CIRRUS LOGIC INC

bLE D

= N

CIRRUS LOGIC

[a—— g

B 213bb39 0004087 LOY EMECIR

CL-CD1400

Data Sheet

L ————————————————

T=75-37-05

FEATURES
Asynchronous Features Four-Cha_nne_I SerlaI/P.arallgI
m Software-programmable serial data rates up to Communications Engine with
u A
195 KEftormee fall-duplex: P UNIX® Character Processing
m Twelve bytes of FIFO for each transmiiter and
each recelver, with programmable threshold for
receive-FIFO-interrupt generation OVERVIEW
m Improved Interrupt schemes: Good Data® : :
interrupts eliminate the need for character status The. CL-CD14902 '$ a flexible asyncr}ronous
check receiver/transmitter with four full-duplex serial chan-
nels, or three full-duplex serial channels and one
® Independent bit rate selection for transmit and high-speed bidirectional parallel channel. With op-
receive on each channel tional special character processing capabilities, itis
= User-programmable and automatic flow control eSPECiany We“'S.Uited to UNIX applications. The CL-
modes for the serial channels: CD1400 is fabricated in an advanced-CMOS pro-
— In-band (software) flow control via single character cess and °perat95 ona _SVStem clock of _Up to 25
(XON/XOFF) MHz2. Packagedina68-pinPLCC or 100-pin PQFP,
— Out-of-band (hardware) flow control via RTS/CTS and its high throughput, low-power consumption and
DTR/DSR high level of integration permit system designs with
. minimum part-count, maximum performance and
B Special character recognition and generation maximum reliability.
(cont.)
Functional — Sﬁ?fi%gf’ SLLEL
Block CONFIGURABLE
Diagram —| “channeLo | i———=
SERIAL/PARALLEL |
RISC | | FIRMWARE
PROCESSOR ROM USER-
»| CONFIGURABLE | |¢———>
HOST 4 CHANNEL 1
INTERFACE HOST SERIAL
BUS | y .
= INTERFACE o
Losic CONFIGURABLE
| oL | [F——
RAM SERIAL
USER-
_| conFicuraBLE
™| CHANNEL3 >
SERIAL

R e e e
March 1992

L1E D B 2136639

CIRRUS LOGIC

FEATURES (cont,) CIRRUS

® Special character processing, particuiarly useful
for UNIX-line-driver applications, optionally
handied automatically by the CL-CD1400:

— Automatic Expansion of NL to CR-NL
— Supports LNEXT and ISTRIP
— lgnore Break
— UNIX parity handling options:
» Character removed from stream
e Passed as good data
® Replaced with null (00 hex)
o Preceded with FF-00 hex
e Passed as is with exception flagged

Line break detection (start and end) and genera-
tion, with programmable choice of response and
data pattern to the host

Insertion of transmit delays in data stream

m One timer per channel for receive data time-out
interrupt

Six modem control signals-per-channel (DTR,
DSR, RTS, CTS, CD, Rl); CD and RI Signals not
avallable If the parallel channel is used

poo4pas 545 EMCIR

CL-CD1400
UXART Serial/Parallel Controller

LOGIC INC

B Local and Remote Maintenance Loopback Modes

| Five to eight data bits per character plus optional
parity

& Odd, even, no or forced parity
® 1, 1.5 or 2 Stop Bits

Parallel Features

m Paraliel data rates up to 105-kbyte/sec. receive
and 32-kbytes/sec. transmit

B Thirty-byte FIFO
B Programmable strobe pulse widths

B Automatic generation and recognition of
handshake control signhals (STROBE, ACK,
BUSY)

B Compatible with Centronlcs®-interface
specifications

CONFIGURATION EXAMPLES

Figures 1-1 through 1—4 are functional block diagrams of
four possible configurations that can be implemented
with the CL-CD1400. The first is a typical workstation
with printer, mouse, keyboard and modem ports, a mode
that includes a single parallel port and three serial chan-
nels with modem control. Figure 1-2 illustrates one

channe! with compiete modem control and three
channels with partial modem control; Figure 1-3 shows
a quad serial mode of four channels with complete
modem control. All modes of operation are software-
programmable via Control Registers within the CL-
CD1400.

NOTES:

1 A minimum clock frequency of 25 MHz is required ta run all four serial channels at a 135-kbit data rate. Refer to the AC
characteristics for complete information on devica timing.

2 This document applies to the CL-CD1400 Revison E or later device.

3 100% throughput is guaranteed up to 90K baud for full-duplex operation on all four channels simultaneously. 135K baud is
achievable at reduced throughput. Refer to Section 4 for details.

LLE D N 2136639 0004089 48l EECIR

CL-CD1400
UXART Serial{Parallel Controller

I

——== CIRRUS LOGIC

CIRRUS LOGIC INC

Table of Contents

1. PIN INFORMATION 7 4.4 Serial Data Reception and
11 Pin Diagram for 68-Pin PLCC Package 7 TransmISSIon‘ 50
12 Pin Diagram for 100-Pin PQFP Package8 441 Hece!ver Qperatnon e 50
1.3 Pil FUNCHONS coveo oo ceeeessnessesenns 9 4.4.2 Receiver Timer Operations..........
I 443 Receive Exceptionsccccoveeeenn.
1.4 PinList.......oeeeene 444 Transmitter Operation
1.5 Pin Descriptions o -
45 Flow Control......cccivveciiicniiieccveneeiencces e
2. REGISTERS 17 451 In-Band Flow Controlc.ceecouee
2.1 CL-CD1400 Register Map.......c.ccceeevences 18 452 Out-of-Band Flow Control............. 57

2.1.1 Global Registers...... 4.6 Receive Special Character

2.1.2 Virdual Registers......... PrOCESSING -vvvvrenrerrrressemsnssseesrenresecmecianees 58

213 Char.m.e‘l Registers ... 19 461 UNIX Character Processing......... 58
2.2 Register Definitions ... 4.6.2 Non-UNIX Receive Special

2.2.1 Global Registers Character Processingc.cove.... 59

2.2.2 Virual Registers 4.7 Transmit Special Character

223 Channel Registersco.oocounnis 22 ProCESSING «.covvvreverrerncrnesrremsenesesreescrameees 63

3. CL-CD1400 PROGRAMMING.............. 25 47.1 Line Terminating Characters......... 63

3.1 OVEVIEW....cccoiertinnis s 25 4.7.2 Embedded_Transmit Commands ..63
32 INtGliZation........corrreee 25 4.7.3 gzrmi‘:‘zc'a' Cha’ac‘e"'"""“"“'“6“4

321 Chip Intilization...............e-25 45 Bayd Rate GENERaIION.....cc.r.crrr 67

3.2.2 Gilobai Function Initialization......... 27 49 Diagnostic Facilties — Loopback...... 67
3.3 Poll Mode E‘xamples. 4.10 Parallel Channel Operations........... .68

331 Polling Routine Examples 4.10.1 Transmit Operation..... ...69
3.4 Hardware-Activated Service 4.10.2 Receive Operationcccovueeeenne 70

Examples......ccomin e 4103 Programming Considerations 71

3.4.1 Receive Service.... 4.11 Hardware Configurations.........cc.ce.veveernneen. 72

3.4.2 Tra:smntSSerylce """ 4.11.1 Interfacing to an Intel® Micro-

2-2-3 ':3"° :'3 te’;'c?-"iy-l;‘- ---- processor-Based System.............. 72

4. e Derivation....
aucd Ha vatl 4.11.2 Interfacing to a Motorola® Micro-

35 BaudRate Tablesccocovvvviiniannns processor-Based System............. 72
36 ASCHI COGE TabIE. .. 4113 Interfacing to a National Semi-

3.6.1 Hexadecimal — Character... Conductor® Microprocessor-Based

3.62 Decimal —Character.......cceed0 SYSIEML e 72

4. FUNCTIONAL DESCRIPTION.... 4.12 Serial Data Performancecccecceveuenee 76
4.1 Device Architecture 5. DETAILED REGISTER

4.2 Host Interface. DESCRIPTIONS 79

4.21 Host Read Cycles...........ouceeee 5.1 Global REGISIErSu.muueerereecerreerseresarnnens 79

421 Host Write Cycles ... 5.2 Viftual REGISENS ..evvvemieseenssesssessssssenerens 82

4.3 Service ReqUeStS ..., 5.3 Channel RegiSters........ceuvervnveriiveneinnns 86

:.:::. ; :;';ﬁ::;pt ... 6. ELECTRICAL SPECIFICATIONS...... 107

433 Service Requests and 6.1 Absolute Maximum Ratings............c..c.c... 107

Multiple CL-CD1400s....................

Ma rch 1992] 3

L1E D WM 21365639 0004090 1T3 EMCIR
—— CL-CD1400

——= CIRRUS LOGIC

Table of Contents (con.)
CIRRUS LOGIC INC

i

6.2 Recommended Operating Conditions107 Figure 4=4 ...
6.3 DC Electrical Characteristics.................... 107 Figure 4-5 ..ot
6.4 AC Electrical Characteristics.................... 109 FIGUIE 46ccocvimecinieceiiee e
6.4.1 Index of Timing Information109 FIQUIE 47 ..o e e
6.4.2 Asynchronous Timing 110 FIGUIE 48 ...t
6.4.3 Synchronous Timing........c.......... 115 FIQUIE 40 oo
6.4.4 Parallel Port Timing..................... 119 Figure 4-10
7. SAMPLE PACKAGES.ccovveeeeeees 122 Figure 4-11
. Figure 4-12
8. ORDERING INFORMATION............... 123 Figure 4-13
9. QUICK REFERENCE.......ccceerremnennenn 125 FIGUIE B—1 ..t
Figure 62oooceeeevviincreies e
Figures Figure 63 ..o
FIgUre 1=1 ..o e 5 F!gure G
FIGUPE 122 oo 5 FIUIB -5 vt
Figure 1=3 ..o 6 F fgure B8 o
Figure 3-1 ngure BT o
Figure 4-1 Figure 6-8
Figure 4-2 Figure 6-9

Figure 4-3 Figure 6-10

GlE D EW 2136639 000409) 03T EMMCIR

—..
CL-CD1400
UXART Serial/Parallel Controller —
——== CIRRUS LOGIC
. CIRRUS LOGIC INC
—» psTROBE*
— PACK'
RESET* — [«— riicr
RINTER
CLK —} <] PaRALLEL }et— pRUSY: P
: RAM - P inr oR
AlB:0] ——pd % CHANNEL [g™ Lroo . SCANNER
DB[7:0] -t FIFOs r— PPE
AW — —- PAUTOFD"
cs* —] HOST A - PD{7:0)
bs’ BUS y —
DTACK® ~— - la—p] SERAL TxD1 MOUSE
. A 7] cHanNEL: [RaD1
SVCRECR* -#—] INTERFACE
SVCREQT* ~— y
R LOGIC
SVCREQM® =t—f o | semar > T2 KEYBGARD
DGRANT* —»] AISC i CHANNEL 2 RxD2
DPASS* ose e FIRMWARE
SVCACKR® —bo] ROM - Tx08
SVCACKT* ~— - 2%3'
SVCACKM® =i w—al seraL fa— crse
7) CHANNELS J—gm» DTR3" MODEM
@— DSR3"
. GPO[3:0]
la— GPI(3:0]
. Figure 1-1. Workstation: Printer, Keyboard, Mouse and Modem Ports
—® PSTROBE"
J+— pack*
. — PSLIN
. RESET* — (& psicr PRINTER
CLK — <«—»] PARALIEL |— pBUSY*
RAM il — PINT* or
PICY) ——— M CHANNEL [g™ rocon- SCANNER
DB[7:0] <a-d»f FiFOs — PPE
RW* —o] —- PAUTOFD"
. st HosT [-3 PDi7:0]
DS* —
—-
DTACK: w—f B8 - Y — — 3%11
SVCREQR" <#—] INTERFACE . l«—p| SERAL & RTST
svcpear w— y cranneLt [P GRSV
SVCREQM* ~a— DSR1*
DGRANT* —»
DPASS® ~— Rise FIRMWARE SERIAL y SAME AS
. PROCESSOR{ ROM < <+>
SVCACKR* ——p»] CHANNEL 2 CHANNEL 1
SVCACKT* =
. [}
SVCACKM® ~——tpo] | semac SAME AS
1 channeLs [CHANNEL 1

Figure 1-2. Three Serlal Ports and One Parallel Port

March 1992

LlE D WM 2136639 0004092 T?L EECIR

D e ————3

= CIRRUS LOGIC

CIRRUS LOGIC INC

CL-CD1400

RESET* =—eiind RAM —— ;xxgﬂ
l— RxDO
CLK il n:o bt RTSO
Al6:0] ——il s | sERaAL t— CTS0
DB[70] <t T - CHANNELO |—= pTRO
AW —t l— DSRO
! t— cDo
cs* —m HosT] fa— Ri0*
DSt —l o - i >
DTACK® at— 8
SVCREQR* =] INTERFACE y —»] c:i::éu N
SVCREQT" a—] |
SVCREQM® t— Risc | . JrFRuMware po— 8
DGRANT* ——fow PROCESSOR[ROM -—> y -
DPASS* ~t— T CHANNEL 2
SVCACKR® —pp]
8
SVCACKT* ——p ol sEeRAL |
SVCACKM® —po - CHANNEL3 [77>

SAME AS
CHANNEL 0

SAME AS
CHANNEL 0

SAME AS
CHANNEL 0

Figure 1-3. Four Full-Modem Ports

D EE 2136639 0004093 902 EECIR
CL-CD1400 —

....... —== CIRRUS LOGIC
@ ' FPININFORMATION CIRRUS LOGIC INC b1E

1.1 Pin Diagram for the 68-Pin PLCC Package

& B b & h 8o o —
S s 38888 843 8
PEB:zEBEEE8283838¢8

DB(0)
l——3«->» DB[1)
RI2* —e==x] 12 58 ==<—> DB[2]
cp2r —»=13 57 = DB[3]
DTR1* -—==14 56 === DB[4]
RTS1* -—=H 15 56 fF==r<—> DB[5]
GND ——=={ 16 54 p==re—» DB[6}
ctsye —we=] 17 CL-CD1400 53 == 0B(7}
. DSRY* ——w=] 18 68-Pin PLCC s2f==—— anD
RI* —w=] 19 51 f==se— A0
CD1* ~—m=t==] 20 50 ==-e— A1}
DTRo* ~—== 21 49 = A2}
RTSO* ~——e==] 25 48 f==r<— A[3]
CTS0* —e=] 23 47 == Aj4]
DSRo* —e=x] 24 46 Afs}
. Rl0* —==o 25 45 E:: Al6]
CD0* ~—»e= 2% 44 f=—e— RESET*
2 83 -8 83 BeHE8BeT I
a [I 7 I R T

March 1992 ___] 7

B1E D ER 2136639 0004094 849 EECIR

e CL-CD1400

e UXART Serial{Parallel Controller

1.2 Pin Diagram for the 100-Pin PQFP Package
CIRRUS LOGIC INC

$88

DBle]
D8]
NC
GND
NC
Al0]
NC
Al
NG
Al2)
NC
A3
Al4)
als)

DB[2]
DBJ[3)
DB[4}
DB(5]

82

89
o

)

08
05
94
63
92
91
80
88
87
8

3838

DB[1] = 1 80 F==<— Afg]
DB{0] 2 79 =—te— RESET*
TXD0 —e= 3 78 F=e«— CS*
RAxD0 —»-c—] 4 77 =—a— DS*
TxN t—e=1 § 76 p==¢— RW*
RXD1 ——pr==d 6 75 F==—» DTACK"
D2 —e= 7 74 ==——. N/C

NC ——e==d 8 . 73 ===— CIK
RD2 ——pe=] 9 72 =+—— GND

NC —e==J 10 71 =—=—» DPASS*
TaD8 —e==] 11 70 NC
GND ——==12 69 [==a— DGRANT"
o —wee] 10 CL-CD1400]

S 100-Pin PQFP T Ve
DTR3* w—e=x] 15 66 f=a—— NC

NC ——=1 16 65 =—=——» SVCREQM*

RTS3* ——— 17 4= — nNC
NG ——==F 18 63 == svCREQT*
vee——=—= 19 62 —/— NC
NG = 20 61 ==3<— SVCREQR"

CrS3 —»=— 21 60 p=—— NC

53 F—=— SVCACKM*
—— NC
f———a— SVCACKT*
= SVCACKR*
——t— - Pq“
===t PD{0]
= PAUTOFD"*
= N/C

NG —==} 22
DSR3* — == 23
NG ———==o 24
Riy* ~—»—o 25
chgr —>==1 26
DTR2* ===y 27
RTS2 ==

L S

28
Ccrs2 — = 29
30 51 =—— NG

N,c—-=
5933835883399 3I9eseeR
@ 8N - 020t E b P TP S 3
IR LRI R AR L

NOTE: N/C means no connection. Make no connections to these pins.

March 1992

LJE D M 213bL3T 0004095 7845 EMCIR
CL-CD1400

UXART Serial/Parallel Controller

o R S

1.3 Pin Functions — Major Operational Modes

March 1992

—r.

==PCIRRUS LOGIC

CIRRUS LOGIC INC

A[6:0] ——>
DB[7:0] <«—>
CLK ——
CS* ——>
DS* —»|
RW* ——]
RESET* ——]
DTACK® o

DGRANT* ——»
DPASS* --—

SVCREQR® t——

SVCREQT" a—
SVCREQM" -—

SVCACKR* ———»]
SVCACKT* ———>»
SVCACKM* ——»

Host
Interface

Service Service Daisy
Ack Request Chain

Channel 0

Chan.3 Chan.2 Chan.1

—» TxD
jt— RxD
—3 DTR
l— DSR
— RTS
—p CTS
t—> RI
lt—>» CD

8

8
<>

Pin Functions — Four Serial Channel Mode

8

A[6:0] ——»
DB[7:0] ~a—>
CLK ——»
CS* ——p
DS* —»
RW* ————p
RESET* ~——»|
DTACK' ———

DGRANT* ——»
DPASS* -—

SVCREQR" g——r]
SVCREQT" g
SVCREQM* <¢t—]

SVCACKR* ——p»
SVCACKT* ——»
SVCACKM* ——»

Host
Interface

Daisy

Service
Request Chain

Service
Ack

Channel 0

Chan. 1

Chan.3 Chan.2

PD[7:0]
——» PSTROBE*
t—— PACK"
lt——— PSLCT*
la¢—— PBUSY
—— PPE*
«—— PERROR"*
——— PSLIN*
— PINIT*
——» PAUTOFD*

Pin Functions — Three Setrial/One Parallel Channel Mode

E1E P WR 213b6L39 0004096 bll MECIR

S CL-CD1400
———— UXART Serial{Parallel Controller
—= CIRRUS LOGIC

1.4 Pin List CIRRUS LOGIC INC

The following naming conventions are used in the pin assignment tables: (*) after a name denotes an
active-low signal. Signal names in parentheses are for the paraliel channel.

I = Input; /O = Input/Output; O = Output; OD = Open Drain.

68-Pin 100-PIn 68-Pin 100-Pin
of PLCC PQFP #of PLCC PQFP
PinName DIR Pins Pin # Pin # PinName DIR Pins Pin # Pin #
RESET* | 1 44 79 TxD1 o] 1 63 5
CLK | 1 39 73 RxD1 | 1 64 6
cs* | 1 43 78 RTSt* 0 1 15 36
Ds* | 1 42 77 cTS1* | 1 17 38
R/W* | 1 41 76 DSR1* | 1 18 40
DTACK* oD 1 40 75 DTR1* o] 1 14 35
A[6:0] | 7 45-51 80-83, cb1* 110 1 20 42
85,8789 (PD[2))
DB[7:0] 1o 8 53-60 93,95, Rh* /O 1 19 41
97-100,1,2 (PD[3))
SVCREQR* oD 1 33 61 TxD2 (@] 1 65 7
SVCREQT* oD 1 34 63 RxD2 | 1 66 9
SVCREQM* oD 1 35 65 RTS2* e} 1 9 28
SVCACKR* | 1 30 56 CcTSs2* | 1 10 29
SVCACKT* i 1 31 57 DSR2* | 1 11 31
SVCACKM* | 1 32 59 DTR2* (@] 1 8 27
DGRANT* | 1 37 69 cD2* 170 1 13 34
DPASS* (o] 1 38 71 (PD[4])
TxDO (o} 1 61 3 Ri2* 110 1 12 33
(PSTROBE") (PD[5])
RxD0 I 1 62 4 TxD3 (e} 1 67 11
(PACK*) RxD3 | 1 68 13
RTSO* 0 1 22 45 RTS3* (o] 1 2 17
(PSLIN*) CcTS3* | 1 4 21
cTso* | 1 23 46 DSR3* | 1 5 23
(PSLCT*) ’ DTR3* 0 1 1 15
DSRoO* | 1 24 47 CcDh3* 110 1 7 26
(PBUSY) (PD[6])
DTRO* (e} 1 21 43 RI3* 11O 1 (5} 25
(PINIT*) (PD[7])
cDo* | 1 26 49 PD[0] IO 1 28 54
(PERROR") PD[1] o 1 29 55
RI0* | 1 25 48 vCcC | 2 3,36 19,50,67
(PPE") GND | 2 18,52 12,37,

PAUTOFD* O 1 27 53 72,91

LLE D HEN 2136639 0004097 558 EECIR

CL-CD1400
UXART Serial{Parallel Controller

2

1.5 Pin Descriptions

pos——— "

—== CIRRUS LOGIC

CIRRUS LOGIC INC

Description

RESET: This pin synchronously resets the CL-CD1400.
RESET* must be active for a minimum of 10 system
clocks. When RESET* is removed, the CL-CD1400 will
perform a software initialization of its registers, disable all
transmitters and receivers, and when complete, place the
firmware revision number in the GFRCR.

CLOCK — System Clock: The CL-CD1400 requires a
nominal 25-MHz clock for proper operation. The system
clock is divided by two, internally, to generate all on-chip
timing clocks.

CHIP SELECT: When active, CS*, in conjunction with
DS*, initiates a host /O cycle with the CL-CD1400.

DATA STROBE: During an active I/O cycle, DS* strobes
data into on-chip registers during a write cycle or enables
data onto the data bus during read cycles.

READ/WRITE: R/W" sets the direction of the data trans-
fer between the host and the CL-CD1400. When high, the
cycle is a read, and when low, the cycle is a write.

DATA TRANSFER ACKNOWLEDGE: When the CL-
CD1400 has completed internal operations associated
with a host I/O cycle, it activates DTACK" to indicate the
end of the cycle. The host may terminate the cycle as
soon as DTACK becomes active.

ADDRESS[6:0]: These signals select the on-chip regis-
ter being accessed during a host I/O cycle.

DATA BUS[7:0]: These eight bidirectional signals are the
data interface between the host and internal CL-CD1400
registers.

SERVICE REQUEST RECEIVE: When the CL-CD1400
needs host service for one of the receivers, it activates this
signal.

68-Pin 100-Pin
PLCC PQFP
Symbol Pin No. PInNo. Type
RESET* 44 79 I
CLK 39 73 I
cs* 43 78 |
Ds* 42 77 l
Rw* 41 76 |
DTACK* 40 75 oD
A[6:0] 45-51 80-83 !
85,87,89
DB[7:0] 53-60 93,95 VO
97-100,1,2
SVCREQR* 33 61 oD
March 1992

6GYE D EE 213bL39 0004098 494 EECIR

e CL-CD1400
— UXART Serial/Parallel Controller

1.5 Pin Descriptions (cont.) CIRRUS LOGIC INC

68-Pin 100-Pin
PLCC PQFP
Symbol Pin No. PinNo. Type Description

SVCREQT* 34 63 oD SERVICE REQUEST TRANSMIT: When the CL-
CD1400 needs host service for one of the transmitters, it
activates this signal.

SVCREQM* 35 65 oD SERVICE REQUEST MODEM: The CL-CD1400 acti-

vates this signal when an enabled change occurs.

SVCACKR* 30 61 | SERVICE ACKNOWLEDGE RECEIVE: The host acti-
vates this signal to start a receive interrupt service. This is
a special-case read cycle, during which the CL-CD1400
places the contents of the Receive Interrupt Vector Regis-
ter on the data bus.

SVCACKT* 31 57 l SERVICE ACKNOWLEDGE TRANSMIT: The host acti-
vates this signal to start a transmit interrupt service. This
is a special-case read cycle, during which the CL-CD1400
places the contents of the Transmit Interrupt Vector Reg-
ister on the data bus. .

SVCACKM* 32 59 l SERVICE ACKNOWLEDGE MODEM: The host acti-
vates this signal to start a modem interrupt service. This is
a special-case read cycle, during which the CL-CD1400
places the contents of the Modem Interrupt Vector Regis- 4
ter on the data bus. .

DGRANT* 37 69) DAISY GRANT: This input, qualified with DS* and a valid
service acknowledge (SVCACKR*, SVCACKT*, SV-
CACKM®), activates the CL-CD1400 service acknowl-
edge cycle.

DPASS* 38 71 0] DAISY PASS: This output is driven low when no valid
service request exists for the type of service acknowledge
active. In multiple-CL-CD1400 designs, this signal is nor-
mally connected to the following CL-CD1400 DGRANT*
Input, forming a service acknowledge daisy chain.

SVCACKR* 30 56 I SERVICE ACKNOWLEDGE RECEIVE- The host acti- .
vates this signal to start a receive interrupt service. This is
a special-case read cycle, during which the CL-CD1400
places the contents of the Receive Interrupt Vector Regis-
ter on the data bus.

G1E D EN 213bb39 0004099 320 EECIR

CL-CD1400
UXART Serial/Parallel Controller

1.5 Pin Descriptions (cont)

—————————

==CIRRUS LOGIC

CIRRUS LOGIC INC

Description

SERVICE ACKNOWLEDGE RECEIVE: The host acti-
vates this signal to start a receive interrupt service. This is
a special-case read cycle, during which the CL-CD1400
places the contents of the Receive Interrupt Vector Regis-
ter on the data bus.

SERVICE ACKNOWLEDGE TRANSMIT: The host acti-
vates this signal to start a transmit interrupt service. This
is a special-case read cycle, during which the CL-CD1400
places the contents of the Transmit Interrupt Vector Reg-
ister on the data bus.

SERVICE ACKNOWLEDGE MODEM: The host acti-
vates this signal to start a modem interrupt service. This is
a special-case read cycle, during which the CL-CD1400
places the contents of the Modem Interrupt Vector Regis-
ter on the data bus.

DAISY GRANT: This input, qualified with DS* and a valid
service acknowledge (SVCACKR®, SVCACKT*, SV-
CACKM*), activates the CL-CD1400 service acknowl-
edge cycle.

DAISY PASS: This output is driven low when no valid
service request exists for the type of service acknowledge
active. In multiple-CL-CD1400 designs, this signal is nor-
mally connected to the following CL-CD1400 DGRANT"
Input, forming a service acknowledge daisy chain.

TRANSMIT DATA[3:0]: These output signals provide the
serial transmit data stream for all four channels. When
Channel 0 is operating in Parallel Mode, TxD0 becomes
PSTROBE* (see PSTROBE®).

RECEIVE DATA[3:0]: These input signals carry the serial
bit streams into the CL-CD1400. When Channel 0 is pro-
grammed for parallel operation, RxD0O becomes PACK*
(see PACK")

68-Pin 100-Pin
PLCC PQFP
Symbol Pin No. PinNo. Type
SVCACKR* 30 56 |
SVCACKT* 31 57 i
SVCACKM* 832 59 |
DGRANT* 37 69 |
DPASS* 38 71 o
TxD[3:0] 67, 65, 1,7, 0]
63, 61 53
RxDI[3:0] 68, 66, 13,9 {
64, 62 6,4
March 1992

E1E P N 213LL39 0004100 972 EMCIR

—nt.

====CIRRUS LOGIC

1.5 Pin Descriptions (cont)

CL-CD1400
UXART Serial/Parallel Controller

CIRRUS LOGIC INC

Description

REQUEST TO SENDI[3:0]: The request to send output
from each channel. These signals are controlled by the
Modem Signal Value Register 1 inside the CL-CD1400.
RTS0" serves a dual-purpose based on the mode of oper-
ation of Channel 0 (see PSLIN*).

CLEAR TO SEND[3:0]: These are the clear-to-send
inputs for each of the channels. If enabled, this signal can
control the transmitter, enabling transmission when ac-
tive, and disabling transmission when inactive. CTS0*
serves a dual purpose based on the mode of operation
Channel 0 (see PSLCT*).

DATA SET READY[3:0]: Data Set Ready for each chan-
nel. DSRO* serves a dual purpose based on the mode of
operation of Channel 0 (see PBUSY*).

DATA TERMINAL READY[3:0): Data Terminal Ready
for each channel. These signals are under control of
Modem Signal Value Register 2. DTR0* serves a dual
purpose based on the mode of operation of Channel 0
(see PINIT*).

CARRIER DETECT[3:0]: These are Carrier Detect for
each PD[6], PD[4] channel and can be monitored via the
Modem Signal Value Registers. CDO* serves a dual pur-
pose based on the mode of operation of Channel 0 (see
PERROR). CD1*, CD2" and CD3* serve dual purposes
as Parallel Data Bits 2, 4 and 6 (PD[2], PD[4] and PD{6])
when Channel 0 is operating in Parallel Mods.

68-Pin 100-Pin
PLCC PQFP
Symbol Pin No. PinNo. Type
RTS[3:01* 2,9, 17,28 O
15, 22 36, 45
CTS[3:0)* 4,10, 21,29 |
17,23 38, 46
DSRI[3:0]* 5, 11, 23,31 |
18, 24 40, 47
DTR[3:0})* 1,8, 15,27 O
14, 21 35,43
CD[3:0}* 7,13, 26,34 |
PD[6], PD[4] 20, 26 42,49
PD[2]
PERROR*
RI[3:0)* 6, 12, 25,33 |
PD[7), PD[5], 19,25 41,48
PDI[3], PPE*

RING INDICATOR[3:0]: These are the Ring Indicator for
each channel and can be monitored via the Modem Signal
Value Registers. RI0* serves a dual purpose based on the
mode of operation of Channel 0 (see PPE). RI1*, RI2* and
RI3" serve dual purposes as Parallel Data Bits 3, 5 and 7

{(PD[3], PD[5]} and PD[7]) when Channel 0 is operating in

Parallel Mode.

CL-CD1400

UXART Serial/Parallel Controller

b1E P WM 213bbk39 0004101 409 ERMCIR

——————..

=
—== CIRRUS LOGIC

1.5 Pin Descriptions (cont.) CIRRUS LOGIC INC
68-Pin 100-Pin
PLCC PQFP

Symbol Pin No.

PinNo. Type Description

PSTROBE* 61

3 0] PRINTER STROBE: This is the alternate function for
TxD0 when Channel 0 is programmed as a parallel port.
When the port is selected for output (printer), PSTROBE*
is driven active by the CL-CD1400 after a proper data set-
up time. Data is held for a proper hold time after
PSTROBE"* is deactivated. When Channel 0 is pro-
grammed as an input (scanner) port, PSTROBE" acts as
the acknowledge pin to signal completion of data recep-
tion.

PACK* 62

4 | PRINTER ACKNOWLEDGE: This is the alternate func-
tion of RxDO when Channel 0 is programmed as a parallel
port. When the port is selected to output (printer), this sig-
nal is used by the CL-CD1400 to signal completion of data
reception by the printer, and it will begin the next I/O cycle.
When Channel 0 is selected as input (scanner), PACK* is
treated as the strobe input. Proper data setup and hold
times are required.

PSLIN* 22
PINIT* 21
PAUTOFD* 27

PRINTER SELECT IN

PRINTER INITIALIZE

PRINTER AUTOFEED

These three signals are general-purpose outputs. Their
state is controlled by the lower three bits of the PSVR
Register (see the register descriptions for detailed infor-
mation on register bit assignments). PSLIN* and PINIT*
are alternate functions for RTSO* and DTRO*, depending
on the mode of operation on Channe! 0. PAUTOFD* is a
single-function cutput pin.

