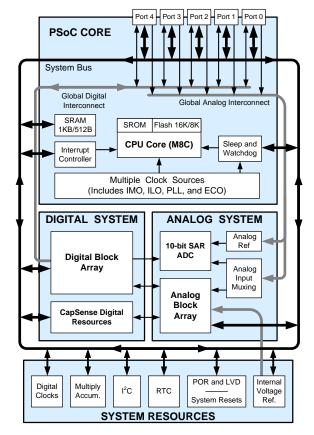


CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

Automotive PSoC[®] Programmable System-on-Chip™

Features

- Automotive Electronics Council (AEC) Q100 qualified
- Powerful Harvard-architecture processor
 - □ M8C processor speeds up to 24 MHz
 - □ 8 × 8 multiply, 32-bit accumulate
 - Low power at high speed
 - □ Automotive A-grade: 3.0 V to 5.25 V operation at −40 °C to +85 °C temperature range
 - □ Automotive E-grade: 4.75 V to 5.25 V operation at –40 °C to +125 °C temperature range
- Advanced peripherals (PSoC[®] blocks)
 - □ Six analog Type 'E' PSoC blocks provide:
 - Up to four comparators with digital-to-analog converters (DAC) references
 - Up to 10-bit single or dual analog-to-digital converters (ADCs)


Up to eight digital PSoC blocks provide:

- 8 to 32-bit timers, counters, and pulse width modulators (PWMs)
- One-shot, multi-shot mode in timers and PWMs
- PWM with deadband in one digital block
- Shift register, cyclical redundancy check (CRC), and pseudo random sequence (PRS) modules
- Full- or half-duplex UARTs
- SPI masters or slaves, 8- to 16-bit variable data length
- Connectable to all general-purpose I/O (GPIO) pins
- Complex peripherals by combining blocks
- Powerful synchronization support, analog module operations can be synchronized by digital blocks or external signals.
- High-speed 10-bit successive approximation register (SAR) ADC with sample and hold optimized for embedded control
- CY8C22345H devices integrate Immersion[®] TouchSense[®] haptics technology for ERM drive control
- Precision, programmable clocking
 - □ Internal oscillator up to 24 MHz
 - High accuracy 24 MHz with optional 32-kHz crystal and phase locked loop (PLL)
 - Optional external oscillator, up to 24 MHz
 - Internal low speed, low-power oscillator for watchdog and sleep functionality
- Flexible on-chip memory
 - Up to 16 KB flash program storage, 1000 erase/write cycles
 - Up to 1 KB SRAM data storage
 - □ In-System Serial Programming (ISSP)
 - Partial flash updates
 - Flexible protection modes
 - EEPROM emulation in flash
- Optimized CapSense[®] resource
 - Supports two CapSense channels with simultaneous scanning
 - Two current DACs provide programmable sensor tuning in firmware

□ Two dedicated clock resources for CapSense

- Two dedicated 16-bit timers/counters for CapSense scanning
- Versatile analog mux
- Common internal analog bus
- □ Simultaneous connection of I/O combinations
- Programmable pin configurations
 - □ 25 mA sink, 10 mA drive on all GPIOs
 - Pull-up, pull-down, high Z, strong, or open drain drive modes on all GPIOs
 - Analog input on all GPIOs
 - Configurable interrupt on all GPIOs
- Additional system resources:
 - □ I²C master, slave, or multi-master
 - Operation up to 400 kHz
 - Hardware address detection feature
 - Watchdog and sleep timers
 - □ User-configurable low voltage detection
 - □ Integrated supervisory circuit
- □ On-chip precision voltage reference
- □ Hardware real time clock (RTC) block

Block Diagram

Cypress Semiconductor Corporation Document Number: 001-55397 Rev. *I 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised March 18, 2011

CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

Contents

PSoC Functional Overview	. 3
PSoC Core	.3
Digital System	. 3
Analog System	.4
Haptics TS2000 Controller	.4
Additional System Resources	.5
PSoC Device Characteristics	.5
Getting Started	6
Application Notes	
Development Kits	
Training	. 6
CYPros Consultants	. 6
Solutions Library	. 6
Technical Support	. 6
Development Tools	
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	.7
Select User Modules	
Configure User Modules	.7
Organize and Connect	.7
Generate, Verify, and Debug	.7
Pinouts	. 8
28-Pin Part Pinout	. 8
48-Pin Part Pinout	. 9
Registers1	
Register Conventions	1
Register Mapping Tables1	

