPxBSTBPN[1:0], SPxAEP[2:0], SPxBEP[2:0], SPxALLC, SPxBLLC, SPxASSO, SPxBSSO
CMOS1.5 I/O OD ^a	SPxGPIO[1:0]
CMOS1.3 INPUT ^a	SPxPRES ^a
CMOS1.3 I/O	SPxSYNC ^a
Power/Other	Vccsp ^b , Vss
Analog I/O ^c	SPxZUPD[1:0] ^d , SPxAVREFH[3:0], SPxBVREFH[3:0], SPxAVREFL[3:0], SPxBVREFL[3:0] ^e
SP Analog Input	VCCASP ^e , VSSASP

a. See Section 8.8 for "CMOS1.3" specifications.

b. Vccsp is to be supplied to the SP port externally. See Table 8-2.

c. Reference voltages are generated on-die.

d. SPxZUPD0 impedance update pins are connected through a 45-ohm, 1% resistor to Vccsp; SPxZUPD1 impedance update pins are connected through 45-ohm, 1% resistor to Vss.

PLL analog voltage for SP, connected on the motherboard to Vcc15 supply (1.5V nominal ±5%) through a filter network. See Section 8.8.

Hub Interface 2.0 (HI 2.0) Signal Group 8.4

The HI 2.0 is a 16-bit source-synchronous interface. All signals are terminated on-die at the receiver end of the interface to Vss. Table 8-4 summarizes the HI 2.0 signal groups. Unless otherwise noted, all specifications are at the component die pad.

Note: The P64H2 and ICH4 Hub Interface specifications are published independently.

Table 8-4. Hub Interface 2.0 Signal Groups a, b

Signal Group	Туре	Signal Description
Source-Synchronous I/O	iGTL+	HLxPD[17:0], HLxPSTRB[F,S], HLxPUSTRB[F,S]
Common Clock, Output	iGTL+	HLxRQout
Common Clock, Input	iGTL+	HLxRQin
Common Clock, IO	iGTL+	HLxSTOP, HLxIOH
Analog Input	iGTL+	HLxVswing ^c , HLxVref ^c , HLRcomp ^d , VCCAHL ^e , VSSAHL

a. iGTL+ means "inverted" GTL+.

b. The signal name x is replaced with the hub port number on the device (1-4) for SIOH.

Vref and Vswing are supplied on the motherboard. c.

d. Rcomp value is equal to [Zo * (Vcc-Vswing) /Vswing]. Zo = nominal HI 2.0 trace impedance; Vswing = 0.8V; Vcc = typical HI voltage = 1.5v for SIOH HI 2.0.

e. Connected to 1.5V ±5% on the motherboard.

8.4.1 Hub Interface 2.0 DC Specifications

Table 8-5. Hub Interface 2.0 DC Parameters a, b, c

Symbol	Parameter	Min	Мах	Unit	Notes
Vcc	Driver Power Rail	1.425	1.575	V	
Vil	Input Low Voltage	-0.3	Vref – 0.1	V	d
Vih	Input High Voltage	Vref + 0.1		V	d
Vol	Output Low Voltage		0.05	V	e, f
Voh	Output High Voltage	Vswing – 0.05	Vswing +0.05	V	e, f
lli	Input Leakage Current		100	μΑ	
llo	Output Leakage Current		100	μΑ	
loh	Output High Current	-19.6		mA	g
Cin	Input Capacitance		5	pF	
Cclk	Clock input Capacitance	5	8	pF	
∆Cin	Strobe to Data Capacitance Difference		±0.5	pF	

a. All specification are at the die pad.

b. Parameters apply to all inputs, outputs and I/O buffers.

c. All voltages are referenced to Vss.
d. Vil_{min} is a function of the process. Vih_{max} is not defined explicitly but is a function of Voh across the transmission line.
e. Vol@ 1mA. Voh@ (0.6/Zo) mA.

Vol_{min} and Voh_{max} are not valid DC operating points. f.

g. Measured as (Vswing +10%)/(Zo-10%).

Table 8-6. Hub Interface 2.0 Reference Vo	ltages ^{a, b, c, d, e}
---	---------------------------------

Symbol	Parameter	Min	Typical	Max	Units	Notes
HLxVref	HI 2.0 Reference Voltage	0.343	0.35	0.357	V	f
HLxVswing	HI 2.0 Reference Swing Voltage	0.784	0.80	0.816	V	f, g, h

a. All specifications are at the die pad.

b. Resistor-divider chain implemented to generate reference and swing voltages should use less than 1k-ohm resistors in order to ensure the reference voltage tolerance is met over the input leakage specification.
c. All voltages are referenced to Vss and generated from VCC15.

d. Uncorrected noise must be controlled to less than 10% peak to peak of the swing. This tight tolerance is required in order to have enough noise margin for the incoming signal.

e. Based on a 1% divergent variation of resistive ladder. Numbers will additionally scale with Vcc variation.

f. Hub Interface 2.0 reference and swing voltage generation circuitry must be capable of supplying 500 µA while maintaining DC specifications.

g. Change to the Hub Interface specification requires reference swing voltage to be 0.8V.

h. This pin feeds a high impedance input requiring about 50mA of current.

8.5 Hub Interface 1.5 (HI 1.5) Signal Group

The 8-bit Hub Interface is designated as HL0 of the five Hub Interfaces supported on the SIOH.

8.5.1 HI 1.5 Signal Groups

The HI 1.5 is an 8-bit source-synchronous interface for data transfer. All signals are terminated ondie to Vss at the receiving end of the interface. Table 8-7 summarizes the signal groups for HI 1.5.

Table 8-7. Hub Interface 1.5 Signal Group ^{a, b}

Signal Group	Туре	Signal
Source Synchronous, I/O	iGTL	HLPD[7:0]#, HLSTRB[S,F]# ^c
Common Clock, I/O	iGTL	HLSTOP#,HLPAR#
Common Clock, Output	iGTL	HL0RQOUT# ^d
Common Clock, Input	iGTL	HL0RQIN# ^d
Analog Input	NA	HL0RCOMP ^e , HL0VSwing ^f , HL0VREF ^f

a. HI 1.5 signals are all active high asserted on the bus.

b. iGTL means "inverted" GTL with receiver terminated through on die NMOS-resistors to Vss.

c. Strobes are defined as HLSTRBF (first) and HLSTRBS (second).

d. The HL0RQIN# signal of the SIOH will connect to the RQOUT# signal of the opposing chip and vice versa.

e. Please see Section 8.6.1. for RCOMP details.

f. Reference and swing voltages are supplied from the motherboard.

8.5.2 Hub Interface 1.5 DC Specifications

Table 8-8. Hub Interface 1.5 DC Signaling Specifications ^{a, b, c, d}

Symbol	Parameter	Min	Max	Units	Notes
Vcc	Driver Power Rail	1.71	1.89	V	
Vih	Input High Voltage	Vref+0.1	1.2	V	
Vil	Input Low Voltage	-0.3	Vref-0.1	V	
Voh	Output High Voltage	0.65	0.75	V	е

Table 8-8. Hub Interface 1.5 DC Signaling Specifications (Continued) ^{a, b, c, d}

Symbol	Parameter	Min	Мах	Units	Notes
Vol	Output Low Voltage		0.05	V	f
loh	Output High Current	16		mA	g
Cin	Input Capacitance		5	pF	
Cclk	Clock input Capacitance	5	8	pF	
∆Cin	Strobe to Data Capacitance difference		±0.5	pF	

a. All specifications are at the pin of the package.

b. All voltages are referenced to Vss.

c. Parameters apply to all inputs, outputs and I/O buffers.

d. All input and output signal levels must comply with the Vil min, ViH max specification.

e. lout = $0.8/Z_{Target}$.

f. lout = 1mA.

g. Measured at Voh = Vswing/50.

Table 8-9. SIOH Hub Interface 1.5 Reference Voltages a, b, c, d, e

Symbol	Parameter	Min	Typical	Max	Unit	Notes
HL0Vref	HI 1.5 Reference Voltage	0.343	0.35	0.357	V	f
HL0Vswing	HI 1.5 Reference Swing Voltage	0.784	0.8	0.816	V	f, g, h

a. All specifications are at the pin of the package.

b. Resistor-divider chain implemented to generate reference and swing voltages should use less than 1k-ohm resistors in order to ensure the reference voltage tolerance is met over the input leakage specification.

c. Vcc18 is the driver power supply from which both references are generated.

d. Uncorrected noise must be controlled to less than 10% peak to peak of the swing. This tight tolerance is required in order to have enough noise margin for the incoming signal.

- e. This range accounts for 1% divergent variation of the reference voltage generation resistors. The reference voltage will, in addition, vary linearly with Vcc18.
- f. The reference and swing voltage generation circuitry must be capable of supplying 500 uA while maintaining DC specifications.
- g. Change to the Hub Interface specification reconnects HI 1.5 reference swing voltage to be 0.8V.

h. This pin feeds a high impedance input requiring about 50mA of current.

8.6 Analog Inputs

8.6.1 Hub Interface Impedance Compensitation (RCOMP)

The RCOMP pin is to be connected through a resistor to the appropriate voltage rail to make impedance compensation possible. The value of the resistor changes depending on the characteristic impedance of the bus. See Table 8-10 for details.

Note: In all cases, use [1%-tolerance, 1/4 watt] or better resistors.

Table 8-10. Table of Values for the RCOMP Resistor

Component Interface	50-ohm Bus	60-ohm Bus	Tied To:
HI 2.0 ^a	43.2	52.3	Vcc15
HI 1.5 ^b	50	60	GND

a. HI 2.0 RCOMP = [$Z_0 * (VCC15 - Vswing) / Vswing$]. Z_0 = nominal HI trace impedance; Vcc = typical HI voltage = 1.5v for SIOH

HI 2.0.
b. HI 1.5 RCOMP = Z₀ to GND. This is SIOH-dependent for HI 1.5 support. This requirement does not apply to the ICH4 component.