45
43
53

000

PSLCT* 23
PPE* 25
PERROR* 26

46 I PRINTER SELECT

48 l PRINTER PAPER EMPTY

49 | PRINTER ERROR
These three signals are general-purpose inputs. Their
state can be monitored via the upper four bits of the PSVR
Register. As with their modem input counterparts (CTS0*,
R10* and CD0*), a change in state can be programmed to
generate a SVCREQM". The function of these signals is
automatically selected based on the mode of operation
programmed for Channel 0.

March 1992] 15

blE D WA 2136639 0004102 745 EECIR

D a3

——== CIRRUS LOGIC

1.5 Pin Descriptions (cont,)

68-Pin 100-Pin
PLCC PQFP
Symbol Pin No. Pin No.

Type

CL-CD1400

CIRRUS LOGIC INC

Description

/O

PRINTER BUSY: PBUSY is a bi-directional signal; it is an
input when transmit is enabled and an output when re-
ceive is enabled. During receive data operations, the CL-
CD1400 drives PBUSY active after receiving the strobe
from the remote. When it has taken the data, it deasserts
PBUSY and activates PACK*. During transmit data oper-
ations, the state of PBUSY is made available to the host
via the PSVR Register; however, it does not affect transfer
operation and is not a handshake signal for this direction.

e}

PARALLEL DATA BIT: When Channel 0 is operating in
Parallel Mode, this pin provides the Parallel Data Bit 0.

PBUSY 24 47
PD[0] 28 54
PD[1} 29 55

l{e]

PARALLEL DATA BIT: When Channel 0 is operating in
Paralle! Mode, this pin provides the Parallel Data Bit 1.

1 6 L March 1992

LLE) HE 213L639 0004103 b8l EMCIR

CL-CD1400
UXART Serial/Parallel Controller

2. REGISTERS

All communication with the CL-CD1400 takes
place through a large array of registers. Registers
are considered to be one of three types: global,
virtual and per-channel. Global registers affect ali
channels within the device. Per-channel registers
pertain only to the channel being referenced.
Global registers are always available for host
access; access to the local registers of a particular
channel requires selecting the register set of that
channel. Virtual registers are only availabie to the
host during the context of a service routine. There
are four sets of per-channel registers, one for each
channel. Selection of the register set is
accomplished by writing the Channel Number (0
through 3) into the Channel Access Register
(CAR). This causes a ‘bank switch’ action, allowing
the registers of the selected channel to be
accessed. At any given time, only the registers of
a single channe! are available. Once selected, this
register set remains available until the CAR is
changed by the host.

The tables on the following pages define the regis-
ter symbols, names, read and write access modes,
and the internal offset address for each register in
the CL-CD1400. The offset address is applied to
the address bus (A[6:0]) during a host I/O cycle to
select a particular register. A detailed description
of the host interface is presented in Section 4.

March 1992

CIRRUS LOGIC INC

——= CIRRUS LOGIC

In the register bit definitions immediately following
the register tables, some registers are shown with
two functions. In these cases, the first definition
applies to the Serial Operation Mode of Channel 0,
and the second to Parallel Mode. For Channels 1
through 3, only the function labeled ‘Serial’ ap-
plies.

Section 3 presents a detailed description of regis-
ter programming.

Note that the addresses are shown relative to the
CL-CD1400 definition of address lines. In 16- and
32-bit systems, it is a common practice to connect
8-bit peripherals to only one byte lane. Thus, in 16-
bit systems, the CL-CD1400 appears at every oth-
er address; for example, the CL-CD1400 A0 is
connected to the host A1. In 32-bit systems, the
CL-CD1400 appears at every fourth address; (the
CL-CD1400 A0 is connected to the host A2). In ei-
ther of these cases, the addresses used by the
programmer will be different than what is shown.

For instance, in a 16-bit Motorola 68000-based
system, the CL-CD1400 is placed on data lines
D0-D7, which are at odd addresses in the Motorola
manner of addressing. The CL-CD1400 A0 is con-
nected to the 68000 A1, etc. Thus, CL-CD1400 ad-
dress x'40 becomes x’81 to the programmer. It is
‘left-shifted’ 1 bit, and A0 must be ‘1’ for low-byte
(DO-D7) accesses.

L1E D MM 213bb39 0004104 518 EECIR

T — CL-CD1400

==CIRRU S LOGIC UXART Serial/Parallel Controller

2.1 CL-CD1400 Register Map CIRRUS LOGIC INC

2.1.1 Global Registors

Symbol Register Name R/W A[6:0] (Hex) Page

GFRCR Global Firmware Revision Code Register R/W 100 0000 40 79

CAR Channel Access Register RWwW 110 1000 68 79

GCR Global Configuration Register RW 100 1011 48 80

SVRR Service Request Register R 1100111 67 80

RICR Receive Interrupting Channel Register RW 100 0100 44 80

TICR Transmit Interrupting Channel Register R/W 100 0101 45 80

MICR Modem Interrupting Channel Register R/W 1000110 46 80

RIR Receive Interrupt Register R/WwW 110 1011 6B 81

TIR Transmit Interrupt Register Rw 110 1010 6A 81

MIR Modem Interrupt Register RW 110 1001 69 81

PPR Prescaler Period Register R/W 111 1110 7E 82 ‘
2.1.2 Virtual Registers

Symbol Register Name R/W A[6:0] (Hex) Page

RIVR Receive Interrupt Vector Register R 100 0011 43 83

TIVR Transmit Interrupt Vector Register R 100 0010 42 83 .
MIVR Modem Interrupt Vector Register R 100 0001 4 83

TDR Transmit Data Register w 110 0011 63 84

RDSR Receive Data/Status Register R 110 0010 62 84 4
MISR Modem Interrupt Status Register R 100 1100 4C 85

EOSRR End Of Service Request Register w 110 0000 60 86

NOTE: The page numbers shown in these tables indicate the page where the detailed description of the register
may be found.

bJE D MW 213bL39 0OOY1LOS 454 EECIR

CL-CD1400 —

UXART Serial{Parallel Controller

L i 55 ——— g CIMJ S LOGIC
2.1.3 Channel Registers CIRRUS LOGIC INC

Symbol Register Name RW A[6:0] (Hex) Page
LIVR Local Interrupt Vector Register RW 0011000 18 86

CCR Channel Command Register RW 0000101 05 87
SRER Service Request Enable Register R/W 0000110 06 90
COR1 Channel Option Register 1 RW 0001000 08 91
COR2 Channe! Option Register 2 RW 0001001 09 g2

COR3 Channel Option Register 3 RW 0001010 0A 93
COR4 Channel Option Register 4 R/W 0011110 1E 95
CORS5 Channel Option Register 5 RW 0011111 1F 96
CCSR Channel Control Status Register R 0001011 0B 97
RDCR Received Data Count Register 0001110 OE 98
SCHR1 Special Character Register 1 RW 0011010 1A 100
SCHR2 Special Character Register 2 R/W 0011011 1B 100

SCHR3

Special Character Register 3

0011100

1iC

SCHR4 Special Character Register 4 RW 0011101 iD 100
SCRL Special Character Range, Low R/W 0100010 22 100
SCRH Special Character Range, High RW 0100011 23 100

LNC

LNext Character

0100100

24

MCOR1

Modem Change Option Register 1

0010101

15

101

MCOR2

Modem Change Option Register 2

RW

0010110

16

102

RTPR

Receive Time-out Period Register

RW

0100001

21

103

MSVR1

Modem Signal Value Register 1

RW

1101100

6C

103

MSVR2

Modem Signal Value Register 2

1101101

6D

PSVR

Printer Signal Value Register

RW

1101111

6F

104

RBPR

Receive Baud Rate Period Register

RW

1111000

78

104

RCOR

Receive Clock Option Register

RW

1111100

7C

105

TBPR

Transmit Baud Rate Period Register

RW

1110010

72

105

TCOR

Transmit Clock Option Register

RW

1110110

76

106

March 1992

19

LIE D B 213bbL39 0004106 390 EECIR

e CL-CD1400
==ICIRRUS LOGIC QXART Serial{Parallel Controller:
2.2 Register Definitions CIRRUS LOGIC INC
2.2.1 Global Registers

Register Name Symbol {Hex) R/W Page
Global Firmware Revision Code Register {(GFRCR) 40 Read/Write 79
Firmware Revision Code)

Channel Access Reglster (CAR) 68 Read/Write 79
0 0 0 0 0 0 Ci co

Global Configuration Register (GCR) 4B Read/Write 80
P/S* 0 0 0 0 0 0 0

Service Request Register (SVRR) 67 Read Only 80
0 0 0 0 0 SRM SRT SRR

Recelve Interrupting Channel Register RICR 44 Read/Write 80
X X X X C1 co X X

Transmit interrupting Channel Register TICR 45 Read/Wrlte 80
X X X X Ct co X X

Modem Interrupting Channel Register MICR 46 Read/Write 80
X X X X C1 co X X

Recelve Interrupt Register (RIR) 6B Read/Write 81 .

rxireq rbusy runfair 1 i 0 ch[1] ch[0]

Transmit Interrupt Register (TIR) 6A Read/Write 81

txireq tbusy tunfiar 1 0] 0 ch[1] ch{0]

Modem Interrupt Register (MIR) 69 Read/Write 81

mdireq | mbusy | munfair 0 1 0 ch[1] ch[0]

Prescaler Perlod Register (PPR) 7E Read/Write 82
Binary Value .

bLE D EE 213bb39 0004107 227 EECIR
=
CIRRUS LOGIC

CL-CD1400
UXART Serial{Parallel Controller
2.2.2 Virtual Registers CIRRUS LOGIC INC
Register Name Symbol (Hex) R/W Page
Receive Interrupt Vector Register {RIVR) 43 Read Only 83
X X X X X IT2 1T ITO
Transmit Interrupt Vector Register (TIVR) 42 Read Only 83
X X X X X IT2 T ITO
Modem Interrupt Vector Register (MIVR) 41 Read Only 83
X X X X X IT2 IT1 iTO
Transmit Data Reglster (TDR) 63 Write Only 84
Transmit Character
Recelve Data/Status Register (RDSR) 62 Read Only 84
Received Character Character
Time-out | SC Det2 {SC Det! | SC Det0 | Break PE FE OE Status
Modem Interrupt Status Reglster {MISR) 4C Read Only 85
DSRch | CTSch Rich CDch Y 0 0 0
. End Of Service Request Register {EOSRR) 60 Write Only 86
X X X X X X X X

March 1992

21

LLE D WM 2136639 0004108 1b3 EMCIR

—— CL-CD1400
===CIRRUS LOGIC _UXART Seril/Parallel Controlle
2.2.3 Channel Registers CIRRUS LOGIC INC

Register Name Symbol (Hex) RW Page
Local Interrupt Vector Register (LIVR) 18 Read/Write 86
X X X X X IT2 i ITO
Channel Command Reglster (CCR) 05 Read/Write 87
Res ChanfCOR Chg|Send SC | Chan Ctl D3 D2 D1 DO

Format 1: Reset Channel Command
Res Chan

(=]

0 0 0 0 FTF Type

Format 2: Channel Option Reglster Change Command
0 COR Chg 0 o} COR3 COR2 COR1 n/u

Format 3: Send Speclal Character Command

0 0 Send SC 0 0 SSPC2 | SSPC1 | SSPCO
Format 4: Channe! Control Command ‘
0 0 0 Chan Cil | XMT EN | XMT DIS | RCV EN | RCV DIS
Service Request Enable Register (SRER) 06 Read/Write 90
MdmCh n/u n/u RxData n/u TxRdy | TxMpty NNDT
Channel Option Register 1 (COR1) 08 ReadWrite 91 .

Parity ParM1 ParM0 ignore | Stop1 Stop0 ChL1 ChLo

Channel Option Register 2 (COR2) 09 Read/Write 92
IXM TxIBE ETC LLM RLM RtsAO | CtsAE DsrAE

Channel Option Register 3 (COR3) 0A Read/Write 93
SCDRNG| SCD34 FCT SCD12 | RxTh3 | RxTh2 | RxThi RxTh0 Serial

n/u n/u nfu RxTh4 | RxTh3 | RxTh2 | RxThi RxThO Parallel .

Channel Option Register 4 (COR4) 1E Read/Write 95
IGNCR | ICRNL | INLCR | IGNBRK | -BRKINT| PEH[2] | PEH[1] | PEH[0]

22 L~ March 1992

LLE D WH 213bk39 0004109 OTT EECIR

———ct—.

CL-CD1400
UXART Serial{Parallel Controller

2 e R R s

2.2.3 Channel Registers (cont.)

====CIRRUS LOGIC

CIRRUS LOGIC INC

Register Name Symbol (Hex) R/W Page

Channel Option Register 5 {(CORS5) 1F Read/Write 96
ISTRIP LNE CMOE 0 0 EBD ONLCR | OCRNL

Channel Control Status Register (CCSR) 0B Read Only 98
RxEn | RxFloff | RxFlon n/u TxEn TxFloff TxFlon n/u Serial

RxEn 0 0 0 TxEn 0 0 0 Parallel

Recelved Data Count Register (RDCR) OE Read Only

0 0 0 0 CT3 CT2 CT1 CTO Serial

0 0 0 CT4 CT3 CT2 CT1 CTo0 Parallel
Speclal Character Register 1 {(SCHRT1) 1A Read/Write 100

Special Character 1

Special Character Register 2

(SCHR2) iB Read/Write 100

Special Character 2

Speclal Character Register 3

(SCHR3) 1C Read/Write 100

Special Character 3

Speclal Character Register 4

(SCHR4) 1D Read/Write 100

Special Character 4

Special Character Range Low

(SCRL) 22 Read/Write 100

Character Range Low

Special Character Range High

(SCRH) 23 Read/Write 100

Character Range High

LNext Character

{LNC) 24 Read/Write 101

LNext Character

March 1992 L] 23

LlE D HEH 2136639 0004110 811 EECIR

% CL-CD1400
______ CIRRUS LOGIC UXARi"TSAirzaf{Paralle{ fonf’olf:
Register Name Symbol (Hex) R/W Page
Modem Change Option Reglster 1 (MCOR1) 15 Read/Write 101
DSRzd | CTSzd Rlzd CDzd DTRth3 | DTRth2 | DTRth1 | DTRthO Serial
PBUSYzd| PSLCTzd| PPEzd | PERRORzd 0 0 0 0 Parallel
Modem Change Option Register 2 (MCOR2) 16 Read/Write 102
DSRod | CTSod | Rlod CDod 0 0 0 0 Serial
PBUSYod| PSLCTod | PPEod |PERRORod o] 0 0 0 Parallel
Receive Time-out Perlod Register (RTPR) 21 Read/Write 103
Binary Count Value
Modem Signal Value Register 1 (MSVR1) 6C Read/Write 103
DSR CTS Ri cD (PSTROBET! o n/u RTS
Modem Signal Value Register 2 (MSVR2) 6D Read/Write 104
DSR CTS RI CD |PSTROBET| o0 DTR n/u
Printer Signal Value Register (PSVR) 6F Read/Write 104
PBUSY*| PSLCT* { PPE* |PERROR*| PACK* |PAUTOFD*| PINIT*| PSLIN®
Recelve Baud Rate Period Register (RBPR) 78 Read/Write 104
Binary Divisor Value
Recelve Clock Option Register (RCOR) 7C Read/Write 105
X X X X X ClkSel2 | ClkSelt | CikSel0
Transmit Baud Rate Perlod Register (TBPR) 72 Read/Write 105
Binary Divisor Value
Transmit Clock Option Register (TCOR) 76 Read/Write 106
X X X X X ClkSel2 | ClkSel1 | ClkSel0

T Bit 3 of MSVR1 and MSVR2 show the state of the PSTROBE Qutput only on Channel 0.

24 ———— - TRRUS LOGIC INC

————— March 1992

CL-CD1400
UXART Serial/Parallel Controller

3. CL-CD1400 PROGRAMMING

3.1 Overview

The CL-CD1400 host interface is made up of a
large array of registers that control aspects of
chip behavior; some affect overall chip opera-
tions, and some affect only one channel. At first
glance, this can appear to be a bewildering num-
ber of registers that need to be manipulated.
However, most of the registers will only be setup
once, during initialization, and only rarely modi-
fied during normal operation. The purpose of this
section is to discuss these aspects, as well as
the methods of interacting with the CL-CD1400
for channel service needs.

3.2 Initialization

In order to properly bring up a CL-CD1400, sev-
eral procedures must be completed. These in-
clude chip Initialization, programming global
functions and setting channel-specific parame-
ters. In most cases, initialization routines will only
be executed once, during overall system boot-
up. The following sections discuss these steps in
detail. The flow chart on the next page presents
this information in a visual format.

3.2.1 Chip Initialization

The procedures that perform chip reset will nor-
mally be executed after a power-up, system-
wide reset and, therefore, the CL-CD1400 will
have performed its own internal initialization,
caused by the Hardware Reset Control Signal,
RESET". It is good practice, however, to issue a
software chip reset anyway to make sure it has
been completed before chip initialization begins.
The following steps can be followed to accom-
plish this (following the text description, there is
a flow chart depicting the same steps):

1) Wait for CCR to contain 0x00

The contents of the Channel Command Reg-
ister (CCR) must be zero before a command
is issued. This is required so that any current-
ly executing command has completed before
the new one is started. Since this is probably

March 1992 weeesms———— (IRRUS

LLE D B 2136639 0004111 7?54 EECIR

Ilﬁ

—== CIRRUS LOGIC

the first command being written to the CL-
CD1400 after power-on initialization, the CCR is
likely to be zero, but it is recommended to al-
ways check the CCR before writing a new com-
mand into it.

2) Write hexadecimal 81 (x'81) to the Channel
Command Register (CCR).

This command causes the CL-CD1400 to per-
form an all-channel and global reset. Its effect is
to cause the internal RISC processor to begin
execution from its power-up reset location. All
internal host interface registers are cleared, the
FIFOs are flushed, and all channels are dis-
abled.

The all-channel reset command is a special-
case CCR operation. Normally, commands is-
sued to the CCR affect only the channel select-
ed by the CAR. In this case, the setting of the
CAR is not significant.

3) Wait for the firmware revision code to be written
into the GFRCR.

This operation is used by the internal firmware
to flag completion of the reset procedure. After
reset, the GFRCR is one of the first registers to
be cleared and is the last register set before nor-
mal run-time code execution begins. The initial-
ization routine must wait for this register to be-
come non-zero before beginning any other
programming of CL-CD1400 Registers. Howev-
er, if the host code is sufficiently fast, it may be-
gin testing the GFRCR before the MPU clears it;
thus, the assumption made would be that the
CL-CD1400 has completed its internal initializa-
tion when, in fact, it has not. To avoid this error,
the host software should clear the GFRCR just
prior to issuing the global reset and then poll for
the correct revision code. This is the recom-
mended procedure to reset the CL-CD1400.

This procedure can also be used as part of a
diagnostic test suite. The device will complete
internal initialization within 500 pusec. Therefore, a
timer (software or hardware) can be used to detect
if the operation does not finish within this time, in
which case the chip may not be functional.

b1E D WM 213bL39 0004112 b4 EECIR
=

CL-CD1400
UXART Serial{Parallel Controller
——= CIRRUS LOGIC

CIRRUS LOGIC INC

Clear
GFRCR

Issue Reset
Command

Continue
Init Process

* Revision Code for
Revision E device = 44

Figure 3-1. CL-CD1400 Master Initialization Sequence

... March 1 992

26

CL-CD1400
UXART Serial/Parallel Controller

3.2.2 Global Function initialization

Once chip reset has been completed, the next
step is to set the Global Operating Mode and tim-
er prescale. All other initialization will take place
at the channel level.

1) Set the Global Configuration Register (GCR).

The GCR setting determines the mode of op-
eration of Channel 0. After reset, this register
is set to all ‘0's. This sets Channel 0 to be a
serial port. If this is the intended mode for
Channel 0, nothing further needs to be done
with this register. If Channel 0 is used as a
parallel port, Bit 7 mustbe settoa'?".

2) Set the Prescaler Period Register (PPR).

The PPR sets the master time ‘tick’ for the CL-
CD1400. It is a binary value that sets the con-
stant by which the system clock is divided (af-
ter a fixed prescale of 512) to produce the in-
ternal clock for the on-chip timers (not the
baud rate generators, however). This clock is
used for receiver FIFO time-out generation
and delay timing for the insert delay command
in the embedded transmit command set. For
example, to generate a timer clock of 1 ms,
the value is computed as:

(&5"1’12’12-) x 1ms = 39.0625

The value 39 would be loaded into the PPR. This
value, in effect, selects an approximate 1-kHz
clock as the source for the Receiver Time-out
Period Registers of each channel. Those regis-
ters would, in turn, be loaded with an appropriate

March 1992 E—

CIRRUS LOGIC INC

LXE D WE 213LL3Y 0004113 520 WMCIR

=—="CIRRUS LOGIC

value divisor to generate the desired character
time-out periods. This value, 39, is the recom-
mended minimum value that should be placed in
the PPR. Values thatgenerate a time period of less
than 1 ms adversely affect the performance of the
MPU and, thus, overall serial data performance.

3.2.3 Individual Channel Inltialization

At this point, the basic operation of the CL-CD1400
has been set up. The internal register states have
been cleared, the mode for Channel 0 is set, and
basic timer operations initialized. The next step is
to program the operating modes of each channel.
This includes setting the values for the interrupt
vectors, the receive and transmit baud rates, num-
ber of bits per character, number of stop bits, pari-
ty, special characters, if any, etc. Each channel
can have a completely unique set of operating
characteristics. Or, they can all be the same. It is
application dependent; the operating modes of one
channel have no effect on the operation of any oth-
er (operating Channel 0 as a paraliel port does af-
fect the available input/output signals associated
with Channels 1-3 (CD and Rl are borrowed) but
not operating characteristics).

The following shows a typical initialization se-
quence to set up a single serial channel. In this ex-
ample, Channel 1 is set up as:

9600 Baud, send and receive

8 bits per character, 1 Stop Bit

No parity

Automatic In-Band (Xon/Xoff) flow control
Transparent flow control

Special character detect enabled

Eight character receive FIFO threshold
Receiver and transmitter enabled for interrupt
operation

Enable ISTRIP on incoming characters

bLE D WM 2136639 0004114 4L? EMECIR

———.

—

———l

CL-CD1400
UXART Serial/Parallel Controller

CIRRUS LOGIC

pRR

The clearest way to show this initalization sequence is via a 'C' program fragment; the code shown is

compatible with Borland® Turbo C™:

/* Init channel. Channel number is included in call. Register names and addresses are defined in

/

* the header file (not shown).
*

init_channel(chan)

char

{

chan

outportb(CAR, chan);
outportb(TCOR, 0x01);

/* set channel number in CAR */
/* constants for 20.2752-MHz clock ~ clock option*/

outportb(TBPR, 0x42); ” — baud rate period */
outportb(RCOR, 0x01); * constants for 20.2752-MHz clock — clock option*/
outportb(RBPR, 0x42); r — baud rate period */

outportb(COR1, 0x03);
outportb(COR2, 0x40);
outportb(COR3, 0x38);
while (inportb(CCR) 1= 0)

outporu')(CCR, Ox4E);
outportb(CORS5, 0x80);
outportb(SRER, 0x14);

* no parity, 1 Stop Bit, 8-bit chars */

/* auto. in-band flow control */

/* transp. flow-control, special char 1 & 2 detect, fifo thresh = 8 */
/* make sure that CCR is zero before issuing commands */

{* issue COR changed command for COR1, 2, 3 */
/* enable ISTRIP */
/* enable receive and transmit interrupts */

while (inportb(CCRY) 1= 0)
outportb(CCR, Ox1A);

3.3 Poll Mode Examples

The CL-CD1400 provides a set of seven registers
that are dedicated to Poll Mode operation, as de-
scribed in Section 4. This section shows one of
many ways in which these registers can be used to
detect and service requests from any of the chan-
nel receiver, transmitter or modem signal change
functions.

The primary registers involved in polling are the
SVRR, RIR, TIR, MIR and CAR; supplementary
registers are the RIVR, TIVR and MIVR. Of the
latter three, only the RIVR is actually used; it
provides the status about whether the service
request is for ‘good’ data or exception data. The

/* make sure that CCR is zero before issuing commands */

{* issue receiver and transmitter enable command to CCR */

TIVR and MIVR provide redundant information
and are rarely used. Other registers related to
service requests (TDR, RDSR, MISR, etc.)
perform the same functions as they would in a
hardware-acknowledged service request.

Once again, ‘C’ code fragments will be used to de-
scribe the functions. As with other coding exam-
ples, it is assumed that register addresses are de-
fined elsewhere, such as in a header file, and are
not shown here. Also, the routines cannot be con-
sidered complete. Some pieces will be dependent
on the system software design so liberties are tak-
enin the examples. They do, however, show meth-
ods that can be used to implement the Poll Mode
service request/service acknowledge sequence.

CIRRUS LOGIC INC

28 L

E1E D W 213bk39 0004115 3T3 MECIR

CL-CD1400 N
UXART Serial/Parallel Controller
====CIRRUS LOGIC

SRR

‘ 3.3.1 Polling Routine Examples CIRRUS LOGIC INC
3.3.1.1 Scanning Loop

. /* Poll Mode code fragment. This routine simply checks for any servicing requests and
* branches to the appropriate service routine. The code prioritizes service requests as
* receive, transmit and modem, in that order.
*/
poll()
{
char status;
char rx_stat = tx_stat = md_stat = 0;
if (status = inportb(SVRR)) {
switch (status) {
case 1: /* alt values that include a receive request */
case 3:
case 5:
case7:
rx_stat = service_rec();
return(rx_stat);
break; .
. case 2: /* all values that include transmit but not receive */
case 6:
tx_stat = service_txm();
return{ix_stat);
break;
case 4: /* modem service request alone */
md_stat = service_mdm(};
. return(md_stat);
break;
default: /* can't happen :-) */
break;
}
1
}

Once the code above finds an active request posted in the SVRR, it calls the appropriate subroutine to
service the request. The service routines follow.

March 1992 # 29

LLE D ER 213bb639 0004llb 23T EECIR
CL-CD1400

== CIRRUS LOGIC

3.3.1.2 Recelve Service CIRRUS LOGIC INC

/* The receive service acknowledge cycle begins by reading the RIR. This register contains the

* necessary information to switch the CL-CD1400 into the correct service acknowledge context. The

* RIR is saved for use at the end of the routine and then copied into the CAR. The act of copying the

* RIR into the CAR forces the context switch. The channel number requesting service is extracted from
* the RIR. The RIVR Register indicates whether the request is for ‘good data’ or exception data

* and is used to correctly handle the request. At the end of the service, the upper two bits in the

* RIR are cleared causing the switch out of the service acknowledge context.

*/

service_rec()

char serv_type, save_rir, save_car, channel, status, char;
int char_count, i;

save_rir = inportb(RIR); /* retrieve and save receive interrupt value */
channel = save_rir & 0x03; /* extract channel number from the RIR*/
save_car = inportb(CAR); {* save CAR for restore */
outportb(CAR, save_rir); /* switch CL-CD1400 to service ack. context */
serv_type = inportb(RIVR) & 0x07; /* read vector register; get type {good/exception)*/
switch (serv_type) {
case 3: {* good-data service */
char_count = inportb(RDCRY); {* get number of characters in FIFO */
for (i=1;i<=char_count;i++){ /* - read that number of chars */
char = inportb(RDSR); {* read char from FIFO */

/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design
* 50 it won't be shown here. */

}
outportb(RIR, save_rir & 0x3f); /* terminate service ack. sequence */
outportb(CAR, save_car); /* restore original CAR* /
return(0);
break;

case 7: /* exception data service request */
status = inportb(RDSRY); /* by definition, only one char; get status */
outportb(RIR, save_rir & 0x3f); /* terminate service ack. sequence */
outportb(CAR, save_car); /* restore original CAR */
return(status); /* just return the error type */

break;

LLE P W 2136639 0004117 17?L EECIR

CL-CD1400 ———
UXART Serial{Parallel Controller —
—== CIRRUS LOGIC

3.3.1.3 Transmit Service CIRRUS LOGIC INC

/* The transmit service acknowledge routine follows very nearly the same steps that the receive
* service routine follows. This time, the TIR is used to force the switch to a transmit service for
* the requesting channel.

*
service_txm()
{
char save_tir, save_car, channel;
int char_count, i;
save_tir = inportb(TIR); /* retrieve and save transmit interrupt value */
channel = save_tir & 0x03; /* extract channel number from the TIR*/
save_car = inportb(CAR); /* save CAR for restore */
outportb(CAR, save_tir); /* switch CL-CD1400 to service ack. context */
* Buffer management code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer
* layout is system design dependent and won't be shown here.
*/
for (i =0;i < char_count; i++) { /* transmit FIFO can take 12 characters */
outportb(TDR, *next_char++);
/* it is assumed that char_count and next_char is set up by buffer code */
}
outportb(TIR, save_tir & 0x3f); /* terminate service ack. sequence */
outportb(CAR, save_car); /* restore original CAR; may not be necessary*/
retumn(0);
}

March 1992 o 31

LLE D EM 2136639 00041186 OO2 EMCIR

CL-CD1400
UXART Serial/Parallel Controller

===CIRRUS LOGIC .»

CIRRUS LOGIC INC

3.3.1.4 Modem Service

/* Code to handle modem signal change service request can be simple or complex depending

* on whether port control is handled directly in the service routine or simply noted with status

* returned. The following routine services the request and returns the status of which signals

* changed with the channel number OR'ed into the least significant two bits; the main driver

* software must perform the necessary functions. As with the receive and transmit routines,

* the Interrupt Register, this time the MIR, is used to force the CL-CD1400 into the service context.
*/

service_mdmy()

char save_mir, channel, save_car, mdm_status;

/* retrieve and save modem interrupt value */

{* extract channel number from the MIR*/

/* save CAR for restore */

/* switch CL-CD1400 to service ack. context */
/* get status of which modem signals changed */
/* terminate the service ack. sequence */

/* restore CAR */

save_mir = inportb(MIR);
channel = save_mir & 0x03;
save_car = inportb(CAR);
outportb(CAR, save_mir);
mdm_status = inportb(MISRY);
outportb(MIR, save_mir & 0x3f)

outportb(CAR, save_car);
return{mdm_status | channel);

3.4 Hardware-Activated Service
Examples

In nearly all respects, the way in which the host
interacts with the CL-CD1400 during hardware
activated service acknowledge is the same as for
the software-activated methods. The main
difference is that the SVCACK* Input Signals
perform the context switch automatically thus
relieving that duty from the host. The resuit is the
same; the CAR is set to point to the correct
channel and the chip is placed in the proper
internal mode to service the request. When the
host activates the SVCACK" Input, a read cycle is
performed. The CL-CD1400 places the contents of
the appropriate interrupt vector register (RIVR,
TIVR, MIVR) of the channel requesting service on
the data bus. When multiple-CL-CD1400s daisy-
chained together, the host uses the information

provided to determine the type of service and the
ID number of the device being accessed. At the
end of the service routine, the host writes a dummy
value to the EOSRR Register. This causes the
switch out of the service acknowledge context and
restores the environment to what it was before the
service began.

The following code fragments show the differenc-
es between this type of service acknowledge and
those shown above for the software activated con-
text switch. Only the beginning and ending steps
are shown; the code in between would be very
similar to the previous examples. These routines
could be executed as the result of a hardware in-
terrupt or via software polling as in the previous ex-
amples. For purposes of this discussion, the meth-
od of arriving at the proper service routine is not
important.