Electrical Specifications	14
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	21
Packaging Information	26
Package Dimensions	
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	27
Tape and Reel Information	
Development Tool Selection	
Software	30
Development Kits	30
Evaluation Tools	30
Device Programmers	31
Accessories (Emulation and Programming)	31
Ordering Information	32
Ordering Code Definitions	33
Document Conventions	
Acronyms Used	34
Units of Measure	34
Numeric Naming	34
Document History Page	35
Sales, Solutions, and Legal Information	36
Worldwide Sales and Design Support	36
Products	
PSoC Solutions	36

PSoC Functional Overview

The PSoC programmable system-on-chip series of products consists of many devices. These devices are designed to replace multiple traditional MCU-based system components with one low cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, as well as programmable interconnects. This architecture enables the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, shown in the Block Diagram on page 1, consists of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global busing allows the combining of all the device resources into a complete custom system. The PSoC family can have up to five I/O ports connecting to the global digital and analog interconnects, providing access to eight digital blocks^[1] and six analog blocks.

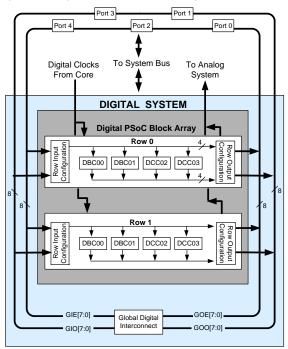
PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO.

The M8C CPU core is a powerful processor with speeds up to 24 MHz (up to 12 MHz for E-grade devices), providing four MIPS (two MIPS for E-grade devices) 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller to simplify the programming of real time embedded events.

Program execution is timed and protected using the included Sleep Timer and Watch Dog Timer (WDT).

Memory encompasses 16 KB of flash (8 KB for CY8C21x45 devices) for program storage, 1 KB of SRAM (512 bytes for CY8C21x45 devices) for data storage, and EEPROM emulation using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.


The PSoC device incorporates flexible internal clock generators, including a 24-MHz internal main oscillator (IMO). For A-grade devices the 24-MHz IMO can also be doubled to 48 MHz for use by the digital system. A low-power 32-kHz internal low-speed oscillator (ILO) is provided for the Sleep Timer and WDT. If crystal accuracy is required, the 32.768 kHz external crystal oscillator (ECO) is available for use as a RTC, and can optionally generate a crystal-accurate 24-MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital, and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Each pin can also generate a system interrupt.

Digital System

The digital system is composed of eight digital PSoC blocks. Each block is an 8-bit resource that may be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules.

Digital peripheral configurations are:

- PWMs (8- to 32-bit)
- PWMs with deadband (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- One-shot and multi-shot modules
- Full or half-duplex 8-bit UART with selectable parity (up to two full-duplex or four half-duplex)
- SPI master and slave (up to four total) with programmable data length from 8 to 16 bits.
- Shift register (1- to 32-bit)
- I²C master, slave, or multi-master (one available)
- CRC/generator (16-bit)
- IrDA (up to two)
- PRS generators (8- to 32-bit)

Note

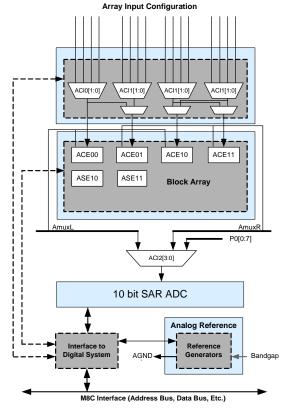
1. CY8C22x45 devices have 2 digital rows with 8 digital blocks. CY8C21x45 devices only have 1 digital row with 4 digital blocks.

The digital blocks may be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This provides a choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Analog System

The Analog System of CY8C21x45 and CY8C22x45 PSoC devices consists of a 10-bit SAR ADC and six configurable analog blocks.


The programmable 10-bit SAR ADC is an optimized ADC with a fast maximum sample rate. External filters are required on ADC input channels for antialiasing. This ensures that any out-of-band content is not folded into the input signal band.

