M/A-COM

GaAs SPST High Isolation Switch, +3 Volt 0.5 - 2.0 GHz

Features

High Isolation: 43 dB up to 2 GHzLow Cost Plastic SOT-26 Package

Low Insertion Loss: <1.5 dB
Positive Control: +3 to +8 V

Description

M/A-COM's SW-399 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-399 is ideally suited for applications where very low power consumption (<10 μ A@5V), low intermodulation products, very small size and low cost are required. The SW-399 is a general purpose RF switch which can be used in systems such as cellular, PCM, GSM and other analog/digital wireless communications systems.

The SW-399 is a GaAs MMIC using a mature 1-micron gate length GaAs MESFET process. The process features full chip passivation for increased performance and reliability.

SOT-26¹

1. Dimensions are in: inches/mm

Ordering Information

Part Number	Package	
SW-399 PIN	SOT-26 Plastic Package	
SW-399TR	Forward Tape and Reel ¹	

Refer to Application Note M513 for reel size information.

Electrical Specifications: $T_A = +25^{\circ}C^1$

Parameter	Test Conditions	1	Units	Min.	Тур.	Max.
Insertion Loss	0.5 - 2.0 GHz		dB		1.3	1.6
Isolation	0.5 - 2.0 GHz	0.5 - 2.0 GHz		40	42	
VSWR	0.5 - 2.0 GHz				1.5:1	
1 dB Compression	Input Power +3V Control/Supply	0.5 - 2.0 GHz	dBm		25	
	Input Power +5V Control/Supply	0.5 - 2.0 GHz	dBm		26	
T_{rise},T_{fall}	10% to 90% RF, 90% to 10% RF		μS		3	
T _{on} , T _{off}	50% Control to 90% RF, Control to 10% RF		μS		110	
T ransients	In-band		mV		26	
Input IP ₂	2-Tone, 5 MHz spacing	0.5 GHz	dBm		59	
	+10 dBm each	0.9 GHz	dBm		68	
Input IP ₃	2-Tone, 5 MHz spacing	0.5 GHz	dBm		48	
	+10 dBm each	0.9 GHz	dBm		49	

1. All measurements at 1 GHz in a 50Ω system with a 3V control unless otherwise specified. Loss varies at 0.003 dB/°C.

Connecting
HIGHER
level.™

V2.00

Absolute Maximum Ratings¹

Parameter	Absolute Maximum			
Input Power	+34 dBm			
Operating Voltage (V _S , V _{CTRL})	+8.5 Volts			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-65°C to +150°C			

 Exceeding any one or a combination of these limits may cause permanent damage.

Truth Table

Control	RF1 to RF2
0	Off
1	On

"0" = 0 ± 0.2 Vdc "1" = Vs ±0.2 Vdc Vs = +3 to +5 Vdc

Functional Schematic¹

 Blocking capacitors are required on all RF ports. V_S can be applied at RF1 or RF2 using 10K or greater pull-up resistor.

Typical Performance Curves

HIGHER level."