Electrical Specifications

8.6.2 Hub Interface Vref/Vswing Decoupling

Decoupling capacitors used for HI2.0 and HI1.5 Vref/Vswing decoupling must have low equivalent series resistance (ESR) and inductance (ESL). The Vref/Vswing generator and its decoupling must be placed close to the HI interface to derive the benefit of accurately capturing the effect of power supply variations.

Generic guidelines would be a 0.1 uF decoupling capacitor placed as close as possible to the Vref/ Vswing generation resistor divider circuit, and a 0.001 uF bypass capacitor placed as close as possible to the Vref/Vswing pin.

If the Vref/Vswing divider is shared by multiple chips over a distance of greater than 1 inch, then each interface should have its own 0.001 uF bypass cap placed as close as possible to the Vref/Vswing pins. Noise coupling from other signals should be kept to less than 20 mV. The trace spacing around the Vref/Vswing signal should be a minimum of .025 inches (25 mils) or 5X the dielectric thickness (whichever is greater) to reduce the crosstalk and maintain signal integrity.

8.7 SMBus and TAP Signal Group

The SIOH shares the same SMBus and TAP signal groups as the SNC and SPS components of the E8870 chipset, and uses open-drain outputs and its own defined logic levels, which are different than CMOS logic levels.

The TAP connection input signals require external termination. No reference voltage is required for these signals.

The SMBus and TAP signals require termination to 3.3V and 1.5V on the motherboard, respectively.

For specifications for related components, or external tools that will interface with the SIOH, refer to that component's or tool's associated specification.

Table 8-11. SMBus and TAP Interface Signal Group ^a

Signal Group	Signal Description
SMBus (I/O)	SPDCLK, SPDDA, SCL, SDA
TAP (Input)	TCK, TDI, TMS, TRST#
TAP (Output)	TDO

a. I/O designations are with respect to the SIOH component.

Table 8-12. TAP Signal Terminations a, b

тск	27-ohm to GND
TMS	39-ohm to Vcc
TDI ^c	150-ohm to Vcc
TDO, TDI	75-ohm to Vcc
TRST#	500- to 680-ohm to GND

 Termination values for input pins are based on requirements of Intel's in-target probe. Requirements for other applications may differ.

c. This TDI pull-up value applies only to TDI inputs driven by Intel's in-target probe TAP controller.

b. All resistances are nominal with a tolerance allowance of $\pm 5\%$.

SMBus and TAP DC Specifications 8.7.1

Table 8-13, TAP DC Parameters ^a

Symbol	Parameter	Min	Мах	Unit	Notes
Vil	Input Low Voltage	-0.4	0.76	V	
Vih	Input High Voltage	1.16	1.8	V	
V _T -	Negative-going Threshold Voltage	0.76	1.03	V	b
V _T +	Positive-going Threshold Voltage	0.91	1.16	V	b
V _H	Hysteresis Voltage	130		mV	b
Vol	Output Low Voltage	0.34	0.49	V	С
I _{li}	Input Leakage Current		50	μA	С
I _{ol}	Output Low Current	12.7		mA	С

a. All specifications are at the pin of the package.

b. See Figure 8-1.

c. Measured with a 75-ohm ±10% test load to Vcc.

Figure 8-1. TAP DC Thresholds

Table 8-14. SMBus DC Parameters ^{a, b}

Symbol	Parameter	Min	Max	Unit	Notes
Vil	Input Low Voltage	-0.5	0.8	V	
Vih	Input High Voltage	2.1	3.47	V	
Vol	Output Low Voltage		0.4	V	С
lli	Input Leakage Current		50	μA	
lpullup	Current through Pull-up Resistor	4.0		mA	
Cin	Input Capacitance		10	pF	
Vnoise	Signal Noise Immunity	300		mV	d, e

a. All specifications are at the pin of the package.
b. Parameters apply to SMBus inputs, outputs and I/O buffers.
c. At Vol max, lol = 4 mA.
d. At 1 MHz to 5 MHz range.
a. Packta pack

e. Peak-to-peak.

Electrical Specifications

SMBus and TAP AC Specifications 8.7.2

Table 8-15. SMBus Signal Group AC Specifications ^a

Symbol	Parameter	Min	Мах	Unit	Notes
f _{smb}	Operating Frequency	10	100	kHz	
T60	SMBus Output Valid Delay		1.0	us	
T61	SMBus Input Setup Time	250		ns	
T62	SMBus Input Hold Time	300		ns	
T _r	Clock/Data Rise Time		1000	ns	b
Τ _f	Clock/Data Fall Time		300	ns	С
	Bus Free Time	4.70		us	d

a. All AC timings for the SMBus signals are referenced to the SM_CLK signal at 0.5 * SM_VCC at the package pins. All SMBus signal timings (SM_DAT, SM_ALERT#, etc.) are referenced at 0.5 * SM_VCC at the package pins.

b. $T_r = (V_{il,max} - 0.15)$ to $(V_{ih,min} + 0.15)$. c. $T_f = (V_{ih,min} + 0.15)$ to $(V_{il,max} - 0.15)$. d. Minimum time allowed between request cycles.

Table 8-16. TAP Signal Group AC Specifications ^a

Symbol	Parameter	Min	Max	Unit	Notes
	TCK Frequency	1.0	20	MHz	
T58	TCK, TMS, TDI Rise Time	0.5	16	ns	b
T59	TCK, TMS, TDI Fall Time	0.5	16	ns	С
	TDO Rise Time	2.3	4.6	ns	С
	TDO Fall Time	1.2	5.3	ns	С
T60	TDO Clock to Output Delay	2.5	10	ns	С
T61	TDI, TMS Setup Time	5		ns	d, e
T62	TDI, TMS Hold Time	18		ns	е
TRST#	Assert Time	300		ns	

a. All AC timings for the TAP signals are referenced to TCK at 50% voltage level.

b. Rise and fall times are measured from the 20% to 80% points of the signal swing.

c. Referenced to the falling edge of TCK.

Specification for a minimum swing defined between TAP V IL_MAX to V IH_MIN. This assumes a minimum edge rate of d. 0.5V per ns.

e. Referenced to the rising edge of TCK at the component pin.

8.7.3 SMBus and TAP AC Timing Waveforms

Figure 8-2. TAP and SMBus Valid Delay Timing Waveform

Figure 8-3. TCK and SM_CLK Clock Waveform

8.8 Miscellaneous Signal Group

All buffer types that do not belong to one of the major buses in the system are listed as miscellaneous signals (refer to Table 8-17).

Table 8-17. Miscellaneous Signal Group

Signal Group	Signal Description
CMOS1.3 Input	SPxPRES
CMOS1.3 I/O	SPxSYNC
CMOS1.5 I/O OD	ERR[2:0]#, EV[3:0]#, SPxGPIO[1:0]
CMOS1.5 O OD	INT_OUT#

Table 8-17. Miscellaneous Signal Group (Continued)

Signal Group	Signal Description
CMOS1.5 Input	BUSID[2:0], LVHSTLODTEN, NODEID[4:0], PWRGOOD, RESETI# ^a , DET
CMOS1.5 Output	RESET66#
ANALOG INPUT VCC	VREFFBCLK66, VCCACORE ^b , VSSACORE

a. Requires external 330-ohm pull-up resistor.

b. PLL analog voltage input for core PLL, connect to 1.5V ±5% through a network filter.

Table 8-18. VREFFBCLK66 Reference Voltage a, b

Symbol	Parameter	Min	Typical	Мах	Unit	Notes
Vreffbclk66	SIOH 66 MHz Feedback Clock V_{REF}	1.568	1.65	1.733	V	

a. All specifications are at the pin of the package.b. Vreffbclk66 = Vcc33/2.

Miscellaneous Signal DC Specifications 8.8.1

Table 8-19. CMOS 1.3V DC Parameters a, b

Symbol	Parameter	Min	Max	Unit	Notes
Vil	Input Low Voltage	-0.3	0.35	V	
Vih	Input High Voltage	1.11	Vccsp + 0.3	V	
Vol	Output Low Voltage	-0.15	0.26	V	С
Voh	Output High Voltage	1.21	1.39	V	С
l _{li}	Input Leakage Current		10	μA	
Ron_p	On-Resistance P-device	300	700	ohms	
Ron_n	On-Resistance N-device	27	72	ohms	

a. All specifications are at the pin of the package.b. Parameters apply to all CMOS 1.3V buffer types unless otherwise noted.c. Parameters are not applicable to the "CMOS 1.3V Input" signal group.

Table 8-20. CMOS 1.5V Open Drain DC Parameters ^a

Symbol	Parameter	Min	Мах	Unit	Notes
V _{IH}	Input High Voltage	1.15	Vcc + 0.3	V	
V _{IL}	Input Low Voltage	-0.3	0.70	V	
V _{oH}	Output High Voltage	1.3	Vcc + 0.3	V	b
V _{oL}	Output Low Voltage		0.54	V	С
I _{ol}	Output Low Current		52.0	mA	с
l _{li}	Input Leakage Current		50	μA	

a. Supply voltage at $1.5V \pm 5\%$ tolerance. b. RI = 50 or 25 Ohms. c. RI = 25 Ohms.

Table 8-21. CMOS 1.5V DC Parameters ^a

Symbol	Parameter	Min	Max	Unit	Notes
V _{IH}	Input High Voltage	0.90	Vcc+0.3	V	
V _{IL}	Input Low Voltage	-0.30	0.50	V	
V _{oH}	Output High Voltage	0.8*Vcc	Vcc+0.3	V	
V _{oL}	Output Low Voltage		0.20*Vcc	V	
V _{hysteresis}	Hysteresis Voltage	0.10		V	
Ron	Output Impedance	30	80	ohms	
l _{li}	Input Leakage Current		70	μA	

a. Supply voltage at 1.5V ±5% tolerance.