Reconfigurable analog resources allow creating complex analog signal flows. Analog peripherals are very flexible and may be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-digital converters (single or dual, with up to 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to four) with absolute (1.3 V) reference or DAC reference
- Precision voltage reference (1.3 V nominal)

CY8C21x45 and CY8C22x45 devices have six limited-functionality Type 'E' analog blocks. These analog blocks are arranged in four columns. Each column contains one continuous time (CT) Type E block. The first two columns also have a switched capacitor (SC) type E block. Refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for detailed information on the Type E analog blocks.

Figure 2. Analog System Block Diagram

Haptics TS2000 Controller

The CY8C22x45H family of devices features an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Additional System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful for complete systems. Additional resources include a MAC, low voltage detection, and power on reset. The merits of each system resource are:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Additional digital resources and clocks dedicated to and optimized for CapSense.
- RTC hardware block.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.
- The I²C module provides 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power on reset (POR) circuit eliminates the need for a system supervisor.
- An internal voltage reference provides an absolute reference for the analog system, including ADCs and DACs.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have varying numbers of digital and analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC families covered by this datasheet are highlighted in the table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[2]	up to 64	4	16	up to 12	4	4	12	2 KB	32 KB
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 16	1 KB	16 KB
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256 Bytes	16 KB
CY8C24x94 ^[2]	up to 56	1	4	up to 48	2	2	6	1 KB	16 KB
CY8C24x23A ^[2]	up to 24	1	4	up to 12	2	2	6	256 Bytes	4 KB
CY8C23x33	up to 25	1	4	up to 12	2	2	4	256 Bytes	8 KB
CY8C22x45 ^[2]	up to 38	2	8	up to 38	0	4	6 ^[3]	1 KB	16 KB
CY8C21x45 ^[2]	up to 38	1	4	up to 38	0	4	6 ^[3]	512 Bytes	8 KB
CY8C21x34 ^[2]	up to 28	1	4	up to 28	0	2	4 ^[3]	512 Bytes	8 KB
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[3]	256 Bytes	4 KB
CY8C20x34 ^[2]	up to 28	0	0	up to 28	0	0	3 ^[3, 4]	512 Bytes	8 KB

Notes

- 2. Automotive qualified devices available in this group.
- 3. Limited analog functionality.

^{4.} Two analog blocks and one CapSense[®] block.

Getting Started

For in depth information, along with detailed programming details, see the *PSoC[®] Technical Reference Manual*.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - □ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for a given application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24-MHz) operation.

Designing with PSoC Designer

The development process for the PSoC® device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Pinouts

The automotive CY8C21x45 and CY8C22x45 PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog mux bus. However, V_{SS} , V_{DD} , and XRES are not capable of digital I/O.

28-Pin Part Pinout

Table 2. 28-Pin Part Pinout (SSOP)

Pin	Ту	/ре		
No.	Digital	Analog	Pin Name	Description
1	I/O	I, MR	P0[7]	Analog column mux input, C _{MOD} capacitor pin
2	I/O	I, ML	P0[5]	Analog column mux input, C _{MOD} capacitor pin
3	I/O	I, ML	P0[3]	Analog column mux input
4	I/O	I, ML	P0[1]	Analog column mux input
5	I/O	I, ML	P2[7]	Direct input to analog block
6	I/O	ML	P2[5]	Optional SAR ADC external reference (EXTREF)
7	I/O	ML	P2[3]	
8	I/O	ML	P2[1]	
9	Po	wer	V _{SS}	Ground connection
10	I/O	ML	P1[7]	I ² C Serial Clock (SCL)
11	I/O	ML	P1[5]	I ² C Serial Data (SDA)
12	I/O	ML	P1[3]	
13	I/O	ML	P1[1]	Crystal Input (XTALin), I ² C SCL, ISSP-SCLK ^[5]
14	Po	wer	V _{SS}	Ground Connection
15	I/O	MR	P1[0]	Crystal Output (XTALout), I ² C SDA, ISSP-SDATA ^[5]
16	I/O	MR	P1[2]	
17	I/O	MR	P1[4]	Optional external clock input (EXTCLK)
18	I/O	MR	P1[6]	
19	In	put	XRES	Active high external reset with internal pull-down
20	I/O	MR	P2[0]	
21	I/O	MR	P2[2]	
22	I/O	MR	P2[4]	
23	I/O	I, MR	P2[6]	Direct input to analog block
24	I/O	I, MR	P0[0]	Analog column mux input
25	I/O	I, MR	P0[2]	Analog column mux input
26	I/O	I, MR	P0[4]	Analog column mux input
27	I/O	I, MR	P0[6]	Analog column mux input
28	Po	wer	V _{DD}	Supply voltage