LXE D BN 2136b39 0004119 T49 EECIR

CL-CD1400 e

UXART Serial/Parallel Controller —

URART SerialfParale Control” ==='CIRRUS LOGIC
3.4.1 Receive Service CIRRUS LOGIC INC

/* The receive service acknowledge cycle begins by executing a service acknowledge cycle that

* activates the SVCACKR" Input. The data obtained as a result of this ‘read’ cycle is the contents

* of the RIVR Register of the channel making the service request. The service routine decodes the

* vector in the least significant three bits to determine if the data is ‘good’ or ‘bad’ (exception).

* The context switch was done automatically when the SVCACKR" Signal was activated so the

* CAR does not need to be loaded. The routine reads the RICR to determine the requesting

* channel number. If this were a multiple-CL-CD1400 system using daisy-chaining, the routine would
* extract the chip ID from the upper five bits of the RIVR.

*f
service_rec()
{
char serv_type, vector, channel, status, char;
int char_count, i;
vector = inportb{SVCACKRY); * gen. ack and get vector (read LIVR) */
channel = inportb(RICR) >> 2; /* extract channe! number from the RICR*/
serv_type = vector & 0x07; /* mask RIVR to get type (good/exception)*/
switch (serv_type) {
case 3: /* good-data service */
char_count = inportb(RDCRY); /* get number of characters in FIFO */
for (i=1;i<=char_count;i++){ /*-read that number of chars Wi
char = inportb(RDSRY); * read char from FIFO */
/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design
* 5o it won't be shown here; this code just shows how to manipulate the
* CL-CD1400 registers to implement the poll mode service acknowledge. */
}
break;
case 7: * exception data service request */
status = inportb(RDSR}); /* by definition, only one char; get status */
break;
}
outportb(EOSRR, 0x00); 1* write dummy value to EOSRR to terminate */
}

March 1992 o e 33

ELE D BN 2136639 0004120 760 EECIR

e CL-CD1400
— UXART Serial/Parallel Controller
——= CIRRUS LOGIC ,

3.4.2 Transmit Service CIRRUS LOGIC INC

/* The transmit service acknowledge routine closely follows the same steps of the receive

* service routine follows. The SVCACKT* Input is activated to start the service cycle, reading the
* contents of the TIVR, and the TICR is read to get the channel number.

*/

service_txm()

char vector, channel;
int char_count, i;

vector = inportb(SVCACKT); /* retrieve and save transmit interrupt value */
channel = inportb(TICR) >> 2; /* extract channel number from the RICR*/

/* Buffer management code would setup pointers to the next 12

* characters (maximum) to be sent on this channel. Again, buffer
* layout is system-design-dependent and won't be shown here.
Y/

for (i=0;i < char_count; i++) { /* transmit FIFO can take 12 characters */
outportb(TDR, *next_char++);

/* itis assumed that char_count and next_charis set up by buffer code */

}
outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate */

3.4.3 Modem Service

* The following routine services the modem change service request. Context switch is set up by

* activating the SVCACKM* Input, reading the MIVR. The routine reads the MISR Register to

* determine which modem signal(s) changed. Channel status is an externally defined variable that
* this routine updates.

*

service_mdm()

char vector, channel;

vector = inportb(SVCACKM); /* retrieve and save transmit interrupt value */
channel = inportb(MICR) >> 2; * extract channel number from the RICR*/
mdm_status[channel] = inportb(MISRY); /* get status of which modem signals changed */
outportb(EOSRR, 0x00); {* write dummy value to EOSRR to terminate */

34 % March 1992

blE D N 21365639 000412l bT? EMCIR

CL-CD1400 —
UXART Serial{Parallel Controller —
LZART SerialfParalle Controller_ ==="CIRRUS LOGIC

3.4.4 Baud Rate Derivation CIRRUS Lo6IC INC

[* This is a simple code example, which shows a way to derive the proper values for the RCOR/TCOR
* and RBPR/TBPR register pairs for any baud rate. Routine is called with the desired baud rate;
* master clock is fixed; global variables cor and bpr are set by the routine.

*
double cor_values|] = {8.0, 32.0, 128.0, 512.0, 2048.0, -1.0};

compute_baud(baud_rate)
double baud_rate;

{
double clock = 20000000.0;
int i;
for (i =0; cor_values|i] I= -1; i++)
{
brp = (int) ({(clock / baud_rate) / cor_values[i]) + 0.5);
if (brp < OxFF)
{
cor =i
bpr = brp;
break;
}
return(0);
}

March 1992 e 35

LLE D WM Z213kb639 0004l22 533 EECIR

—— CL-CD1400

— UXART Serial{Parallel Controller
===CIRRUS LOGIC URART Sericfp

3.5 Baud Rate Tables

The following four tables show the values that need to be loaded into the RCOR/RBPR and TCOR/TBPR
Registers to set the designated baud rate when using three standard frequency crystals. The first one
uses a 25-MHz frequency; the second uses a 20.2752-MHz frequency, which yields near-perfect bit rates.
The third table uses a 20-MHz frequency and shows error rates that are larger, though still well within the
limits set by the various standards of asynchronous communications. The fourth table also uses another
standard communications base frequency (18.432-MHz) that yields divisors with nearly zero errors over-
all. However, since this frequency is below 20 MHz, performance at the higher baud rates (76.8K and
115.2K) may be slightly lower. It is, of course, not necessary that both the receiver and transmitter of a
channel be programmed to the same baud rate; the CL-CD1400 can send and receive at different rates
on the same channel.

CIRRUS LOGIC INC

Baud Rate Constants, CLK = 25 MHz

Baud Rate RCOR/TCOR RBPR/TBPR Error
(Hex)
110 4 6F 0.02%
150 4 51 0.47%
300 3 A3 0.15%
600 3 51 0.47%
1200 2 A3 0.15%
2400 2 51 0.47%
4800 1 A3 0.15%
9600 1 51 0.47%

19200 0 A3 0.15%

38400 0 51 0.47%

56000 0 38 0.35%

57600 0 36 0.47%

64000 0 31 0.35%

76800 0 29 0.76% .
115200 0 1B 0.47%
128000 0 18 1.70%
150000 0 15 0.80%

6ELE D W 213bb639 0004123 47T EMCIR

CL-CD1400 e
UXART Serial/Parallel Controller
i < —==="CIRRUS LOGIC

3.5 Baud Rate Tables (cont) CIRRUS LOGIC INC
Baud Rate Constants, CLK = 20.2752 MHz

Baud Rate RCOR/TCOR RBPR/TBPR Error
{Hex)
110 4 5A 0.00%
150 4 42 0.00%
300 3 84 0.00%
600 3 42 0.00%
1200 2 84 0.00%
2400 2 42 0.00%
4800 1 84 0.00%
9600 1 42 0.00%
19200 0 84 0.00%
38400 0 42 0.00%
. 56000 0 2D 0.57%
57600 0 2C 0.00%
64000 0 28 1.00%
76800 0 21 0.00%
. 115200 0 16 0.00%

March 1992 e 37

B 2136639 0004124 30-b EECIR
—— CL-CD1400
—_— UXART Serial/Parallel Controller
——= CIRRUS LOGIC — — —

CIRRUS LOGIC INC BLE D

3.5 Baud Rate Tables (cont)
Baud Rate Constants, CLK = 20.00 MHz
Baud Rate RCOR/TCOR RBPR/TBPR Error
{Hex)
110 4 59 0.25%
150 4 41 0.16%
300 3 82 0.16%
600 3 41 0.16%
1200 2 82 0.16%
2400 2 14 0.16%
4800 1 82 0.16%
9600 1 41 0.16%
19200 0 82 0.16%
38400 0 41 0.16%
56000 0 2D 0.79% .
57600 V] 2B 0.94%
64000 0 27 0.16%
76800 0 21 1.36%
115200 0 16 1.36% .

XE P W 213kkL39 0004les 242 EECIR

CL-CD1400 ——

UXART Serial/Parallel Controller
........ ——m== CIRRUS LOGIC

3.5 Baud Rate Tables (cont) CIRRUS LOGIC INC
Baud Rate Constants, CLK = 18.432 MHz

Baud Rate RCOR/TCOR RBPR/TBPR Error
(Hex)

110 4 52 0.22%
150 3 FO 0.00%
300 3 78 0.00%

600 2 Fo 0.00%

1200 2 78 0.00%

1800 2 50 0.00%

2000 2 48 0.00%
2400 1 FoO 0.00%

4800 1 78 0.00%

. 9600 0 FO 0.00%
19200 0 78 0.00%

38400 0 3C 0.00%

56000 0 29 0.35%
‘ 57600 0 28 0.00%
64000 0 24 0.00%
76800 0 1E 0.00%
115200 0 14 0.00%

March 1992 L 39

bl1E D WN 213bb39 0004126 169 EMCIR

mcnec———

==PCIRRUS LOGIC

3.6 ASCI Code Table

3.6.1 Hexadecimal — Character

00
08
10
18
20
28

70
78

NUL o1
BS 09
DLE 11
CAN 19
SP 21
(29
0 31
8 39
@ 4
H 49
P 51
X 59
~ 61
h 69
P 71
X 79

SOH 02
HT OA
DC1 12
EM 1A
22
2A
32
3A
42
4A
52
5A
62
6A
72
7A

O T LD TP O~ —

3.6.2 Decimal — Character

64

104
112
120

NUL 1

BS 9

DLE 17
CAN 25
SP 33
{ 41
0 49
8 57
@ 65
H 73
P 81
X 89
~ 97
h 105
p 113
x 121

SOH 2
HT 10
DC1 18
EM 26
34
42
50
58
66
74
82
90
98
106
114
122

STX 03
NL OB
DC2 13
SuB 1B
N 23
* 28
2 33
: 3B
B 43
J 4B
R 53
Z 5B
b 63
i 6B
r 73
z 7B
STX 3

NL 11
DC2 19
suB 27
“ 35
* 43
2 51
: 59
B 67
J 75
R 83
Z 91
b 99
i 107
r 115
z 123

ETX 04
VT 0C
DC3 14
ESC 1C
24
+ 2C
3 34
; 3C
Cc 44
K 4C
S 54
[5C
c 64
k 6C
S 74
{ 7C
ETX 4

vT 12
DC3 20
ESC 28
36
+ 44
3 52
; 60
C 68
K 76
S 84
[92
c 100
k 108
s 116
{ 124

CL-CD1400

UXART Serial/Parallel Controller

CIRRUS LOGIC INC

EOT 05
NP 0D
DC4 15
FS 1D
$ 25
2D
35
3D
45
4D
55
5D
65
6D
75
7D

— T - rgA &

EOT 5
13 13
DC4 21

37
45
53
61
69
77
85
93
101
109
117
125

L2

—~—aQa -4 r-gA -

ENQ 06

CR
NAK
GS

o
o%

—“cgo—czmu o

ENQ
CR
NAK
GS
%

o

~ecgo—czmu o

OE
16
1E
26
2E
36
3E
46
4E
56
5E
66
6E
78
7E

14
22
30
38
46
54
62
70
78
86
94
102
110
118
126

s

ACK 07 BEL

SO OF si

SYN 17 ETB

RS 1F US

& 27 ¢

3 2F /

6 37 7

> 3F ?

F 47 G

N 4F O

Vv 57 W

A 5F _

f 67 g

n 6F o

v 77 w

_ 7F DEL

ACK 7 BEL

SO 15 Si

SYN 23 ETB

RS 31 US

& 39

. 47 /

6 55 7

> 63 ?

F 71 G

N 79 O

\ 87 W

A 95 _

f 103 ¢

n 111 o

v 119 w
127 DEL

40 L ___] March 1992

b1E D EE 213639 0004127 0LS EECIR

CL-CD1400
UXART Serial/Parallel Controller

4. FUNCTIONAL DESCRIPTION

4.1 Device Architecture

The CL-CD1400 can be described as a small
computer system tailored to the function of send-
ing and receiving serial and parallel data. It is
made up of a RISC processor (MPU), RAM, ROM,
host bus interface logic and serial data channels
(one of which can function as a parallel port). It
has special instructions and hardware that facili-
tate serial data manipulation.

The MPU is a true RISC processor. In addition to
having a compact, efficient set of instructions, it
has a ‘windowed’ architecture that allows it to han-
dle one channel and its registers at a time. Before
beginning any operations on a given channel, it

———.

===CIRRUS LOGIC

loads an internal Index Register that forces all ac-
cesses to the appropriate set of registers. The In-
dex Register becomes part of the internal address
and allows direct addressing of the register bank
and all hardware resources of the selected chan-
nel. No address computation is required to select
the proper channel.

This same windowed scheme is provided for the
host interface (see Figure 4-2). For all channel-
specific accesses, the host first loads the Channel
Access Register (CAR) with a pointer to the chan-
nel to be accessed. All read and write operations
will now take place with the proper channel. Host
software need only define a register address once,
and it will be valid for all channels because the
CAR is used as part of the internal addressing.

CIRRUS LOGIC INC

CHANNEL 0
LOGIC AND
BIT TIMING

MPU euf—

ROM

CHANNEL 1

LOGIC AND
BIT TIMING

BUS i
INTERFACE [«
LOGIC i

CHANNEL. 2
LOGIC AND

RAM

BIT TIMING

CHANNEL 3
LOGIC AND
BIT TIMING

Figure 4-1. CL-CD1400 Functional Block Diagram

March 1992

1E D WA 213bb39 0004128 TS5l EMECIR

——..

===PCIRRUS LOGIC

The serial data channels are made of ‘bit engines’
that off-load the task of receiving and transmitting
each bit from the MPU. The bit engines, after pro-
cessing a complete bit, interrupt the MPU so that
it can perform whatever task is required next. For
example, when receiving data, the MPU will take
the bit and add it to a character that is being as-
sembled. When transmitting, it will give the bit-en-
gine the next bit of the character being transmit-
ted. Thus, the MPU does not need to concern
itself with basic bit timing; this task is handled by
the bit engines, freeing it to perform higher-level
processing, such as detecting speciat characters.

When Channel 0 is programmed to be a parallel
port, the bit engines are used to set the timing of
the handshake signals (PSTROBE*, PACK*).

4.2 Host Interface

The host interface to the CL-CD1400 comprises
an 8-bit bidirectional data bus, a 7-bit address bus
and various strobes that identify the type of /O
cycle occurring. In most system designs, the /0
cycles will be normal host read and write cycles
that activate the appropriate strobes. Although
the strobe names and basic timing match that of

Host

a1 Address
Address

Generation

CAR

CL-CD1400
UXART Serial{Parallel Controller

m— D —— . 5 223

the Motorola 68000 family, the CL-CD1400 easily
fits into any CPU environment.

In most cases, when the host reads or writes an
internal CL-CD1400 location, it actually accesses
alocation in a RAM array that serves as a bank of
registers. Some locations, however, are mapped
to actual hardware resources; for example, when
a hard output signal is required, such as a Service
Request Output (in the SVRR), or when it is nec-
essary to read the actual state of an input, such as
a modem input.

The CL-CD1400 is, by design, a synchronous de-
vice. All internal operations take place on edges
and levels (phases) of the internal clock. Note that
the internal clock is generated by dividing the ex-
ternal (system) clock by two. When the host per-
forms an /O cycle with the CL-CD1400, its
strobes, address and data are sampled on falling
edges of the internal clock. As can be seen in the
timing diagrams in Section 6, external control sig-
nals must meet set-up times with respect to clock
edges. Once a cycle has started, the sequence of

RAM Register
Array

v Channel 0 Registers

Channel 1 Registers

Channel 2 Registers

Channel 3 Registers

Figure 4-2. Internal Address Generation

42 —— CIRRUS LOGIC INC

blE D W 21l3LL39
CL-CD1400
UXART Serial/Parallel Controller

events is locked to the CL-CD1400 clock, with
events (address setup, write data setup and read
data available) occurring at predictable times.

it is not necessary, however, to design a synchro-
nous interface to the CL-CD1400. In an asynchro-
nous design, the Data Transfer Acknowledge
(DTACK*) Signal is used as an indication that the
CL-CD1400 has completed the requested data
transfer. Thus DTACK* can be an input to wait-
state generation logic that will hold the host CPU
until the operation is complete. If the strobes
(Chip Select and Data Strobe — CS* and DS*) do
not meet the minimum set-up time with respect to
a clock edge, the CL-CD1400 will not detect the
1/0 request, and the cycle will be delayed two fuli-
system clock cycles, thus meeting the setup time.
The VO cycle will then commence and foliow the
predictable timing, with DTACK* signaling the
end.

4.2.1 Host Read Cycles

Read cycles are initiated when the CL-CD1400
senses that both the CS* and DS* Inputs are ac-
tive and the Read/Write (R/W*) Input is high. All
strobes and address inputs must meet set-up
times as specified in the timing specifications in
Section 6. It is important to note that both the CS*
and DS* Signals must be valid for a cycle to start,
thus cycle times are measured from whichever of
the two signals goes active last. The CL-CD1400
signals that it has completed the read cycie (plac-
ing the data from the addressed register on the
data bus pins), by activating the DTACK" Signal.
The read cycle is terminated when the host re-
moves CS* and DS*.

4.2.2 Host Write Cycles

Write cycles timing and strobe activity is nearly
identical to read cycles except that the R/W* Sig-
nai must be held low. Write data, strobes and ad-
dress inputs must meet set-up and hold times as
specified in the timing diagrams in Section 6.
Again, the DTACK* Signal is used to indicate that
the cycle is complete and the CL-CD1400 has
taken the data. Removing both CS* and DS ter-
minates the cycle.

March 1992

—— (IRRUS LOGIC INC

0004k29 998 EECIR

P e — 3

==CIRRUS LOGIC

42,3 Host Service Acknowledge Cycles

Service acknowledge cycles are a special-case
read cycle. Timing is basically the same as a nor-
mal read cycle, and one of the SVCACK" Inputs is
activated instead of the CS* Input (a slightly longer
set-up time is required on the SVCACK"* Input than
on the CS* input). The data that the CL-CD1400
provides during the read cycle is the contents of
the Interrupt Vector Register associated with the
type of request being acknowledged (RIVR for re-
ceive, TIVR for transmit and MIVR for modem) of
the channel that is requesting service (see descrip-
tion of service request procedures later in this sec-
tion). As with read and write cycles, DTACK" will in-
dicate the end of the cycle and removing DS* and
SVCACK* terminates the cycle.

An important fact to note about timing and service
acknowledge cycles: when the host has completed
the service routine and writes to the EOSRR Reg-
ister, a subsequent l/O cycle, if started immediate-
ly, will be delayed by approximately 1 ps. This is
due to the time required by the internal processor
to complete housekeeping activities associated
with the switch out of the service acknowledge con-
text. These activities are primarily FIFO-pointer up-
dates and restoration of the environment prior to
the service request/service acknowledge proce-
dure, and must be completed before any internal
registers are modified by the host. If the situation
occurs that the host attempts an access before the
internal procedures are complete, the CL-CD1400
will delay the cycle until it is ready. In system de-
signs that monitor DTACK®, this will not cause a
problem; the cycle is extended until DTACK® be-
comes active, and the delay will automatically be
met. If a system design does not monitor DTACK*,
a mechanism must be provided to introduce the re-
quired delay.

43 Service Requests

. From the host point of view, the CL-CD1400

operates in one of two modes: normal operation
and service request/acknowledge. The normal
mode of operation allows the host system to make
changes and obtain cuirent operating status on a
global and per-channel basis. The Service
Request/Acknowledge Mode is used when a
particular channel needs service; for example, it is

-——————— 43

GLE D NN 213bb39 0004130 LOT EECIR

————.

====CIRRUS LOGIC

used when a receive FIFO has reached its
programmed threshold and requires emptying. A
unique behavior of the CL-C1400 is that a
service request can only be responded to after it
has been placed in a service acknowledge
‘context’. This context switch takes place when
the request is acknowledged, either by activating
the appropriate SVCACK* Input Pin, or by proper
manipuiation of two internal registers.

When the internal processor (MPU) detects a
condition on a channel that requires host atten-
tion, it posts a service request internally and ex-
ternally. The external request is the activation of
one of the SVCREQ* QOutput Pins, depending on
whether the type of service needed is for receive,
transmit or modem signal change. Included with
the internal request is a channel pointer that
points to the channel requiring service. When the
host service acknowledge begins, this pointer is
loaded into the CAR, thus the request automati-
cally services the proper channel. This is the pur-
pose of the context switch; it prepares the CL-
CD1400 for servicing of the proper channel. Atthe
completion of the acknowledge procedure, the
CL-CD1400 must be taken out of the acknowl-
edge context by indicating that the procedure is
complete, thus restoring the internal state to what
it was before the context was switched.

Itis important to remember that several of the reg-
isters within the CL-CD1400 can only be access-
ed when the context switch has been made and
are referred to as 'virtual’ registers. For example,
the host cannot directly place data in the transmit
FIFO at any arbitrary time. It must wait for a trans-
mit service request indicating that the FIFO is
empty, and then acknowledge it. Once the ac-
knowledge procedure has started, the transmit
FIFQ is available for loading.

The CL-CD1400 requests service when required.
Two basic ways the host is informed of these ser-
vice requests is through hardware (interrupt), or
software (polling internal CL-CD1400 registers).
The method used will be dependent on the hard-
ware/software design of the system; the CL-
CD1400 functions well in both environments. The
following section discusses the trade-offs in

44 — c TRRUS LOGIC INC

CL-CD1400

choosing one or the other of the basic methods,
and how the two can be combined for maximum
performance.

431 Interrupt

The term ‘interrupt’ is used as a generalized de-
scription of the method by which the CL-CD1400
gains the attention of the host CPU. it is used in-
terchangeably with ‘service request’ because the
two really are the same function. ‘Interrupt’ is of-
ten used to describe an unconditional response
on the part of the host. Whether or not this is the
case, the source is still the same — a service re-
quest from the CL-CD1400. The hardware signals
generated by the CL-CD1400 (SVCREQR®,
SVCREQT* and SVCREQM*) can be connected
to the host CPU interrupt generation/control facil-
ity and can cause it to invoke an interrupt service
routine. The service routine can then begin servic-
ing a request of the CL-CD1400 by starting an ac-
knowledge sequence.

The SVCREQ* Outputs can be connected to the
host interrupt circuitry individually, thus using
three unique interrupt-level inputs; or, they can be
logically ORed together into a single interrupt and
applied to one interrupt-level input. In the latter
case, the host may examine the SVRR Register to
determine which service requests are active. The
method (single or multiple interrupts) chosen by
the designer will be dependent on the system re-
quirements and hardware and/or board space lim-
itations; the CL-CD1400 places no restrictions on
it. It is likely that interrupt latency will be slightly
shorter with the first method, since the individual
interrupt levels can cause a software vector di-
rectly to the correct service routine without first
checking for the source of the interrupt.

No matter which interrupt method is used, the end
result is the same. Once the host has recognized
that a service request is active, a service acknowl-
edge routine must be executed to satisfy the re-
quest. There are two ways in which to start the ac-
knowledge and force the context switch: via four
hardware input pins, or by making specific modifi-
cations to internal registers.

mmsmm March 1992

61E D WM 213kbL39 DOO4131 Su4bL EECIR

CL-CD1400
UXART Serial/Parallel Controller

4.3.1.1 Hardware-Activated Context Switch

The internal register manipulation that is involved
in the context switch can be forced via the Ser-
vice Acknowledge (SVCACK?®) Input Pins on the
CL-CD1400. There is one SVCACK" for each
service request type: SVCACKR* for receive ser-
vice requests, SVCACKT" for transmit service re-
quests and SVCACKM* for modem signal
change service requests. Each of these inputs is
a special-case chip select that causes the MPU to
set up the CL-CD1400 for servicing that particular
service request type for the requesting channel.
Note that the CS* Input is not activated on service
acknowledge cycles. Instead, the appropriate
SVCACK* Input and the DGRANT* Inputs are
used. DGRANT* will be discussed in the descrip-
tion of daisy-chaining multiple CL-CD1400s be-

— 5
e————"" Y

—=—==CIRRUS LOGIC

low. Figure 4-3 shows a generalized logic diagram
of the hardware interface to the SVCACK* Inputs.
For a service acknowledge, one of the SVCACK*
address locations will be accessed instead of the
CS* location.

To the host, the service acknowledge cycle is a
read cycle. The data that the CL-CD1400 places
on the bus during the read cycle is the contents of
the Interrupt Vector Register (RIVR, TIVR or
MIVR) associated with the service acknowledge
input that is active (SVCACKR*, SVCACKT" or
SVCACKM®). The upper five bits of the Vector
Register are whatever was previously loaded into
the LIVR by the host; the lower three bits will be
supplied by the CL-CD1400, indicating the type of
interrupt (vector).

-1 AD[6:0]
CL-CD1400
ADDRESS cs
HosT Ly)
ADDRESS DECODE [—¢- SVCACKR
LOGIC f SVCACKT*
SVCACKM*
HOST
DB[7:0]
DATA
DGRANT"
HOST
o] RN:I‘
CONTROL DS
Figure 4-3. Control Signal Generation

bLE D EE 2136639 0004132 4o42 EMCIR

r————..

==CIRRUS LOGIC

At the time the CL-CD1400 is ready to post the ser-
vice request, it copies the upper five bits of the
LIVR into the appropriate Vector Register (RIVR,
TIVR, MIVR) and then places the request type vec-
tor in the lower three bits. The table below shows
the assignment of the request type bits.

For transmit and modem service acknowledge cy-
cles, the data in the lower three bits will be redun-
dant to the host, since this information is known
because the corresponding acknowledge has tak-
en place. However, these bits will be mportant for
a receive data service acknowledge because they
provide an indication of whether the request is for
‘good’ data or exception data.

The value contained in the upper five bits of the
LIVR can be used for a number of purposes. The
primary purpose of the LIVR is to source a soft-
ware vector that can be used by the host system
as an index for an interrupt dispatch table. Howev-
er, systems that cannot use this or do not require it
can use these bits for any purpose. In muitiple-CL-
CD1400 daisy-chained designs, a logical value to
place in these bits is a chip identification number.
This is discussed in more detalil in the daisy-chain-
ing description below. In a single-CL-CD1400 de-
sign or one that does not use daisy-chaining
(unique address range for each device) and does
not need the value in the LIVR as a vector for hard-
ware interrupt response, a convenient use for

CL-CD1400
UXART Serial/Parallel Controller

these bits is channel encoding. Since each chan-
nel has its own LIVR, these five bits can have a
unique value identifying the channel. By doing this,
there is no need to read the RICR, TICR or MICR
to determine the channe! number; thus in a single
/O operation, the host determines both the type of
interrupt and the number of the channel requesting
service. In fact, with five bits available, systems
with small numbers of CL-CD1400s can encode
both the channel number and chip identification
number in the LIVR.

Once all of the above has been completed, the CL-
CD1400 is ready to be serviced for the type of in-
terrupt that has been acknowledged. For example,
if the interrupt was for receive good data, the host
would read the RDCR Register to determine the
number of characters available in the receive
FIFO, then read that many characters by succes-
sive reads from the RDSR. Other work, such as
disabling future interrupts or changing channel pa-
rameters could also be performed at this time.
Once all tasks invoived in servicing the interrupt
have been completed, one further operation must
be performed. In order to inform the CL-CD1400
that the service acknowledge is complete, the host
must write a dummy value to the EOSRR Register.
The data written does not matter; any value will do.
What is important is the write operation itself. This
write forces the internal context switch back to nor-
mal Operating Mode.

Bit 2 Bit 1 Bit0 Request Type
0 0 0 Not used
0 0] 1 Group 1: Modem signal change service request
0 1 0 Group 2: Transmit data service request
0 1 1 Group 3: Received good-data service request
1 0 0 Not used
1 0 1 Not used
1 1 0 Not used
1 1 1 Group 3: Received exception data service request

46 ———— c TRRUS LOGIC INC

blIE D W 213bbL39 0004133 319 EECIR

CL-CD1400
UXART Serial/Parallel Controller

Summary of Interrupt Driven Service
Requests

In summary, the actions that take place during an
interrupt request/service are:

1. Host senses service request via its interrupt
request input from one of the CL-CD1400
service request outputs.

2. Host responds by performing a read cycle
that activates the appropriate SVCACK* In-
put Pin.

3. Host decodes the value read from the
Vector Register during Step 2, making a
decision on the type of service request (if
necessary).

4. Hostreads {R, T, M} ICR to determine chan-
nel number.

5. Host services the request (load transmit
FIFO, read receive FIFO, etc.)

6. Host writes a dummy value to the EOSRR to
terminate the service routine.

4.3.1.2 Software-Activated Context Switch

It is possible — via host manipulation of some in-
ternal registers — to cause the context switch
without activating any of the SVCACK* Hardware
Inputs. The method used is the same as that
which is used in a Poll-Mode-CL-CD1400 design.
Once the host has detected the service request
via its interrupt response circuitry, it can then fol-
low the same procedures that a polling method
would use once it had detected an active service
request. Refer to the context switching description
in the following section.

One reason a desigh might make use of this meth-
od is that there is limited board space available to
provide the additional hardware address decoding
required to generate the three SVCACK"* and
DGRANT" Control Signals. The system gains the
advantage of not having to constantly check for
active service requests by polling the CL-CD1400;
it will be interrupted when a request is posted and
can then examine internal CL-CD1400 Registers
to determine the source and channel number gen-
erating that request. If this method is chosen, the
three SVCACK"* and DGRANT* Input Pins should

March 1992

mmm— CIRRUS LOGIC INC

——t

=== CIRRUS LOGIC

be tied inactive (logic ‘1') to prevent false activa-
tion of a service acknowledge cycle due to noise.
They should be terminated with a resistor, not
hard-wired to VCC.

43.2 Polling

In Poll Mode, the hosts periodically checks the
CL-CD1400 to see if there are any active service
requests. If it detects any, it proceeds to service
them via a software-driven technique. There are
several registers within the CL-CD1400 provided
specifically to facilitate Poll Mode service request
detection and acknowledgment. These are the
SVRR, RIR, TIR, MIR, RIVR, TIVR and MIVR.
Section 5 provides detailed bit definitions for
these registers.

The SVRR (Service Request Register) is the
Master Service Request Register. The least sig-
nificant three bits (Bits 2-0, SRM, SRT, and SRR)
reflect the inverse of the state of the three Service
Request Output Pins (SVCREQM*, SVCREQT"
and SVCREQR*). For example, if Bit 0 (SRR) is a
‘one’, it indicates there is an active receive data
service request pending, and that the SVCREQR*
Output Pin is active (low). Thus, with a single
read, the host can determine if the CL-CD1400
needs any service and, if so, which ones are ac-
tive.

Each service request type has an Interrupt Re-
quest Register; RIR for receive, TIR for transmit
and MIR for modem. These are special-purpose
registers that are used with the CAR to force the
context switch and start a service acknowledge
procedure. When a service request of a particular
type is pending, the corresponding Interrupt Re-
quest Register is set by the MPU with the appro-
priate data to cause the context switch to the re-
quested type and the requesting channel. When
the host is ready to service the request, it reads
the contents of the Request Register and copies
itinto the CAR. The action of writing this value into
the CAR forces the context switch, and the CL-
CD1400 is ready to be serviced. This is the same
result as if a service acknowledge cycle had been
performed with the SVCACK* Pin. Each of the In-
terrupt Request Registers provides the channel
number that is requesting service in the least sig-
nificant two bits. The most significant three bits

R ——— 47

BLE D WM 2136639 0004134 255 EECIR

———i.

——== CIRRUS LOGIC

provide status and control over internal interrupt
sequencing. The middle three bits contain a code
that is used by the MPU at the end of a hardware
service acknowledge cycles (write to the EOSRR)
to tell it which type of acknowledge cycle is ending.
Each of the three registers has a unique code in
these three bits that select the proper service ac-
knowledge type; however, they are meaningless in
Poll Mode operation.

At the end of a service request operation, the host
must inform the CL-CD1400 that the request has
been satisfied and take it out of the service request
context. This is done by writing the value that was
in the Interrupt Request Register back into it after
first clearing the upper two bits.

As with the hardware-driven request/acknowledge
procedure, the virtual registers should only be ac-
cessed after the context switch has been made.
Their contents are undefined until this time.