8.8.2 **Miscellaneous Signal AC Specifications**

Symbol	Parameter	Min	Max	Unit	Notes
Тсо	Clock to Output Valid Delay	0.15	15.0	ns	
Tsu	Input Setup Time	N/A		ns	
Thold	Input Hold Time	N/A		ns	
SRf	Output Slew Rate Fall	0.25	0.7	V/ns	
SRr	Output Slew Rate Rise	0.5	15.0	V/ns	

Table 8-22. CMOS 1.3V Open Drain AC Parameters ^a

a. Clock delay is in reference to the 200 MHz clock.

Table 8-23. CMOS 1.5V Open Drain AC Parameters ^{a, b, c}

Symbol	Parameter	Min	Мах	Unit	Notes
Тсо	Clock to Output Valid Delay	0.15	2.69	ns	d, e
Tsu	Input Setup Time	0.98		ns	
Thold	Input Hold Time	0.38		ns	
SRf	Output Slew Rate Fall	0.25	0.91	V/ns	е
SRr	Output Slew Rate Rise	0.37	1.18	V/ns	е
Signal: INT_OUT#					
Тсо	Clock to Output Valid Delay		8.3	ns	

a. Supply voltage at 1.5V ±5% tolerance.
b. Clock delay is in reference to the 200 MHz clock.
c. Specification doesn't apply to signals EV[3:0]#, ERR[2:0]#, SPxGPIO[1:0]. See Table 8-25.

d. Specification doesn't apply to INT_OUT#.
e. RI = 25 ohms.

Table 8-24. CMOS 1.5V Input AC Parameters a, b

Symbol	Parameter	Min	Мах	Unit	Notes	
Тсо	Clock to Output Valid Delay	-0.28	1.44	ns	с	
Tsu	Input Setup Time	0.84		ns		
Thold	Input Hold Time	0.35		ns		
SRf	Output Slew Rate Fall	2.00	5.00	V/ns		
SRr	Output Slew Rate Rise	1.90	4.9	V/ns		
Signal: RES	Signal: RESET66#					
Тсо	Clock to Output Valid Delay		1.7	ns		

a. Supply voltage at 1.5v ±5% tolerance.
b. Clock delay is in reference to the 200 MHz clock.
c. Specification doesn't apply to RESET66#.

Table 8-25. CMOS 1.5 I/O Open Drain AC Parameters

Symbol	Parameter	Min	Max	Unit	Notes	
Signals: EV[3:0]#, ERR[2:0]#					
Тсо	Clock to Output Valid Delay	1.9	5.2	ns		
Tsu	Input Setup Time	0.9		ns		
Thold	Input Hold Time	0.20		ns		
SRf	Output Slew Rate Fall	0.25	0.91	V/ns		
SRr	Output Slew Rate Rise	0.37	1.18	V/ns		
Signal: SPx	Signal: SPxGPIO[1:0]					
Тсо	Clock to Output Valid Delay		6.7	ns		
Tsu	Input Setup Time	2.5		ns		
Thold	Input Hold Time	-2.0		ns		
SRf	Output Slew Rate Fall	0.25	0.91	V/ns		
SRr	Output Slew Rate Rise	0.37	1.18	V/ns		

Clock Signal Groups 8.9

Table 8-26. Clock Signal Groups

Signal Group	Signals
LVHSTL Differential Inputs	SYSCLK, SYSCLK#

Table 8-27. LVHSTL Clock DC Parameters

Symbol	Parameter	Min	Тур	Max	Unit
V _{IH}	Input High Voltage	0.78		1.3	V
V _{IL}	Input Low Voltage	-0.3		0.5	V
V _X	Input Crossover Voltage	0.55		0.85	V
C _{CLK}	Input Capacitance	1.0		11.5	pF

8.9.1 **AC Specification**

Table 8-28. LVHSTL Differential Clock AC Specification

Symbol	Parameter	Min	Тур	Max	Unit	Notes
T _{period}	SYSCLK Period		5.0		ns	а
f _{BCLK}	SYSCLK Frequency	200		200	MHz	a, b
T _{jitter}	SYSCLK Input Jitter			100	ps	a, c
T _{high}	SYSCLK High Time	2.25	2.5	2.75	ns	a, d
T _{low}	SYSCLK Low Time	2.25	2.5	2.75	ns	а
T _{rise}	SYSCLK Rise Time	333	500	667	ps	а
T _{fall}	SYSCLK Fall Time	333	500	667	ps	а
V _{PP}	Minimum Input Swing		600		mV	a, e

a. See Figure 8-4.
b. Measured on cross point of rising edge of SYSCLK and falling edge of SYSCLK#. Long term jitter is defined as peak-to-peak variation measured by accumulating a large number of clock cycles and recording peak-to-peak jitter.

Long term jitter is defined as peak-to-peak variation measured by accumulating a large number of clock cycles and recording c. peak-to-peak jitter.

Measured on cross point of rising edge of SYSCLK and falling edge of SYSCLK#. d.

e. V_{PPmin} is defined as the minimum input differential voltage which will cause no increase in the clock receiver timing.

Figure 8-4. Generic Differential Clock Waveform

Electrical Specifications

intel®

Package and Ballout

9.1 1012-Ball OLGA2b Package Information

The 1012-ball OLGA2b package of the SIOH has an exposed die mounted on a package substrate. The package's coplanarity has a mean of approximately 8-mils and a tolerance at 4-sigma of approximately 4-mils. A heatsink, with appropriate interface material and retention capabilities, is required for proper operation (refer to Figure 9-1 and Figure 9-2).

Figure 9-1. 1012-Ball OLGA2b Package Dimensions – Top View

Package and Ballout

Figure 9-2. 1012-Ball OLGA2b Package Dimensions – Bottom View

Figure 9-3. 1012-Ball OLGA2b Solder Ball Detail

9.2 Ballout – Signal List

Table 9-1. SIOH Ball List

Ball Number	Signal
A3	Vss
A4	Vcc
A5	Vss
A6	HL4PD[15]
A7	Vss
A8	HL4PUSTRBS
A9	Vss
A10	HL4PD[9]
A11	Vcc
A12	HL4PD[6]
A13	Vss
A14	HL4PD[4]
A15	Vss
A16	HL4PD[0]
A17	Vcc18
A18	HL0PD[6]#
A19	Vss
A20	HLOPSTRBS
A21	Vss
A22	HL0PD[0]#
A23	Vss
A24	SP1BD[13]
A25	Vss
A26	SP1BD[15]
A27	Vss
A28	SP1BD[12]
A29	Vss
A30	SP1BSSO
B2	Vss
B3	Vcc
B4	Vss
B5	Vcc
B6	Vcc
B7	HL4PD[13]
B8	Vss
B9	HL4PD[11]
B10	Vss

Ball Number	Signal
B11	HL4PD[16]
B12	Vss
B13	HL4PSTRBF
B14	Vss
B15	HL4PD[2]
B16	Vss
B17	HL0VREF[0]
B18	Vss
B19	HL0PSTRBF
B20	Vss
B21	HL0PD[2]#
B22	Vss
B23	SP1BD[14]
B24	Vccsp
B25	SP1BVREFL[3]
B26	Vss
B27	SP1BVREFH[3]
B28	Vccsp
B29	SP1BD[11]
B30	Vss
B31	SP1BD[5]
C1	Vss
C2	Vcc
C3	Vss
C4	Vcc
C5	Vss
C6	HL4PD[17]
C7	Vss
C8	HL4PUSTRBF
C9	Vss
C10	HL4PD[10]
C11	Vcc
C12	HL4PD[7]
C13	Vss
C14	HL4PSTRBS
C15	Vss
C16	HL4PD[1]

Ball Number	Signal
C17	>= 1k-ohm P/D
C18	HL0PD[7]#
C19	Vss
C20	HL0PD[4]#
C21	Vcc18
C22	HL0PD[1]#
C23	Vss
C24	SP1BD[10]
C25	Vss
C26	SP1BRSVD
C27	Vss
C28	SP1BD[6]
C29	Vss
C30	SP1BD[7]
C31	Vss
C32	SP1BD[4]
D1	Vcc
D2	Vss
D3	Vcc
D4	Vss
D5	Vcc
D6	Vss
D7	HL4PD[14]
D8	Vss
D9	HL4PD[12]
D10	Vss
D11	HL4PD[8]
D12	Vss
D13	HL4PD[5]
D14	Vss
D15	HL4PD[3]
D16	Vcc
D17	Vss
D18	Vcc18
D19	HL0PD[5]#
D20	Vss
D21	HL0PD[3]#
D22	Vss
D23	330-ohm P/D

Ball Number	Signal
D24	Vss
D25	SP1BSTBN[1]
D26	Vccsp
D27	SP1BSTBP[1]
D28	Vss
D29	SP1BVREFL[1]
D30	Vccsp
D31	SP1BVREFH[1]
D32	Vss
E1	HL3PD[0]
E2	Vss
E3	HL3PD[1]
E4	Vcc
E5	HL3RCOMP
E6	HL4RQOUT
E7	Vcc
E8	HL4STOP
E9	Vss
E10	HL4RQIN
E11	Vss
E12	HL4VREF[1]
E13	Vcc
E14	HL4VSWING
E15	Vss
E16	HL4RCOMP
E17	HLORCOMP
E18	HL0STOP#
E19	Vss
E20	HL0PAR#
E21	Vss
E22	N/C
E23	Vss
E24	SP1BD[9]
E25	Vss
E26	SP1BLLC
E27	Vss
E28	SP1BEP[0]
E29	Vss
E30	SP1BD[3]

intel®

Ball Number	Signal
E31	Vss
E32	SP1BD[2]
F1	Vss
F2	HL3PD[2]
F3	Vss
F4	HL3PD[3]
F5	Vss
F6	N/C
F7	Vss
F8	N/C
F9	HL4VREF[0]
F10	LVHSTLODTEN
F11	CLK66
F12	Vss
F13	CLK33
F14	330-ohm P/D
F15	330-ohm P/D
F16	Vss
F17	HL0VSWING
F18	HL0RQIN#
F19	HL0RQOUT#
F20	Vcc18
F21	HL0VREF[1]
F22	Vcc18
F23	SP1PRES
F24	Vccsp
F25	SP1BVREFH[2]
F26	Vss
F27	SP1BVREFL[2]
F28	Vccsp
F29	SP1BSTBN[0]
F30	Vss
F31	SP1BSTBP[0]
F32	Vss
G1	HL3PD[4]
G2	Vss
G3	HL3PSTRBS
G4	Vss
G5	HL3VSWING