Figure 3. CY8C21345, CY8C22345, and CY8C22345H 28-Pin PSoC Device

AI, MR, P0[7] = AI, ML, P0[5] = AI, ML, P0[3] = AI, ML, P0[1] = AI, ML, P2[7] = EXTREF, ML, P2[5] = ML, P2[1] = Vss I2C SCL, ML, P1[7] = I2C SDA, ML, P1[3] = XTALin, I2C SCL, ML, P1[1] =	2 277 3 266 4 255 5 244 6 237 7 SSOP 222 8 20 10 159 11 18 12 17 13 16	 PO[4], MR, AI PO[2], MR, AI PO[2], MR, AI P2[6], MR, AI P2[4], MR P2[2], MR P2[0], MR XRES P1[6], MR P1[4], MR, EXTCLK P1[2], MR
V _{ss} =	14 15	P1[0], MR, I2C SDA, XTALout

LEGEND: A = Analog, I = Input, O = Output, MR= Right analog mux bus input, ML= Left analog mux bus input.

Note

5. These are the ISSP pins, which are not High Z after exiting a reset state. See the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for details.

CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

48-Pin Part Pinout

Table 3. 48-Pin Part Pinout (SSOP)

Pin	Ту	pe	Pin Name Description					
No.	Digital	Analog	Fin Name	Description				
1	I/O	I, MR	P0[7]	Analog column mux input, C _{MOD} capacitor pin				
2	I/O	I, ML	P0[5]	Analog column mux input, C _{MOD} capacitor pin				
3	I/O	I, ML	P0[3]	Analog column mux input				
4	I/O	I, ML	P0[1]	Analog column mux input				
5	I/O	I, ML	P2[7]	Direct input to analog block				
6	I/O	ML	P2[5]	Optional SAR ADC external reference				
7	I/O	ML	P2[3]					
8	I/O	ML	P2[1]					
9	Po	wer	V _{DD}	Supply voltage				
10	I/O	ML	P4[5]					
11	I/O	ML	P4[3]					
12	I/O	ML	P4[1]					
13	Po	wer	V _{SS}	Ground connection				
14	I/O	ML	P3[7]					
15	I/O	ML	P3[5]					
16	I/O	ML	P3[3]					
17	I/O	ML	P3[1]					
18			NC	Not connected				
19			NC	Not connected				
20	I/O	ML	P1[7]	I ² C Serial Clock				
21	I/O	ML	P1[5]	I ² C Serial Data				
22	I/O	ML	P1[3]					
23	I/O	ML	P1[1]	Crystal Input (XTALin), I ² C SCL, ISSP-SCLK ^[6]				
24	Power		V _{SS}					
25	I/O	MR	P1[0]	Crystal Output (XTALout), I ² C SDA, ISSP-SDATA ^[6]				
26	I/O	MR	P1[2]					
27	I/O	MR	P1[4]	Optional external clock input				
28	I/O	MR	P1[6]					
29			NC	Not connected				
30			NC	Not connected				
31	I/O	MR	P3[0]					
32	I/O	MR	P3[2]					
33	I/O	MR	P3[4]					
34	I/O	MR	P3[6]					
35	Input		XRES	Active high external reset with internal pull-down				
36	I/O	MR	P4[0]					
37	I/O	MR	P4[2]					
38	I/O	MR	P4[4]					
39	Po	wer	V _{SS}	Ground Connection				
40	I/O	MR	P2[0]					

