

ASM3P2180A

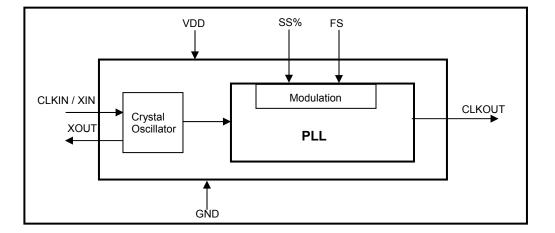
rev 1.2

Peak Reducing EMI Solution

Features

- Generates a 1x EMI optimized clock output.
- Input frequency: 6MHz 10MHz
 - 18MHz 30MHz
- Output frequency: 6MHz 10MHz
 18MHz 30MHz
- Two selectable down spread options.
- Selectable frequency range.
- Integrated loop filter components.
- Operates with a 3.3V supply.
- Low-power CMOS design.
- Commercial temperature range
- 8-pin SOIC and 8-pin TSSOP packages.

Product Description


The ASM3P2180A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. ASM3P2180A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of down stream

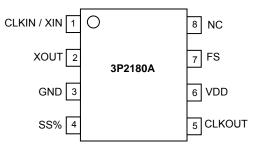
Block Diagram

clock and data dependent signals. ASM3P2180A allows significant system cost savings by reducing the number of circuit board layers, and shielding that are traditionally required to pass EMI regulations. ASM3P2180A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, thereby decreasing the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most clock generators. Lowering EMI by increasing a signal's bandwidth is called spread spectrum clock generation. ASM3P2180A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all-digital method.

Applications

The ASM3P2180A is targeted towards notebook LCD displays, other displays using an LVDS interface, PC peripheral devices and embedded systems.

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200, Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com



ASM3P2180A

February 2008

rev 1.2

Pin Diagram

Pin Description

Pin#	Pin Name	Туре	Description	
1	CLKIN / XIN	I	Crystal connection or external reference clock input.	
2	XOUT	0	Connection for an external crystal. If using an external reference, this pin must be left unconnected.	
3	GND	Р	Ground to entire chip.	
4	SS%	Ι	Spread Selection Input. Has an internal pull-up resistor.	
5	CLKOUT	0	Modulated Clock Output.	
6	VDD	Р	Power supply for the entire chip.	
7	FS	I	Frequency selection bit. This pin selects the frequency range of operation. (<i>Refer to the Frequency Range Selection Table</i>). Has an internal pull-up resistor.	
8	NC	-	No connect.	

Frequency Range Selection

FS	Frequency Range (MHz)
0	6 -10
1	18-30

Spread Selection table

SS%	Frequency (MHz)		Deviation (%) (typ)	
5578	FS=0	FS=1		
	6	18	-2	
0	8	24	-1.5	
	10	30	-1	
	6	18	-4	
1	8	24	-3	
	10	30	-2	

ASM3P2180A

rev 1.2

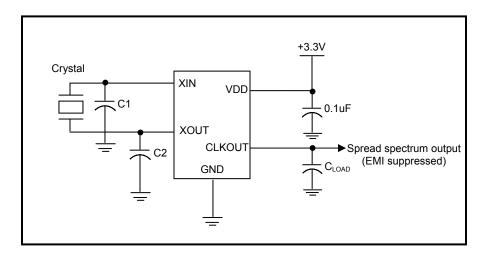
Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit				
VDD, V_{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V				
T _{STG}	Storage temperature	-65 to +125	°C				
Ts	Max. Soldering Temperature (10 sec)	260	°C				
TJ	Junction Temperature	150	°C				
T _{DV} Static Discharge Voltage (As per JEDEC STD22- A114-B) 2							
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.						

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit			
VIL	Input low voltage	GND – 0.3		0.8	V			
V _{IH}	Input high voltage	2.0		V _{DD} + 0.3	V			
١ _{١L}	Input low current (pull-up resistors on inputs SS%, FS)			-27	μA			
I _{IH}	Input high current			18	μA			
I _{XOL}	X _{OUT} output low current (@ 0.4V, V _{DD} = 3.3V)		3		mA			
I _{XOH}	X_{OUT} output high current (@2.5V, V_{DD} = 3.3V)		4		mA			
V _{OL}	Output low voltage (V_{DD} = 3.3V, I_{OL} = 4mA)			0.4	V			
V _{OH}	Output high voltage (V_{DD} = 3.3V, I_{OH} = 4mA)	2.5			V			
I _{CC}	Dynamic supply current normal mode (3.3V and 10pF loading)	10	15	25	mA			
I _{DD} *	Static supply current standby mode			7	mA			
V _{DD}	Operating voltage	2.8	3.3	3.7	V			
t _{ON}	Power up time (first locked clock cycle after power up)		0.18		mS			
Z _{OUT}	Clock output impedance		50		Ω			
*CLKIN pin pulle	CLKIN pin pulled to GND							