Ball Number	Signal
G6	Vss
G7	N/C
G8	Vss
G9	330-ohm P/D
G10	N/C
G11	Vcc
G12	N/C
G13	DET
G14	330-ohm P/D
G15	Vcc
G16	N/C
G17	330-ohm P/D
G18	N/C
G19	Vss
G20	VCCACORE
G21	VSSACORE
G22	VssAHL
G23	SP1SYNC
G24	N/C
G25	Vss
G26	SP1BD[8]
G27	Vss
G28	SP1BEP[2]
G29	Vss
G30	SP1BD[1]
G31	Vss
G32	SP1BEP[1]
H1	Vss
H2	HL3PSTRBF
H3	Vss
H4	HL3PD[5]
H5	Vcc
H6	HL4VREF[2]
H7	Vcc
H8	330-ohm P/D
Н9	330-ohm P/D
H10	Vss
H11	N/C
H12	N/C

Ball Number	Signal
H13	330-ohm P/D
H14	Vss
H15	330-ohm P/D
H16	330-ohm P/D
H17	N/C
H18	Vss
H19	SYSCLK#
H20	VCCASP
H21	VssASP
H22	Vss
H23	SP1ZUPD[0]
H24	Vss
H25	SP1AD[8]
H26	Vccsp
H27	N/C
H28	Vss
H29	SP1BVREFH[0]
H30	Vccsp
H31	SP1BVREFL[0]
H32	Vss
J1	HL3PD[6]
J2	Vss
J3	HL3PD[7]
J4	Vss
J5	HL3VREF[1]
J6	Vss
J7	Vcc
J8	Vcc
J9	Vcc
J10	Vcc
J11	Vcc
J12	Vcc
J13	Vcc
J14	Vcc
J15	Vcc
J16	Vcc
J17	Vcc
J18	330-ohm P/D
J19	VCCAHL

Ball Number	Signal
J20	SYSCLK
J21	Vss
J22	FBCLK66
J23	Vss
J24	SP1AVREFL[2]
J25	Vss
J26	SP1AVREFH[2]
J27	Vss
J28	N/C
J29	Vss
J30	SP1BD[0]
J31	Vss
J32	SP1AD[0]
K1	Vcc
K2	HL3PD[16]
К3	Vcc
K4	HL3PD[8]
K5	Vss
K6	HL3VREF[0]
K7	Vcc
K8	Vss
K9	Vcc
K10	Vcc
K11	Vcc
K12	Vss
K13	Vcc
K14	Vcc
K15	Vcc
K16	Vss
K17	Vcc
K18	Vcc
K19	VCCACOM
K20	VCC33
K21	VssACOM
K22	VREFFBCLK66
K23	SP1ZUPD[1]
K24	Vccsp
K25	SP1ALLC
K26	Vss

intel®

Ball Number	Signal
K27	SP1AD[9]
K28	Vccsp
K29	SP1AVREFL[0]
K30	Vss
K31	SP1AVREFH[0]
K32	Vss
L1	HL3PD[9]
L2	Vss
L3	HL3PD[10]
L4	Vss
L5	HL3RQIN
L6	Vss
L7	Vcc
L8	Vcc
L9	Vcc
L10	Vcc
L11	Vcc
L12	Vcc
L13	Vss
L14	Vcc
L15	Vss
L16	Vcc
L17	Vss
L18	Vcc
L19	Vss
L20	Vcc33
L21	Vss
L22	Vcc
L23	Vss
L24	SP1ASTBP[1]
L25	Vss
L26	SP1ASTBN[1]
L27	Vss
L28	N/C
L29	Vss
L30	SP1AEP[2]
L31	Vss
L32	SP1AD[1]
M1	Vss

Ball Number	Signal
M2	HL3PD[11]
M3	Vss
M4	HL3PD[12]
M5	Vss
M6	N/C
M7	Vcc
M8	Vss
M9	Vcc
M10	Vcc
M11	Vcc
M12	Vss
M13	Vcc
M14	Vss
M15	Vcc
M16	Vss
M17	Vcc
M18	Vss
M19	Vcc
M20	Vss
M21	Vcc
M22	Vss
M23	SP0PRES
M24	Vss
M25	SP1ARSVD
M26	Vccsp
M27	SP1AD[10]
M28	Vss
M29	SP1ASTBP[0]
M30	Vccsp
M31	SP1ASTBN[0]
M32	Vss
N1	HL3PUSTRBS
N2	Vss
N3	HL3PUSTRBF
N4	Vss
N5	HL3STOP
N6	N/C
N7	Vss
N8	Vcc

Ball Number	Signal
N9	Vss
N10	Vcc
N11	Vss
N12	Vcc
N13	Vss
N14	Vcc
N15	Vss
N16	Vcc
N17	Vss
N18	Vcc
N19	Vss
N20	Vcc
N21	Vss
N22	Vcc
N23	Vss
N24	SP1AD[11]
N25	Vss
N26	SP1ASSO
N27	Vss
N28	SP1AEP[1]
N29	Vss
N30	SP1AD[2]
N31	Vss
N32	SP1AD[3]
P1	Vss
P2	HL3PD[13]
P3	Vss
P4	HL3PD[14]
P5	Vcc
P6	Vss
P7	Vcc
P8	Vss
P9	Vcc
P10	Vss
P11	Vcc
P12	Vss
P13	Vcc
P14	Vss
P15	Vcc

Ball Number	Signal
P16	Vss
P17	Vcc
P18	Vss
P19	Vcc
P20	Vss
P21	Vcc
P22	Vss
P23	SPOSYNC
P24	Vccsp
P25	SP1AVREFH[3]
P26	Vss
P27	SP1AVREFL[3]
P28	Vccsp
P29	SP1AVREFH[1]
P30	Vss
P31	SP1AVREFL[1]
P32	Vss
R1	HL3PD[15]
R2	Vcc
R3	HL3PD[17]
R4	Vss
R5	HL3RQOUT
R6	N/C
R7	Vss
R8	Vcc
R9	Vss
R10	Vcc
R11	Vss
R12	Vcc
R13	Vss
R14	Vcc
R15	Vss
R16	Vcc
R17	Vss
R18	Vcc
R19	Vss
R20	Vcc
R21	Vss
R22	Vcc

intel

Ball Number	Signal
R23	Vss
R24	SP1AD[12]
R25	Vss
R26	SP1AD[15]
R27	Vss
R28	SP1AEP[0]
R29	Vss
R30	SP1AD[4]
R31	Vss
R32	SP1AD[7]
T1	Vss
T2	N/C
Т3	Vss
T4	N/C
T5	HL3VREF[2]
Т6	Vss
Τ7	Vcc
Т8	Vss
Т9	Vcc
T10	Vss
T11	Vcc
T12	Vss
T13	Vcc
T14	Vss
T15	Vcc
T16	Vss
T17	Vcc
T18	Vss
T19	Vcc
T20	Vss
T21	Vcc
T22	Vss
T23	SP0ZUPD[0]
T24	Vss
T25	SP1AD[13]
T26	Vccsp
T27	SP1AD[14]
T28	Vss
T29	SP1AD[6]

Ball Number	Signal
T30	Vccsp
T31	SP1AD[5]
T32	Vss
U1	HL2PD[0]
U2	Vss
U3	HL2PD[1]
U4	Vcc
U5	HL2RCOMP
U6	HL2VREF[0]
U7	Vss
U8	Vcc
U9	Vss
U10	Vcc
U11	Vss
U12	Vcc
U13	Vss
U14	Vcc
U15	Vss
U16	Vcc
U17	Vss
U18	Vcc
U19	Vss
U20	Vcc
U21	Vss
U22	Vcc
U23	Vss
U24	Vss
U25	SP0BD[13]
U26	Vccsp
U27	SP0BD[14]
U28	Vss
U29	SP0BD[6]
U30	Vccsp
U31	SP0BD[5]
U32	Vss
V1	Vss
V2	HL2PD[2]
V3	Vss
V4	HL2PD[3]

intel

Ball Number	Signal
V5	Vss
V6	N/C
V7	Vcc
V8	Vss
V9	Vcc
V10	Vss
V11	Vcc
V12	Vss
V13	Vcc
V14	Vss
V15	Vcc
V16	Vss
V17	Vcc
V18	Vss
V19	Vcc
V20	Vss
V21	Vcc
V22	Vss
V23	SP0ZUPD[1]
V24	SP0BD[12]
V25	Vss
V26	SP0BD[15]
V27	Vss
V28	SP0BEP[0]
V29	Vss
V30	SP0BD[4]
V31	Vss
V32	SP0BD[7]
W1	HL2PD[4]
W2	Vss
W3	HL2PSTRBS
W4	Vss
W5	HL2VSWING
W6	Vss
W7	Vss
W8	Vcc
W9	Vss
W10	Vcc
W11	Vss