Figure 4. CY8C21645 and CY8C22645
48-Pin PSoC Device

			_
AI, MR, P0[7] 🗖	•	4	3 – V _{DD}
AI, ML, P0[5]		4	7 – P0[6], MR, Al
AI, ML, P0[3]		4	6 – P0[4], MR, Al
AI, ML, P0[1]	4	4	5 – P0[2], MR, Al
AI, ML, P2[7]	5	4	4 = P0[0], MR, AI
EXTREF, ML, P2[5]	6	43	3 = P2[6], MR, Al
ML, P2[3] 🗖	7	4	2 🗖 P2[4], MR
ML, P2[1] 🗖	8	4	1 🗖 P2[2], MR
V _{DD} 🖛	9	4) <mark>=</mark> P2[0], MR
ML, P4[5] 🗖	10	3'	9 🗖 Vss
ML, P4[3] 🗖	11	3	3 🗖 P4[4], MR
ML, P4[1] 🗖	12	SSOP ³	7 🗖 P4[2], MR
V _{SS} =	13	330F 3	5 = P4[0], MR
ML, P3[7] 🗖	14	3	5 🗖 XRES
ML, P3[5] 🗖	15	3	4 🗖 P3[6], MR
ML, P3[3] 🗖	16	3	3 = P3[4], MR
ML, P3[1] 🗖	17	3.	2 🗖 P3[2], MR
NC 🖛	18	3	1 🗖 P3[0], MR
NC 🗖	19		
I2C SCL, ML, P1[7] 🗖		2	P NC
I2C SDA, ML, P1[5]			3 = P1[6], MR
ML, P1[3] 🗖			7 = P1[4], MR, EXTCLK
XTALin, I2C SCL, ML, P1[1]			5 = P1[2], MR
V _{ss} =	24	2	5 = P1[0], MR, I2C SDA, XTALout

Note
6. These are the ISSP pins, which are not High Z after exiting a reset state. See the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices for details.

Table 3. 48-Pin Part Pinout (SSOP) (continued)

Pin	Ту	pe	Pin Name	Description
No.	Digital	Analog	i ili Nallie	Description
41	I/O	MR	P2[2]	
42	I/O	MR	P2[4]	
43	I/O	I, MR	P2[6]	Direct input to analog block
44	I/O	I, MR	P0[0]	Analog column mux input
45	I/O	I, MR	P0[2]	Analog column mux input
46	I/O	I, MR	P0[4]	Analog column mux input
47	I/O	I, MR	P0[6]	Analog column mux input
48	Po	wer	V _{DD}	Supply voltage

LEGEND: A = Analog, I = Input, O = Output, MR= Right analog mux bus input, ML= Left analog mux bus input

Registers

This section lists the registers of this PSoC device family by mapping tables. For detailed register information, refer to the PSoC Technical Reference Manual for CY8C21x45 and CY8C22x45 devices.

Register Conventions

The register conventions specific to this section are listed in the following table.

Table 4. Abbreviations

Convention	Description
RW	Read and write register or bit(s)
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 5. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88		PWMVREF0	C8	#
PRT2IE	09	RW		49			89		PWMVREF1	C9	#
PRT2GS	0A	RW		4A			8A		IDAC_MODE	CA	RW
PRT2DM2	0B	RW		4B			8B		PWM_SRC	CB	#
PRT3DR	0C	RW		4C			8C		TS_CR0	CC	RW
PRT3IE	0D	RW		4D			8D		TS_CMPH	CD	RW
PRT3GS	0E	RW		4E			8E		TS_CMPL	CE	RW
PRT3DM2	0F	RW		4F			8F		TS_CR1	CF	RW