Summary of Poll Mode Service Requests

To summarize, the major steps involved in a Poll
Mode service request/service acknowledge se-
quence are:

1. Host scans the SVRR periodically, checking
the three least significant bits. If any of them
are true ('1'), a service request is active.

2. Depending on which of the service request
bits is active, read the appropriate Interrupt
Request Register (RIR, TIR or MIR) and
copy the contents into the CAR.

3. Perform service routine.

Write the original contents of the interrupt
request register back with the most
significant two bits cleared.

4.3.3 Service Requests and Multiple
CL-CD1400s

Multiple CL-CD1400s can be combined to form
systems with more than four channels. There are
a number of ways that two or more can be con-
nected, but one way provides a more efficient ser-
vice request/service acknowledge sequence by al-
lowing the CL-CD1400s to arbitrate between

48 _—CIRRUS LOGIC INC

CL-CD1400
UXART Serial/Parallel Controller

themselves. This mode only works if hardware-ac-
tivated service acknowledges are being utilized.

The CL-CD1400 provides a means of ‘daisy-chain-
ing’ the service request and service acknowledg-
ments of two or more devices together. This allows
them to arbitrate and set priorities between them-
selves regarding which may post a particular type
of service request. This is the Fair Share interrupt
scheme. Figure 4—4 on the following page shows
the way that two CL-CD1400s would be connected
to enable the Fair Share function.

The open-drain request outputs of the two CL-
CD1400s (SVCREQR*, SVCREQT* and
SVCREQM*) are wire ORed together to form one
request for each type. This allows each to monitor
the state of the others’ outputs. Also, each of the
Service Acknowledge Inputs (SVCACKR*, SV-
CACKT* and SVCACKM*) is also connected to-
gether to form one acknowledge of each type. The
DGRANT" Input of the first CL-CD1400 is connect-
ed to the logical OR of all three SVCACK* Inputs;
the DPASS* Output of the first CL-CD1400 drives
the DGRANT"* Input of the second.

Before a request for service of a particular type is
posted, the MPU checks the current state of the
‘fair bit' of the internal interrupt register for that
type. If it is inactive, indicating that it is fair to post
an interrupt of that type, a request can be posted;
otherwise, it will wait. This guarantees that each
CL-CD1400 will have an opportunity to have this
request type serviced when needed. When the
host acknowledges the request, both CL-CD1400s
will receive the acknowledge via the SVCACK* In-
put. However, only the first will receive the
DGRANT". If it has an active request of this type
pending, it will take the acknowledge and drive its
Vector Register (RIVR, TIVR, MIVR) onto the data
bus.

If it does not have a request pending, it will pass
the DGRANT" Input to the second CL-CD1400 via
the DPASS* Output. Assuming that the second
has an active request pending, it will take the ac-
knowledge and drive its Vector Register onto the
data bus.

As mentioned earlier, the upper five bits of the
LIVR will reflect whatever the host loaded into

TR March 1992

blE D W 213kL39 0004135 191 EECIR

CL-CD1400
UXART SerialfParallel Controller

them during its initialization of the CL-CD1400s.
These bits must be used as a unique chip identifi-
cation number so the host will know which CL-
CD1400 responded to the service acknowledge.
These five bits could be set to binary zero in the
LIVR of the first CL-CD1400, and to binary 1 in the
second. The host can easily test the bit to deter-
mine which device responded. Some examples of
host service acknowledge software routines that
show one way of performing this task are provided
in Section 3.

Caution: If neither CL-CD1400 has a pending re-
quest, the DGRANT™ will be passed by the second
and neither will respond, thus causing the cycle to

——ctbi..

—= CIRRUS LOGIC

hang. The only time this could happen would be
due to an error condition outside the CL-CD1400s
that caused the host to respond to a request that
was not made. A mechanism should be provided
to terminate or abort the cycle if this error should
occur. This can be accomplished with time-out cir-
cuitry or the DPASS* output of the second CL-
CD1400 can activate an abort condition. Other de-
vices may share the daisy-chain mechanism and
could be connected to the DPASS* output of the
second (or whichever is last) CL-CD1400 in the
chain. The actual implementation is system-de-
pendent, but it is important to provide some way for
the host to know that the cycle did not complete
normally if no device exists at the end of the chain.

ADDRESS —9 SVCACKR® SVCACKR®
DECODE SVCACKT* SVCACKT*
LOGIC SVCACKM* SVCACKM*
. $} DGRANT* _I_ DGRANT*
CYCLE
DPASS DPASS ERROR
SVCREQR* SVCREQR*
SVCREQT* SVCREQT*
SVCREQM* SVCREQM* 1 —
.
>
| g
Figure 4-4. CL-CD1400 Daisy-Chain Connections
March 1992 — see—— c TRRUS LOGIC INC — 49

EJE D BN 213kb39 0004136 028 EECIR

—t .

——== CIRRUS LOGIC

4.4 Serial Data Reception and
Transmission

The CL-CD1400 has four channels, each with a
receiver and a transmitter. Although a receiver
and a transmitter pair are associated with each
channel, in many respects they operate indepen-
dently, sharing only parameter settings regarding
character format such as length, parity type, if
any, and number of stop bits. Each receiver and
transmitter has its own baud-rate generation func-
tion, allowing a channel to send at one rate and re-
ceive at another. Shared and independent param-
eters are shown in the diagram below:

Recelver Transmitter

Baud Rate | Baud Rate
Parity
Character Length
Stop Bits
Prescale Period Register
FIFO Thresh
Rcv Time-out

Channel service requirements, such as an empty
transmit FIFQ, are indicated to the host by one of
three service request indicators: one for all receiv-
ers, one for all transmitters and one for all modem
signal changes. The internal processor (MPU)
scans each channel sequentially for service
needs, posting a request when it detects a partic-
ular type. it continues the Fair Share scheme used
in the external daisy-chain configuration by not al-
lowing a channel to post another request of one
type until alt other channels have posted their re-
quests of that type, if any. For example, if Channel
0 is currently being serviced for a transmit request
and Channel 3 has one pending, the request from
Channel 3 will be posted before Channel 0 is able
to make another request for transmit service.

Each receiver and transmitter has a 12-character
FIFO. The receiver has two additional character
holding locations, the Receive Character Holding
Register and the Receiver Shift Register. The
transmitter also has two additional locations, the

S e
%0 CIRRUS LOGIC INC

CL-CD1400
UXART Serial{Parallel Controller

Transmitter Holding Register and Transmitter
Shift Register. The receive FIFO has a program-
mable threshold that sets the level at which a ser-
vice request will be posted. When data reaches
this ‘high water’ mark, a request will be made of
the host to empty the FIFQ. More details on this
are provided in the following section. Receive
FIFOs also have a programmable threshold that,
when reached, can cause the DTR Output to be
deasserted (see the flow-control description).

In the asynchronous serial data protocol, a mes-
sage consists of one ‘character’, made up of bits,
either high or low, representing a one or zero val-
ue. A character can be made up of from five to
eight bits, plus an optional parity bit bracketed by
a Start Bit and at least one Stop Bit. Each bit has
a time duration that sets the data transmission
rate, or baud rate. The Start Bit indicates the be-
ginning of a character bit stream and is indicated
by a transition from a logic ‘1' to a logic ‘0’ (mark
to space) on the transmission media. The Start Bit
lasts one ‘bit time’ and is immediately followed by
the Data Bits (5 to 8), the parity, if any, and the
Stop Bit(s).

As discussed previously, the CL-CD1400 incorpo-
rates special hardware to receive and transmit
each bit. These are the ‘bit engines’. They perform
all timing associated with sending or receiving one
serial data bit. A bit engine behaves differently de-
pending on whether it is sending or receiving.
When a complete bit has been received, the bit
engine interrupts the MPU so that it can handle
the bit on the character level. This usually entails
its addition to the character being assembled. For
transmitting, a transmit-bit-engine interrupt caus-
es the MPU to give it the next bit to be transmitted.
The bit-engine interrupt happens at the end of a
bit time, which has been timed by the engine, thus
removing that duty from the MPU.

4.41 Recelver Operation

Each channel can be programmed to receive
characters with several different parameters, such
as character length, parity, number of stop bits,
FIFO threshold and baud rate. Each receiver is in-
dependent of any other receiver. It may aiso be

———wmm March 1992

LYE D B 213kLL39 0004137 T4 EMCIR

CL-CD1400
UXART Serial{Parallel Controller

set to a different baud rate from its corresponding
transmitter.

Before valid data can be received, the host must
set up each channel by programming the desired
operational parameters in the Channel Option
Registers (COR1-CORS) and the Baud Rate Gen-
erator Registers (Receiver Clock Option Register
and the Receiver Baud Rate Period Register —
RCOR and RBPR). Once these are set, the chan-
nel Is enabled by issuing the receiver enable com-
mand via the CCR and enabling service requests
in the Service Request Enable Register (SRER).

Once a receiver is enabled, its bit engine begins
scanning the RxD Input for a valid Start Bit. It does
this by detecting a falling-edge transition on the in-
put. When the transition is detected, the bit engine
delays until the middle of the programmed bit time
and checks the input again. If the input is still low,
then the start bit is considered valid and character
assembly begins. At each subsequent full bit time,
the input is checked and its level recorded as the
value of the next bit. If, at the center of the bit time,
the RxD Input has returned to a mark state, then
the Start Bit is considered invalid and the bit en-
gine goes back to the Start Bit Detect Mode. Fol-
lowing a valid Start Bit, the bit engine begins re-
ceiving data bits. At the end of the programmed
number of bits, following bits are checked for par-
ity (if enabled) and a valid Stop Bit. A valid Stop Bit
is defined as a mark or logic ‘1' on the input. If a
valid Stop Bit is not detected, a framing error will
be noted for the character. After a properly as-
sembled (no framing error) character has been re-
ceived, itis checked for several special conditions
(see the section on special character handling and
flow control), and the overrun condition before it is
placed in the receive FIFO. If no errors or special
character processing are required, the character
is considered ‘good’ data and placed directly in
the FIFO. If errors exist, it is placed in the FIFO as
‘exception’ data along with status indicating the
type of error. As each good character is placed in
the FIFO, the Receive Data Count Register
(RDCR) is updated to reflect the number of good
characters currently in the FIFO.

The receive FIFO has a programmable threshold
that determines the level at which the CL-CD1400

meessssssesssssssm (TRRUS

March 1992

—..

====CIRRUS LOGIC

will request receive data service. This level is pro-
grammed via the RxTh3-RxTh0 Bits in Channel
Option Register 3. The host may place the thresh-
old at any number of characters from 1 to 12. Note
that this only sets the level at which the CL-
CD1400 will post a service request, not the depth
of the FIFO. When the host responds to a receive
good-data service request, it may read any num-
ber of characters out of the FIFQO, from zero up to
the number indicated in the RDCR before exiting
the service routine. If the number read is zero, the
CL-CD1400 will post another request for service
almost immediately. If the number of characters
read is less than the number indicated by the
RDCR but enough such that the number in the
FIFOQ falls below the threshold, a new request will
not be made until the threshold is once again ex-
ceeded. The term ‘almost immediately’ is used
above because, since the MPU scans the chan-
nels in a ‘round-robin’ fashion, another channel
may post a receive service request before this
channel again has the opportunity.

4.4.2 Recelver Timer Operations

Also associated with each receiver FIFO is a timer
whose duration is set by the Receive Time-out Pe-
riod Register (RTPRY). This timer provides two ser-
vices in relation to receive FIFO operation: a time-
out to prevent ‘stale’ data in the FIFO and a time-
out after the last character is taken out of the
FIFO. The first type, Type 1, will occur if the re-
ceive FIFO does not reach the set threshold be-
fore the programmed time period expires and the
second, Type 2, will occur if the timer expires and
no new data has been placed in the FIFO after the
last character was removed,; this is called the No
New Data Time-out (NNDT) service request.

The timer is driven by the prescaled clock gener-
ated by the Prescale Period Register (PPR) in the
global register set. The timer is loaded with the
value contained in the RTPR each time a charac-
ter is placed in the receive FIFO or when the last
character is removed from the FIFQ. Each ‘tick’ of
the prescaler decrements the timer. If the timer
reaches zero and receiver interrupts are enabled,
the MPU will generate a receive data service re-
quest for one of the two time-out conditions, de-
pending on which is valid.

LOGIC INC

bIE D WE 2136639 0004138 9T0 EMCIR

D ey —

== CIRRUS LOGIC

Type 1: If there are characters in the FIFO but
the threshold level has not been
reached, a good-data service request
will be posted when the timer expires.
This function is provided to prevent data
from remaining in the FIFO for long (po-
tentially infinite) periods of time because
the remote did not send enough data to
fill the FIFO to the threshold level. This
time-out cannot be disabled.

Type 2: If there is no data in the FIFO when the
timer expires and the No New Data
Time-out (NNDT) service request is en-
abled in the SRER, a receive exception
service request will be posted with status
indicating the time-out condition. This
time-out is optional, and is provided so
that host driver software can detect the
possible end of a block of data and al-
lows its buffers to be flushed to the high-
er, operating system level. The NNDT
will be posted only on the first occur-
rence of a time-out after the FIFO be-
comes empty. Also note that the NNDT
timer is not started if the last character
removed from the FIFO was an excep-
tion character, such as a break or parity
error.

The flow chart in Figure 4-5 shows the timer pro-
cess evaluation performed by the MPU when the
timer reaches zero.

443 Recelve Exceptions

Several conditions can cause the CL-CD1400 to
evoke the receive exception service request. if an
exception condition occurs, two bytes are placed
in the receive FIFO. The first is the status indicat-
ing the type of error and the second is the data it-
self,

Exception data is given to the host one event at a
time. That is, there will be a separate service re-
quest for each character that is received with
some special condition. If, when an exception
condition occurs, the receive FIFO has good data
in it, a good-data receive service request will be
posted immediately upon receipt of the bad data,

52 L]

CIRRUS LOGIC INC

CL-CD1400
UXART Serial{Parallel Controller

regardless of the number of characters in the
FIFO and the programmed threshold. This allows
the host to remove the data in the FIFO ahead of
the exception data so that the CL-CD1400 can
post the service request for the error condition.
Once the host terminates the service acknowl-
edge procedure for the good data, a new service
request will be posted for the exception data.

When the host acknowledges the receive excep-
tion service request, it reads the Receive Data/
Status Register (RDSR) first to get the status and
second to get the data. Reading the data is option-
al: if the host does not read the FIFO twice during
the service routine, the CL-CD1400 will update its
internal FIFO pointers appropriately and discard
the second byte. (Actually, the host need not read
any data from the FIFO during an exception ser-
vice acknowledge - the FIFO pointers will be up-
dated correctly at the end of the service routine,
discarding both the status and the data. Thus, the
host must read at least the status, or it will be lost
forever.)

Another special case of the exception data han-
dling is for received-line-break conditions. A line
break is a character with zero data and no parity
or Stop Bit. In this case, a null (zero) character is
placed in the FIFO with the break condition indi-
cated in the accompanying status and a receive
exception service request will be posted. Howev-
er, regardless of the length of the break, only one
character will be placed in the FIFO. If the ‘end-of-
break’ option is enabled, another null character is
placed in the FIFO with status indicating the end-
of-break condition, once it is detected in the re-
ceive data stream. This option is enabled by the
EBD Bit (Bit 2) of COR5 — see Section 5.3 for de-
tails. Resumption of normal character reception
will cause new data to again be placed in the
FIFO.

Refer to the register definitions in Section 5 for a
description of the status bits in the RDSR.

4.4.4

Each of the four channels on the CL-CD1400 are
capable of transmitting characters with a number
of programmable characteristics such as length,
parity and baud rate. The channels operate

Transmitter Operation

—————= March 1992

blE D NN 213bL39 0004139 837 EECIR

CL-CD1400
UXART Serial{Parallel Controller

completely independently and settings in one will
have no effect on the operation of another.

After being reset, from either hardware (RESET*
Input Pin) or software (via the master reset com-
mand in the CCRY), all transmitters are disabled
with the TxD Output held at a logic '1' condition.
This is the off, or mark, condition of the asynchro-
nous protocol. Before any operation of the trans-
mitter can begin, the host must program the appro-
priate parameters in the Channel Option Registers
(COR), the Clock Option register (TCOR) and
Transmit Baud Rate Period register (TBPR). Once
these registers are set, the channel is enabled by
issuing a transmit enable command via the CCR
and enabling service requests by setting the ap-
propriate transmit enable request bit(s) in the Ser-
vice Request Enable Register (SRER). The chan-
nel willimmediately post a transmit service request
since its FIFO is empty. The host responds to the
request by loading up to 12 characters into the
transmit FIFQ via the Transmit Data Register
(TDR,) after it places the CL-CD1400 in the Service
Request Acknowledge Mode (see description of
service request/service acknowledge procedures
in Section 4.3). The transmitter does not begin
fransmitting the characters until the host termi-
nates the service routine and writes the EOSRR.
Transmission begins by sending a Start Bit (logic
'0") followed by five to eight data bits (depending on
the programmed value), least significant bit first.
The last data bit is followed by the appropriate par-
ity bit, if enabled, and a minimum of one stop bit.
All bit transmission is handled by the transmit bit
engine with the MPU giving it each bit as it is re-
quired. if there are still characters in the FIFO, the
next one will be transmitted immediately after the
last stop bit of the previous character. This process
continues until all characters in the FIFO have
been transmitted. The CL-CD1400 will then post a
service request for more data.

There are actually 14 transmit character hoiding
locations for each channel: 12 in the FIFO, one in
the Transmitter Holding Register and one in the
Transmitter Shift Register itself. The CL-CD1400
can be programmed, on a per-channel basis, to
request transmit data when one of two conditions
exist: when the last character in the FIFO is
transferred to the Holding Register or when the last
data bit of the last character is shifted out of the

March 1992 mmmmmmm—== 1RRUS LOGIC INC

!

—= CIRRUS LOGIC

Transmitter Shift Register. The first option allows
the host two character transmit times in which to
reload the FIFO and prevent a transmit data
underrun. This is the normal mode of operation.
The second mode can be used to make sure the
transmitter is empty before reconfiguring the
channel. 1t is likely that the transmitter will
underrun if the second option is chosen unless the
host is sufficiently fast enough to respond to a
transmit service request and reload the FIFO
during the transmission of the stop bit(s) of the last
character. If the transmitter underruns, it will
continue to send stop bits (mark) until more data is
placed in the FIFO. Normally, when a string of
characters greater than 12 is being transmitted,
host software will program the CL-CD1400
transmitter to post a service request when the
FIFO becomes empty. When the last of the data to
send has been placed in the FIFO, the service
request enable is changed so that requests are
made after the last character is sent. This allows
the host to know that all the data has been
transmitted before disabling a channel. If a
channel is disabled, any characters other than the
one currently being transmitted will be held and the
transmitter will enter the marking state. if the
channel is subsequently re-enabled, any
remaining data will be transmitted.

The transmitter is capable of performing several
special functions such as break generation, inter-
character delays and automatic flow control.
These functions are discussed in the sections de-
scribing special character handling (embedded
transmit commands) and flow control.

4.4.4.1 Transmitter Timer Operations

As with the receiver, the transmitter has a timer as-
sociated with it. This timer is used to generate the
timing for the embedded transmit commands that
send line breaks and inter-character delays.
Whenever the MPU detects an embedded transmit
command specifying the delay command, it loads
the timer with the value contained in the parameter
byte. This timer is decremented on each ‘tick’ of
the prescaler timer (PPR) until it reaches zero. At
that time, the delay is terminated unless the next
character in the FIFO is the beginning of another
delay-command sequence.

GLE D BN 213bb39 0004140 559 EECIR
——— CL-CD1400

——— UXART Serial/Parallel Controller
——== CIRRUS LOGIC

CIRRUS LOGIC INC

from other background
l processing

background scanning\
detects new character

arrived)

put character in FIFO
reload timer

'

resume background
scanning loop

FIFO empty
?

post receive gaod-data
service request

No New Data
Time-out
Enabled
?

No New Data
internal flag
armed
?

clear NoNewData
internal flag

Y

post receive exception
service request

resume background
scanning foop

Figure 4-5. FIFO Timer Processing

54

March 1992

ELE D B 213kkL3Y
CL-CD1400
UXART Serial{Parallel Controller

4.5 Flow Control

In all data communications applications, data is
sent from one system to another via some proto-
col. Most systems have some method of buffering
data for transmission and reception. In the asyn-
chronous protocol, there is no way, at the protocol
level, to determine the length of a data transmis-
sion; therefore, it is normally not possible to set
aside a buffer area that is known to handle the en-
tire length of the transmission. Also, the hardware
recelving the data generally has a limited amount
of buffer area, usually a FIFO, and if the host does
not unload data at a fast enough pace, the buftfer
or FIFO may overflow. For these reasons, two
methods are provided that can be used to stop the
remote from sending data until room is once again
available to receive data. This is known as flow
control. Flow control can be in-band or out-of-
band. In-band flow control makes use of special
characters that can be sent to the host to stop data
transmission. Out-of-band flow control are signals
outside of the serial data channel that perform the
same function. These are the Request To Send
(RTS), Clear To Send {CTS) pair and the Data Set
Ready (DSR) and Data Terminal Ready (DTR)
pair. The CL-CD1400 can make use of either kind
and has built in capabilities to do so automatically
and/or semi-automatically (depending on direction
and options chosen) without host intervention (or
knowledge, if desired).

4.5.1 In-Band Flow Control

As mentioned, in-band flow control is implemented
by special characters that are imbedded in the se-
rial data stream, one to request that transmission
stop and one to request resumption. The charac-
ters chosen can be any characters although con-
ventionally the XON or DC1 (x'11} and XOFF or
DC3 (x'13) characters are used if the ASCII char-
acter set is being used. The XOFF value desig-
nates the character that is to be used to stop data
transmission and the XON character determines
the character that is to be used to resume trans-
mission. Whether or not the ASCII XON and XOFF
Characters are used, the CL-CD1400 allows the
two characters to be set to any value that is appro-
priate to the system design by the value pro-
grammed in Special Character Registers 1 and 2
(SCHR1 and SCHR2). SCHR1 defines the XON

March 1992

0004141 495 EMCIR

—————EEEEE

——=—==CIRRUS LOGIC

Character and SCHR2 defines the XOFF Charac-
ter.

4.5.1.1 Recelver In-Band Flow Control

When the host senses a need to flow control a
sender, due to its receive buffer filling too fast to
service, it can request that remote stop transmis-
sion by sending an XOFF character via the trans-
mitter. This is accomplished by issuing a Send
Special Character 2 command via the Channel
Command Register (CCR). The CL-CD1400 will
then transmit whatever character is programmed
in SCHR2. As discussed earlier, the send special
character command is preemptive to data currently
in the transmit FIFOQ, and thus the XOFF character
will be transmitted after the currently transmitting
character and the character in the Transmitter
Holding Register have been sent, a maximum de-
lay of two character times. When the host is again
ready to start receiving characters, it sends an
XON Character, also via a send special character
command. This time, the CL-CD1400 is issued the
command to send whatever is programmed in
SCHR1. Send special character commands will
override the remotes' flow-controlling of the CL-
CD1400; in other words, even if the CL-CD1400
transmitter has been shut off by the remote, it can
still send flow contro! characters.

The current state of the flow control condition is al-
ways made available to the host via the Channel
Control Status Register (CCSRY). In addition to the
enabled/disabled status of the receiver and trans-
mitter, the CCSR displays the flow control status.
Two bits in the CCSR pertain to receiver flow con-
trol, RxFloff and RxFlon. Whenever the hostissues
the send Special Character 2 (send XOFF), the
CL-CD1400 sets the RxFioff Bit, indicating that it
has requested the remote to stop transmission.
When the host issues the send Special Character
1 (send XON) command, the RxFlon Bit is set and
RxFloff is reset. RxFlon remains set until the first
character is received after the XON was transmit-
ted. The table below shows the bit encoding for
RxFloff and RxFlon.

The RxFloff/RxFlon Bits are cleared whenever the
receiver is disabled or enabled, regardless of the
state of flow control when the disable/enable oc-
curred.

LOGIC INC

E1E D EW 2136kL39 000O4LY42 321 ECIR

————t.

===="CIRRUS LOGIC

CL-CD1400
UXART Serial/Parallel Controll

RxFloff RxFlon Encoded Status
0 0 Transmission has resumed, receiver has been enabled/disabled or
receiver is in default reset state
0 1 XON has been sent, transmission not yet restarted
-0 XOFF has been sent
1 1 Not Used

NOTE: Regardless of the current state of RxFloff, the CL-CD1400 continues to receive characters. If the remote
ignores or is slow to respond to the XOFF Character, there is the possibility of overruns.

4.5.1.2 Transmitter In-Band Fiow Control

The CL-CD1400 has the ability to automatically
flow control its own transmitter when it receives
the XON and XOFF Characters, as programmed
in SCHR1 and SCHR2. Control Bits in Channel
Option Registers 2 and 3 (COR2 and COR3) en-
able or disable various aspects of the automatic
flow control.

In order for flow control characters to be acted
upon, special character detection must be en-
abled via Bit 4 (Special Character Detect 1 and 2
— SCD12) of COR3 and Bit 6 (TxIBE) of COR2.
When these bits are set, the CL-CD1400 will scan
received characters for a match with one of the
special characters programmed in SCHR1-
SCHR2. If enabled, and it has received a charac-
ter matching the contents of SCHR2 (the XOFF
Character), the CL-CD1400 will then check to see
if automatic transmit in-band flow control is en-
abled via Bit 6 of COR2, If this function is enabled,
the CL-CD1400 will cease transmission after the
currently transmitting character and the character
in the transmitter holding register, if any. If en-
abled, the CL-CD1400 will also attempt to match
against erroneous characters. This function is en-
abled via the CMOE Bit in CORS5.

One other Control Bit in COR2 is involved in flow
control activities. This is Bit 7, the Implied XON
Mode, IXM. This bit determines what character will
restart transmission after an automatic flow con-
trol has caused it to stop. If Bit 7 is a zero, only a
programmed XON Character (SCHR1) will restart
the transmitter; all other characters will be re-
ceived and placed in the FIFO normally. If IXM is
set, any character received will restart data trans-
mission.

As with receiver flow control, the host can always
determine the current state of the transmitter via
two bits in the CCSR: TXFloff and TxFlon. When
automatic in-band flow control is enabled and the
CL-CD1400 receives and XOFF character, it sets
TxFlotf. When an XON character is received, Tx-
Flon is set. Once transmission actually resumes,
TxFlon is cleared. The encoding is shown in the
table below.

The TxFloff/TxFlon Bits are cleared whenever the
transmitter is disabled or enabled, regardless of
the state of flow control when the disable/enable
occurred. This feature can be used to force re-
sumption of transmission regardless of remote ini-
tiated flow control.

TxFloff TxFlon Encoded Status
0 0 Transmission has resumed, transmitter has been enabled/disabled
or transmitter is in default reset state
0 1 XON has been received, transmission not yet restarted
0 XOFF has been received, transmission has stopped
1 1 Not Used

56 “ March 1992

CL-CD1400

There is one final aspect of automatic in-band flow
control: Flow Control Transparency (FCT) which
is enabled/disabled by Bit 5 in COR3. FCT deter-
mines whether or not remote flow control will be
transparent to the host. if this bit is not set, in ad-
dition to stopping transmission when an XOFF is
received, the CL-CD1400 will place the received
XOFF Character in the receive FIFO and inform
the host of the reception via a receive exception
service request. When the XON Character is re-
ceived, it too will be given to the host via an excep-
tion service request as well as restarting data
transmission. If FCT is enabled, received flow
control characters will control transmission but
they will be discarded rather than be placed in the
FIFO. If the host system software doesn't need to
be informed when its transmit data has been
stopped, this bit can be set to reduce the number
of service requests that must be handled.

The table below summarizes the Control Bits in
the Channel Option Registers that enable the var-
jous modes of in-band flow control.

4,5.2 Out-of-Band Flow Control

Flow control can also be accomplished via the
modem handshake signal pairs RTS/CTS and
DSR/DTR. These are called out-of-band flow con-
trol because they are external o the data channel.
The CL-CD1400 can be programmed to automat-
ically respond to and generate out-of-band flow
control via these signals.

4.5.2.1 Recelver Out-of-Band Flow Control

Along with the receiver FIFO threshold that sets
the level at which the CL-CD1400 will post a
service request, another threshold can be set that

bIE D EN 213bb39 0004143 268 EECIR

=== CIRRUS LOGIC

determines when it will automatically assert/
deassert the DTR* Output if so enabled. This is
the DTR threshold and is enabled via the DTRth3-
DTRthO Bits in Modem Change Option Register 1
(MCOR1). The level can be set for any number of
characters from 0 to 12, with a threshold of 0
disabling the function. If the function and the
receiver are enabled, the CL-CD1400 will
automatically assert the DTR* Output whenever
the number of characters in the receive FIFO is
less than the programmed number. Once the level
reaches the threshold, DTR* will be deasserted.
DTR* will be held in the deasserted state until the
host removes enough characters from the FIFO to
lower the level below the threshold.

In order for the receiver to operate properly, the
DTR threshold must be set to a value equal to or
higher than the receiver service request thresh-
old. If the levels were reversed, normal character
reception could not be completed because DTR"
would always be deasserted before the receive
FIFO threshold is reached, thus the host would
not get a receive data service request until the re-
ceive FIFO time-out is reached. A serial data
transmission performance limitation would result.

The DTR* Output may also be controlled manually
via Bit 1 of Modem Signal Value Register 2
(MSVR?2). Setting this bit to a ‘1" will assert the
DTR* Quiput.

The DSR* Input can also be used to flow-control
the receiver. If this mode is enabled via Bit 0 of
COR2 (DSR Automatic Enable — DsrAE), and
characters received while DSR* is deasserted will
be discarded.

CIRRUS LOGIC INC

Bit Name Register Function
SCD12 COR3 Enables recognition of Special Characters 1 and 2
FCT COR3 Enables transparent flow control
TxIBE COR2 Enables automatic fransmitter in-band flow control
IXM COR2 Enables implied XON Mode
March 199 e —— 57

LLE D EN 213bb39 0004144 1Ty EMCIR

===CIRRUS LOGIC

4.5.2.2 Transmitter Out-of-Band Flow
Control

Transmitter out-of-band flow control is implement-
ed with three Modem Control Signals: the RTS*
Output and the CTS* and DSR* Inputs. The RTS*
Output can be programmed to automatically be
asserted whenever there is data in the transmit
FIFO and the transmitter is cleared to send. CTS*
and DSR* can be enabled to automatically control
the transmitter.

RTS Automatic Output (RtsAO) is enabled via Bit
2in COR2. If this bit is set, the CL-CD 1400 will au-
tomatically assert the RTS* Output when there is
data in the FIFO to send. When the data has been
sent and the FIFO is empty, RTS* will be deas-
serted until the host inserts more data. if RtsAQ is
not set, the host software must control the RTS*
output manually via Modem Signal Value Register
1 (MSVR1) if required by the remote.

The CTS* Input can also be monitored by the CL-
CD1400 and used as a transmitter enable. The
function is enabled by setting Bit 1 (CTS Automat-
ic Enable — CtsAE) of CORZ2. If the function is en-
abled, character transmission will occur only
when the CTS* Input Signal is asserted. If the sig-
nal is deasserted during active transmission, the
current character plus the character in the Trans-
mitter Holding Register, if any, will be transmitted
and then transmission will cease. Thus, a mini-
mum of one and a maximum of two characters
may be transmitted after the control signal is
deasserted. Transmission will resume when the
signal(s) are reasserted.

The send special character command does not,
however, sample the CTS* Input. If the host
chooses to send one of the special characters, the
character will be transmitted regardless of the
state of this input. In most cases, this is desirable
so that the host can ‘flow-control’ a remote even if
itis itself flow-controlled. If the state of CTS* is im-
portant, it should be tested via MSVR1 before the
special character send command is issued.