Ball Number	Signal
W12	Vcc
W13	Vss
W14	Vcc
W15	Vss
W16	Vcc
W17	Vss
W18	Vcc
W19	Vss
W20	Vcc
W21	Vss
W22	Vcc
W23	Vss
W24	Vccsp
W25	SP0BVREFH[3]
W26	Vss
W27	SP0BVREFL[3]
W28	Vccsp
W29	SP0BVREFH[1]
W30	Vss
W31	SP0BVREFL[1]
W32	Vss
Y1	Vss
Y2	HL2PSTRBF
Y3	Vss
Y4	HL2PD[5]
Y5	Vcc
Y6	N/C
Y7	Vcc
Y8	Vss
Y9	Vcc
Y10	Vss
Y11	Vcc
Y12	Vss
Y13	Vcc
Y14	Vss
Y15	Vcc
Y16	Vss
Y17	Vcc
Y18	Vss

intel®

Ball Number	Signal
Y19	Vcc
Y20	Vss
Y21	Vcc
Y22	Vss
Y23	SP0GPIO[0]
Y24	SP0BD[11]
Y25	Vss
Y26	SPOBSSO
Y27	Vss
Y28	SP0BEP[1]
Y29	Vss
Y30	SP0BD[2]
Y31	Vss
Y32	SP0BD[3]
AA1	HL2PD[6]
AA2	Vss
AA3	HL2PD[7]
AA4	Vss
AA5	HL2VREF[1]
AA6	N/C
AA7	Vss
AA8	Vcc
AA9	Vss
AA10	Vcc
AA11	Vss
AA12	Vcc
AA13	Vss
AA14	Vcc
AA15	Vss
AA16	Vcc
AA17	Vss
AA18	Vcc
AA19	Vss
AA20	Vcc
AA21	Vss
AA22	Vcc
AA23	330-ohm P/D
AA24	Vss
AA25	SP0BRSVD

Ball Number	Signal
AA26	Vccsp
AA27	SP0BD[10]
AA28	Vss
AA29	SP0BSTBP[0]
AA30	Vccsp
AA31	SP0BSTBN[0]
AA32	Vss
AB1	Vcc
AB2	HL2PD[16]
AB3	Vcc
AB4	HL2PD[8]
AB5	Vss
AB6	N/C
AB7	N/C
AB8	Vss
AB9	Vss
AB10	Vcc
AB11	Vss
AB12	Vss
AB13	Vcc
AB14	Vss
AB15	Vcc
AB16	Vss
AB17	TDIOCATHODE
AB18	Vss
AB19	Vcc
AB20	Vss
AB21	Vcc
AB22	Vss
AB23	SP0GPIO[1]
AB24	SP0BSTBP[1]
AB25	Vss
AB26	SP0BSTBN[1]
AB27	Vss
AB28	N/c
AB29	Vss
AB30	SP0BEP[2]
AB31	Vss
AB32	SP0BD[1]

Ball Number	Signal
AC1	HL2PD[9]
AC2	Vss
AC3	HL2PD[10]
AC4	Vss
AC5	HL2RQIN
AC6	Vss
AC7	Vss
AC8	Vss
AC9	Vss
AC10	Vss
AC11	Vss
AC12	Vcc
AC13	Vss
AC14	Vss
AC15	Vss
AC16	Vss
AC17	SDA
AC18	Vcc
AC19	NODEID[0]
AC20	NODEID[1]
AC21	Vss
AC22	INT_OUT#
AC23	Vss
AC24	Vccsp
AC25	SPOBLLC
AC26	Vss
AC27	SP0BD[9]
AC28	Vccsp
AC29	SP0BVREFH[0]
AC30	Vss
AC31	SP0BVREFL[0]
AC32	Vss
AD1	Vss
AD2	HL2PD[11]
AD3	Vss
AD4	HL2PD[12]
AD5	Vss
AD6	HL2VREF[2]
AD7	Vss

Ball Number	Signal
AD8	Vcc
AD9	Vss
AD10	Vss
AD11	Vss
AD12	Vss
AD13	Vss
AD14	Vcc
AD15	Vss
AD16	SCL
AD17	Vss
AD18	330-ohm P/D
AD19	BUSID[2]
AD20	Vcc
AD21	N/C
AD22	300-ohm P/D
AD23	SP1GPIO[0]
AD24	SP0BVREFL[2]
AD25	Vss
AD26	SP0BVREFH[2]
AD27	Vss
AD28	N/C
AD29	Vss
AD30	SP0AD[0]
AD31	Vss
AD32	SP0BD[0]
AE1	HL2PUSTRBS
AE2	Vss
AE3	HL2PUSTRBF
AE4	Vss
AE5	HL2STOP
AE6	HL1VREF[0]
AE7	Vss
AE8	Vss
AE9	Vss
AE10	Vcc
AE11	300-ohm P/D
AE12	Vss
AE13	Vss
AE14	Vss

Ball Number	Signal
AE15	ERR#[1]
AE16	VCC33
AE17	Vss
AE18	EVBPOUT#
AE19	Vss
AE20	N/C
AE21	NODEID[2]
AE22	Vcc
AE23	SP1GPIO[1]
AE24	Vss
AE25	SP0BD[8]
AE26	Vccsp
AE27	N/C
AE28	Vss
AE29	SP0AVREFH[0]
AE30	Vccsp
AE31	SP0AVREFL[0]
AE32	Vss
AF1	Vss
AF2	HL2PD[13]
AF3	Vss
AF4	HL2PD[14]
AF5	Vcc
AF6	Vss
AF7	330-ohm P/D
AF8	300-ohm P/D
AF9	Vss
AF10	300-ohm P/D
AF11	Vss
AF12	Vcc
AF13	Vss
AF14	ERR#[0]
AF15	Vss
AF16	TDIOANODE
AF17	BUSID[1]
AF18	Vcc
AF19	N/C
AF20	N/C
AF21	Vss

Ball Number	Signal
AF22	NODEID[3]
AF23	Vss
AF24	N/C
AF25	Vss
AF26	SP0AD[8]
AF27	Vss
AF28	SP0AEP[1]
AF29	Vss
AF30	SP0AD[1]
AF31	Vss
AF32	SP0AEP[2]
AG1	HL2PD[15]
AG2	Vcc
AG3	HL2PD[17]
AG4	Vss
AG5	HL2RQOUT
AG6	N/C
AG7	N/C
AG8	Vcc
AG9	N/C
AG10	HL1VREF[2]
AG11	Vss
AG12	ERR#[2]
AG13	BUSID[0]
AG14	Vcc
AG15	ITEST
AG16	330-ohm P/D
AG17	Vss
AG18	RESETI#
AG19	N/C
AG20	Vcc
AG21	N/C
AG22	N/C
AG23	NODEID[4]
AG24	Vccsp
AG25	SP0AVREFH[2]
AG26	Vss
AG27	SP0AVREFL[2]
AG28	Vccsp

Ball Number	Signal
AG29	SP0ASTBN[0]
AG30	Vss
AG31	SP0ASTBP[0]
AG32	Vss
AH1	Vss
AH2	Vcc
AH3	Vss
AH4	Vcc
AH5	Vss
AH6	HL1RCOMP
AH7	Vss
AH8	HL1VSWING
AH9	Vcc
AH10	HL1VREF[1]
AH11	Vss
AH12	HL1RQIN
AH13	Vss
AH14	HL1STOP
AH15	Vcc
AH16	HL1RQOUT
AH17	TDO
AH18	TMS
AH19	Vss
AH20	N/C
AH21	N/C
AH22	Vcc
AH23	EVBPIn#
AH24	SP0AD[9]
AH25	Vss
AH26	SPOALLC
AH27	Vss
AH28	SP0AEP[0]
AH29	Vss
AH30	SP0AD[3]
AH31	Vss
AH32	SP0AD[2]
AJ1	Vcc
AJ2	Vss
AJ3	Vcc

Ball Number	Signal
AJ4	Vss
AJ5	Vcc
AJ6	Vcc
AJ7	HL1PD[3]
AJ8	Vss
AJ9	HL1PD[5]
AJ10	Vss
AJ11	HL1PD[8]
AJ12	Vss
AJ13	HL1PD[12]
AJ14	Vss
AJ15	HL1PD[14]
AJ16	Vss
AJ17	TDI
AJ18	Vcc
AJ19	EV#[1]
AJ20	N/C
AJ21	Vss
AJ22	N/C
AJ23	N/C
AJ24	Vss
AJ25	SP0ASTBN[1]
AJ26	Vccsp
AJ27	SP0ASTBP[1]
AJ28	Vss
AJ29	SP0AVREFL[1]
AJ30	Vccsp
AJ31	SP0AVREFH[1]
AJ32	Vss
AK1	Vss
AK2	Vcc
AK3	Vss
AK4	Vcc
AK5	Vss
AK6	HL1PD[1]
AK7	Vss
AK8	HL1PSTRBS
AK9	Vss
AK10	HL1PD[7]

Ball Number	Signal
AK11	Vcc
AK12	HL1PD[10]
AK13	Vss
AK14	HL1PUSTRBF
AK15	Vss
AK16	HL1PD[17]
AK17	TSO
AK18	RESET66#
AK19	EV#[2]
AK20	Vcc
AK21	N/C
AK22	N/C
AK23	Vss
AK24	SP0AD[10]
AK25	Vss
AK26	SP0ARSVD
AK27	Vss
AK28	SP0AD[6]
AK29	Vss
AK30	SP0AD[7]
AK31	Vss
AK32	SP0AD[4]
AL2	Vss
AL3	Vcc
AL4	Vss
AL5	Vcc
AL6	Vss
AL7	HL1PD[2]
AL8	Vss
AL9	HL1PSTRBF
AL10	Vss
AL11	HL1PD[16]
AL12	Vss
AL13	HL1PD[11]
AL14	Vss
AL15	HL1PD[13]
AL16	Vcc
AL17	TRST#
AL18	PWRGOOD
AL19	Vss
AL20	N/C