ASM3P2180A

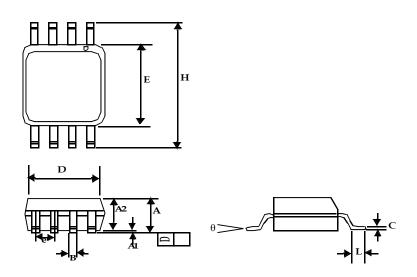

February 2008

rev 1.2

AC Electrical Characteristics

Symbol	Para	Min	Тур	Max	Unit	
CLKIN	Input frequency	FS=0	6		10	MHz
OLININ		FS=1	18		30	1011 12
CLKOUT	Output frequency	FS=0	6		10	MHz
CLKOUT		FS=1	18		30	
t _{LH} *	Output rise time (measured at 0.8V to 2.0V)		1.2	1.3	1.4	nS
t _{HL} *	Output fall time (measured at 2.0V to 0.8V)		0.8	0.9	1.0	nS
t _{JC}	Jitter (cycle to cycle)			325		pS
t _D	Output duty cycle		45	50	55	%
t_{LH} and t_{HL} are measured into a capacitive load of 15pF						

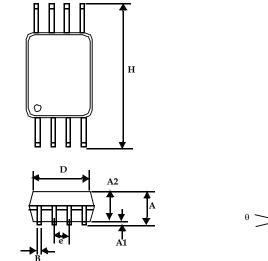
Typical Test Circuit

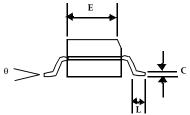


rev 1.2

Package Information

8-Pin SOIC Package

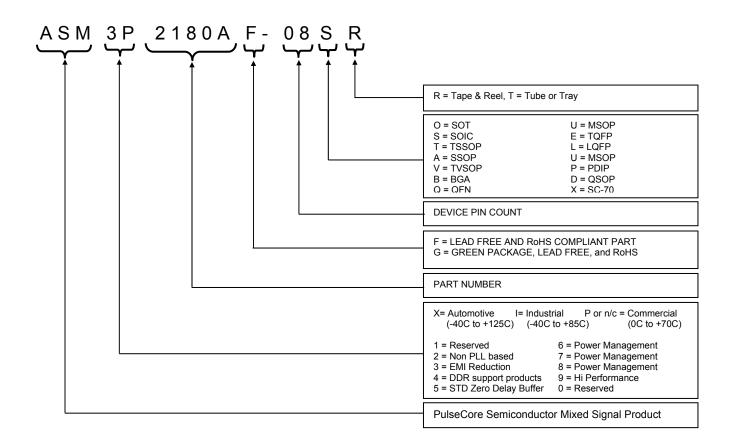



	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
E	0.154 BSC		3.91 BSC		
е	0.050	BSC	1.27	BSC	
н	0.236 BSC		6.00	BSC	
L	0.016	0.050	0.41	1.27	
θ	0° 8°		0°	8°	

rev 1.2

8-Pin TSSOP Package

	Dimensions				
Symbol	Inc	hes	Millim	neters	
	Min	Max	Min	Max	
А		0.043		1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.033	0.037	0.85	0.95	
В	0.008	0.012	0.19	0.30	
с	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
E	0.169	0.177	4.30	4.50	
е	0.026 BSC		0.65 BSC		
н	0.252 BSC		6.40	BSC	
L	0.020	0.028	0.50	0.70	
θ	0°	8°	0°	8°	


rev 1.2

Ordering Codes

February 2008

Part number	Marking	Package Type	Temperature
ASM3P2180AF-08ST	ASM3P2180AF	8-pin SOIC, tube, Pb Free	Commercial
ASM3P2180AF-08SR	ASM3P2180AF	8-pin SOIC, tape and reel, Pb Free	Commercial
ASM3P2180AF-08TT	ASM3P2180AF	8-pin TSSOP, tube, Pb Free	Commercial
ASM3P2180AF-08TR	ASM3P2180AF	8-pin TSSOP, tape and reel, Pb Free	Commercial
ASM3P2180AG-08ST	ASM3P2180AG	8-pin SOIC, tube, Green	Commercial
ASM3P2180AG-08SR	ASM3P2180AG	8-pin SOIC, tape and reel, Green	Commercial
ASM3P2180AG-08TT	ASM3P2180AG	8-pin TSSOP, tube, Green	Commercial
ASM3P2180AG-08TR	ASM3P2180AG	8-pin TSSOP, tape and reel, Green	Commercial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

rev 1.2

ASM3P2180A

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Part Number: ASM3P2180A Document Version: 1.2

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003 Many PulseCore Semiconductor products are protected by issued patents or by applications for patent

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.