PRT4DR	10	RW	CSD0_DR0_L	50	R		90		CUR PP	D0	RW
PRT4IE	11	RW	CSD0_DR1_L	51	W		91		STK_PP	D1	RW
PRT4GS	12	RW	CSD0_CNT_L	52	R		92			D2	514/
PRT4DM2	13	RW	CSD0_CR0	53	#		93		IDX_PP	D3	RW
	14		CSD0_DR0_H	54	R		94		MVR_PP	D4	RW
	15		CSD0_DR1_H	55	W		95		MVW_PP	D5	RW
	16		CSD0_CNT_H	56	R		96		I2C0_CFG	D6	RW
	17		CSD0_CR1	57	RW		97		I2C0_SCR	D7	#
	18		CSD1_DR0_L	58	R W		98		I2C0_DR	D8	RW #
	19		CSD1_DR1_L	59			99		I2C0_MSCR INT_CLR0	D9	
	1A 1B		CSD1_CNT_L CSD1_CR0	5A 5B	R #		9A 9B		INT_CLR1	DA DB	RW RW
	1B 1C		CSD1_CR0 CSD1_DR0_H	5B 5C	# R		9B 9C			DB	RW
	1C 1D		CSD1_DR0_H	5D	W		9C 9D		INT_CLR2 INT_CLR3	DD	RW
	1D 1E		CSD1_DK1_H	5D 5E	R		9D 9E		INT_CLR3	DD	RW
	1E 1F		CSD1_CR1	5E	RW		9E 9F		INT_MSK2	DE	RW
DBC00DR0	20	#	AMX IN	60	RW		A0		INT_MSK0	E0	RW
DBC00DR1	20	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBC00DR2	22	RW	PWM_CR	62	RW		A1 A2		INT_VC	E2	RC
DBC00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#		A4				
DBC01DR1	25	W	ASY_CR	65	#		A5				
DBC01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBC01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCC02DR0	28	#	ADC0_CR	68	#		A8		MUL0 X	E8	W
DCC02DR1	29	W	ADC1_CR	69	#		A9		MUL0 Y	E9	W
DCC02DR2	2A	RW	SADC_DH	6A	RW		AA		MUL0_DH	EA	R
DCC02CR0	2B	#	SADC_DL	6B	RW		AB		MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW		AC		ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW		AD		ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW		AE		ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW		AF		ACC0_DR2	EF	RW
DBC10DR0	30	#		70		RDIORI	B0	RW		F0	
DBC10DR1	31	W		71		RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW	ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
DBC10CR0	33	#	ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBC11DR0	34	#		74		RDI0LT1	B4	RW		F4	
DBC11DR1	35	W		75		RDI0RO0	B5	RW		F5	
DBC11DR2	36	RW	ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR0	37	#	ACE01CR2	77	RW	RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#		78		RDI1RI	B8	RW		F8	
DCC12DR1	39	W		79		RDI1SYN	B9	RW		F9	
DCC12DR2	ЗA	RW		7A		RDI1IS	BA	RW		FA	
DCC12CR0	3B	#		7B		RDI1LT0	BB	RW		FB	
	3C	#		7C		RDI1LT1	BC	RW	IDACR_D	FC	RW
DCC13DR0	00							-			D\A/
DCC13DR1	3D	W		7D		RDI1RO0	BD	RW	IDACL_D	FD	RW
		W RW		7D 7E 7F		RDI1RO0 RDI1RO1 RDI1DSM	BD BE BF	RW RW RW	IDACL_D CPU_SCR1 CPU_SCR0	FD FE FF	#