Ball Number	Signal
AL21	N/C
AL22	Vcc
AL23	SP0AD[14]
AL24	Vccsp
AL25	SP0AVREFL[3]
AL26	Vss
AL27	SP0AVREFH[3]
AL28	Vccsp
AL29	SP0AD[11]
AL30	Vss
AL31	SP0AD[5]
AM3	Vss
AM4	Vcc
AM5	Vss
AM6	HL1PD[0]
AM7	Vss
AM8	HL1PD[4]
AM9	Vss
AM10	HL1PD[6]
AM11	Vcc
AM12	HL1PD[9]
AM13	Vss
AM14	HL1PUSTRBS
AM15	Vss
AM16	HL1PD[15]
AM17	ТСК
AM18	Vcc
AM19	EV#[3]
AM20	EV#[0]
AM21	Vss
AM22	N/C
AM23	Vss
AM24	SP0AD[13]
AM25	Vss
AM26	SP0AD[15]
AM27	Vss
AM28	SP0AD[12]
AM29	Vss
AM30	SPOASSO

9.3 Signal – Ball Number List

Table 9-2. SIOH Signal – Ball Number

Signal	Ball Number
330-ohm P/D	G14
330-ohm P/D	F14
330-ohm P/D	F15
330-ohm P/D	H16
330-ohm P/D	AD18
330-ohm P/D	G9
330-ohm P/D	H8
330-ohm P/D	J18
330-ohm P/D	AE11
330-ohm P/D	AF8
330-ohm P/D	H13
330-ohm P/D	G17
330-ohm P/D	AD22
330-ohm P/D	AF10
330-ohm P/D	AF7
330-ohm P/D	D23
330-ohm P/D	H15
330-ohm P/D	H9
330-ohm P/D	AA23
330-ohm P/D	AG16
BUSID[0]	AG13
BUSID[1]	AF17
BUSID[2]	AD19
CLK33	F13
CLK66	F11
DET	G13
ERR#[0]	AF14
ERR#[1]	AE15
ERR#[2]	AG12
EV#[0]	AM20
EV#[1]	AJ19
EV#[2]	AK19
EV#[3]	AM19
EVBPIn#	AH23
EVBPOUT#	AE18
FBCLK66	J22
>= 1k-ohm P/D	C17

Signal	Ball Number
HL0PAR#	E20
HL0PD[0]#	A22
HL0PD[1]#	C22
HL0PD[2]#	B21
HL0PD[3]#	D21
HL0PD[4]#	C20
HL0PD[5]#	D19
HL0PD[6]#	A18
HL0PD[7]#	C18
HL0PSTRBF	B19
HLOPSTRBS	A20
HLORCOMP	E17
HL0RQIN#	F18
HL0RQOUT#	F19
HL0STOP#	E18
HL0VREF[0]	B17
HL0VREF[1]	F21
HLOVSWING	F17
HL1PD[0]	AM6
HL1PD[1]	AK6
HL1PD[10]	AK12
HL1PD[11]	AL13
HL1PD[12]	AJ13
HL1PD[13]	AL15
HL1PD[14]	AJ15
HL1PD[15]	AM16
HL1PD[16]	AL11
HL1PD[17]	AK16
HL1PD[2]	AL7
HL1PD[3]	AJ7
HL1PD[4]	AM8
HL1PD[5]	AJ9
HL1PD[6]	AM10
HL1PD[7]	AK10
HL1PD[8]	AJ11
HL1PD[9]	AM12
HL1PSTRBF	AL9

Signal	Ball Number
HL1PSTRBS	AK8
HL1PUSTRBF	AK14
HL1PUSTRBS	AM14
HL1RCOMP	AH6
HL1RQIN	AH12
HL1RQOUT	AH16
HL1STOP	AH14
HL1VREF[0]	AE6
HL1VREF[1]	AH10
HL1VREF[2]	AG10
HL1VSWING	AH8
HL2PD[0]	U1
HL2PD[1]	U3
HL2PD[10]	AC3
HL2PD[11]	AD2
HL2PD[12]	AD4
HL2PD[13]	AF2
HL2PD[14]	AF4
HL2PD[15]	AG1
HL2PD[16]	AB2
HL2PD[17]	AG3
HL2PD[2]	V2
HL2PD[3]	V4
HL2PD[4]	W1
HL2PD[5]	Y4
HL2PD[6]	AA1
HL2PD[7]	AA3
HL2PD[8]	AB4
HL2PD[9]	AC1
HL2PSTRBF	Y2
HL2PSTRBS	W3
HL2PUSTRBF	AE3
HL2PUSTRBS	AE1
HL2RCOMP	U5
HL2RQIN	AC5
HL2RQOUT	AG5
HL2STOP	AE5
HL2VREF[0]	U6
HL2VREF[1]	AA5

Signal	Ball Number
HL2VREF[2]	AD6
HL2VSWING	W5
HL3PD[0]	E1
HL3PD[1]	E3
HL3PD[10]	L3
HL3PD[11]	M2
HL3PD[12]	M4
HL3PD[13]	P2
HL3PD[14]	P4
HL3PD[15]	R1
HL3PD[16]	K2
HL3PD[17]	R3
HL3PD[2]	F2
HL3PD[3]	F4
HL3PD[4]	G1
HL3PD[5]	H4
HL3PD[6]	J1
HL3PD[7]	J3
HL3PD[8]	K4
HL3PD[9]	L1
HL3PSTRBF	H2
HL3PSTRBS	G3
HL3PUSTRBF	N3
HL3PUSTRBS	N1
HL3RCOMP	E5
HL3RQIN	L5
HL3RQOUT	R5
HL3STOP	N5
HL3VREF[0]	K6
HL3VREF[1]	J5
HL3VREF[2]	T5
HL3VSWING	G5
HL4PD[0]	A16
HL4PD[1]	C16
HL4PD[10]	C10
HL4PD[11]	B9
HL4PD[12]	D9
HL4PD[13]	B7
HL4PD[14]	D7

Signal	Ball Number
HL4PD[15]	A6
HL4PD[16]	B11
HL4PD[17]	C6
HL4PD[2]	B15
HL4PD[3]	D15
HL4PD[4]	A14
HL4PD[5]	D13
HL4PD[6]	A12
HL4PD[7]	C12
HL4PD[8]	D11
HL4PD[9]	A10
HL4PSTRBF	B13
HL4PSTRBS	C14
HL4PUSTRBF	C8
HL4PUSTRBS	A8
HL4RCOMP	E16
HL4RQIN	E10
HL4RQOUT	E6
HL4STOP	E8
HL4VREF[0]	F9
HL4VREF[1]	E12
HL4VREF[2]	H6
HL4VSWING	E14
INT_OUT#	AC22
ITEST	AG15
LVHSTLODTEN	F10
N/C	AE20
N/C	AG22
N/C	AF19
N/C	AH20
N/C	AM22
N/C	AL21
N/C	AL20
N/C	AG19
N/C	AG21
N/C	AJ23
N/C	AJ22
N/C	AF20
N/C	AH21

Signal	Ball Number
N/C	AK22
N/C	AK21
N/C	AJ20
N/C	E22
N/C	AG9
N/C	V6
N/C	Y6
N/C	AG6
N/C	AG7
N/C	AB6
N/C	G7
N/C	R6
N/C	M6
N/C	N6
N/C	F8
N/C	F6
N/C	AD21
N/C	AA6
N/C	AB7
N/C	AE27
N/C	AF24
N/C	G24
N/C	H27
N/C	T2
N/C	T4
N/C	H17
N/C	H12
N/C	H11
N/C	G16
N/C	G18
N/C	G10
N/C	G12
N/C	AD28
N/C	AB28
N/C	L28
N/C	J28
NODEID[0]	AC19
NODEID[1]	AC20
NODEID[2]	AE21

Signal	Ball Number
NODEID[3]	AF22
NODEID[4]	AG23
PWRGOOD	AL18
RESET66#	AK18
RESETI#	AG18
SCL	AD16
SDA	AC17
SP0AD[0]	AD30
SP0AD[1]	AF30
SP0AD[10]	AK24
SP0AD[11]	AL29
SP0AD[12]	AM28
SP0AD[13]	AM24
SP0AD[14]	AL23
SP0AD[15]	AM26
SP0AD[2]	AH32
SP0AD[3]	AH30
SP0AD[4]	AK32
SP0AD[5]	AL31
SP0AD[6]	AK28
SP0AD[7]	AK30
SP0AD[8]	AF26
SP0AD[9]	AH24
SP0AEP[0]	AH28
SP0AEP[1]	AF28
SP0AEP[2]	AF32
SPOALLC	AH26
SP0ARSVD	AK26
SP0ASSO	AM30
SP0ASTBN[0]	AG29
SP0ASTBN[1]	AJ25
SP0ASTBP[0]	AG31
SP0ASTBP[1]	AJ27
SP0AVREFH[0]	AE29
SP0AVREFH[1]	AJ31
SP0AVREFH[2]	AG25
SP0AVREFH[3]	AL27
SP0AVREFL[0]	AE31
SP0AVREFL[1]	AJ29