4.6 Receive Special Character
Processing

The CL-CD1400 has several means of sending
special characters and ways in which it processes

58 R ——— CIRRUS LOGIC INC

CL-CD1400
UXART Serial/Parallel Controller

these characters when it receives them. Some
special characters can have fixed definitions and
some can be user-defined. The flow-chart at the
end of this section defines the processing that the
CL-CD1400 performs for receive data. The chart
may aid in understanding the special character
handling process.

4.6.1 UNIX Character Processing

The CL-CD1400 incorporates special character
processing that can be of particular benefit in sys-
tems designed to run the UNIX operating system.
The processing performs some of the functions
normally handled by the ‘line discipline’ part of a
serial device driver program. The effect of this is
higher overall performance in serial communica-
tion than would otherwise be obtained because
the character manipulation takes place at the
hardware level without host action. This process-
ing includes carriage return (CR) and new line
(NL) substitution, programmable response to er-
rored characters (framing, parity and overrun er-
rors), the LNext function and ISTRIP. Each of the
types of processing is optional; any, all or none of
them can be enabled/disabled via control bits in
the Channel Option Registers two, four and five
(see the detailed register descriptions for the for-
mat of COR2, COR4 and CORS). This section
gives detailed descriptions of each of the func-
tions.

If Channel 0 is programmed as a parallel channel,
only the transmit special character processing oc-
curs, such as repeat space and carriage return
and new line translation.

4.6.1.1 Line-Terminating Characters

The CL-CD1400 can be programmed to perform
automatic substitution of carriage return (CR) and
new line (NL) characters on both received and
transmitted data. Received character processing
has five unique substitutions based on the value
of three bits in COR4 - IGNCR, ICRNL and INLCR
(some combinations cause identical actions):

000 Do nothing — tunction not enabled
001 Received NL changed to CR

010 Received CR changed to NL

011 Received CR change to NL and received
NL changed to CR

Wemmsm= March 1992

G1E P ER 213bb39 0004145 030 EECIR

CL-CD1400

100 Received CR discarded

101 Received CR discarded and received NL
changed to CR

110 Received CR discarded

111 Received CR discarded and received NL
changed to CR

4.6.1.2 Errored Character Processing

The CL-CD1400 provides a number of ways to
handle characters that are received with errors
(parity, framing and overrun errors). If none of the
special processing functions are enabled, errored
characters are delivered to the host via a receive
exception service request. Alternatively, these
characters can be handled in one of the following
ways, as defined by the PE[2:0] Bits of COR4:

« Parity errors can be ignored — the character is
placed in the FIFO as good data and is given to
the host as any other received good data.

« An errored character can be replaced with a
NULL (x’00) character in the FIFO.

« An errored character can be replaced in the
FIFO with the three byte string x’FF - 00 - char-
acter. If this mode is enabled and an actual
good x’FF character is received, itis replaced in
the FIFO by two x'FF characters.

» An errored character can be discarded.

Received breaks are handled a little differently
from other errored characters. They can be pro-
cessed, based on the settings of the IGNBRK and
-BRKINT Bits in COR4, as:

- Reported as an errored character via a received
exception service request.

+ Replaced with a good NULL (x'00) character in
the FIFO.

« Discarded
4.6.1.3 LNext

This function provides a means of ‘escaping’ or ig-
noring any special meaning of special characters
and treats them as normal data. The escape char-
acter is defined by the value in the LNC Register.
If the CL-CD1400 receives this character, it will put
it and the next character in the FIFO without further
processing. This aliows, for example, a flow-con-
trol character to be received without it actually

—

===CIRRUS LOGIC

causing flow-control activity. LNext can be enabled
to operate even on characters that are received
with errors (parity, framing, overrun), otherwise er-
rored characters are handled normally and the
next character is not escaped.

4.6.1.4 ISTRIP

ISTRIP is a simple function that, if enabled, resets
the most-significant bit (Bit 7) of all received good
characters. If the character has a parity or framing
error, the ISTRIP function does nothing and the
character is given to the host via a normal receive
exception service request.

4.6.2 Non-UNIX Recelve Special Character
Processing

In addition to the UNIX speciai character process-
ing, the CL-CD1400 provides other special charac-
ter recognition capabilities. The CL-CD1400 has
four registers that define special characters,
SCHR1-SCHR4. Two of these, SCHR1 and
SCHR2 are used in flow control activities and were
discussed in the flow control section. SCHR3 and
SCHR4 define two additional special characters
that the CL-CD1400 can scan for in the receive
data stream. Recognition of Special Characters 3
and 4 are enabled by the SCD34 Bit of CORS3 (Bit
6). If either of these are received, it is cause for a
special character detect (receive exception) ser-
vice request. It should be noted that if automatic in-
band flow control is not enabled, SCHR1 and
SCHR2 can still be used as special characters.
They will be detected and reported as receive ex-
ceptions, but will not cause any flow control activi-
ties to be invoked.

Another special character function is the range de-
tect function. If this mode is enabled (via the
SCDRNG bit in COR3), the CL-CD1400 will com-
pare all received characters against the values in
Special Character Range Low (SCRL) and Special
Character Range High (SCHL). If the character re-
ceived falls between these two values (inclusive),
a special character detect service request will be
posted.

The status shown in the RDSR indicates which of
the special character recognition conditions were
met and that caused the receive exception service
request. See the RDSR description in the register
definitions in Section 5 for the bit encoding.

March 1992

CIRRUS LOGIC INC

G1E D WE 213b6L39 0004L4b T7?7 EECIR
e CL-CD1400

e— UXART Serial{Parallel Controller
—== CIRRUS LOGIC -A

CIRRUS LOGIC INC

Character
Received

Set Errored
Char Flag

Overrun
error
?

Set Break
Flag

Char Match
on Error
Enabled

ISTRIP
Enabled

?

SetD7 =0

SCHR12
Enabled

Clear LNext
Flag >

Set LNext »

Figure 4-6. CL-CD1400 Recelve Character Processing

March 1992

60

blE D WN 2136639 0004147 903 EMCIR

CL-CD1400

UXART Serial{Parallel Controller EC]RRUS LOGIC

CIRRUS LOGIC INC

®

Toggle Flow
State

Set Flow
Off

Y

Clear Flow
of >

Clear Flow
Off

SCHR34 Y Character
Enabled Match
? ?

SCR Y Character

Enabled In Range
) Yy
Set Special
Character

Exception

Y

< Done ’]

Figure 4-6. CL-CD1400 Recelve Character Processing (cont.)

61

March 1992

LLJE D W 213kL39 0004148 84T EECIR

e — CL-CD1400

e UXART Serial/Parallel Controller
——= CIRRUS LOGIC -

CIRRUS LOQGIC INC

D E
CASE:
000 - Do Nothing
001 -NLto CR
CR/NL 010-CR1to NL
Processing 011-CRto NL;NL to CR
Enabled 100 - Discard CR
101 - Discard CR; NL to CR
110 - Discard CR
111 - Discard CR; NL to CR
y r y
Parity
Put char
Error Flag in FIFO
Set

?

Put FF, char
in FIFO

Put FF,00, char
in FIFO
 —

Error Flag

Y

Parity
Error
Handling
= '010'

| Post Exception -
Service Request gl

Handling
= ‘001"
?

Put 00 ; Put Char
in FIFO Discard Char in FIFO
L 1 1 >
Break Break
Brleak Y Processing Processing\ N_["Post Exception -
Flag Mode Modse Service Request >
Set ='1 =‘10'
? ? ?
N Y Y
Put Char ; Put 00
in FIFO Discard Char in FIFO f'j ‘
— 1 1 »{ Done
Figure 4-6. CL-CD1400 Receive Character Processing (cont.)
62 March 1992

BXE D EM 213kk39

CL-CD1400
UXART Serial/Parallel Controller

4.7 Transmit Special Character
Processing

The CL-CD1400 also provides some special char-
acter handling on the transmit side; embedded
transmit commands and direct commands that
cause transmission of predefined special charac-
ters. A flow chart (Figure 4-7) is included at the
end of this section to help describe the process of
special character handling.

471 Line Terminating Characters

On transmit, there are four possible substitutions
based on the setting of two flags in COR5 (Bits 1
and 0 — ONLCR and OCRNL):

00 Do nothing — function not enabled
01 Change all <CR> characters to <NL>

10 Change all <NL> characters to <CR>
<NL>

1 CR characters changed to NL or NL
changed to <CR> <NL>

In the last case, where both flags are set, only one
of the translations will take place. In other words, a
CR that has been changed to NL will not then be
changed into CRNL.

4.7.2 Embedded Transmit Commands

The CL-CD1400 has a special feature that option-
ally allows specific ‘escape’ character sequences
in the transmit data stream to be interpreted as
commands. These are called Embedded Transmit
Commands (ETC) and are enabled by the ETC Bit
in Channel Option Register 2. They can be used to
insert programmed time delays between charac-
ters and generate a line break on the transmit data
output.

if enabled, an ETC is detected when the two- or
three-character ‘escape’ sequence is detected in
the transmit FIFO. An escape-character sequence
is made up of the special escape character fol-
lowed by the command character and an optional
count for the delay period. The escape character is
an all-zero (null) character. it should not be con-
fused with the ASCII ESC character, which is 1B
hex; for this discussion, ESC refers to the null char-

March 1992

mm——— CTRRUS LOGIC INC

0004149 784L ERCIR

——.

—_ |
—== CIRRUS LOGIC

acter. Five commands are supported in the ETC
command set:

ESC ESC: Send one ESC character. This command
sequence is provided to allow the ESC character to
be sent alone. Thus, this ‘escapes’ the escape
when it is actually desired to send a null character.

ESC x'81. Send BREAK. This causes the transmitter
to enter the line-break condition for at least one
character time. Several conditions control the con-
tinuation and/or termination of the line break. If
there is no more data in the FIFO following the send
break command, the break will continue indefinitely
until terminated by a stop break command. If there
is an insert delay command (see the next com-
mand) immediately following the send break com-
mand, the break duration will be set by the value
programmed in the delay command. Any other
character in the FIFO immediately following the
send break command carmies an ‘implied’ end of
break condition, causing the break to be terminated
and the next character to be sent.

ESC x'82xx. Insert delay. This command will
cause a delay between the previous character
transmitted and the next character to be transmit-
ted. The hex value contained in the third byte of the
sequence determines the time of the delay based
on the basic time period set by the Prescale Period
Register (PPR). The value is treated as an un-
signed binary value that is loaded into an internal
counter. The counter is decremented once for each
“tick' of the prescale period timer. Thus, if the PPR
sets a basic timing period of 10 ms and the value
set by the command is 100 (x'64), then a delay of 1
second will be generated. Multiple insert delay
commands can be placed in the FIFQ if time delays
longer than that generated by a single delay period
are needed.

This command is useful when a delay is required
after sending a carriage return. A printer is an ex-
ample of this type of situation. Often, the carriage
return causes the printer to start a print cycle and
the sending device must wait for the print to com-
plete before sending the next line of text (unbuf-
fered input). Using the insert delay command al-
lows the delay to be performed automatically
without the need for the host to time it. The delay
command is ptaced in the FIFO directly following
the carriage return and preceding the first data for
the next line. The CL-CD1400 will automatically ex-
ecute the delay following the carriage return and
then start sending characters again.

.} 63

61E 7 WM 2136bL39 0004150 4T84 EMCIR

B

=P CIRRUS LOGIC

Another useful application of the delay command is
as a built-in timer that the host can use as an inter-
rupt source causing it to periodically check its inter-
nal buffers for data to transmit. This assumes that
the channel is not currently transmitting data.
When the host services the transmit FIFO service
request after a delay time-out, as set by the delay
value, it can start transmission of a buffer if data is
available or re-send the insert delay command and
wait for the next service request. This removes the
necessity of the host setting an internal timer inter-
rupt to perform the same function.

ESC x'83: Stop BREAK. This command will termi-
nate a break in progress regardless of other condi-
tions. This command may be preceded by insent
delay commands to set a specific, programmed
break period if more than one character time is
needed. Any character in the FIFO will cause the
break to terminate. EXC x'83 is needed only if it is
necessary to stop the break and there is no more
data to be sent. A break will continue until another
character is sent or the ESC x'83 is encountered in
the FIFO.

ESC x'01- x'3F: Send Repeat Space. This command
will cause the CL-CD1400 to send repeated space
characters. The character following the ESC is in-
terpreted as a binary count specifying the number
of ASCIl space (x20) characters to send. The
count must be in the range of x'01 through x'3F (1
- 83 decimal), inclusive.

CL-CD1400
UXART Serial{Parallel Controller

4.7.3

The CL-CD1400 has, as one of its host com-
mands, a method of transmitting any one of the
four special characters programmed in Special
Character Registers SCHR1-SCHR4. The com-
mand is issued via the CCR Register with Bit 5 set
to a one and the least significant three bits encod-
ing a selection of one of the four characters (see
Section 5 for details of the bit-encoding). The func-
tion is preemptive, meaning that the selected char-
acter will be transmitted immediately following the
currently transmitting character and a character in
the transmitter holding register, if any. This pre-
empts any characters in the transmit FIFQ. If there
are characters in the transmit FIFO, transmission
of those will resume after the special character is
sent.

Send Special Character Command

One important use of this command is that it allows
the host to flow-control a remote without having to
wait for the transmit FIFO to empty before the flow
control character can be put in. This is a special
case of the normal transmitter operation of the CL-
CD1400 in that the character can be sent without
waiting for a transmit service request. The only re-
quirement is that the transmitter be enabled (inter-
rupts need not be enabled).

CIRRUS LOGIC INC

LLE D WM 213b6bL39 0004151 334 EEMCIR

CL-CD1400 b——

UXART Serial{Paraliel Controller ECIRRUS LOGIC

. CIRRUS LOGIC INC

Ready for Next
Character

N
Repeat Y Decrement
Char Mode 1 count, send
‘space’
N
N Embedded
Command in
Progress Y
. Clear repeat
Char Mode
Reset Embedded
Command in 1
Progress gl Bl

Send
Braak

Y

Set Delay
Time

Y

Y
OO ©
Figure 4-7. CL-CD1400 Transmit Character Processing

March 1992

65

LIE D WN 213bb39 0004152 270 EECIR

e e %

CL-CD1400

UXART Serial/Parallel Controller

==
——== CIRRUS LOGIC
CIRRUS LOGIC INC

®

| Stop Break P

| Send ‘00’
as char

Y

1. Initialize repeat
char count

2. Set repeat
char = ‘space’

3. Set repeat

Y

Char Mode
llegal Condition: o
Send this as a char o
ETC Set Embedded
Enabled Command in -
progress flag

0

Figure 4-7. CL-CD1400 Transmit Character Processing (cont.)

66

March 1992

bLE D NN 213bL39 0004153 107 EMCIR

CL-CD1400
UXART Serial/Parallel Controller

it

4.8 Baud Rate Generation

The CL-CD1400 provides a separate baud rate
generator for each direction of each channel. Each
receive and transmit baud rate generator can be
driven from one of five available clock sources.
The source being used is selected by the value in
the Receive Clock Option Register (RCOR) and
Transmit Clock Option Register (TCOR). The se-
lected clock is divided by the value in the Receive
Baud Rate Period Register (RBPR) or Transmit
Baud Rate Period Register (TBPR) to yield the de-
sired bit rate.

The five clock sources are:

pm—— " N

—====CIRRUS LOGIC

System clock divided by 128,
RCOR/TCOR =2

System clock divided by 512,
RCOR/TCOR =3

System clock divided by 2048,
RCOR/TCOR =4

Clk2
Clk3

Clk4

The system clock is the external clock driving the
CLK Input of the CL-CD1400. Two example baud
rate tables are provided at the end of Section 6.

4.9 Diagnostic Facilities ~— Loopback

The CL-CD1400 provides the capability to perform
loopback testing internally for both local and re-

Clko System clock divided by 8, mote loopback modes. Loopback Mode is enabled
RCOR/TCOR =0 via the Local Loopback Mode (LLM) and Remote
Cki System clock divided by 32, Loopback Mode (RLM) Bits of COR2.
RCOR/TCOR =1
CIRRUS LOGIC INC
®
N Char
Translation
Enabled
Perform CR, NL
processing as
specified
Y
Send Char
Yy
=)
Figure 4-7. CL-CD1400 Transmit Character Processing (cont.)
March 1992

67

L1E D WA 213b6bL39 0004154 043 EMCIR

!

——= CJRRUS LOGIC

In focal loopback, the output of the transmitter bit
engine is connected directly to the input of the re-
ceiver bit engine and the input and output pins
(TxD and RxD) are disconnected. The TxD QOutput
is left in the mark condition so that remote equip-
ment does not sense any line activity. Input condi-
tions on the RxD are ignored. All channel parame-
ters and service request functions are in effect and
operate normally. If enabled, special characters
are detected and acted upon and UNIX transia-
tions occur.

Remote Loopback Mode causes the CL-CD1400
to echo any received data immediately back to the
Transmit Output. This is done character-by-char-
acter rather than bit-by-bit; in other words, charac-
ters are echoed once they have been completely
received and assembled. Received data will hot
be placed in the FIFQ, thus no data is given to the
host. The received character will be re-transmitted
with parity and Stop Bit options as defined by
COR1. Itis important to note that, if transmit baud
rate is lower than recelve baud rate, overrun errors
and loss of data are likely to occur.

4.10 Parallel Channel Operations

Channel 0 is user-configurable as either a serial or
aparallel port. The selection of operating modes is
made by the value of the P/S* Bit (Bit 7) in the Glo-
bal Configuration Register (GCR). After reset,
Channel 0 is configured as a serial port by default.
Host sofiware reconfigures the port to the parallel
mode by setting this bitto a ‘1'. The port is capable
of bi-directional operation, the direction being set
by the enabled mode: transmit or receive. In the
receive mode, the CL-CD1400 drives PBUSY as
well as PSTROBE* automatically. PBUSY, how-
ever, is not a bi-directional handshake control: in
Transmit Mode, it is not monitored by the CL-
CD1400. PACK" is used as the acknowledge that
the transfer has been completed.

It is important to note that when Channel 0 is con-
figured for parallel operation, several of the mo-
dem input signals of the other three channels are
taken over for use by the parallel channel provide
the necessary data and control/status signals re-
quired to support the parallel interface definition of
the Centronics parallel specifications. These are
the Rl and CD Inputs (since they are used for bidi-

68 " "

CIRRUS LOGIC INC

CL-CD1400
UXART Serial/Parallel Controller

s T—

rectional data transfer, they are actually Input/Out-
put Signals). These six signals (RI[3:1]* and
CDI[3:1]") and the two separate Parallel Data Input/
Output Signais (PD[0] and PD[1]) form the bi-di-
rectional parallel data port. Other modem input/
output signals on Channel 0 provide the control
and status signals. The data transfer handshake is
provided by the PSTROBE* Output and the
PACK”* input. Note also that these two signals nev-
er change direction; PSTROBE* is always an out-
put and PACK" is always an input. This is the nor-
mal signal name convention for parallel data
transmit. For receive, the PSTROBE* Qutput ef-
fectively becomes the Transfer Acknowledge
(ACK) Output function and the PACK* becomes
the Data Strobe (STROBE) Input function.

Unlike some parallel interface devices which re-
quire the host to contro! and generate the timing for
the handshake signals directly, the CL-CD1400
automatically generates the PSTROBE* and
PBUSY Outputs and monitors the PACK* Input.
This removes nearly all host overhead in data
transmission or reception other than putting data
in, or taking data out of, the FIFQ. Since parallel
data movement is inherently half-duplex, the CL-
CD1400 combines the serial receive and transmit
FIFOs, plus some other registers not needed in
Parallel Mode, into one large, 30-byte FIFO. This
further reduces host overhead by providing larger
buffering and thus reduced service request activi-

ty.

The width of the PSTROBE* pulse is set by the val-
ue programmed in the least-significant five bits of
the TBPR Register (the TCOR is not used in Par-
allel Mode) multiplied by the system clock divided
by two. Thus, the width can be any duration in the
range of 80 ns to 2.56 us (based on a 25-MHz sys-
tem clock, hex values of 1 to 1F in the TBPR). For
best overall performance, the RCOR/RBPR Regis-
ter pair should be set to generate a bit-time slightly
more than twice the width of the expected pulse on
the PACK" Input. The PBUSY pulse width is de-
pendant on the duration between the Strobe Input
to the CL-CD1400 and the Acknowledge Output
(PACK* to PSTROBE" delay; see Section 6).

General operation of the parallel port is the same

as the serial port. When the channel is in the
Transmit Mode and the transmitter and transmit

—— March 1992

L1E D BN 213bb39 DOO4L55 TAT EMCIR

CL-CD1400
UXART Serial{Parallel Controller

service requests are enabled, the CL-CD1400 will
request service whenever the FIFO is empty. The
host responds by writing up to 30 bytes into the
FIFQ. Carriage return and newline mapping occur
on transmit data in the same manner as in Serial
Mode, if so enabled. Only the send repeated space
command of the embedded transmit command set
is operative. The receiver also works the same
way in Parallel Mode as it does in serial. The FIFO
threshold can be set to trigger on any level be-
tween 1 and 30 inclusive. However, in the interest
of highest possible performance, no receive spe-
cial character processing occurs.

4.10.1 Transmit Operation

When the channel is enabled for transmit opera-
tion and service requests are enabled, the CL-
CD1400 will transmit data whenever characters
are in the FIFO. Service requests can be pro-
grammed to occur when the FIFO becomes emp-
ty. There is no equivalent to the Serial Transmitter
Empty Interrupt in Parallel Mode, thus only the
TxRDY Interrupt Bit in the SRER is operational.
Characters are taken directly from the FIFO and
placed on the parallel data pins for transmission.
Therefore, when the FIFO is empty (as indicated
by the TxRDY Bit in the SRER), there is no more
data to send and the ‘transmitter’ is empty.

!

—== CIRRUS LOGIC

Data transmission is controlied by the CL-CD1400
via the handshake signals PSTROBE* and
PACK*. When the FIFO has a byte to send, the
CL-CD1400 puts the eight bits of data on the par-
allel port. After a 200 nsec setup time, the
PSTROBE* Signal is driven active (low) and re-
mains active for the time specified by the value
programmed in the TBPR Register. PSTROBE* is
then deactivated and the data is held until the
PACK®* Input is driven active (low) by the receiving
device. PACK* is the only signal monitored auto-
matically by the CL-CD1400 for flow-control pur-
poses. The state of PBUSY, however, is made
available to the host via the PSVR Register. Host
software can detect the busy condition and disable
the transmitter, if necessary. Once PACK" be-
comes inactive, the CL-CD1400 will place the next
data byte on the port (if the FIFO is not empty), and
the cycle repeats. If the receiving device is not able
to accept the data, it may hold oif the cycle indefi-
nitely by not activating PACK*. This provides the
parallel version of flow control.

Figure 4-8 shows a typical connection for a CL-
CD1400 parallel transmit interface, which is a
printer in this example.

CIRRUS LOGIC INC

CL-CD1400

PACK" =

PRINTER

PSTROBE*

ACK

»1 STROBE

PD[7:0]

3| DATA

Figure 4-8. CL-CD1400 Parallel Data Transmit Connectlons

March 1992

bLE D EN 213bb39 0004156

——mm

——== CIRRUS LOGIC

4.10.2 Recelve Operation

Receive operation in Parallel Mode is also very
much like the Serial Mode. The receive FIFO has
a threshold setting that determines the level of
data required to cause a receive service request.
The threshold can be set anywhere from 1 to 30
characters. When the number of characters in the
FIFO equals the set value of the threshoid, the
CL-CD1400 will post a receive service request.

The sequence of events in receiving a byte is the
reverse of sending, the sending device places the
data on the parallel data port; after an appropriate
set-up time, it activates its strobe out. The strobe
is connected to the PACK* Input of the CL-
CD1400. When the CL-CD1400 senses the active
level on the PACK" Input, It activates PBUSY to
indicate that it is taking the data but is not yet
done. Once it has taken the data, it will activate its
PSTROBE* Output, which should be connected to

91k EECIR
CL-CD1400

UXART Serial/Parallel Controller

R

the sender acknowledge input. At the end of the
programmed pulse width duration (set by TBPR),
PSTROBE" and PBUSY are deactivated.

Flow control happens automatically in the receive
direction. If the FIFO is full when the next data
byte is being received, the CL-CD 1400 will main-
tain PBUSY in the active (high) state and will not
activate PACK". Once the host has serviced the
receive FIFO and has removed at least one byte,
thus providing space for the current byte, the CL-
CD1400 will complete the receive cycle by ac-
knowledging the byte (activate PACK*) and deac-
tivating PBUSY.

Figure 4-9 shows the connections between the
CL-CD1400 and a sending device such as a scan-
ner. This connection might also be seen in an ap-
plication where the CL-CD1400 is the receiving
device in a printer application.

CIRRUS LOGIC INC

CL-CD1400 SCANNER
PACK" |« STROBE
PBUSY* »{ BUSY
PSTROBE* »{ ACK
PD[7:0] | DATA

Figure 4-9. CL-CD1400 Parallel Data Recelve Connectlons

70 LEEEEEEEEEEE—————— Ma rch 1 992

blE D WM 213kbL39 0004157 852 MECIR

CL-CD1400

4.10.3 Programming Considerations

There are a few guidelines that should be fol-
lowed for optimum parallel port data transfer per-
formance. These are primarily related to the pro-
gramming of the RCOR/RBPR Register pair,
although programming the TBPR properly also
has affects performance.

Only the TBPR Register is used in determining
the pulse width of the PSTROBE* Output when
Channel 0 is programmed to be a parallel port;
the TCOR is not used and its value is ‘don’t
care’. In the Parallel Mode, the transmit bit en-
gine is not used for PSTROBE* generation. In-
stead, the PSTROBE* Output is produced by a
five-bit hardware counter that is loaded with the
value contained in the least significant five bits of
a register that is itself loaded from the TBPR
Register each time the channel is enabled (or re-
enabled). This five-bit counter is loaded each
time a strobe generation cycle is started. This
happens simultaneously with the activation of
the PSTROBE* Output. The counter is decre-
mented once for each cycle of the internal clock
(CLK divided by 2); when the count reaches
zero, PSTROBE" is deactivated. In general, the
TBPR should be programmed to produce the
shortest pulse width to which the receiving de-
vice can reliably respond. Depending upon the
operating frequency of the clock (CLK), the
pulse width may be as short as 80 ns (TBPR =1,
CLK =25 MHz) to as long as 16 us (TBPR =32,
CLK = 1 MHz). It is important to note that any

———eii.

= |
——= CIRRUS LOGIC

time the strobe width of PSTROBE" is to be
changed (i.e., a new value is loaded into TBPR},
the change will not be reflected until a channel
re-enable, either receive or transmit, is per-
formed via the CCR Register.

By far, the programming of the RCOR/RBPR
Register pair will have the most significant im-
pact on paralle! port performance. An explana-
tion of how the device works internally in Parallel
Mode will help make this apparent.

The same bit engine that is used to receive serial
data is used to detect the PACK" Signal. When
the CL-CD1400 is waiting for an active PACK*
Signal, the bit engine is running in its ‘Start-Bit
Detect’ Mode. In this mode, once it has detected
the leading edge of the PACK* Signal, it times to
the middle of the ‘bit’ (one-half bit time, based on
the programmed baud rate as determined by the
RCOR/RBPR Register pair) and then generates
an interrupt to the MPU. This would normally be
the time that start-bit validation would take place
for serial data. In Paraliel Mode, when the MPU
executes the ‘foreground’ routine to service this
interrupt, it checks to see if the PACK* Signal is
still present or if it has returned to the inactive
state. If it is still active, the foreground process
hands the duty of searching for the end of the
PACK* to the background task and terminates
the interrupt, since waiting for PACK* to become
inactive during foreground processing would se-
riously degrade device performance.

PACK* _'\

t——‘ Sample point for highest performance. Data is

taken immediately and the ACK can be scheduled.

Sampled too early; foreground cannot take the data. Task
given to background code, which will take the data at a later
time, depending on device activity. Data cannot be acknowl-

edged until data is taken so the cycle extends and no ACK

is generated until the background completes the task.

Figure 4-10. Relationship between RCOR/RBPR and PACK* Pulse

March 1992

mnmmemsm—s CIRRUS LOGIC INC

GIE D M 213bbk39 0004158 799 EMCIR

——

—= CIRRUS LOGIC

m

If, on the other hand, PACK* has already returned
to the inactive state, the MPU can take the appro-
priate action immediately, during the foreground
loop. In the case of Receive Mode (when PACK*
is actually performing as the strobe input), the
MPU retrieves the data from the paralle! port and
insents it directly in the FIFQ. If in Transmit Mode,
it can allow the background code to schedule the
next character immediately. The ability of the fore-
ground code to handle the transaction greatly de-
creases the response time since the background
code cycles through all channels in round-robin
fashion. Thus there is a variable delay between
each channel's MPU processing time.

The highest performance will be obtained when
the RCOR/RBPR pair are programmed to produce
a bit-time whose half bit-time is just slightly longer
than the expected strobe width on the PACK* In-
put. In this way, when the foreground process be-
gins execution, the PACK* Input will have returned
to the inactive state and the MPU can handle the
data transaction immediately. For example, if the
expected strobe width is 10 us (100 kbaud), the
RCOR/RBPR Register pair should be pro-
grammed to produce an effective baud rate of a lit-
tle less than 50K, say 49K to allow for a small mar-
gin of error. To produce this baud rate, the RCOR
would be loaded with zero, which selects clk0
(CLK divided by 8) as the clock source and the
RBPR would be loaded with 51 (hex 33). These
numbers assume a 20-MHz system clock (CLK).

The timing diagram in Figure 4—10 shows the sam-
ple point that yields the highest performance, as
explained above.

4.11 Hardware Configurations

The simplicity of the host interface to the CL-
CD1400 allows it to be built into systems that use
popular microprocessors, such as the intel 80x86
family (8086, 80286, 80386, etc.), the Motorola
family (68000, 68010, 68020, etc.), the National
32x32 family (32CG16, 32332, 32532, 32GX32,
etc.), and the AMD29000.

CL-CD1400
UXART Serial/Parallel Controller

4.11.1 Interfacing to an Intel®
Microprocessor-Based System

With little extra logic, the CL-CD 1400 can be inter-
faced to any system based on a processor in the
intel 80x86 family. Figure 4-11 shows a general-
ized view of an I/O-mapped interface with an
80286-based system. To provide the proper
strobes and controls, the IOR* and |OW* control
strobes are used to synthesize the DS* and R/W*
Signals. DTACK" is used as an input to wait-state-
generation logic that will hold the processor (if nec-
essary) until the CL-CD1400 has completed the I/
O request.

4.11.2 Interfacing to a Motorola®
Microprocessor-Based System

interfacing to a 68000 family device is straight for-
ward. The bus timing and the interface signal def-
initions very closely match those of the 68000 mi-
croprocessor, thus allowing direct connection in
most cases. With later versions (68020, 68030),
some additional logic is required to generate the
DSACKO* and DSACK1* functions that replace
the DTACK" on the earlier devices. The example
in Figure 4-12 shows a generalized interface to a
68020 device.

4.11.3 Interfacing to a National
Semiconductor® Microprocessor-

Based System

The connections between the CL-CD1400 and a
NS32000 (32GX320, 32CG16, etc.) embedded
controller are also relatively simple. As with the In-
tel devices, cycles are controlled by the DS, CS
and R/W Signals that have been synthesized from
the available 1/0 Control Signals and I/O cycle ex-
tensions (wait states) are generated by logic con-
nected to the DTACK* Signal. Some additional
consideration is required when implementing
memory-mapped |/O to prevent muitiple read and
write cycles with the CL-CD1400 FIFOs due to the
pipelined architecture of the 32000 device but all
of the necessary controls are availabie.

Figure 4-13 depicts a simplified interface example.

