SI96-07 Surging Ideas TVS Diode Application Note ## PROTECTION PRODUCTS ## **Low Capacitance Devices** The junction capacitance of a TVS diode is naturally large. In high speed data transmission applications, the extra capacitance introduced by protection devices needs to be kept to a minimum. Low capacitance devices are (Figure 1) are manufactured by placing a low capacitance rectifier diode (D $_1$) in series but opposite in polarity with the TVS diode (D $_2$). This has the effect of adding another capacitor (C $_1$) in series with the junction capacitor of the TVS diode (C $_2$). Taking advantage of the relationship for series capacitors (C $_{\rm T}$ = C $_1$ * C $_2$ /C $_1$ + C $_2$) means the resulting capacitance will be less than the smallest component in series. By carefully choosing the rectifier, the effective capacitance may be reduced by approximately two orders of magnitude. ## **Using Low Capacitance Parts** For bidirectional applications, a TVS/rectifier pair is connected in an anti-parallel configuration across the line (Figure 2). In this configuration, $D_1 \& D_2$ will conduct positive surges while $D_3 \& D_4$ will conduct negative surges. In unidirectional applications, designers need to take into consideration the following: In Figure 3a, if a positive surge occurs on the line, D_1 will conduct in the forward direction and the TVS D_2 will avalanche and i_1 will flow through the device. If a negative spike occurs however, surge current i_2 flows, forward biasing D_2 while D_1 is subject to the full surge in the reverse bias direction. The power handling capability of D_1 will be exceeded resulting in heating and destruction of the device. Adding an additional diode D_3 in parallel (Figure 3b), ensures D_1 will not be reversed biased under transient conditions. D_3 will conduct i_2 under this condition, thus preventing failure. Semtech has introduced devices for unidirectional applications which incorporate D_3 as an integrated part.