Signal	Ball Number
SP0AVREFL[2]	AG27
SP0AVREFL[3]	AL25
SP0BD[0]	AD32
SP0BD[1]	AB32
SP0BD[10]	AA27
SP0BD[11]	Y24
SP0BD[12]	V24
SP0BD[13]	U25
SP0BD[14]	U27
SP0BD[15]	V26
SP0BD[2]	Y30
SP0BD[3]	Y32
SP0BD[4]	V30
SP0BD[5]	U31
SP0BD[6]	U29
SP0BD[7]	V32
SP0BD[8]	AE25
SP0BD[9]	AC27
SP0BEP[0]	V28
SP0BEP[1]	Y28
SP0BEP[2]	AB30
SPOBLLC	AC25
SP0BRSVD	AA25
SP0BSSO	Y26
SP0BSTBN[0]	AA31
SP0BSTBN[1]	AB26
SP0BSTBP[0]	AA29
SP0BSTBP[1]	AB24
SP0BVREFH[0]	AC29
SP0BVREFH[1]	W29
SP0BVREFH[2]	AD26
SP0BVREFH[3]	W25
SP0BVREFL[0]	AC31
SP0BVREFL[1]	W31
SP0BVREFL[2]	AD24
SP0BVREFL[3]	W27
SP0GPIO[0]	Y23
SP0GPIO[1]	AB23
SP0PRES	M23

SP0SYNC P23 SP0ZUPD[0] T23 SP0ZUPD[1] V23 SP1AD[0] J32 SP1AD[1] L32 SP1AD[1] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASO N26 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFL[1] <th>Signal</th> <th>Ball Number</th>	Signal	Ball Number
SP0ZUPD[0]T23SP0ZUPD[1]V23SP1AD[0]J32SP1AD[1]L32SP1AD[10]M27SP1AD[11]N24SP1AD[12]R24SP1AD[13]T25SP1AD[14]T27SP1AD[15]R26SP1AD[2]N30SP1AD[3]N32SP1AD[4]R30SP1AD[5]T31SP1AD[6]T29SP1AD[6]T29SP1AD[7]R32SP1AD[8]H25SP1AD[9]K27SP1AD[9]K27SP1AEP[0]R28SP1AEP[1]N28SP1AEP[2]L30SP1ASSON26SP1ASSON26SP1ASTBN[0]M31SP1ASTBP[1]L24SP1AVREFH[0]K31SP1AVREFH[1]P29SP1AVREFH[2]J26SP1AVREFH[2]J26SP1AVREFL[2]J24SP1AVREFL[3]P27SP1BD[0]J30SP1BD[1]G30	SP0SYNC	P23
SP0ZUPD[1] V23 SP1AD[0] J32 SP1AD[1] L32 SP1AD[10] M27 SP1AD[11] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[3] N32 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASSO N26 SP1ASSO N26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1A	SP0ZUPD[0]	T23
SP1AD[0] J32 SP1AD[1] L32 SP1AD[10] M27 SP1AD[11] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[2] J24 SP	SP0ZUPD[1]	V23
SP1AD[1] L32 SP1AD[10] M27 SP1AD[11] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1ALC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[2] J26 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1AVREFL[3] P27 S	SP1AD[0]	J32
SP1AD[10] M27 SP1AD[11] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[2] L30 SP1ASSO N26 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFH[2] J24 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1AVREFL[3] P27 SP1AVREFL[3] P27	SP1AD[1]	L32
SP1AD[11] N24 SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[3] N32 SP1AD[6] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[2] J24 SP1AVREFL[3] P27 SP1AVREFL[3] P27 SP1BD[0] J30	SP1AD[10]	M27
SP1AD[12] R24 SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASSO N26 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[1] L24 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[11]	N24
SP1AD[13] T25 SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASCO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[12]	R24
SP1AD[14] T27 SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ASSO N26 SP1ASTBN[0] M25 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[13]	T25
SP1AD[15] R26 SP1AD[2] N30 SP1AD[3] N32 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1ALCC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[2] J26 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[14]	T27
SP1AD[2] N30 SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1ALC K25 SP1ALC K25 SP1ALC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[15]	R26
SP1AD[3] N32 SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFH[1] P31 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[2]	N30
SP1AD[4] R30 SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1ALC K25 SP1AEP[2] L30 SP1AEP[2] L30 SP1AEN[2] K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[3]	N32
SP1AD[5] T31 SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ALLC K25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[4]	R30
SP1AD[6] T29 SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ALC K25 SP1ARSVD M25 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[2] J26 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[2] J26 SP1AVREFH[2] J24 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[5]	T31
SP1AD[7] R32 SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[2] J26 SP1AVREFH[2] J26 SP1AVREFL[1] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[6]	T29
SP1AD[8] H25 SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[7]	R32
SP1AD[9] K27 SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1AEP[2] L30 SP1AEP[2] L30 SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[8]	H25
SP1AEP[0] R28 SP1AEP[1] N28 SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[1] P31 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AD[9]	K27
SP1AEP[1] N28 SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[0] M29 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AEP[0]	R28
SP1AEP[2] L30 SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AEP[1]	N28
SP1ALLC K25 SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AEP[2]	L30
SP1ARSVD M25 SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ALLC	K25
SP1ASSO N26 SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ARSVD	M25
SP1ASTBN[0] M31 SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ASSO	N26
SP1ASTBN[1] L26 SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P31 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ASTBN[0]	M31
SP1ASTBP[0] M29 SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[1] P31 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ASTBN[1]	L26
SP1ASTBP[1] L24 SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ASTBP[0]	M29
SP1AVREFH[0] K31 SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1ASTBP[1]	L24
SP1AVREFH[1] P29 SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFH[0]	K31
SP1AVREFH[2] J26 SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFH[1]	P29
SP1AVREFH[3] P25 SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFH[2]	J26
SP1AVREFL[0] K29 SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFH[3]	P25
SP1AVREFL[1] P31 SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFL[0]	K29
SP1AVREFL[2] J24 SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFL[1]	P31
SP1AVREFL[3] P27 SP1BD[0] J30 SP1BD[1] G30	SP1AVREFL[2]	J24
SP1BD[0] J30 SP1BD[1] G30	SP1AVREFL[3]	P27
SP1BD[1] G30	SP1BD[0]	J30
1	SP1BD[1]	G30

Signal	Ball Number
SP1BD[10]	C24
SP1BD[11]	B29
SP1BD[12]	A28
SP1BD[13]	A24
SP1BD[14]	B23
SP1BD[15]	A26
SP1BD[2]	E32
SP1BD[3]	E30
SP1BD[4]	C32
SP1BD[5]	B31
SP1BD[6]	C28
SP1BD[7]	C30
SP1BD[8]	G26
SP1BD[9]	E24
SP1BEP[0]	E28
SP1BEP[1]	G32
SP1BEP[2]	G28
SP1BLLC	E26
SP1BRSVD	C26
SP1BSSO	A30
SP1BSTBN[0]	F29
SP1BSTBN[1]	D25
SP1BSTBP[0]	F31
SP1BSTBP[1]	D27
SP1BVREFH[0]	H29
SP1BVREFH[1]	D31
SP1BVREFH[2]	F25
SP1BVREFH[3]	B27
SP1BVREFL[0]	H31
SP1BVREFL[1]	D29
SP1BVREFL[2]	F27
SP1BVREFL[3]	B25
SP1GPIO[0]	AD23
SP1GPIO[1]	AE23
SP1PRES	F23
SP1SYNC	G23
SP1ZUPD[0]	H23
SP1ZUPD[1]	K23
SYSCLK	J20

Signal	Ball Number
SYSCLK#	H19
ТСК	AM17
TDI	AJ17
TDIOANODE	AF16
TDIOCATHODE	AB17
TDO	AH17
TMS	AH18
TRST#	AL17
TSO	AK17
Vcc	K18
Vcc	H7
Vcc	L11
Vcc	J7
Vcc	К7
Vcc	M11
Vcc	J11
Vcc	K11
Vcc	K15
Vcc	J15
Vcc	J12
Vcc	J14
Vcc	M7
Vcc	L8
Vcc	J10
Vcc	К9
Vcc	L9
Vcc	M9
Vcc	K10
Vcc	M10
Vcc	J8
Vcc	L7
Vcc	K14
Vcc	K13
Vcc	K17
Vcc	J16
Vcc	AE22
Vcc	AF5
Vcc	AF12
Vcc	AF18

Signal	Ball Number
Vcc	AG2
Vcc	AG8
Vcc	AG14
Vcc	AG20
Vcc	AH2
Vcc	AH4
Vcc	AH9
Vcc	AH15
Vcc	AH22
Vcc	AJ1
Vcc	AJ3
Vcc	AJ5
Vcc	AJ6
Vcc	A4
Vcc	A11
Vcc	AA8
Vcc	AA10
Vcc	AA12
Vcc	AA14
Vcc	AA16
Vcc	AA18
Vcc	AA20
Vcc	AA22
Vcc	AB1
Vcc	AB3
Vcc	AB10
Vcc	AB13
Vcc	AB15
Vcc	AB19
Vcc	AB21
Vcc	AC12
Vcc	AC18
Vcc	AD8
Vcc	AD14
Vcc	AD20
Vcc	AE10
Vcc	E4
Vcc	E7
Vcc	E13

Signal	Ball Number
Vcc	G11
Vcc	G15
Vcc	H5
Vcc	J9
Vcc	J13
Vcc	J17
Vcc	K1
Vcc	K3
Vcc	L10
Vcc	L12
Vcc	L14
Vcc	L16
Vcc	L18
Vcc	L22
Vcc	AJ18
Vcc	AK2
Vcc	AK4
Vcc	AK11
Vcc	AK20
Vcc	AL3
Vcc	AL5
Vcc	AL16
Vcc	AL22
Vcc	AM4
Vcc	AM11
Vcc	AM18
Vcc	B3
Vcc	B5
Vcc	B6
Vcc	C2
Vcc	C4
Vcc	C11
Vcc	D1
Vcc	D3
Vcc	D5
Vcc	D16
Vcc	R2
Vcc	R8
Vcc	R10