CIRRUS LOGIC INC

72 L] Mafch 1992

L1E P EE 213b6b39 0004159 L25 EECIR
CL-CD1400 —

UXART Serial/Parallel Controller e —
—= CIRRUS LOGIC

CIRRUS LOGIC INC

80286
SYSTEM CL-CD1400

S
A23:7]| ADDRESS | Jlsvcackm®
ADDRESS -)

EE——
DECODE SVCACKT
1 SVCACKM*
A[6:0]
3| A[6:0]
DATA | | DB[7:0]
IOR*
o
IoW* T
»{RW*
S
INPUTS [
. < SVCREQM"*
WAIT-STATE
READY j&——— | GENERATION je——{DTACK®
LOGIC

Figure 4-11. Intel 80x86 Famlly Interface

Ma rch 1 992 e 73

LLE D EE 2136639 0004ibO 347 EMCIR
CL-CD1400
UXART Serial{Parallel Controller

=
——== CIRRUS LOGIC

CIRRUS LOGIC INC

68020
SYSTEM CL-CD1400
AS*] ————{ CS*

ADDRESS .
—
— - SVCACKR*
ADDRESS 3| DECODE L lovcackwr
A[8:2)
P A(6:0]
DATA |- P DB[7:0]
DS* —»{ DS*
R/W* —1 R/W*
IPL[2:0] }g—u-—] *
[2:0] ENCODING [SVCREQT
| - SVCREQM*

DSACK1* j—————— TRANSFER

¢————— DTACK*
DSACKoO* CONTROL

Flgure 4-12. Motorola 68020 Interface

74 b -~ March 1992

LJE D BB 213k6L39 00041kl 283 EECIR

—etiii.

===CIRRUS LOGIC

CL-CD1400
UXART Serial{Parallel Controller

CIRRUS LOGIC INC

32000
SYSTEM

D[7:0]

INTERRUPT
INPUTS

A[31:0]
IOINH*
IODEC*
BWO
BW1
CONF*
BMT*
RDY*

BCLK
DDIN*

DATA

TRANSCEIVER < >

AND INPUT
LATCH

CL-CD1400

< AND

| ————— BUS
—| CYCLE

ADDRESS
DECODE

»| CONTROL | >

}

March 1992

o~

DB([7:0]

SVCREQR*

SVCREQT”
SVCREQM*

A[6:0]

cs*
SVCACKR*
SVCACKT*
SVCACKM*
ps*
DTACK*

Rw*

Figure 4-13. National 32000 Interface

75

LLJE P EN 213bb39 0004lkE

——rE.

== CIRRUS LOGIC

4.12 Serial Data Performance

The maximum rate at which the CL-CD1400 can
move serial data in and out of its internal registers
is affected by many factors. The actual rate that is
achievable by the bit engines themselves is ap-
proximately 500,000 bits per second. This is based
on the smallest value of baud rate period at which
the bit engines can operate reliably. However, this
is simply the speed that data can be shifted, not
how fast characters can be assembled/disassem-
bled and processed for any special character ma-
nipulation that is selected. At this rate, only one
channel can be enabled, and it can only maintain
a throughput value of about 20%. The limiting fac-
tor in the maximum data rate is the MPU (not tak-
ing into account host overhead in management of
the receive and transmit FIFOs, which does have
an impact on performance).

Recall that the bit engines operate at the bit level.
When a bit engine has completed operation on a
bit, whether itis related to receiving or transmitting,
it interrupts the MPU indicating it is done with the
task. The MPU performs the bit manipulation at the
character level. If, for example, the bit engine inter-
rupt is for a bit that has been received, the MPU
must add the bit to the character being assembled
and test for a complete character. Tasks per-
formed during a bit engine interrupt are called fore-
ground tasks. The background code will perform
further manipulation of the character, such as
checking parity or other error conditions, placing
the character in the FIFO, generating a service re-
quest if appropriate, etc. All of these tasks require
time, and as the number of interrupts from bit en-
gines in a given time period increase due to higher
data rates, the MPU has less time for the back-
ground tasks. This is compounded by requiring it
to perform additional special tasks, such as UNIX
character translations.

Internally, the MPU prioritizes its activities in the
order of receive, transmit, modem. At the higher
data rates, more time will be spent on receive
characters than on transmit characters simply be-
cause there is less time overall between interrupts.
When data rates reach a level at which the MPU
cannot keep up, the transmitter will begin to show
gaps between characters. This is the fail-safe con-
dition; no data is lost. As the data rate continues to

11T EMCIR
CL-CD1400
UXART Serial{Parallel Controller

2

increase, inter-character gaps become longer and
longer. At extremely high rates, the MPU begins to
have trouble keeping up with receiver bit engine in-
terrupts and the whole system breaks down and
data is lost.

Extensive performance analysis has been per-
formed on the CL-CD1400. The analysis was
based on throughput at various serial data rates at
a nominal system clock of 25 MHz. Throughput is
measured as the amount of data transmitted over
a given time period versus the theoretical maxi-
mum amount based on calculation. The difference
between the two is made up of inter-character
gaps. This analysis has shown that the device can
support 100% tiroughput at 150K baud on all four
channels in Half-duplex Mode (transmitting) and
as much as 80% throughput on one channel! at
256K baud (in both cases no optional character
processing was enabled). These modes of opera-
tion might be found in terminal servers, for exam-
ple, which tend to be half-duplex in operation.
Nearly all high-speed traffic is one direction, server
to terminal, with relatively little traffic in the other
direction, terminal keyboard to the server. Occa-
sionally, the data movement will be reversed, such
as for afile upload, but then the low duty-cycle traf-
fic is also reversed. In a true full-duplex applica-
tion, 100% throughput is achieved on all four chan-
nels up through about 90K baud, also with
minimum special options enabled. As the number
of operating channels decreases, the maximum
data rate at which 100% throughput can be main-
tained increases. One channel operating full-du-
plex can maintain 128K baud at just slightly less
than 100% throughput.

The performance achieved in an application is de-
pendent on a number of factors. As mentioned
above, host performance is also a factor. If the
host cannot respond to a transmit FIFQ service re-
qQuest in time to keep it from running out of data,
than the apparent throughput will decrease due to
the inter-character gaps caused by the underrun.
Of course, if the host cannot respond fast enough
to a receive FIFO service request, overruns will re-
sult. High data rates increase the load on the host
system as well as the MPU within the CL-CD1400.
Another factor that has an obvious (and not insig-
nificant) affect on performance is system clock
speed. As system clock frequency decreases,

e ————————
CIRRUS LOGIC INC

76

— March 1992

bIE D BN 213bbL39 0004163 OS5k EECIR

CL-CD1400
UXART Serial/Parallel Controller

there is a linear decrease in CL-CD1400 serial
data performance, since the MPU is operating at
slower pace relative to the baud rate.

The data that has been collected for full-duplex
operaion of the CL-CD1400 is diagrammed in the
following graphs. In order to show both best case
and worst case conditions, the tests were run in
two modes. The first mode activated all possible

————i

=== CIRRUS LOGIC

special character processing, thus loading the
MPU with the maximum amount of work necessary
on each received and transmitted character. The
second mode did not enable any special character
processing. The host in use for these tests was a
PC/AT-type system based on a 25-MHz 80386
CPU. The overhead of the host service routines
has been factored out of the data in order to show
true CL-CD1400 performance levels.

Throughput with maximum character processing options enabled:

CIRRUS LOGIC INC

100
S0 ﬂ\ 1 channel running
~ 80
o’
o
‘-ID 2 channels running
5 70
O
: S
= 80 3 channels running
50 4 channels running
40
4 v ¥ «
& > 2 i
BAUD RATE
March 1992 10 77

BIE D M 2136639 00041bY4 T92 EECIR ‘
e CL-CD1400

——= CIRRUS LOGIC

Throughput with minimum character processing options enabled:

CIRRUS LOGIC INC

100

1 channel running

2 channels running

THROUGHPUT
~
=)

60 3 channels running
4 channels running

50
40
é X X X b4
2 3 i 3 3
BAUD RATE

NOTE: The curve for four channels in the graph above terminates at about 142K baud because testing showed that,
above this point, errors can occur — mostly in the form of internal overrun errors.

GlE D W 213bL39 0004lLE5 929 EMCIR
CL-CD1400 e —

UXART Serial/Parallel Controller
—= CIRRUS LOGIC

5. DETAILED REGISTER DESCRIPTIONS CIRRUS LOGIC INC

This section presents a complete, detailed description of each register. Registers have two formats: full
eight bits, where the entire content defines a single function; or, the register is a collection of bits, grouped
singly or in multiples, defining a function. In the second case, the descriptions break the register down
into its component parts and describe the bits individually. The order of register presentation follows that
given in the brief register descriptions in Section 2.

5.1 Global Registers
Global Firmware Revislon Code Register (GFRCR) 40 Read Only

Firmware Revision Code

The GFRCR serves two purposes in the CL-CD1400. First, it displays the revision number of the firmware
in the chip. When a revision to the CL-CD1400 is required, the revision number of the firmware is incre-
mented by one. The code is 44 for the Revision E device. Later revisions, if necessary, will increment this
by one; for example, Revision F will be 45, and so on.

Secondly, this register can be used by the system programmer as an indication of when the internal pro-
cessor has completed reset procedures, after either a power-on reset (via the Reset” Input) ora software
global reset (via the reset command in the CCR). Immediately after the reset operation begins, the inter-
nal CPU clears the register. When complete, and the CL-CD1400 is ready to accept host accesses, the
register is loaded with the revision code.

Channel Access Register (CAR) 68 Read/Write

poll pol poll poll poll 0 C1 Co

The CAR provides access to individual channels within the CL-CD1400. The least significant two bits of
the register selects one of the four channels. Before any operation that affects a channel, this register
must be loaded so that Channel Registers are available to the host. Bit 2 must always be 0. Bits 7-3 are
not used except during Poll Mode operation {see Section 3 for details).

Cc1 Co Channel Selected
0 0 Channel 0
0 1 Channel 1
1 0 Channel 2
1 1 Channel 3

LLE D BN 2136L39 0004lbb 8L5 EMCIR

—— CL-CD1400
=== CIRRUS LOGIC T SRl Control
Global Configuration Register (GCR) 40 Read/Write

p/s* 0 0 0 0 0 0 0

The GCR is used to define the mode of operation for Channel 0. Resetting Bit 7 will select Serial Mode;
setting Bit 7 selects parallel. The default mode selection after reset is serial.

Bit Description
7 P/S* =0 Channel 0 Mode is serial
7 P/S* =1 Channel 0 Mode is paraliel CIRRUS LOGIC INC
6-0 Must be 0.
Service Request Register (SVRR) 67 Read Only
0 0 0 0 0 SRM SRT SRR

The SVRR reflects the inverse of the state of the Service Request Pins (SVCREQR*, SVCREQT* and
SVCREQM"). Its primary use is in polled systems, and it allows system software to determine what, if any,
service requests are pending.

Bit Description

7-3 Always 0

2 Service Request Modem; 1 indicates request pending

1 Service Request Transmit; 1 indicates request pending

0 Service Request Receive; 1 indicates request pending

Receive Interrupting Channel Register RICR 44 Read/Write
Transmit Interrupting Channel Register TICR 45 Read/Wrlte
Modem Interrupting Channel Register MICR 46 Read/Write

X X X X C1 Co X X

These registers indicate the channel number that is currently being serviced by an active acknowledge
cycle (whether poiled or interrupt). Bits 3-2 (C1 and CO0) are valid only during the context of a channel
service routine; at any other time, their state is undefined. Host system software uses these registers to
determine the number of the channel that originated the particular service request (receive, transmit or
modem). The format of these registers is the same and the description is valid for each. The upper four
bits and lower two bits are user-defined and may be set to any value desired. When the register is read,
these bits will be presented as defined by the user; C1 and CO will be set by the CL-CD1400 to reflect the
proper channel number.

E1E D EE 213kb39 00041bL? 7Tl EECIR
CL-CD1400 —

UXART Serial{Parallel Controller
—== CIRRUS LOGIC

Modem Interrupting Channel Register (cont.) CIRRUS LOGIC INC

Bit Description

7-4 User-defined.
3-2 Defines Channel Number:

c1 Co Channel Number
0 0 Channel 0
0 1 Channel 1
1 0 Channel 2
1 1 Channel 3

1-0 User-defined.

Recelve Interrupt Register (RIR) 6B Read/Write
rdireq rbusy | runfair 1 1 0 ch[1] ch[0]
Transmit Interrupt Register (TIR) 6A Read/Write
tdireq | tousy | tunfair 1 0 0 ch[1] ch[0]
Modem Interrupt Register (MIR) 69 Read/Write
mdireq | mbusy | munfair 0 1 0 ch[1] ch[0]

These registers are used during Poll Mode operation of the CL-CD1400. All three provide the same type
of information for each of the three service requests. The functions of rxireq, txireq and mdireq have
identical meanings, as do the group rbusy, tbusy and mbusy and the group runfair, tunfair and munfair.
The least significant two bits indicate the number of the channel requesting service. Bits 2 through 4 are
used internally by the CL-CD1400 to set the context of the service acknowledge cycle. See the
description of Poll Mode operation in Section 4 for complete details.

rxireq

txireq

mdireq
These bits are set by the internal processor when service is required by a channel. They are
a direct reflection of the inverse state of the SVCACK* Pins, and they are not actually part
of the register but are the active-high output of the latch that drives the SVCACK* Pins. The
bits can be scanned by the host to detect an active service request. These bits are cleared
by the internal processor at the beginning of the service acknowledge cycle (hardware ser-
vice acknowledge) or by the host software when the Poll Mode cycle is terminated.

March 1992 — 81

LLE D EE 2136L39 0004lb& L34 EECIR
= CL-CD1400

——— UXART Serial/Parallel Controller
—= CIRRUS LOGIC

Recelve/Transmit/Modem Interrupt Registers (cont.)

CIRRUS LOGIC INC

rbusy

tbusy

mbusy
These bits are set by the internal processor and remain set until the end of the service ac-
knowledge cycle is indicated by either a write to the EOSRR (hardware service acknowl-
edge), or cleared by the host software when the Poll Mode cycle is terminated. They signal
the current state of the service acknowledge cycle. When cleared, the internal processor
senses that it can assert another service request of this type.

runfair

tunfair

munfair
These bits are used by the internal processor to implement the ‘Fair Share' service request
function. If this bit is set, the CL-CD1400 will not assert another service request of this type
until the bit is cleared by a pulse on the external SVCACK* Pin. These bits are not used in
Poll Mode.

Bits 4-2

These bits define the context of the current service acknowledge cycle during Poll Mode and
are fixed by hardware within the CL-CD1400. These bits must be replicated exactly when
the register is copied to the CAR when activating a service acknowledge cycle. See the dis-
cussion of Poll Mode operation in Section 2 for a more detailed description.

ch{1] - ch[0]
These two bits encode the channel number of the requesting channel. During Poll Mode op-
eration, when the RIR, TIR and MIR are copied into the CAR to start the service routine,
ch[1:0] set the channel number that will be serviced.

Prescaler Period Register (PPR) 7E Read/Write

Binary Value

The PPR sets the divisor that will be used to generate the time period for CL-CD1400 timer operations.
It can be set to any value between 0 and 255 (x’FF). The PPR is clocked by the system clock prescaled
(divided) by 512. Note that this value does not have any effect on baud rate generation. The time period
generated by this register drives the receive timer and is used to activate the ‘no new data’ and ‘receive
data time-out’ interrupts. See the receiver operation discussion in Section 2 for a description of receiver
timer functions.

5.2 Virtual Registers

The CL-CD1400 has two operational contexts, a normal context which allows host access to most regis-
ters and any channel, and a service acknowledge context, allowing host access to some registers specific
to the channel requesting service. This special set of registers is called virtual because they are only avail-
able to host access and valid during this service acknowledge context; at all other times, their contents
will be undefined and must notbe written to by host software.

82 “ March 1992

®C

BIE D WE 213bkbL39 0004169 574 EECIR
CL-CD1400 —_—
UXART Serial/Parallel Controller —

——= CIRRUS LOGIC
CIRRUS LOGIC INC

5.2 Virtual Registers (cont)

The use of virtual registers and context switching allows the CL-CD1400 to maintain all channel-specific
information. The host need not make any changes to chip registers in order to access the registers per-
tinent to the channel being serviced.

The service acknowledge context is entered into in one of two ways; either via activation of one of the
SVCACK* Input Pins (hardware-activated), or via host software when the contents of any one of TIR, RIR
or MIR is copied into the CAR by host software during a Poll Mode acknowledge cycle. See Section 4 for
a discussion of the differences between these two modes.

Recelve Interrupt Vector Register (RIVR) 43 Read Only
X X X X X IT2 IT1 ITO
Transmit Interrupt Vector Reglster (TIVR) 42 Read Only
X X X X X T2 I ITO
Modem Interrupt Vector Register (MIVR) a1 Read Only
X X X X X IT2 IT ITO

These registers serve the same function for each of their respective service types — receive, transmit
and modem. They provide information about the service request that is being acknowledged.

The upper five bits are user-defined, as programmed via the LIVR Register of the channel being serviced;
the lower three bits provide the service acknowledge vector and are OR’ed in by the CL-CD1400 when
the register is read. The use of the TIVR and MIVR is optional if the value contained in the upper five bits
is not needed by host software. The vector provided will be as indicated for the particular interrupt. IT2-
ITO will indicate that the service is for transmit in the case of the TIVR and modem for the MIVR. The value
of these bits will be important when servicing a receive service request; IT2-1T0 will indicate whether the
service request is for ‘good’ data or ‘exception’ data. The table on the following page shows the encoding
of IT2-1T0.

Ma rch 1 992] 83

LiE D EN 2136639 0004170 29k EECIR

e CL-CD1400
— UXART Serial/Parallel Controller
—= CIRRUS LOGIC

CIRRUS LOGIC INC

Receive/Transmit/Modem Interrupt Vector Reglsters (cont.)

IT2 Im ITO Encoding

0 0 0 Not used

0 0 1 Group 1: Modem Signal change service request

0 1 0 Group 2: Transmit data service request

0 1 1 Group 3: Received good data service request

1 0 0 Not used

1 0 1 Not used

1 1 o Not used

1 1 1 Group 3: Received exception data service request
Transmit Data Register (TDR) 63 Write Only

Transmit Character

The Transmit Data Register is the host port for writing to the transmit FIFO. When a channel is being ser-
viced for a transmit service request, the host may write up to twelve characters into this register. The
Transmit Data Register must only be written to during the context of a transmit service acknowledge. Writ-
ing data to this location at any other time will have unpredictable results.

Receive Data/Status Register {(RDSR) 62 Read Only

Received Character

Time-out| SC Det2 | SC Detl | SC Det0 | Break PE FE OE Status

The Receive Data and Status Register serves two purposes. During a receiver service acknowledge for
good data, the RDSR provides access to the receive FIFO. The number of characters available in the
FIFO is indicated by the Receive Data Count Register (RDCR), which is described in the following
section. Any number of characters, up to the value in the RDCR, may be read from the FIFO. All internal
FIFO pointers are updated by the on-chip processor.

During a receive exception service acknowledge, the RDSR provides both the received character and the
status that caused the exception condition. By definition, a receive exception service request will have
only one character available (multiple receive exceptions will produce muiltiple service requests). The first
read from the RDSR will provide the exception status, and the second read will provide the character. It
is not necessary to read either of these values. If the service acknowledge is terminated without reading
any data from the RDSR, the internal processor will update the FIFO pointers as if the status/character
were read. The same is true if only the status is read. Overrun errors are an exception to this (see next
page).

84 “ Ma rch 1 992

LLE D WR 2136639 0004171 122 EMCIR

CL-CD1400 b
=—
——== CIRRUS LOGIC
Recelve Data/Status Register (cont) CIRRUS LOGIC INC
Bit 7 Time-out— If the service request enable for time-out is set, this bit will indicate that no data has

been received within the receive time-out period set by the Receive Time-out Period Register
(RTPR) after the last character was removed.

Bits 6-4 Special Character Detect Encoding

SCDet2 SCDet1 SCDet0 Status

0 0 0 None Detected

0 0 1 Special Character 1 matched
0 1 0 Special Character 2 matched
0 1 1 Special Character 3 matched
1 0 0 Special Character 4 matched
1 0 1 Not used

1 1 0 End of Break Detected

1 1 1

Range Detect

NOTE: No special character matching is performed if either a parity (PE) or framing (FE) error occur unless
CMOE is enabled via CORS5 (Bit 5).

Bit 3 Break — Indicates that a break was detected.

Bit2 Parity Error— Indicates that a character was received with parity other than that programmed
inCOR 1.

Bit 1 Framing Error — Indicates that the character was received with a bad stop bit.

Bit 0 Overrun Error - This bit will be set if new data is received, but there is no space available in

the FIFO and Holding Register. In this case, the character data is lost, and the overrun flag
is applied to the last good data received before the overrun occurred. Thus, the character
read on the subsequent read from the RDSR is good data and shouid not be discarded.

Modem Interrupt Status Register (MISR) 41C Read Only

DSRch | CTSch Rich CDch 0 0 0 0

The MISR provides the status indication of the reason for a modem service request. If either or both of
the Modem Change Modes (zero-to-one or one-to-zero transition) are enabled, such a change will cause
a service request, and the signal that changed will be flagged in this register.

Bit 7 DSR change — An enabled transition on the Data Set Ready Signal will cause this bit to be set
and a modem service request posted.
Bit 6 CTS change — An enabled transition on the Clear To Send Signal will cause this bit to be set

and a modem service request posted.

March 1992 — 85

LLE D WH 2136639 0004172 0L EMCIR
e CL-CD1400

=== CIRRUS LOGIC T o

CIRRUS LOGIC INC

Modem Data/Status Register (cont.)

Bit 5 Rl change — An enabled transition on the Ring Indicator Signal will cause this bit to be set and
a modem service request posted.
Bit 4 CD change — An enabled transition on the Carrier Detect Signal will cause this bit to be set

and a modem service request posted.
Bits 3-0 These bits will always return zero.

End Of Service Request Register (EOSRR) 60 Write Only

X X X X X X X X

The EOSRR Register is a dummy location and is used to signal the end of a hardware service acknowl-
edge procedure, activated via one of the SVCACK* Pins. The data pattern written is a ‘don’t care’ value.
The action of writing this location causes the CL-CD1400 to pertorm its internal switch out of the service
acknowledge context. This register is only used during a hardware-activated service acknowledge and
must not be written during Poll Mode operation.

5.3 Channel Registers

Each of the four channels has a set of registers that control aspects of its operation. In the information
below, the register contents and offsets apply to any of the channels; the channel being accessed at any
given time is controlled by the CAR. This holds true even during a service acknowledge context; the CAR
points to the channel be serviced, whether it was loaded by the host (during Poll Mode operations) or by
the CL-CD1400 itself (during hardware-activated service acknowledge cycles).

In a few of the following cases, some of the registers show two formats, one for serial and one for parallel.
In these cases, the parallel register format applies only to Channel 0, and only when the GCR has been
programmed to place Channel 0 in Parallel Mode.

Local Interrupt Vector Register (LIVR) 18 Read/Write

X X X X X iT2 I™ IT0

The LIVR is used only during hardware-activated service acknowledge cycles. Host software loads any
information desired into the most significant five bits; the least significant three bits are not used. When
the CL-CD1400 is setting up a service request, it overlays the five significant bits of the LIVR into the
appropriate Interrupt Vector Register (RIVR, TIVR and MIVR) and sets the least significant three bits as
required for the service request vector type. (See the RIVR, TIVR and MIVR descriptions earlier in this

section).

L1E D WM 2136639 0004173 TT5 EECIR
CL-CD1400 ———

UXART Serial/Parallel Controller
—== CIRRUS LOGIC

B
Channel Command Register (CCR) 05 Read/Write

Res Chan]COR Chg| Send SC | Chan Ctl D3 D2 D1 Do

Format 1: Reset Channel Command

Res Chan] 0 0 0 0 0 FTF Type

Format 2: Channel Option Register Change Command

0 COR Chg 0 0 COR3 COR2 | CORt 0

Format 3: Send Special Character Command

0 0 Send SC 0 0 SSPC2 | SSPC1 | SSPCO

Format 4: Channel Control Command

0 0 0 Chan Ctl | XMT EN | XMT DIS | RCV EN | RCV DIS

The Channel Command Register is used to issue commands directly to the on-chip processor to control
or change some channel and, in one case, global functions of the channel selected by the CAR. The up-
per four bits indicate which of four command types is being issued, and the lower four bits are parameters
to those commands. At no time should more than one bit be set in the command type field. When the
command has been executed by the CL-CD1400, it will zero-out the CCR. Therefore, two consecutive
commands must wait for the CCR to be cleared after the first is issued, before the second is issued.

CIRRUS LOGIC INC
Format 1 — Reset Channel Command
When Bit 7 is set, one of three types of reset operations are initiated, based on the value of
the least significant two bits. Bit 0 sets the type of reset, either channel-only or full-chip, and
Bit 1 causes the FIFO of the selected channel to be flushed.

The two types of reset selected by Bit 0 cause very different results. When Bit 0 is a zero, the
reset command effects only the selected channel. Resetting a channel disables both the re-
ceiver and transmitter, and all FIFOs are fiushed (cleared). If Bit 0 is a one, a full-chip reset is
initiated. This reset will have the exact same results as a hardware reset caused by activation
of the RESET" Input Pin. All channels are disabled, all FIFOs are flushed and all Control Reg-
isters set to their power-on reset state. The completion of the reset operation can be detected
in the same manner as if a power-on or hardware reset had occurred; the GFRCR will change
from zero to the value of the firmware revision. It should be noted that, at the beginning of the
reset operation, the GFRCR will be cleared, but it may take some time for this to happen. Host
software should wait for the GFRCR to go to zero, and then wait for it to go non-zero to indicate
that the reset operation is complete.

Ma rch 1 992 g 87

bLE P EE 2136b39 0004174 931 EMCIR

e — CL-CD1400
— UXART Serial{Parallel Controller
——=== CIRRUS LOGIC

Channel Command Register (cont.)

The FTF (Flush Transmit FIFO) command, Bit 1, will cause the transmit FIFO of the selected
channel to be cleared. Any data in the FIFO will be lost.

The encoding of the bits for the reset channel command is:

Bit 7 Must be 1.
Bits 6-2 Mustbe 0.
Bits 1-0 Encoded as: CIRRUS LOGIC INC

FTF Type Function

0 0 Reset current channel

0 1 Full CL-CD1400 reset

1 0 Flush transmit FIFO of current channel
1 1 Not used

Format 2 — Channel Option Register Change Command
Bit 6, in combination with any of Bits 1 through 3, will inform the MPU that a change has oc-
curred in one of the Channel Option Registers, COR1, COR2 and/or COR3, respectively. It is
permissible to indicate that more than one COR has changed.

This command exists so that changes in the COR Registers will be noted by the MPU, allow-
ing it to update its internal working register, since it stores copies of the COR Registers in its
own shadow registers.

Bit7 Must be 0.
Bit6 Must be 1.
Bits 5-4 Must be 0.
Bits 3-1 Encoded as:

COR3 COR2 COR1 Encoding

0 0 0 Not used

0 0 1 COR1 changed

0 1 0 COR2 changed

0 1 1 COR1 and COR2 changed

1 0 0 COR3 changed

1 0 1 COR3 and COR1 changed

1 1 0 COR3 and COR2 changed

1 1 1 COR1, COR2, and CORS3 changed

—-—_————_——.———_—_—_—_—______———_____-———

Bit 0 Must be 0.

ELE D NN 2136639 0004175 878 EECIR

CL-CD1400 —_—

UXART Serial{Parallel Controller —_—

—= CIRRUS LOGIC

Format 3 — Send Speclal Character Command CIRRUS LOGIC INC

Bits 7-6
Bit 5

Bits 4-3
Bits 2-0

This command causes one of the pre-programmed characters in the Special Character Reg-
isters (SCHR1, SCHR2, SCHR3, SCHR4) to be sent preemptively. The character sent is se-
lected by the settings of Bits 2 through 0. ‘Preemptively’ means that the special character will
be sent immediately following the character in the Transmitter Holding Register; it will not wait
until the FIFO empties. Once the special character is sent, transmission of any characters re-
maining in the FIFO will proceed normally. The encoding of the bits is:

Must be 0.
Must be 1.
Must be 0.
Encoded as:

SSPC2 SSPC1 SSPCO Encoding

0 0 0 Not used
0 0 1 Send special character 1
0 1 0 Send speciai character 2
0 1 1 Send special character 3
1 0 0 Send special character 4
1 0 1 Not used
1 1 0 Not used
1 1 1 Not used

Format 4 — Channel Control Command

This command is used to activate or deactivate the transmitter and/or receiver of the selected
channel, based on the values in Bits 3 through 0. This command must be issued when a chan-
nel is being started for the first time. Once a channel is in use, it can be started and stopped
using this command, though it is more efficient to use of the appropriate SRER Bit in the In-
terrupt Enable Register. Multiple control commands can be issued at the same time; for ex-
ample, both the transmitter and receiver can be enabled by setting both the XMT EN and RCV
EN Bits at the same time.

Issuing an enable/disable command does not affect any register programming of the selected
channel. it does, however, affect the state of transmit flow-control. Issuing a disable or enable
command to a channel whose transmitter has been flow-controlied by a remote (see the TxI-
BE Bit in COR2) will restart transmission and clear the TxFloff Bit in the CCSR. This ability is
provided so that the host can override remote-generated flow control.

March 1992 e = 89

b1E P BN 213bL39 0004176 704 EMCIR

—— CL-CD1400
—— UXART Serial/Parallel Controller
——= CIRRUS LOGIC

Format 4 — Channel Control Command (cont,) CIRRUS LOGIC INC

Bits 7-5 Must be 0.
Bit 4 Must be 1.
Bits 3-0 Select channel enable/disable activity:

XMTEN XMTDIS RCVEN RCVDIS Encoding
0 0 0 1 Disable receiver

0 0 1 0 Enable receiver

0 1 0 0 Disable transmitter

1 0 0 0 Enable transmitter

0 1 0 0 Disable transmitter and receiver

0 1 1 0 Disable transmitter, enable receiver

1 0 0 1 Enable transmitter, disable receiver

1 0 1 0 Enable transmitter and receiver
Service Request Enable Register (SRER) 06 Read/Write

MdmCh 0 0 RxData 0 TxRdy | TxMpty NNDT

This register is used to enable the conditions that will cause the CL-CD1400 to post a service request via

the SVRR and the SVCREQ* Output Pins. Each of the individual enable bits controls one type of service

request.

Bit 7 MdmCh
This bit enables the Modem Change Service request. When this bit is a onhe, any selected Mo-
dem Signal change conditions (as programmed by the MCOR1 and MCOR2 Registers) will
cause a Modem Service Request to be posted.

Bits 6-5 Mustbe 0.

Bit 4 RxData
The RxData Enable Bit enables the posting of receive service requests when characters have
been received, and either the FIFO has reached the programmed threshold (as set by COR3}),
or the receive time-out period has expired.

Bit 3 Must be 0.

Bits 2-1 TxRdy and TxMpty
The transmitter can be enabled to post service requests on one of two conditions: either the
FIFO is empty, or the Transmitter Shift Register is empty.
The TxRdy Bit enables the service request on the condition that the FIFO is empty. In this
case, there are still two characters available for transmission before the transmitter underruns,
one in the Shift Register and one in the Holding Register.

go “ March 1992

GELE D WM 213Lkb39 0004177 LYQ BCIR
CL-CD1400 —
UXART Serial{Parallel Controller —)

Service Request Enable Register (cont.) CIRRUS LOGIC INC

The TxMpty Bit enables the service request on the condition that the Shift Register is empty.
The transmitter will underrun in this situation due to the latency that will be experienced be-
tween the time the service request is posted, and the time that the host is able to load the
FIFO. Under normal operating conditions, this bit will be set and the TxRdy reset, when there
is no more data to be transmitted, and the host wants to know when the last character has
been sent before disabling the transmitter.

