

0.13 µm Cell-Based IC **CB-12 Family** L/M/H Type

Features

Cell-based IC utilizing a leading edge 0.13 μ m process technology – enabling design of a wide variety of system LSI

NEC can now offer the new CB-12 Family, a cell-based IC that is a world-first in its use of a 0.13 μ m process technology. The CB-12 Family consists of three types (L, M and H), and enables the realization of system LSI ideal for both the low static power consumption requirements of portable devices and the large-scale, high-speed requirements of the network and image processing markets.

Moreover, future plans to provide a design environment in which the three CB-12 Family transistor types can be combined will allow designers to create a highly functional system LSI that both minimizes static power consumption and realizes high-speed operation, in a reduced TAT.

- L type: Due to its leak-current suppressant transistor characteristics, this library was developed for portable devices and other such set applications in which low static power consumption is a requirement. The L-type library should be selected when backing up the circuit power supply.
- M type: This library features transistor characteristics suited to high-speed operations, making it ideal for set applications that demand high-speed processing.

Family Name	CB-12 Family			
	L Type	М Туре	Н Туре	
Technology	0.13 μ m CMOS (effective gate length 0.10 μ m), 5/7/8 aluminum layers			
Power supply voltage	1.5±0.15 V			
I/O power supply voltage	2.5±0.2 V			
	3.3±0.3 V			
Maximum number of mounted gates	26M	32M	22M	
Delay time Internal gates ^{Note}	31.7ps	20.7ps	17.1ps	
Power consumption	13nW/MHz/gate	13nW/MHz/gate	24nW/MHz/gate	
Static current consumption ratio	0.02	1	10	

H type: Notwithstanding a density inferior to that of the M type, with its ultra-high-speed operation transistor characteristics, this library is ideally suited to set applications where ultra-high-speed processing is essential.

Note Value for 2-nand power gate, fanout 2, wiring length 0 mm.

Diverse package lineup

- Tape BGA 696 pins (MAX.)
- QFP 304 pins (MAX.) (0.5 mm pitch)
- Flip-chip BGA 2000 pins (MAX.)

Testing

Large-scale circuit design-for-test supported

- Scan path test
- JTAG

Abundant macro library

Functional Cells	Compiled Macros
Logic gates	Single-port RAM
Delay gates	Dual-port RAM
Adders	ROM
Decoders	
Multiplexers	
Latches	
Flip-flops	
Shift registers	
Counters	

Cores					
Core Name	PC	Consumer	Portable Devices	Communication	Graphics
PCI controller	0				
USB ^{Note}	0				
IEEE1394 ^{Note}	0	0			
V8xx CPU		0	0		
VR4xxx CPU		0	0		
V30MZ [™]		0	0		
MPEG2 (decoder)		0			
A/D, D/A		0			
Modem codec		0			
DSP (SPX, OAK/Pine)	0	0	0		
ARM CPU		0	0		
ATM (25 MHz, 155 MHz)				0	
Ethernet [™] 10/100 Base PHY, MAC				0	
RAC (Rambus [™] ASIC Core cell)					0
2D, 3D accelerator					0

I/O Buffers
LVTTL
Low-noise buffers
3-state buffers
Open-drain buffers

DPLL (up to 250 MHz)
APLL (up to 500 MHz)
Multipliers
UART
Register file
DRAM
Flash memory
Scan block
JTAG

High-Speed I/O				
PCI	(Peripheral Component Interconnect)			
HSTL	(High-Speed Transceiver Logic)			
pECL	(Pseudo Emitter Coupled Logic)			
SSTL	(Stub Series Terminated Transfer Logic)			
LVDS	(Low Voltage Differential Signaling)			
USB ^{Note} (Universal Serial Bus)				
IEEE1394 ^{Note}				
AGP	(Accelerated Graphics Port)			
GTL+	(Gunning Transceiver Logic Plus)			

Note Under development

Remark The release schedule differs depending on the macro, so please contact NEC for details.