Signal	Ball Number
Vcc	R12
Vcc	R14
Vcc	R16
Vcc	R18
Vcc	R20
Vcc	R22
Vcc	T7
Vcc	Т9
Vcc	T11
Vcc	T13
Vcc	T15
Vcc	T17
Vcc	T19
Vcc	T21
Vcc	U4
Vcc	U8
Vcc	U10
Vcc	M13
Vcc	M15
Vcc	M17
Vcc	M19
Vcc	M21
Vcc	N8
Vcc	N10
Vcc	N12
Vcc	N14
Vcc	N16
Vcc	N18
Vcc	N20
Vcc	N22
Vcc	P5
Vcc	P7
Vcc	P9
Vcc	P11
Vcc	P13
Vcc	P15
Vcc	P17
Vcc	P19
Vcc	P21

Signal	Ball Number
Vcc	W18
Vcc	W20
Vcc	W22
Vcc	Y5
Vcc	Y7
Vcc	Y9
Vcc	Y11
Vcc	Y13
Vcc	Y15
Vcc	Y17
Vcc	Y19
Vcc	Y21
Vcc	U12
Vcc	U14
Vcc	U16
Vcc	U18
Vcc	U20
Vcc	U22
Vcc	V7
Vcc	V9
Vcc	V11
Vcc	V13
Vcc	V15
Vcc	V17
Vcc	V19
Vcc	V21
Vcc	W8
Vcc	W10
Vcc	W12
Vcc	W14
Vcc	W16
Vcc18	A17
Vcc18	C21
Vcc18	D18
Vcc18	F20
Vcc18	F22
Vcc33	AE16
Vcc33	K20
Vcc33	L20
	1]

Signal	Ball Number
VCCACOM	K19
VCCACORE	G20
VCCAHL	J19
VCCASP	H20
Vccsp	D30
Vccsp	F24
Vccsp	F28
Vccsp	H26
Vccsp	H30
Vccsp	K24
Vccsp	K28
Vccsp	M26
Vccsp	M30
Vccsp	P24
Vccsp	P28
Vccsp	T26
Vccsp	T30
Vccsp	U26
Vccsp	U30
Vccsp	W24
Vccsp	W28
Vccsp	AA26
Vccsp	AA30
Vccsp	AC24
Vccsp	AC28
Vccsp	AE26
Vccsp	AE30
Vccsp	AG24
Vccsp	AG28
Vccsp	AJ26
Vccsp	AJ30
Vccsp	AL24
Vccsp	AL28
Vccsp	B24
Vccsp	B28
Vccsp	D26
VREFFBCLK66	K22
Vss	AF11
Vss	AF13

Signal	Ball Number
Vss	AE9
Vss	AD7
Vss	AD10
Vss	AC7
Vss	AC8
Vss	AB8
Vss	AB9
Vss	AC10
Vss	AB11
Vss	AC11
Vss	AE8
Vss	AD9
Vss	AC16
Vss	AE14
Vss	AD15
Vss	AE12
Vss	AC14
Vss	AD13
Vss	AD12
Vss	AC13
Vss	A3
Vss	A5
Vss	A7
Vss	A9
Vss	A13
Vss	AA21
Vss	AA24
Vss	AA28
Vss	AA32
Vss	AB5
Vss	AB12
Vss	AB14
Vss	AB16
Vss	AB18
Vss	AB20
Vss	AB22
Vss	AB25
Vss	AB27
Vss	AB29

Signal	Ball Number
Vss	AB31
Vss	AC2
Vss	AC4
Vss	AC6
Vss	AC9
Vss	AC15
Vss	AC21
Vss	AC23
Vss	AC26
Vss	A15
Vss	A19
Vss	A21
Vss	A23
Vss	A25
Vss	A27
Vss	A29
Vss	AA2
Vss	AA4
Vss	AA7
Vss	AA9
Vss	AA11
Vss	AA13
Vss	AA15
Vss	AA17
Vss	AA19
Vss	AE19
Vss	AE24
Vss	AE28
Vss	AE32
Vss	AF1
Vss	AF3
Vss	AF6
Vss	AF9
Vss	AF15
Vss	AF21
Vss	AF23
Vss	AF25
Vss	AF27
Vss	AF29

Signal	Ball Number
Vss	AF31
Vss	AG4
Vss	AG11
Vss	AG17
Vss	AG26
Vss	AG30
Vss	AG32
Vss	AH1
Vss	AH3
Vss	AH5
Vss	AH7
Vss	AH11
Vss	AC30
Vss	AC32
Vss	AD1
Vss	AD3
Vss	AD5
Vss	AD11
Vss	AD17
Vss	AD25
Vss	AD27
Vss	AD29
Vss	AD31
Vss	AE2
Vss	AE4
Vss	AE7
Vss	AE13
Vss	AE17
Vss	AJ21
Vss	AJ24
Vss	AJ28
Vss	AJ32
Vss	AK1
Vss	AK3
Vss	AK5
Vss	AK7
Vss	AK9
Vss	AK13
Vss	AK15

Signal	Ball Number
Vss	AK23
Vss	AK25
Vss	AK27
Vss	AK29
Vss	AK31
Vss	AL2
Vss	AL4
Vss	AL6
Vss	AL8
Vss	AL10
Vss	AL12
Vss	AL14
Vss	AL19
Vss	AL26
Vss	AL30
Vss	AH13
Vss	AH19
Vss	AH25
Vss	AH27
Vss	AH29
Vss	AH31
Vss	AJ2
Vss	AJ4
Vss	AJ8
Vss	AJ10
Vss	AJ12
Vss	AJ14
Vss	AJ16
Vss	B8
Vss	B10
Vss	B12
Vss	B14
Vss	B16
Vss	B18
Vss	B20
Vss	B22
Vss	B26
Vss	B30
Vss	C1

Signal	Ball Number
Vss	C3
Vss	C5
Vss	C7
Vss	C9
Vss	C13
Vss	C15
Vss	C19
Vss	C23
Vss	C25
Vss	C27
Vss	C29
Vss	C31
Vss	D2
Vss	D4
Vss	D6
Vss	D8
Vss	D10
Vss	D12
Vss	AM3
Vss	AM5
Vss	AM7
Vss	AM9
Vss	AM13
Vss	AM15
Vss	AM21
Vss	AM23
Vss	AM25
Vss	AM27
Vss	AM29
Vss	B2
Vss	B4
Vss	E15
Vss	E19
Vss	E21
Vss	E23
Vss	E25
Vss	E27
Vss	E29
Vss	E31

Signal	Ball Number
Vss	F1
Vss	F3
Vss	F5
Vss	F7
Vss	F12
Vss	F16
Vss	F26
Vss	F30
Vss	F32
Vss	G2
Vss	G4
Vss	G6
Vss	G8
Vss	G19
Vss	G25
Vss	G27
Vss	G29
Vss	G31
Vss	H1
Vss	H3
Vss	H10
Vss	D14
Vss	D17
Vss	D20
Vss	D22
Vss	D24
Vss	D28
Vss	D32
Vss	E2
Vss	E9
Vss	E11
Vss	J23
Vss	J25
Vss	J27
Vss	J29
Vss	J31
Vss	K5
Vss	K8
Vss	K12

Signal	Ball Number
Vss	K16
Vss	K26
Vss	K30
Vss	K32
Vss	L2
Vss	L4
Vss	L6
Vss	L13
Vss	L15
Vss	L17
Vss	L19
Vss	L21
Vss	L23
Vss	L25
Vss	L27
Vss	L29
Vss	L31
Vss	M1
Vss	M3
Vss	M5
Vss	M8
Vss	M12
Vss	M14
Vss	M16
Vss	H14
Vss	H18
Vss	H22
Vss	H24
Vss	H28
Vss	H32
Vss	J2
Vss	J4
Vss	J6
Vss	J21
Vss	N4
Vss	N7
Vss	N9
Vss	N11
Vss	N13

Signal	Ball Number
Vss	N15
Vss	N17
Vss	N19
Vss	N21
Vss	N23
Vss	N25
Vss	N27
Vss	N29
Vss	N31
Vss	P1
Vss	P3
Vss	P6
Vss	P8
Vss	P10
Vss	P12
Vss	P14
Vss	P16
Vss	P18
Vss	P20
Vss	P22
Vss	P26
Vss	P30
Vss	P32
Vss	R4
Vss	R7
Vss	R9
Vss	R11
Vss	M18
Vss	M20
Vss	M22
Vss	M24
Vss	M28
Vss	M32
Vss	N2
Vss	R27
Vss	R29
Vss	R31
Vss	T1
Vss	Т3

Signal	Ball Number
Vss	Т6
Vss	Т8
Vss	T10
Vss	T12
Vss	T14
Vss	T16
Vss	T18
Vss	T20
Vss	T22
Vss	T24
Vss	T28
Vss	T32
Vss	U2
Vss	U7
Vss	U9
Vss	U11
Vss	U13
Vss	U15
Vss	U17
Vss	U19
Vss	U21
Vss	U23
Vss	U24
Vss	U28
Vss	U32
Vss	V1
Vss	V3
Vss	V5
Vss	V8
Vss	V10
Vss	R13
Vss	R15
Vss	R17
Vss	R19
Vss	R21
Vss	R23
Vss	R25
Vss	V20
Vss	V22
Vss	V25
Vss	V27

Signal	Ball Number
Vss	V29
Vss	V31
Vss	W2
Vss	W4
Vss	W6
Vss	W7
Vss	W9
Vss	W11
Vss	W13
Vss	W15
Vss	W17
Vss	W19
Vss	W21
Vss	W23
Vss	W26
Vss	W30
Vss	W32
Vss	Y1
Vss	Y3
Vss	Y8
Vss	Y10
Vss	Y12
Vss	Y14
Vss	Y16
Vss	Y18
Vss	Y20
Vss	Y22
Vss	Y25
Vss	Y27
Vss	Y29
Vss	Y31
Vss	V12
Vss	V14
Vss	V16
Vss	V18
VSSACOM	K21
VSSACORE	G21
VSSAHL	G22
VSSASP	H21

Package and Ballout

intel®