Bit0 NNDT
The No New Data Time-out Enable Bit activates the optional exception service request when
all data has been removed from the FIFO, and no new data has arrived after a pre-pro-
grammed delay period set by the value in the Receive Time-out Period Register (RTPR). The
LIVR (or RIVR) will indicate a receive exception in the IT2-ITO Vector Bits. There will be no
data associated with this exception service request. A status bit in the RDSR (Bit 7) will indi-
cate that the service request is for an NNDT condition.

Channel Option Registers
The following five Channel Option Registers are used to control many aspects of CL-CD1400 channel

operation and enable special character processing features. COR4 and CORS are used specifically for
enabling the UNIX line discipline character-handling functions.

Channet Option Register 1 (CORT1) 08 Read/Write

Parity | ParM1 ParM0 | Ignore Stop1 Stop0 Cht1 ChLO

Bit 7 Parity Type
This bit selects the type of parity that is generated and checked if parity is enabled. A ‘1’ se-
lects odd parity and a ‘0" selects even parity.

Bits -5 Parity Mode 1 and Parity Mode 0

The Parity Mode Bits define the parity operation for both the transmitter and receiver. The en-
coding is:

ParMt ParMo0 Function

0 0 No parity

0 1 Force parity (odd parity = force 1, even parity = force 0)
1 0 Normal parity

1 1 Not used

March 1992 e 91

bLE D WE 213bkL39 0004174 587 MECIR
CL-CD1400

UXART Serial/Parallel Controller

!

—== CIRRUS LOGIC

Channel Option Reglster 1 (cont.)

Bit 4 lgnore Parity
If this bit is set, the CL-CD1400 will ignore the parity on all incoming characters, thus no re-
ceive exception service requests will be generated if the parity is in error. If the bit is cleared,
parity is evaluated.

CIRRUS LosIc 1n¢

Bits 3-2 Stop Bit Length
These two bits set the length, in bit times, of the stop bit for each character.

Stop1 Stop0 Number of Stop Bits

0 0 1 Stop Bit

0 1 1.5 Stop Bits
1 0 2 Stop Bits

1 1 Not used

Bits 1-0 Character Length
ChL1 and ChLO select the length of each character, in number of bits. The CL-D1400 receives
and transmits the same length character, on a given channel, in the range of five to eight bits.

Chl1 ChLO Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits _
Channet Option Register 2 (COR2) 09 Read/Write

IXM TxIBE ETC LLM RLM RtsAO | CtsAE DsrAE

Bit 7 Implied X-ON Mode
The IXM Bit enables the automatic resumption of character transmission upon the reception
of any character. This bit only has meaning if the transmitter is in Automatic In-band Flow Con-
trol Mode as programmed by the TxIBE Control Bit. If this bit is reset and TxIBE is enabled,
the reception of any character will restart character fransmission.

bLE D WR 213bk39 0004179 413 EMCIR

CL-CD1400 ——

UXART Serial{Parallel Controller —)

- ====CIRRUS LOGIC
Channe! Option Reglster 2 (cont) CIRRUS LOGIC INC

Bit 6 Enable Automatic In-band Transmit Flow Control

This bit enables the CL-CD1400 capability to examine error-free incoming characters looking
for an X-OFF character (as programmed by SCHR2), if the special character match function
is enabled (COR3, Bit 4). If a match occurs, transmission will cease after the current charac-
ters in the Transmitter Shift Register and Transmitter Holding Register have been sent. Trans-
mission will resume when an X-ON character (or any character, depending on the value of the
IXM Bit) is received or if a channel-enable command is issued via the CCR.

Bit 5 Embedded Transmit Command Enabie
If the ETC Bit is set, the CL-CD1400 will examine characters in the transmit FIFO. If an em-
bedded command is detected, it will be processed. See the embedded-transmit command de-
scription in Section 5 for details of valid commands.

Bit 4 Local Loopback Mode

The LLM Bit enables local loopback of the channel. This mode is generally used during system
diagnostics. If this bit is set, the transmitter is internally ‘looped’ back to the receiver. The TxD
Pin is set to the marking state. Data sent will be immediately received by the receiver. No data
will appear on the TxD Pin, and data on the RxD Pin will be ignored.

Bit3 Remote Loopback Mode
Remote loopback allows a remote system to test its serial data stream. If this function is en-
abled, the CL-CD1400 internally connects its receiver to the transmitter. Any data received is
immediately echoed back. This mode is enabled by setting the RLM Bit and disabled by clear-

. ing the bit.

Bit2 Request To Send Automatic Output
The CL-CD1400 can automatically assert RTS when a channel is enabled (via transmit/re-
ceive enable command in the CCR) and there is data in the FIFO. When the channel is dis-
abled or there is no more data to send (FIFO, Holding Register and Shift Register), RTS* will
be negated. Setting RtsAO enables the function.

Bit 1 Clear To Send Automatic Enable

This bit enables the CTS* Input to control transmitter operation. If CtsAE is set, and CTS" is
not asserted, character transmission will not proceed.

Bit 0 Data Set Ready Automatic Enable

DsrAE altows the DSR* Input to control receiver operation. Setting DsrAE enables the func-
tion. When enabled, if DSR* is deasserted, the CL-CD1400 discards all received characters.

Channel Option Register 3 (COR3) 0A Read/Write

SCDRNG] SCD34 FCT SCD12 { RxTh3 | RxTh2 | RxThi RxTho | Serial

0 0 0 RxTh4 RxTh3 { RxTh2 | RxThl RxTho | Parallel

March 1992 e 93

L1E D WM 213kb39 0004180 135 EECIR
CL-CD1400

UXART Serial/Parallel Controll
===CIRRUS LOGIC eril/Parallel Conroller

Channel Option Register 3 (cont.)

CORB3 for Channel 0 has two formats, one for serial and one for parallel. Channels 3-1 have only the serial
format. Both formats are described as follows:

CIRRUS LOGIC INC

Channel Option Register 3 — Serial

Bit 7 Special Character Detect Range
This bit enables range checking on received characters. If the character falls between a lower
range set by the value stored in the SCRL Register and an upper range set by the value stored
in the SCRH Register, inclusive, a receive exception service request will be posted with the
status indicating a range detect (RDSR Bits SCDet2-SCDet0 = 11 1).

Bit 6 Enable Special Character Detect on SCHR4-SCHR3
This bit controls whether or not the CL-CD1400 performs comparison on received characters
against the values stored in Registers SCHR4 and SCHR3. The comparison is enabled by a
‘1" in this location.

Bit S Flow Control Transparency
The FCT Bit enables and disables transparent response to flow control characters received
by the CL-CD1400. If FCT is set, received XON and XOFF characters will not be placed in the
FIFO for the host. If in-band flow control is enabled, the characters will be acted upon. If FCT
Is not set, flow control characters will be acted upon, placed in the receive FIFO, and the host
will be notified via a receive exception service request.

Bit 4 Enable Special Character Detect on SCHR2-SCHR1
This bit controls whether or not the CL-CD1400 compares received characters with the values
stored in Registers SCHR2 and SCHR1. A ‘1’ enables compare. This bit must be set to enable
automatic in-band flow control.

Bits 3-0 Receive FIFO Threshold

RxTh3 RxTh2 RxTh1 RxTh0 Receiver FIFO Threshold
0 0 0 0 Not used
0 0 0 1 1 Character
0 0 1 0 2 Characters

.

1 0 1 1 11 Characters
1 1 0 0 12 Characters
1 1 0 1 Not used
1 1 1 0 Not used
1 1 1 1 Not used

blE D W 213b6L39 0004181 071 EECIR
CL-CD1400 e
UXART Serial{Parallel Controller _—
—= CIRRUS LOGIC

Channel Option Register 3 — Parallel CIRRUS LOGIC INC

Bits 7-5 Not used
Bits 4-0 Receive FIFO Threshold

RxTh4 RxTh3 RxTh2 RxTh1 RxThO Receiver FIFO Threshold

0 0 0 0 0 Not used
0 0 0 0 1 1 Character
0 0 0 1 0 2 Characters
1 1 1 0 1 29 Characters
1 1 1 1 0 30 Characters
1 1 1 1 1 Not u_s_,_ed
Channel Option Register 4 {(COR4) 1E Read/Wrlite

IGNCR | ICRNL | INLCR | IGNBRK | -BRKINT{ PEH[2] [PEH[1] | PEH[O0]

Bits 7-5 Carriage Return (CR) and New Line (NL} Processing

These three bits define the manner in which the CL-CD1400 will process received CR and NL
characters (x’'0D and x'0A). The table below shows the actions performed:

IGNCR ICRNL INLCR Actlion
. 0 0 0 No action
0 0 1 Received NL changed to CR
0 1 0 Received CR changed to NL
0 1 1 Received CR changed to NL; NL changed to CR
1 0 0 Received CR discarded
1 0 1 Received CR discarded; NL changed to CR
1 1 0 Received CR discarded
1 1 1 Received CR discarded; NL changed to CR

March 1992 -] a5

LLE D BN 213kL639 0004182 TO8 EMCIR

— CL-CD1400
UXART Serial{Parallel Controller

Channel Optlon Register 4 (cont.) CIRRUS LOGIC INC

Bits 4-3 Break Processing
The CL-CD1400 can handle received break characters in three ways:

IGNBRK -BRKINT Break Action

0 0 Received break generates an exception service request. End-of-Break also
generates an exception service request if EBD is enabled in CORS5.

0 1 Received break treated as a good NULL character.
1 0 Not used.
1 1 Recsived break discarded.

Bits 2-0 Parity (P), Framing (F) and Overrun (O) Error Special Processing
As with break characters, if enabled, the CL-CD1400 can treat errored characters in several
different ways:

PEH[2] PEH[1] PEH[0] Action

0 0 0 Received P/F/O errored characters treated as exception data.

0 0 1 Received P/F/O errored characters treated as good data.

0] 1 0 Received P/F/O errored characters discarded.

o 1 1 Received P/F/O errored characters replaced with good NULL
characters.

1 0 0 Received P/F/O errored characters are replaced with the two
character sequence x’FF-NULL-character. Good x'FF charac-
ters are replaced with the two character sequence x’FF-x'FF.

1 0 1 Not used.

1 1 0 Not used.

1 1 1 Not used.

Channel Option Register 5 (CORS) 1F Read/Write
ISTRIP LNE CMOE 0 0 EBD ONLCR | OCRNL
Bit 7 ISTRIP

The ISTRIP Bit enables stripping of the most significant bit (Bit 7) on all received characters.
A ‘1" in this position enables the function.

Bit6 LNext Enable
When this bit is set, characters following an LNext Character (as programmed by the LNC
Register) will not be processed as a special character.

96 e March 1992

GIE D WM 213bb39 0004143 94y EECIR

CL-CD1400 ——
UXART Serial{Parallel Controller —
—== CIRRIJS LOGIC
Channel Option Reglster 5 (cont.) CIRRUS LOGIC INC
Bit S Character Matching on Error

If this bit is set, character matching will occur on both good and errored characters. f the bit
is cleared, matching will occur on good characters only.

Bits 4-3 Mustbe 0.

Bit 2 End of Break Detect
If this bit is set, the CL-CD1400 will, after detecting and reporting a line-break condition, search
for the end of a break and report it via an exception service request with the End of Break sta-
tus in the RDSR (see the RDSR description).

Bits 1-0 Carriage Return (CR) and New Line (NL) Processing — Transmit
These two bits define actions, if any, taken on characters in the transmit data stream.

ONLCR OCRNL Actlon

0 0 No action
0 1 Transmit CR changed to NL
1 0 Transmit NL changed to CRNL
1 1 Transmit CR changed to NL, NL changed to CRNL _
Channel Control Status Register {(CCSR) 0B Read Only
RxEN RxFloff | RxFlon 0 TxEN TXFloff | TxFlon 0 Serial
RxEN 0 0 0 TxEN 0 0 0 Parallel

The CCSR provides current status of the selected channel. The CCSR for Channel 0 has two formats,
one for serial operation and another for parallel operation.

Channel Control Status Register — Serial

Bit 7 Receiver Enabled
The RXEN Bit is set when the receiver is enabled and cleared when it is disabled.

Bit 6 Receiver Flow Off
This bit indicates that the receiver has requested the remote to stop transmitting through the
use of a send XOFF character via a send special character two command in the CCR. The bit

will be cleared when a Send Special Character 1 (XON) command is issued; the channel is
either enabled or disabled or the channel is reset.

Ma rch 1 992 S 97

B1E D HE 213bL39 0004184 880 BECIR

. CL-CD1400
e— UXART Serial/Parallel Controller
==="CIRRUS LOGIC oller
Channel Control Status Register - Serial (cont.) CIRRUS LOGIC INC
Bit5 Receiver Flow On

When a send special character one (XON) command is issued via the CCR, this bit will be set.
it will be cleared when one of three events has occurred: the first non-flow control character is
received, the receiver is either enabled or disabied or the channel is reset.

Bit 4 Not used, will return zero when read.

Bit 3 Transmitter Enabled
This bit is set when the transmitter is enabled and cleared when it is disabled.

Bit 2 Transmitter Flow Off
This bit indicates that the CL-CD1400 has been requested to stop transmission by the remote
(received in-band flow control character XOFF). The bit is cleared when the CL-CD1400 re-
quested to restart transmission (receives an XON character), the channel is either enabled or
disabled or the channel is reset.

Bit 1 Transmitter Flow On
TxFlon is set when the CL-CD1400 has been requested to restart transmission (received an
XON character). It is reset when transmission actually begins, when the channel is either en-
abled or disabled or when the channel is reset.

Bit0 Not used, will return zero when read.

Channel Control Status Register - Parallel

Bit7 Receiver Enabled
The RxEN Bit is set when the receiver is enabled and cleared when it is disabled.

Bits 6-4 Not used, will return zero when read.

Bit 3 Transmitter Enabled
This bit is set when the transmitter is enabled and cleared when it is disabled.
Bits 2-0 Not used, will return zero when read. .
Recelved Data Count Register (RDCR) OE Read Only
0 0 0] 0 CT3 CT2 CTi CTO Serial
0 0 0 CT4 CT3 CT2 CcT1 CTO Parallel

The RDCR indicates the number of good characters currently in the received data FIFO. Host software
can use this value as a loop counter when taking characters out of the FIFO. The value in this register is
only valid during the context of a service request acknowledge. At other times, it may or may not provide
a true indication of the number of characters in the FIFO.

The register has two formats for Channel 0, one for serial and one for parallel. Channels 1-3 have only
the serial format.

LLE D BB 2136639 0004185 717 EMCIR
CL-CD1400 e

UXART Serial{Parallel Controller
——== CIRRUS LOGIC

Recelved Data Count Register — Serial CIRRUS LOGIC INC

Bits 7-4 Always zero
Bits 3-0 Character count CT3-CTO

CT3 CT2 CT1 CT0 Number of characters In FIFO
0 0 0 Not used
0 0 1 1 Character
0 0 0 2 Characters
1 0 1 1 11 Characters
1 1 0 0 12 Characters
1 1 0 1 Not used
1 1 1 0 Not used
1 1 1 1 Not used
Received Data Count Reglster — Parallel
Bits 7-5 Always 0
Bits 4-0 Character count CT4-CTO
CT4 CT3 CT2 CT CT0 Number of Characters in FIFO
0 0 0 0 Not used
0 0 0 1 1 Character
0 0 0 0 2 Characters
1 1 1 0 1 29 Characters
1 1 1 1 0 30 Characters
1 1 1 1 1 Not used

Special Character Registers

The four Special Character Registers, SCHR4-SCHR1, hold the character patterns that are used for var-
ious character matching and flow control functions. Each 8-bit character is right-justified, that is, compar-
ison takes place from right to left, and all bits are compared. Any unused bits must be zero. SCHR1 and
SCHR2 serve the additional function of defining the XON and XOFF characters, respectively, used for in-
band flow control.

Murch 1992 S 99

LLE D ®H 2136b39 000418b bS53 EMCIR
— CL-CD1400

= UXART Serial{Parallel Controller
—=== CIRRUS LOGIC —
Special Character Register 1 (SCHR1) 1A Read/Write

Special Character 1

SCHR1 defines the XON Character

Speclal Character Reglster 2 (SCHR2) 1B Read/Write

Special Character 2

SCHR2 defines the XOFF Character

Special Character Register 3 (SCHR3) 1C Read/Write

Special Character 3

Special Character Register 4 (SCHR4) 1D Read/Write

Special Character 4

CIRRUS Lo
Recelved Character Range Detection GIC INC

If enabled (via Bit 7 of COR3), the CL-CD1400 will check received characters to see if they fall within a
range of values. Two registers set the range: SCRL and SCRH. Range checking occurs inclusive of the
values programmed into these registers. If a received character is determined to be within the range, a
special character detect exception service request will be posted. Bits 6-4 of the RDSR Register will in-
dicate a range detect by being set to 111. It should be noted that this range checking is performed in ad-
dition to normal special character detection on SCHR4-SCHR1.

Speclal Character Range Low (SCRL) 22 Read/Write

Character Range Low

SCRL set the lower inclusive value for range detection.

Special Character Range High (SCRH) 23 Read/Write

Character Range High

SCRH sets the upper inclusive value for range detection.

1 00 “ March 1992

BLE D WM 2133LL39 0004187 59T EECIR

CL-CD14Q0 ———
UXART Serial/Parallel Controller §CIRRU S LOGIC
LNext Character (LNC) 24 Read/Write

LNext Character |

CIRRUS LOGIC INC

This register defines the LNext Character. If the LNext function is enabled (Bit 6 of CORS5), the CL-
CD1400 will examine received characters and compare them against this value. If a match occurs, this
character and the following will be placed in the FIFO without any special processing. In effect, the LNext
function causes the CL-CD1400 to ignore characters with special meaning, such as flow control charac-
ters. There are two exceptions. If the character following the LNext Character is either a break or an er-
rored character, LNext will be placed in the FIFO, and the following character will be treated as it normally
wouid for these error conditions.

Modem Change Option Registers

The CL-CD1400 has two registers that control its response to changes on the Modem Input Pins. It can
be programmed to respond to the low-to-high transition, the high-to-low transition or both. In addition, the
threshold at which the DTR Signal will be negated can be set by the DTRth3-DTRthO Bits in MCOR1.

Modem Change Option Register 1 (MCOR1) 15 Read/Write

DSRzd | CTSzd Rizd CDzd | DTRth3 | DTRth2 | DTRth1 | DTRthO | Serial

PBUSYzd|PSLCTzd| PPEzd |PERRORzd 0 0 0 0 Parallel

Channel 0 has two formats for MCOR1: one applies when the channel is in Serial Mode and the other
applies in Parallel Mode, as set by the GCR. Channels 3-1 have only the Serial Mode format.

Modem Change Option Register 1 ~ Serlal

Bit 7 DSRzd
Bit 6 CTSzd
Bit5 Rizd
Bit 4 CDzd

Each of these bits controls its corresponding input pin. If the bit is set, the function is enabled
and transitions from one-to-zero will generate an SVCREQM* service request.
Bits 3-0 DTRth3-DTRthO

These bits form a binary value that determines when the DTR Output will be negated, based
on the number of characters in the receive FIFO. When the FIFO holds more characters than
this value, DTR will be negated, informing the remote that it should stop transmission. This
value must be set to a value numerically larger than the value set for the receive FIFO thresh-
old in COR3.

March 1992 — 1 01

blE D NE 2136639 0004188 42k EMCIR

— CL-CD1400

—_ UXART Serial{Parallel Controller
——= CIRRUS LOGIC

Modem Change Option Register 1 - Serial {cont.)
DTRth3 DTRth2 DTRtht DTRtho Number of characters in FIFO

CIRRUS LOGIC INC

0 0 0 0 Automatic DTR Mode disabled
0 0 0 1 1 Character

0 0 1 0 2 Characters

1 0 1 1 11 Characters

1 1 0 0 12 Characters

1 1 0 1 Not used

1 1 1 0 Not used

1 1 1 1 Not used

Modem Change Option Register 1 — Parallel

Bit 7 PBUSYzd when BUSY in an input (Parallel Transmit Mode).
Bit6 PSLCTzd

Bit5 PPEzd

Bit4 PERRORzd

Effectively, these four bits are identical to the equivalent bits in the serial format above. The
only difference is in the signal names. These inputs are renamed for convenience in working
with the register when Channel 0 is programmed to be a parallel port. Setting any of these bits
will enable the detection of a one-to-zero transition on the corresponding input.

Bits 3-0 Not used; must be zero.

Modem Change Option Register 2 (MCOR2) 16 Read/Write
DSRod | CTSod Rlod CDod 0 0 0 0 Serial
PBUSYod|PSLCTod| PPEod |PERRORod 0 0 0 0 Paraliel

Channel 0 has two formats for MCOR1: one applies when the channel is in Serial Mode and the other
applies in Parallel Mode, as set by the GCR. Channels 3-1 have only the Serial Mode format.

LIE D EE 2136639 0004189 3b2 EECIR
CL-CD1400 e—

UXART Serial/Parallel Controller
(RART SerillParallel © ==="CIRRUS LOGIC

Modem Change Option Register 2 — Setial
Bit7 DSRod

CIRRUS LOGIC INC

Bit6 CTSod
Bit5 Rlod
Bit 4 CDod

Each of these bits controls its corresponding input pin. If the bit is set, the function is enabled
and transitions from zero-to-one will generate an SVCREQM* service request.

Bits 3-0 These bits are not used and must be programmed to zero.

Modem Change Option Register 2 - Parallel

Bit 7 PBUSYod when BUSY in an input (Parallel Transmit Mode).
Bit 6 PSLCTod

Bit 5 PPEod

Bit 4 PERRORod

Effectively, these four bits are identical to the equivalent bits in the serial format. The only dif-
ference is in the signal names. As with the parallel format of MCOR1, these inputs are re-
named for convenience in working with the register when Channel 0 is programmed to be a
parallel port. Setting any of these bits will enable the detection of a zero-to-one transition on
the corresponding input.

Bits 3-0 Not used; must be programmed to zero.

Receive Time-out Period Reglister (RTPR) 21 Read/Write

Binary Count Value

The RTPR determines the time period that will be used for the No New Data Time-out (NNDT) and the
‘no new data’ time-out. The Time-out Counter is loaded from this register whenever a new character is
placed in, or the last character is removed from, the receive FIFO. The counter is decremented on each
‘tick’ of the prescaler counter (PPR). A service request will be generated if the count reaches zero; either
an NNDT if the FIFO is empty and the NNDT is enabled, or a good data service request if there is data
in the FIFO, but the time-out period has expired before the FIFO reaches the programmed threshold.

Modem Signal Value Register 1 (MSVR1) 6C Read/Write

DSR CTS RI CD |PSTROBE" 0 0 RTS

March 1992 e] 103

LE1E D WM 2136639 0004190 084 EMCIR

——— CL-CD1400
TCIRRUS LOGIC UXART ?iitiI/PamIlel Controlf:r
Modem Signal Value Register 2 (MSVR2) 6D Read/Write

DSR CTS Rl CD |PSTROBE* 0 DTR 0

The MSVR1 and MSVR2 Registers provide information regarding the state of the Modem input Pins
(DSR*, CTS*, RI* and CD*), the current state of Printer Strobe Output Pin (PSTROBE") and allows control
of the Modem Output Pins (DTR* and RTS*). The PSTROBE* Bit is only valid for Channel 0: on all other
channels it is not used. Writing to any of the input bits has no effect. With the exception of the least sig-
nificant two bits, the registers reflect identical data. The two are provided as a convenience for control of
the Modem Output Pins. Host software need not keep a copy of the current state of either when controlling
the other. The actual signal level on the output is the inverse of the value placed in this register: setting
the DTR Bit, for example, will cause the DTR Qutput to become active-low. The state of the Modem Input
Pins are also the inverse of the value in the corresponding bit in the registers.

Printer Signat Value Register (PSVR) 6F Read/Write

PBUSY*| PSLCT* | PPE* [PERROR*| PACK* |PAUTOFD* PINIT* { PSLIN*

This register groups all of the Modem Signals for Channel 0 into one register. The PSVR is only valid for
Channel 0. The most significant five bits reflect the current signal value on the Input Pins PBUSY*,
PSLCT*, PPE*, PERROR and PACK"*. The values in these bits reflect the inverse of the actual values on
the input pins. A logic ‘0’ on the input pin will be shown as a *1' in the corresponding bits; a logic *1’ on the
pin will be a ‘0" in the register. The least significant three bits can be used by the host software to control
the Modem Output Pins PAUTOFD, PINIT and PSLIN. These bits directly control the outputs, and the
values are inverted.

Bit7 Printer Busy — the current state of the Printer Busy Input (Parallel Transmit Mode).

Bit6 Printer Select — the current state of the Printer Select Input.

Bit5 Printer Paper Empty — the current state of the Printer Paper Empty Input.

Bit 4 Printer Error ~ the current state of the Printer Error Input.

Bit 3 Printer Acknowledge — the current state of the Printer Acknowledge Input.

Bit 2 Printer Autofeed — the current state of the Printer Autofeed Output.

Bit 1 Printer Initialize — the current state of the Printer Initialize Output.

Bit 0 Printer Selection — the current state of the Printer Selection Output.

Receive Baud Rate Period Register (RBPR) 78 Read/Write
Binary Divisor Value

This register holds the baud rate divisor for the receiver. It is used in conjunction with the Receive Clock
Option Register (RCOR) that provides the clock that will be divided by this value. The time period pro-
duced must equal the value for one bit time of the receive data.

104 A =——— CIRRUS LOGIC INC ——— MM arch 1992

ELE D EE 2136639 0004191 Ti0 EMCIR
CL-CD1400 —_—

UXART Serial/Parallel Controller EC[RRUS LOGIC

S

Recelve Baud Rate Period Register (cont.)

When Channel Zero is programmed in the Parallel Mode, the RCOR/RBPR Register pair should be pro-
grammed to produce an effective baud rate whose bit time is equal to twice the expected PSTROBE*
pulse width (see Section 2 for detailed parallel port programming parameters).

Recelve Clock Option Register (RCOR) 7C Read/Write

0 0 0 0 0 ClkSel2 | CikSell | ClkSel0

The RCOR selects the clock source which will drive the Baud Rate Period Register (RBPR). The value
in ClkSel2-ClkSel0 selects one of five possible clocks generated from the master clock (CLK).

CIRRUS LOGIC INC
CikSel2 ClkSel1 ClkSel0 Clock Selected

0 0 0 clk0 (CLK divided by 8)
0 0 1 clk1 (CLK divided by 32)
0 1 0 clk2 (CLK divided by 128)
0 1 1 clk3 (CLK divided by 512)
1 0 0 clk4 (CLK divided by 2048)
1 0 1 Not used
1 1 0 Not used
1 1 1 Not used
Transmit Baud Rate Period Register (TBPR) 72 Read/Write

Binary Divisor Value

This register holds the baud rate divisor for the transmitter. It is used in conjunction with the Transmit
Clock Option Register (TCOR), which provides the clock that will be divided by this value. The time period
produced must equal the value for one bit time of the transmit data.

When Channel 0 is programmed to be a parallel port, the TBPR Register determines the pulse width of
the PSTROBE* Output; the value in TCOR is not used. The least significant five (5) bits of the register set
the binary value for a counter that is decremented by the system clock (CLK/2). The range of acceptable
values is 1 through 32 inclusive, which will produce pulses in the range of 100 ns to 3.2 ps for a 20-MHz
clock. For example, If the TBPR is loaded with a value of 10 (hex A) and the system clock is 20 MHz, the
resulting PSTROBE" pulse width will be 1.0 s (100 ns times 10).

March 1992 e 1 0 5

GLE D N 2313kL39 0004192 957 EECIR
CL-CD1400
UXART Serial/Parallel Controller

====CIRRUS LOGIC

Transmit Baud Rate Perlod Register (cont.,)

R

CIRRUS LOGIC INC

NOTE: During parallel operation, if the TBPR value is changed to produce a different PSTROBE* width, a channel
re-enable must be performed for the change to take affect. This is due to the manner in which the value is
used internally by the MPU. It stores a copy of the TBPR in an internal register allowing it faster access
during foreground routines when a new PSTROBE"* is to be generated. A channel re-enable is performed
by writing a hex 18 (transmit) or hex 12 (receive) command to the Channel Command Register (CCR).

Transmit Clock Option Register (TCOR) 76 Read/Write

0 0 0 0 0 ClkSel2 | ClkSel1 | CikSel0

The TCOR selects the clock source that will drive the Baud Rate Period Register (TBPR). The value in
CikSel2-ClkSel0 selects one of five possible clocks generated from the master clock (CLK).

ClkSel2 CikSel1 ClkSel0 Clock Selected

0 0 0 clk0 (CLK divided by 8)

0 0 1 clk1 (CLK divided by 32)

0 1 0 clk2 (CLK divided by 128)
0 1 1 clk3 (CLK divided by 512)
1 0 0 clk4 (CLK divided by 2048)
1 0 1 Not used

1 1 0 Not used

1 1 1 Not used

__*1—*“*——*———_—_

NOTE: The TCOR has no effect when Channel 0 is programmed as a parallel port.

B 2136639 0004193 3493 EECIR

CL-CD1400 ——

UXART Serial{Parallel Controller EC]RRUS LOGIC

6. ELECTRICAL SPECIFICATIONS

6.1 Absolute Maximum Ratings - ;crys LOGIC INC LLE D
SUPPlY VOIAGE (V) rrrereremrsisnsiesirssiisest s st snensnans +7.0 Volts

Input voltages, with respect 1o groundccooveeniiinnnnenenecnen -0.5 Volts to Vg +0.5 Volts
Operating temperature (Ta) ..coeeimrmsrmcacmnnseneenetarsiiissssssnensnennss 0°Cto70°C

Storage tEMPEraturBoovueeieernmrissesnsrsssesrs s sene e sisssnss s ssssssnsssnsaes -65° C to 150° C

POWEr dISSIPALION ..cocvevreeniiiinrriiinr ettt s 0.25 Watt

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the de-
vice. This is a siress rating only, and functional operation of the device at these or any conditions above
those indicated in the recommended operating conditions is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions

SUPPlY VORAGE (V) - vivveeeremmitissenssinnsssc st asennens 5V+5%
Operating free air ambient temMPerature ... o 0°C<Tp<70°C
SYSIEM CIOCK.....cermrreiriiirsies s s 25 MHz

6.3 DC Electrical Characteristics
(Voo =5V 5%, Tp=0°C 1o 70° C)

Symbol Parameter MIN MAX Units Test Conditions

ViL Input Low Voltage -0.5 0.8 Vv
ViH input High Voltage 20 Veeo v (See Note 2)
VoL Ouiput Low Voltage 0.4 Vv loL = 2.4 mA (see Note 1)
VoH Output High Voltage 2.4 \Y loq = -400 pA
I Input Leakage Current -10 10 pA 0 <Vy<Vee
Ty Data Bus 3-State

Leakage current -10 10 pA 0 <Vout < Ve
loc Open-Drain Output

Leakage Current -10 10 HA 0 <Vout < Ve
lee Power Supply Current 50 mA CLK =25 MHz
Cin Input Capacitance 10 pF
Cour Output Capacitance 10 pF

NOTES: 1) Vg for open-drain signals is 0.5V @ 16 mA sinking.
2) Vi is 2.7 V minimum on RESET* and CLK.