Electrical Specifications

12 mA type TDOPAC25NN12

3 mA type TDOPAC33NN03

6 mA type TDOPAC33NN06

9 mA type TDOPAC33NN09

12 mA type TDOPAC33NN12

18 mA type TDOPAC33NN18

24 mA type TDOPAC33NN24

3.3 V buffer

Operating ambient temperature

Storage temperature

			_	
Parameter		Symbol	Conditions	Ratings
Power supply	1.5 V system	Vdd		-0.5 to +2.0
voltage	2.5 V system			-0.5 to +3.6
	3.3 V system			-0.5 to +4.6
I/O voltage 2.5 V buffer		Vı/Vo	VI/Vo < VDD +0.3V	-0.5 to +3.6
	3.3 V buffer		VI/Vo < VDD +0.5V	-0.5 to +4.6
Output current 2.5 V buffer		lo		
	2 mA type TDOPAC25NN02		lol = 2 mA	9
	4 mA type TDOPAC25NN04		lol = 4 mA	17
	6 mA type TDOPAC25NN06		lol = 6 mA	38
	9 mA type TDOPAC25NN09		lol = 9 mA	49

IoL = 12 mA

 $I_{OL} = 3 \text{ mA}$

IOL = 6 mA

lo∟=9 mA

IoL = 12 mA

IoL = 18 mA

lo∟ = 24 mA

Absolute maximum ratings

Unit

V

V V

V V

mΑ mΑ mΑ mΑ

mΑ

mΑ

mΑ

mΑ

mΑ

mΑ

mΑ

°C

°C

63

10

19

27

41

53

67

-40 to +85

-65 to +150

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

ΤA

Tstg

Remark Be sure to confirm the power supply voltage before applying either 2.5 V or 3.3 V to the I/O pins.

AC characteristics –

The following ratings are applicable for a power supply voltage of 1.5 V.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Toggle frequency (L type)	ftog	Internal toggle F/F (fanout 1)		1.9		GHz
Toggle frequency (M type)				3.1		GHz
Toggle frequency (H type)				5.7		GHz
Propagation delay time	t PD	2.5 V input buffer		249		ps
(2.5 V buffer)		Fanout 1, wiring length = 30 μ m, tr, tf = 0.1 ns				
		2.5 V output buffer (12 mA)		1187		ps
		C∟ = 15 pF				
Propagation delay time		3.3 V input buffer		207		ps
(3.3 V buffer)		Fanout 1, wiring length = 30 μ m, tr, tf = 0.1 ns				
		3.3 V output buffer (24 mA)		995		ps
		CL = 15 pF				
Propagation delay time		Fanout 1, standard wiring length		41.3		ps
(internal gates: L type)		Fanout 1, standard wiring length		30.8		ps
		(Power gate)				
Propagation delay time		Fanout 1, standard wiring length		27.1		ps
(internal gates: M type)		Fanout 1, standard wiring length		19.9		ps
		(Power gate)				
Propagation delay time		Fanout 1, standard wiring length		17.1		ps
(internal gates: H type)		Fanout 1, standard wiring length				ps
		(Power gate)				
Output rise time	tro	2.5 V output buffer (12 mA)		841		ps
		CL = 15 pF; 10 to 90%				
		3.3 V output buffer (18 mA)		944		ps
		CL = 15 pF; 10 to 90%				
Output fall time	t _{fo}	2.5 V output buffer (12 mA)		673		ps
		CL = 15 pF; 10 to 90%				
		3.3 V output buffer (18 mA)		637		ps
		CL = 15 pF; 10 to 90%				

Remark Blank spaces in the table above indicate values under study.

Design Environment

NEC provides OPENCAD[™] CB12_KIT as the ideal design environment for the CB-12 Family. OPENCAD CB12_KIT includes a number of tools, from amongst which the customer can select those best-suited to their environment.