Mafch 1992 e e 107

6G}E D WM 2136639 0004194 72T EMMCIR

====CIRRUS LOGIC

3) While the CL-CD1400 is a highly dependable device, there are a few guidelines that will help

to ensure that the maximum possible level of overall system reliability is achieved. First, the
PC board should be designed to provide maximum isolation of noise. A four-layer board is
preferable, but a two-layer board will work if proper power and ground distribution is imple-
mented. In either case, decoupling capacitors mounted close to the CL-CD1400 are strongly
recommended. Noise typically occurs when either the CL-CD1400 data bus drivers come out
of tristate to drive the bus during a read, or when an external bus buffer turns on during a write
cycle. This noise, a rapid rate-of-change of supply current, causes ground bounce in the pow-
er distribution traces. This ground bounce, a rise in the voltage of the ground pins, effectively
raises the input logic thresholds of all devices in the vicinity, resulting in the possibility of a 1
being interpreted as a 0.
To reduce the possibility of ground bounce affecting the operation of the CL-CD1400, we have
specified the input-high voltage (V) of the CLOCK and RESET Pins at 2.7 volts, instead of
the TTL-standard 2.0 volts. This eliminates any sensitivity to ground bounce, even in very
noisy systems.

Although 2.7 volts is higher than the industry-standard 2.4-volt output (Vo) specified for TTL,
there are several simple ways to meet this specification. One choice is to use any of the avail-
able advanced-CMOS logic families (FACT, ACL, etc.). These CMOS output buffers will pull
up close to Vg when not heavily loaded. In addition, AS and ALS TTL may be used If the
output of the TTL device is only driving one or two CMOS loads. As noted in the Texas Instru-
ments® ALS/AS Logic Data Book (1986), pages 4-18 and 4-19, the Vo output of these fam-
ilies exceeds 3.0 volts at low-current loading. Other manutacturers publish similar data. Cirrus
Logic recommends the use of one of these two options for the CLK input, to ensure fast, clean
edges. Note that the RESET Pin may, if desired, be pulled up passively with a 1K ohm (or
less) resistor.

CL-CD1400
UXART Serial{Parallel Controller

CIRRUS Lg6rc N

CL-CD1400

M 213bk39 0004195 bbbt EMCIR

—.

UXART Serial/Parallel Controller ———

6.4 AC Electrical Characteristics

6.4.1 Index of Timing Information

Figure Title Page Number
Asynchronous Timing 110
6-1 RESEE THMING ..oveerrerericreereeeccnnissstebient sttt s srsnna sreens 111
6-2 Clock Timing
6-3 Asynchronous Read Cycle TIMING ..o e 112
64 Asynchronous Write Cycle TimMINGcoeeevrvvniiiniieiissiescenss 113
6-5 Asynchronous Service Acknowledge Cycle Timingcevneneinenns 114
Synchronous Timing 115
6-6 Synchronous Read Cycle TIMINGc...cvvreecnsiiniiiniininsnnienseans 116
6-7 Synchronous Write Cycle Timing
6-8 Synchronous Service Acknowledge Cycle TIming...........cocoeenineeneen 118
Paraliel Port Timing 119
6-9 Paralle! Port Transmit TIMINGoooveeviimrniiinie e ccsnesssieene 121
6-10 Parallel Port Receive TIMING ... sessssssesnesans 121
CIRRUS LOGIC INC bLE D

March 1992

#

—== CIRRUS LOGIC

109

blE D MN 213bL39 000419k 5T2 WECIR

e CL-CD1400
——— UXART Serial/Parallel Controller
——=> CIRRUS LOGIC = = = — ki

6.4.2 Asynchronous Timing

Refer to the Figures 6—1 through 6-5 on the following pages for the reference numbers in the following
table. The timing parameters shown on these pages apply to Revision E or later devices.

(Vog =5V £5%, Ta = 0° C to 70° C)

Ref. # Fig. Parameter MIN MAX Unit
t4 6-1 RESET"* Low pulse width 10 Tewk
t2 63 Address setup time to CS* or DS* -20 ns
t3 6-3 R/W* setup time to CS* or DS* -10 ns
4 6-38 Address hold time after CS* 0 ns
ts 6-3 R/W* hold time after CS* 0 ns
tg 6~3 DTACK" low to read data valid 10 ns
t; 6-3 DTACK* low from CS* or DS2 3Tok 5Tek+40ns
tg 6-3 Data Bus Tri-state after CS* or DS* high 0 30 ns
tg 6-3 CS* or DGRANT* high from DTACK* low 0 ns
tig 6-3 DTACK" inactive from CS* or DGRANT* and DS* high 40 ns
tyy 6-3 DS* high pulse width 10 ns
tiz 64 Write data valid from CS* and DS* low 2Tck ns
ti3 64 Write data hold time after DS* high 0 ns
ti4 6-2 Clock period (TCLK)!:3 400 500 ns
tis 6-2 Clock low time' 04Tk 0.6Tgk ns
46 6-2 Clock high time’ 0.4Tgik 0.6Tgik Ns
t47 6-5 Propagation delay, DGRANT* and DS* to DPASS* 35 ns
tig 6-5 Setup time, SVCACK* to DS* and DGRANT* 10 ns

NOTES:

1) Timing numbers for RESET* and CLK in the table above are valid for both asynchronous and synchronous
specifications. The device will operate on any clock with a 40-60 or better duty cycle.

2) On host /0 cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* will be delayed by 1
Ms. On systems that do not use DTACK* to signal the end of the /O cycle, wait states or some other form of delay
generation must be used to assure that the CL-CD1400 will not be accessed until after this time period.

3) As TCLK increases, device performance decreases. A minimum clock frequency of 25 MHz is required to
guarantee performance as specified. The recommended maximum TCLK is 1000 ns.

L1E D B 2136639 0004197 439 MECIR

CL-CD1400 e

UXART Serial/Parallel Controller ——
—== CIRRUS LOGIC

CIRRUS LOGIC INC

vCC

cu<___/_1

RESET*

Figure 6-1. Reset Timing

NOTE: For synchronous systems, it is necessary to know the clock cycle number so that interface
circuitry can stay in lock-step with the device. CLK numbers can be determined if RESET*
is released within the range t, - t,; t, is defined as 10 ns minimum after the falling edge of
the clock; t, is defined as 5 ns minimum before the next falling edge of the clock. If these

conditions are met, the cycle starting after the second falling edge will be known to be C1.
See the synchronous timing diagrams for additional information. Asynchronous systems
need not be concerned with clock numbers.

ta

tie —-Dl*- 145

Figure 6-2. Clock Timing

March 1992

1M

blE D WE 2136639 0004198 375 EECIR

D — 3

==—="CIRRUS LOGIC

CIRRUS LOGIC INC

CL-CD1400
UXART Serial/Parallel Controller

R R

%] — — iy
A[0:6] X
| i3 |- > i |ef—
W /I \ X_
cs* [—— 1y,
Ds*
\ /
] 6 e —> tejt-
DB[0:7]
Af
DTACK*
\L
l— 1, —P» — lio

Figure 6-3. Asynchronous Read Cycle Timing

1 12 e . March 1992

EIE D W 2136639 0004199 201 EMCIR

CL-CD1400 e

UXART Serial/Parallel Controller ===C]RRUS LOGIC

R

CIRRUS LOGIC INC

e R f_ >t (-
Aj0:6]) A)|
I3 e E e
RW*) 4 X
cs*
DS*
—_——e——y
\ [__
—— 112 — —] 13 |-
DB[0:7] 4)3
g (eg—
DTACK*
[t Yy br—— Yo j

Figure 6-4. Asynchronous Write Cycle Timing

March 1992 N — 113

L1E D WM 2136639 0004200 853 EECIR
e CL-CD1400

———— UXART Serial{Parallel Controller

CIRRUS LOG6IC INC

t [g— — 19 -—
A[0:6] - X
—D‘ I3 [— — 15 [
AW / \ X

fef— i
SVCACK*
/

ps* lig fa—
DGRANT*
A 4
_ /
> g e —»| g
DBI0:7]
3 A
- 19—
DTACK*
\
— t7 — - g
DPASS*

IL /

Figure 6-5. Asynchronous Service Acknowledge Cycle Timing

1 14 e e— March 1992

bLE D BN 2136639 0004201 79T EECIR

CL-CD1400 —

UXART Serialf{Parallel Controller EC’RRUS LOGIC

CIRRUS LOGIC INC

6.4.2 Synchronous Timing

Refer to Figures 66 through 6-8 on the following pages for the reference numbers in the table below.

Ref. # Fig. Parameter MIN MAX Unit
ty 6-6 Setup time, CS* and DS* to C1 falling edge 5 ns
1) 6-6 Setup time, R/W* to C1 falling edge -10 ns
13 6-6 Setup time, address valid to C1 falling edge -20 ns
ts 6-6 C3falling edge to data valid 60 ns
ts 66 DTACK" low from C4 falling edge 40 ns
ts 66 CS*and DS* trailing edge to data bus high-impedance 30 ns
ty 6-6 CS" and DS" inactive between host accesses 10 ns
tg 66 Hold time, R/W* after C4 falling edge 20 ns
tg 6-6 Hold time, address valid after C4 falling edge 0 ns
tip 6-7 Setup time, write data valid to C3 falling edge 0 ns

. ty4 6-8 Setuptime, DS* and DGRANT" to C1 falling edge 20 ns
tiz 6-8 Setup time, SVCACK* to DS* and DGRANT* 10 ns
ti3 6-8 Hold time, write data valid after C4 falling edge 0 ns
ti4 6-8 Propagation delay, DS* and DGRANT" to DPASS* 35 ns

NOTE: On host VO cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK" will be delayed
by 1 us. On systems that do not use DTACK* to signal the end of the I/O cycle, wait states or some other
form of delay generation must be used to assure that the CL-CD1400 will not be accessed until after this
time period.

March 1992 - __] 115

b1E D WE 213kbL39 0004202 beb EMCIR

e — CL-CD1400

—— UXART Serial{Parallel Controller
—= CIRRUS LOGIC = .

CIRRUS LOGIC INC

C1 Cc2 C3 C
4 lg— >
Ds*, Cs*
/

2 |eg— —» ot

4
t7
13 gf— —] tg

A[6:0)

g 1, — - tg
DB[7:0]

—

DTACK*

Figure 6-6. Synchronous Read Cycle Timing

LYE D W 2136639 0004203 562 EMCIR
CL-CD1400 e
UXART Serial{Parallel Controller e

—== CIRRUS LOGIC

R R e AR

CIRRUS LOGIC INC

Cc1 c2 Cc3 Cc4

ax [[

t‘l [— t7
Ds*, Cs*
:l '2
— ta

ref— — ta
R/W*
. «— — ty |-
Al6:0]
—Pl to | - 3 [
. DB[7:0] { —

- s
DTACK*

Figure 6-7. Synchronous Write Cycle Timing

March 1992 [1 17

LJE P WM 213kL39 0004204 4T9 EECIR

— CL-CD1400
— UXART Serial/Parallel Controller
p——— g CIRRL’ S LOGI C e SR RN

CIRRUS LOGIC INC

Ci c2 C3

~ = .S

-t ty -t
DB(7:0]
—> {5 -—
DTACK*

Flgure 6-8. Synchronous Service Acknowledge Cycle Timing

118 L March 1992

B1E D EE 213kL39 0004205 335 MECIR

CL-CD1400 —
UXART Serial/Parallel Controller

—_—
—== CIRRUS LOGIC

6.4.3 Paralle! Port Timing Specifications CIRRUS LOGIC INC

Refer to Figures 6—9 and 6-10 for identification of reference numbers in the following table.

Note that the functions of PACK* and PSTROBE* are opposite depending on the direction of data move-
ment, however the directions of PSTROBE* and PACK* do not change. The PACK* Signal on the CL-
CD1400 is always an input, and the PSTROBE" is always an output. The apparent function is changed
by the external signals they are connected to and the direction of data movement. The tables below use
the CL-CD1400 pin names for the signals.

The following table shows the timing specifications for the parallel port when it is programmed inTransmit
Mode (Receive Mode is on the following page). The PSTROBE* Output provides the data strobe function
and the PACK* Input is connected to the acknowledge signal from the receiving device.

Transmit Timing (see Figure 6-9)
Ref.# Fig. Parameter MIN MAX Unit
tpi 6-9 Setup time, PD[7:0] to PSTROBE" falling edge 2Tek*e

tp2 69 PACK" rising edge to PSTROBE* falling edge® 2T K"350

tp3 69 PSTROBE* pulse width' 2Tok 2Tew*32

tp4 6-9 PACK"* pulse width? 250 ns
t5 69 PSTROBE®to PACK* time-out® 2T¢k*10

March 1992 - __] 119

bXE D BN 213kLb639 000420k 271 EECIR
—_— CL-CD1400
— UXART Serial/Parallel Controller
——= CIRRUS LOGIC

R o
6.4.3 Parallel Port Timing Specifications (cont,) CIRRUS LOGIC INC

The following table shows the timing specifications for the parallel port when it is programmed in the Re-
ceive Mode. The transmitting device connecits its strobe output to the CL-CD1400 PACK* Input and its
acknowledge input to the CL-CD1400 PSTROBE* Output.

Recelve Timing (see Figure 6-10.)

Ref. # Fig. Parameter MIN MAX Unit
tp6 6-10 Setup time, PD[7:0] to PACK" rising edge 15 ns
tp7 6-10 Hold time, PD[7:0] after PACK" rising edge 20 ns
tP8 6~10 PSTROBE* pulse width! (ACK function) 2Tok 2Tek*32
tp9 6-10 PACK* to PSTROBE* time-out® 2Te1k*15
tp10 6-10 PACK"* pulse width? (STROBE function) 250 ns
tp11 6-10 PACK" falling edge to PBUSY rising edge 30 ns
tp12 6-10 PSTROBE* falling edge to PACK® falling edge® 2Tg k10
tp13 6-10 PSTROBE* rising edge to PBUSY falling edge 30 ns

NOTES:

1) The width of the PSTROBE" pulse is set by the programmed value in the TBPR Register and will be equal to
the system clock (CLK) divided by two, multiplied by the binary value continued in the least significant five (5)
bits. The range of values is 1 to 32 (1 to 1F hex).

2) For highest performance, the RCOR/RBPR Register pair should be programmed for a baud rate whose half-bit
time is slightly greater than the expected iength of the STROBE pulse width (see Section 3 for detailed parallel
port programming information.

3) This parameter is guaranteed by design but cannot be measured by ATE.

LLE D WM 2136639 0004207 108 EMCIR

CL-CD1400 —_—
XART Serial{Parallel Controller ———

—== CIRRUS LOGIC

CIRRUS LOGIC INC

PD[7:0] X
— tp] |—
PSTROBE* /
— 3 | —| tp 1p2 ‘J—
PACK*
- 165
PBUSY / OPTIONAL \

Figure 6-9. Parallel Port Transmit Timing

NOTE: PBUSY is optional when the parallel port is operating in the Transmit Mode. The CL-CD1400 will
not activate PSTROBE" to begin the next data transaction until the receiver has acknowledged
the previous transaction via the PACK* Signal; PBUSY is not used as a flow control signal in
Transmit Mode.

PD[7:0] X X
PACK* Pin — 1p6 —W 17 |
STROBE function)
N/
PSTROBE* Pin > pi0 [——— 1p12 ——
(ACK functlon) '
- tp9 tps -—
PBUSY
-—

tp11 tp13

Figure 6-10. Parallel Port Recelve Timing

March 1992 O 121

bl1E D EH 2136539 0004208 O44 EMCIR
— CL-CD1400
i UXART Serial{Parallel Controller

CIRRUS LOGIC

7. SAMPLE PACKAGES
7.1 68-Pin PLCC Package

CIRRUS LoOGIC INC

0.985 MIN
0.995

Y

<€
MAX
< 0.950 MIN
- 0.958 MAX

Y

0.985 MIN
0.985 MAX
0.950 MIN

0.958 MAX

nnnnnnhnnannnnnhnnnnn
Lt el S) = S o= g 7O g O gy v gy s g e g e g e ey g e

L= JL== g % [S g S Jp S oy U gy gy 4 [A gy NPy OF (i & 6y e ey O o |

/ 165 MIN

LDi 200 MAX
050 TYP 013 MIN [020 MIN

021 MAX

BLE D WN 213bL639 0004209 TE0 EECIR

CL-CD1400 e
X ART Serial{Parallel Controller

e —
—== CIRRUS LOGIC

‘ 7.2 100-Pin PQFP Package CIRRUS LOGIC INC
® g
-—— 18.85 TYP i P
AR ARARARAARARARARARAARATARE A
A rg; 0
s | 2 CL-CD1400 _i
e % 100-Pin EIAJ PQFP T

[t— o
2.60 MIN 24.30 MAX
1.60 MIN
0.13 MIN 2.10 MAX
0.20 MAX
L 0° MIN
T + 12° MAX
0.50 MIN A0 MAX 2.70 MIN
e 20 MAX 3.15 MAX

Mafch 1992 0 1 23

L}E D W 213kL39 0004210 ?Tc EECIR

——— .

=== CIRRUS LOGIC UXART Serial/Paralle
8. ORDERING INFORMATION CIRRUS LOGIC INC
CL-CD1400-10PC-E

Cirrus Logic —I I -r—— Revisiont

Temperature Range

Product Line:

Communications, Data C = Commercial
Package Type:
Part Number —- P = Plastic Leaded Chip Carrier (PLCC)

—— Internal Reference Number

CL-CD1400-10QC-E
Cirrus Logic ——] l —r— Revisiont
. Temperature Range
Product Line: o -
Communications, Data ¢ = Commercia
Package Type:
Part Number — Q = EIAJ Plastic Quad Flat Pack (PQFP)

—— Internal Reference Number

1 Contact Cirrus Logic, Inc., for up-to-date information on revisions.

blE P WE 213639 0004211 L39 EECIR

CL-CD1400 —
UXART Serial{Parallel Controller e
: —= CIRRUS LOGIC

8. QUICK REFERENCE CIRRUS LOGIC INC
9.1 Pin Diagram — 68-Pin PLCC

. * -

Ng,_; gm n“gn“‘m"-—

) v g 82848258 8
7]

EE828CCEEzRaRERE R

60

crs2 f——ye¢—» DB[0]

DSR2 11 O §9 =< DB[1]

Ri2* —»=H 12 58 === DB[2
cpz 13 57 == DB(3]
DTR1* —we=] 14 56 =< DB[4]
ATS1* =k 15 55 == DB[5]
GND ——==]16 54 =oe—> DBI6]

CTs1 —we=d 17 CL-CD1400 53 == DRI
DSR1* —we=={ 18 . 52r=—-eND
. RI:' 119 68-Pin PLCC 51 = Al

e
CD1* ——m=—] 20 50 femsre— A1)
DTRO* ——t=—H 21 49 f==-+— Aj2]
RTSO* ~—t=—= 22 48 F=re— A9}
CTS0* ~—wri==] 23 47 =a— Al4]
DSRo* —==] 24 46 === A[5]
‘ RI0* —»e==} 25 45 f==<— Alg]
cDo* —we—= 26 44 ==-«— RESET*
MEEEEREEEEEREREERI R
BEFtbgsE88L438E88
BEFE33HEET R
2 Goasas ©

March 1992 e e 125

GLE D MWW 213639 0004212 575 EECIR
— CL-CD1400
——— UXART Serial{Parallel Controller
==="CIRRUS LOGIC /
9.2 Pin Diagram — 100-Pin PQFP CIRRUS LOGIC INC
EBEE. B
EEffefeBefvsecyssss
8823588 38385883588388s
DB[1] -] 1 80 F==se— Alg]
DB{0] a—pe==] 2 O 79 fz=m«— RESET*
TXDO ¢—e== 3 78 F=me—— CS§*
RXDO —wc—] 4 77 p=—e— Ds*
TXD1 <t 5 76 F—3ew—— RW*
RXD1 — =] 5 75 =a—» DTACK®
TXD2 wt—e—d 7 74 == — N/C
NC —e=] 8 73 =w— CLK
RXD2 == o 72 GND
NC ——e=1 10 71 == DPASS*
TXD3 wgpee—e=d 11 70 p=—— NC
GND — = 12 69 E==-e4— DGRANT"
AXDS —w-e=] 13 CL.CD1 400 68 f=—— N
NG~ 100-Pin PQFP i
DTR3* «t——e==o 15 66 =n—— NC
N/C 16 65 ke SYCREQM®
RTS3" 17 84 = Ne
NG —===] 18 63 f=r<— svcpear*
vece——=— 19 82 F==—— NG
NG 20 61 F==— SVCREQR*
cTs3* 21 60 F=—— NC
NC 22 59 F==— gvcackm*
DSR3" 23 58 F==— NC
NG ——==] 24 57 F==——» SVCACKT*
Rige —== 25 56 F==~— SVCACKR"
cpa+ —>=== 26 86 =< ppyq]
DTR2* +—=== 27 54 F==--» PDj0]
RTS2: +—=3 28 §8 =—> PAUTOFD"
CTs2s — = 20 52 F=—— NIC
NG ——=== 30 3 51 f==— N/C

DSR2* ==} 31
NG —e== 32
Ri2* —mg=xyp 33

CD2* — e 34

DTR1* — ==y 35

ATS1* w-—e——] 36
GND ——e=={ 37

CTS1* —==——] 38

DSR1* —»==o 40
RI1* —»e=—03 41

CD1* — == 42

DTRO* —c=={ 43
NC ——e—q 44

RTS0* ———=y 45

CTS0* — =] 46

DSRO* —»e== 47
RI0* —et===y 48

CDo* —»==x] 49
vVCg —c—— 50

NOTE: N/C means no connection. Make no connections to these pins.

1 26 % March 1 992

blE D EE 2136639 0004213 40L EECIR

CL-CD1400 —
: =
‘UXART Serial{Parallel Controller CIRRUS LOGIC
. 9.3 CL-CD1400 Register Map CIRRUS LOG 1C INC
9.3.1 Global Registers
. Symbol Register Name RW A[6:0] {Hex) Page
GFRCR Global Firmware Revision Code Register R/W 100 0000 40 79
CAR Channel Access Register R/W 110 1000 68 79
GCR Global Configuration Register RW 100 1011 4B 80
SVRR Service Request Register R 110 0111 67 80
RICR Receive Interrupting Channel Register RW 100 0100 44 80
TICR Transmit Interrupting Channel Register R/W 100 0101 45 80
MICR Modem Interrupting Channel Register RW 100 0110 46 80
RIR Receive Interrupt Register RW 110 1011 6B 81
TIR Transmit Interrupt Register RW 110 1010 6A 81
MIR Modem Interrupt Register RW 110 1001 69 81
PPR Prescaler Period Register RW 1111110 7E 81
. 9.3.2 Virtual Registers
Symbol Register Name R/W A[6:0] (Hex) Page
RIVR Receive Interrupt Vector Register R 1000011 43 83
TIVR Transmit Interrupt Vector Register R 100 0010 42 83
. MIVR Modem Interrupt Vector Register R 100 0001 41 83
TDR Transmit Data Register w 110 0011 63 84
RDSR Receive Data/Status Register R 110 0010 62 84
MISR Modem Interrupt Status Register R 100 1100 4C 85
EOSRR End Of Service Request Register w 110 0000 60 86

NOTE: The page numbers shown in these tables indicate the page where the detailed description of the register

. may be found.

March 1992] 127

LLE D EH 2136639 0004214 348 EMCIR

CL-CD1400
UXART Serial/Parallel Controller

!

—== CIRRUS LOGIC

9.3.3 Channel Registers

CIRRUS LOGIC INC

Symbol Reglster Name R/W A[6:0] (Hex) Page
LIVR Local Interrupt Vector Register RW 0011000 18 86
CCR Channel Command Register RW 0000101 05 87
SRER Service Request Enable Register RWwW 0000110 06 g0
COR1 Channel Option Register 1 RW 0001000 08 91
COR2 Channel Option Register 2 RW 0001001 09 92
CORS Channel Option Register 3 R/W 0001010 0A 93
COR4 Channel Option Register 4 RW 0011110 1E 95
COR5 Channel Option Register 5 R/W 0011111 1F 96
CCSR Channel Control Status Register R 0001011 0B 97
RDCR Received Data Count Register R 0001110 OE 98
SCHR1 Special Character Register 1 RW 0011010 1A 100
SCHR2 Special Character Register 2 R/W 0011011 1B 100
SCHR3 Special Character Register 3 R/W 0011100 1C 100
SCHR4 Special Character Register 4 RW 0011101 1D 100
SCRL Special Character Range, Low RW 0100010 22 100
SCRH Special Character Range, High : RW 0100011 23 100
LNC LNext Character R/W 0100100 24 101
MCOR1 Modem Change Option Register 1 RW 0010101 15 101
MCOR2 Modem Change Option Register 2 RW 0010110 16 102
RTPR Receive Time-out Period Register R/W 0100001 21 103
MSVR1 Modem Signal Value Register 1 R/wW 1101100 6C 103
MSVR2 Modem Signal Value Register 2 RW 1101101 6D 104
PSVR Printer Signal Value Register RW 1101111 6F 104
RBPR Receive Baud Rate Period Register RW 1111000 78 104
RCOR Receive Clock Option Register R/W 1111100 7C 105
TBPR Transmit Baud Rate Period Register R/wW 1110010 72 105

TCOR Transmit Clock Option Register RWwW 1110110 76 106

LIE D EE 213k639 0004215 284 EECIR

CL-CD1400
UXART Serial{Parallel Controller

e

9.4 Bit Definitions

Global Firmware Revislon Register (GFRCR) 40 W
r Fitmware Revision Code J
Channel Access Reglster (CAR) 68 RW
[0 I 0 I 0 I 0 I [} I 0 I c1 I co I
Global Configuration Reglstar {GCR) 48 aw
ele el ol el oTo]"]
Servics Request Register (SVRR) 67 R Only

|o|o|o| |0|SRMISRTISRRJ
Recsive Interrupting Channal Register (RICR) 44
EEENENENENENE I*J
Transmit Interrupting Channel Register (TICR) 45
rx|x|x|x|c1lcolx|xJ
Modem Interrupting Channel Register (MICR) 46

I I N N IR

Recelve Interrupt Register (RIR) 6B

Waq I rbusy |runta.ir | l | 0 l chf1] | ch[0] I
Transmit Interrupt Reglster (TIR) 6A

I tireq I thusy Ituntajr | 1 I o l [I chil) | ch[oLI
Modem interrupt Register {MIR) 69

F!ﬂ I mbusy |munfalr | [} | 1 | 0 | eh[1] | <hlo} I
Prescale Pariod Register (PPR) 7E RW
r Binary Value l
Racelve Interrupt Vector Register (RIVR) 43 R Only
rxlxlxlxlxlnallnlno'

Transmit Interrupt Vector Reglster (TivR) 42 R Oniy

[X‘XIXIXIXIITZIIH'ITDI

Modem Interrupt Vactor Register {MIVR) 1 R Only
rx|x|x|xlx|n2|m|n'o]
Transmit Data Reglster {TDR) 63 W Only
I Transmit Character |
Recelve Data/Status Register (RDSR) 62 R Only

| Recaived Character J

l'ITImo-ouiISCDetZISCDeH lSCDstOIEreakl PE I FE l OEJ

Modem Interrupt Status Reglster (MISR) 4C R Only
ﬁsamlmsmlam lCDchI 0 I 0 I 0 | oJ
End Ot Service Request Register (EOSRR) 60 W Only

N EN KN ENEN KN EN KN

——tetl

—== CIRRUS LOGIC

CIRRUS LOGIC INC

Local Interrupt Vactor Register {LIVR) 18
F(lexlxlxlnzlmlrmj
{CCR) 05

r$Cha{CORChngGMSCICMnQII D3 | 02 l D1 l Do |
Format 1: Reset Channel Command

lEasChanIOIDIO‘OIOIFI’FITypeJ
Format 2: Channal Option Register Change Command

ro ‘CORCth [+] l Q l COR3 I COR2 | COR1 | 0 J

Format 3: Send Special Character C d
I 0 I) ISandSCI 0 | 1) Isspcalsspmlsspcol

Format 4: Ct | Control C d
l o I 0 | 0 |cmnculxMTElemmslncvsnlncvmsl

Service Request Enable Register (SRER) 08 AW
[raron] o | o [mowa] o [o o | wor]

Channel Option Reglster 1 (COR1) 08 RW
fPamy I ParM1 l ParMO I lgnore I Stop1 I Stopd l [¢])IR] I OhlLDJ

Channel Option Register 2 {COR2) 09 RW
| XM |TxlBE | ETC I LLM I ALM IRIsAO l msAol DerAE I

Channe! Option Raglster 3 (Serlal) {CORS3) 0A R/W
FCDRN({ SCDSdl FCT | SCD‘IZI RxTha I AxTh2 I RxThit I RxThﬂ

Channel Option Ragister 3 (Parallel) (COR3) DA R/W
ro I [| 0 IRxTMIHxThaleThlemel RxThoI
Channel Option Register 4 {COR4) 1E aw

IGNCR| ICRNL | INLCR lIGNBRKI-BRKlNTl PEH[2] I PEH[1] I PEH[(JLI

Channel Option Register 5 (CORS) 1F RW

IISTRlF’l LNE |CMOE|] l 0 | EBD IONLCRIOCRNLJ

Channel Control Status Register (Serial) (CCSR) 1] R Only
ﬁx&n l RxFloff | HxFIonl 0 I TxEn | TxFioft l TxFion I ° J

Channel Control Status Register (Par) (CCSR) 08 R Only
|RxEnIOIO|0|TxEnI0|DIOJ
Recelved Data Count Register (Serlal) (RDCR) OE R Onty
rolu‘ololcnlcmlcnlcml

Raceived Data Count Reglster (Par) {RDCR) OE R Only

rololo

ICTA'CTS'CTZICT!'CTOJ

Special Character Register 1 (SCHR1) 1A RW
r Special Character 1 I
Special Ch tor Regi 2 (SCHR2) 1B RW
r Special Character 2 |

March 1992 e e 129

blE D EE 213Lb39 0004216 110 EECIR

— CL-CD1400
CIRRUS LOGI C UXART Serial/Parallel Controller
9.4 Bit Definitions (cont) CIRRUS LOGIC INC
Specilal Ch ter Regl 3 {SCHR3) 1C Rw
L Special Character 3]
Special Character Register 4 (SCHR4) 1D RW
L Special Character 4 —I
Special Character Range Low (SCRL) 22 RW
l Character Range Low I
Spacial Character Range High (SCRH) 23 RAW
L Character Range High l
LNext Character (LNC}) 24 RW
l { Next Character]
Modam Change Optlon Register 1 (Ser) (MCOR1) 15 R/W

LostdI CTszd I Rizd I COzd IDTRmaIDTnszDTmm I nrmﬂ

Modem Change Option Reglster 1 (Par) (MCOR1} 15 RW
liBUSdeIPSLCTzdI PPEzd IPEHHoRz 0 I 0 l 0 I 0 I

Modem Change Option Register 2 (Ser) (MCOR2) 16 RW

IDSRodICTSodI Rlod I CDod' o I 0 I 0 I [} l

Modem Change Option Register 2 (Par) (MCOR2) 16 RW
IPBUSYM'PSLCTMI PPEod IPEHRDRO({ [¢] I] I 0 I 0 j
Recalve Timeout Perlod Register (RTPR) 21 RW
I Binary Count Valye —I
Modem Signal Value Register 1 (MSVR1) 6C RW
l DSR I CTs I RI I Cco IPSTROBEI 1] I Q I RTS l
Modem Signat Value Register 2 {MSVR2) 6D RW
Losn l cTs l RI I ¢ lpsmoasl 0 I TR l) I
PrinterSignal Value Reglster (PSVR) 6F RW

IPEUSY‘IF'SLCT" PPE* IPERHORI PACK® IPAUTDFDI PINIT I PSLIN—I

Recelve Baud Rate Perlod Register {RBPR) 78 RW

I Blnary Divisor Value j
Recelve Clock Option Register {RCOR}) 7C RW
[X I P I X I x | X Icmsmzlcms.;nlcmsmol
Transmit Baud Rate Period Register {TBPR) 72 RW
L Blnary Divisor Value]
Transmit Clock Option Registar (TCOR) 76 RW

lx I X I X I X I X lcuxsaz'cmsmlcmsml