Function	NEC Tools	Commercial Tools	I/F Data
Function simulator	_	Verilog-XL [™]	
		NC-Verilog™	
		ModelSim™ EE	
		ModelSim SE/VHDL	
		VCS™	
Circuit diagram editor	Vdraw™	_	Function description language
Logic synthesis	_	Design Compiler®	Verilog™ HDL/VHDL
Floor planner	ace_floorplan	_	
Gate-level simulator Note 1	V.sim™	Verilog-XL	• Netlist
		NC-Verilog	PWC/EDIF(2.0.0)/Verilog HDL
		ModelSim EE	
		ModelSim SE/VHDL	Test pattern ALBA/LOGPAT
		VCS	
STA ^{Note 1}	Tiara	PrimeTime®	• Delay data SDF
Format verification	_	Formality®	
		Tuxedo™-Lec	Timing constraint file
Placement and routing	_	Silicon Ensemble ^{TM Note 2}	
Design-for-test	NEC_SCAN	TestCompiler™(DFT)	
	TESTACT	DFTAdvisor™(DFT)	
		Testgen™(ATPG)	
		FastScan™(ATPG)	
		TetraMAX™(ATPG)	

Notes 1. Sign-off tool

2. Tool not supported in the HP[™] version

Remark Platform: SUN[™](Solaris[™])/HP(HP-UX[™])

OPENCAD, V30MZ, Vdraw, and V.sim are trademarks of NEC Corporation.

Rambus is a trademark of Rambus Inc.

Ethernet is a trademark of XEROX Corporation.

Design Compiler is a registered trademark of Synopsys, Inc. in Japan.

PrimeTime and Formality are registered trademarks of Synopsys, Inc. in the USA.

Verilog and NC-Verilog are trademarks of Cadence Design Systems, Inc.

VCS, TetraMAX, TestCompiler, and Testgen are trademarks of Synopsys, Inc.

Verilog-XL and Silicon Ensemble are trademarks of Cadence Design Systems, Inc.

ModelSim is a trademark of Model Technology, Inc.

SUN and Solaris are trademarks of SUN Microsystems, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Tuxedo is a trademark of Verplex Systems, Inc.

FastScan and DFTAdvisor are trademarks of Mentor Graphics, Inc.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of December, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4

For further information, please contact:

NEC Corporation

NEC Building 7-1, Shiba 5-chome, Minato-ku Tokyo 108-8001, Japan Tel: 03-3454-1111 http://www.ic.nec.co.jp/

[North & South America]

NEC Electronics Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 http://www.necel.com/

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

[Europe]

NEC Electronics (Germany) GmbH Kanzlerstr. 2, 40472 Düsseldorf

Germany Tel: 0211-650302 Fax: 0211-6503490 http://www.nec.de/

Munich Office

Arabellastr. 17 81925 München, Germany Tel: 089-921003-0 Fax: 089-92100315

Stuttgart Office

Industriestr. 3 D-70565 Stuttgart, Germany Tel: 0711-99010-0 Fax: 0711-99010-19

Hannover Office

Podbielskistr. 164 D-30177 Hannover, Germany Tel: 0511-33402-0 Fax: 0511-33402-34

Benelux Office

Boschdijk 187a 5612 HB Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

Scandinavia Office

P.O. Box 134 18322 Taeby, Sweden Tel: 08-6380820 Fax: 08-6380388

NEC Electronics (UK) Limited

Cygnus House, Sunrise Parkway, Milton Keynes, MK14 6NP, U.K. Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics (France) S.A.

9, rue Paul Dautier-BP 187 78142 Velizy-Villacoublay Cédex France Tel: 01-30-67-58-00 Fax: 01-30675899

Madrid Office

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics Italiana s.r.l.

Via Fabio Filzi, 25/A, 20124 Milano, Italy Tel: 02-667541 Fax: 02-66754299

[Asia & Oceania]

NEC Electronics Hong Kong Limited

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

Seoul Branch

10F, ILSONG Bldg., 157-37, Samsung-Dong, Kangnam-Ku Seoul, the Republic of Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

101 Thomson Road #04-01/05 United Square, Singapore 307591 Tel: 65-253-8311 Fax: 65-250-3583

Document No. A15021EJ2V0PF00(2nd edition) Date Published December 2000 N CP(K)