Table 6. Register Map Bank 1 Table: Configuration Space

-	Addr		Table: Config	Addr			Addr			Addr	
Name	(1,Hex)	Access	Name	(1,Hex)	Access	Name	(1,Hex)	Access	Name	(1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1 PRT2IC0	09 0A	RW RW		49 4A			89 8A			C9 CA	
PRT2IC1	0A 0B	RW		4A 4B			8B			CA	
PRT3DM0	00	RW		4B 4C			8C			CC	
PRT3DM1	00 0D	RW		40 4D			8D			CD	
PRT3IC0	0E	RW		4B 4E		-	8E			CE	
PRT3IC1	0E 0F	RW		4F		-	8F			CF	
PRT4DM0	10	RW	CMP0CR1	50	RW		90		GDI_O_IN	D0	RW
PRT4DM1	11	RW	CMP0CR2	51	RW		91		GDI_E_IN	D1	RW
PRT4IC0	12	RW	onn oon2	52			92		GDI_O_OU	D2	RW
PRT4IC1	13	RW	VDAC50CR0	53	RW		93		GDI_E_OU	D3	RW
	14		CMP1CR1	54	RW		94			D4	
	15	1	CMP1CR2	55	RW		95			D5	
	16			56			96			D6	
	17		VDAC51CR0	57	RW		97			D7	
	18		CSCMPCR0	58	#		98		MUX_CR0	D8	RW
	19		CSCMPGOEN	59	RW		99		MUX_CR1	D9	RW
	1A		CSLUTCR0	5A	RW		9A		MUX_CR2	DA	RW
	1B		CMPCOLMUX	5B	RW		9B		MUX_CR3	DB	RW
	1C		CMPPWMCR	5C	RW		9C		DAC_CR1#	DC	RW
	1D		CMPFLTCR	5D	RW		9D		OSC_GO_EN	DD	RW
	1E		CMPCLK1	5E	RW		9E		OSC_CR4	DE	RW
	1F		CMPCLK0	5F	RW		9F		OSC_CR3	DF	RW
DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW	CLK_CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	R
DBC01IN	25	RW	CMP_GO_EN1	65	RW	RTC_M	A5	RW	ADC0_TR	E5	RW
DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW	ADC1_TR	E6	RW
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW	V2BG_TR	E7	RW
DCC02FN	28	RW	ALT_CR1	68	RW	SADC_CR0	A8	RW	IMO_TR	E8	W
DCC02IN	29	RW	CLK_CR2	69	RW	SADC_CR1	A9	RW	ILO_TR	E9	W
DCC02OU	2A	RW	AMUX_CFG1	6A	RW	SADC_CR2	AA	RW	BDG_TR	EA	RW
DBC02CR1	2B	RW	CLK_CR3	6B	RW	SADC_CR3TRIM	AB	RW	ECO_TR	EB	W
DCC03FN	2C	RW	TMP_DR0	6C	RW	SADC_CR4 I2C0 AD	AC	RW	MUX_CR4	EC	RW
DCC03IN	2D	RW	TMP_DR1	6D	RW	I2CU_AD	AD	RW		ED	
DCC03OU DBC03CR1	2E 2F	RW RW	TMP_DR2	6E 6F	RW RW		AE AF			EE	
DBC03CR1 DBC10FN	30	RW	TMP_DR3	70	RVV	RDIORI	B0	RW		F0	
DBC10FN DBC10IN	30	RW		70		RDIOSYN	B0 B1	RW		F0	
DBC100U	31	RW	ACE00CR1	71	RW	RDIOIS	B1 B2	RW		F2	
DBC10CCR1	33	RW	ACE00CR2	73	RW	RDI0LT0	B2 B3	RW		F3	
DBC11FN	34	RW	ACEOUCINZ	74	1.00	RDI0LT1	B3 B4	RW		F4	
DBC11IN	35	RW		75		RDI0RO0	B5	RW		F5	
DBC110U	36	RW	ACE01CR1	76	RW	RDI0R01	B6	RW		F6	
DBC11CR1	37	RW	ACE01CR2	70	RW	RDIODSM	B7	RW	CPU F	F7	RL
DCC12FN	38	RW		78		RDI1RI	B8	RW		F8	
DCC12IN	39	RW		79	1	RDI1SYN	B9	RW		F9	
DCC120U	3A	RW		78 7A	1	RDI1IS	BA	RW	FLS_PR1	FA	RW
DBC12CR1	3B	RW		7B	1	RDI1LT0	BB	RW		FB	
DCC13FN	3C	RW		7C		RDI1LT1	BC	RW		FC	
DCC13IN	3D	RW	ł	7D		RDI1RO0	BD	RW	DAC_CR0#	FD	RW
DCC13OU	3E	RW	Ì	7E		RDI1RO1	BE	RW	CPU_SCR1	FE	#
DBC13CR1	3F	RW		7F	1	RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are Re	eserved and mi		accessed.	1	1	# Access is bit spec	ific.			1	1

Electrical Specifications

This section presents the DC and AC electrical specifications for automotive CY8C21x45 and CY8C22x45 PSoC devices. For the latest electrical specifications, check the most recent data sheet by visiting the web at http://www.cypress.com.

Specifications are valid for A-grade devices at –40 °C \leq T_A \leq 85 °C, T_J \leq 100 °C, and for E-grade devices at –40 °C \leq T_A \leq 125 °C, T_J \leq 150 °C, unless noted otherwise.

Figure 6. Voltage vs. CPU Frequency for E-grade Devices

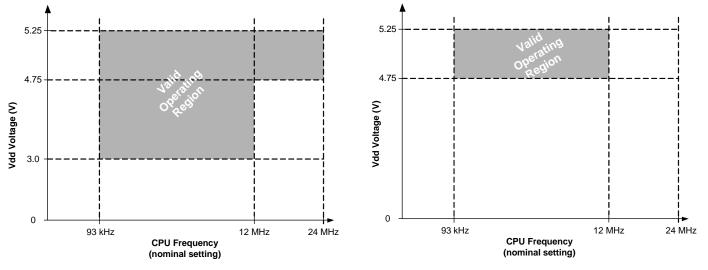
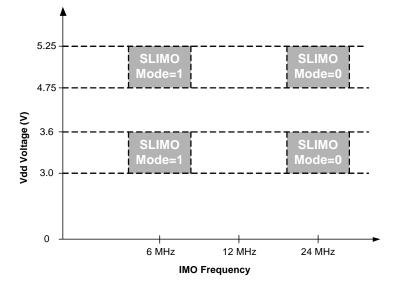



Figure 7. IMO Frequency Trim Options (A-grade Devices Only)

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+150	ç	Recommended storage temperature is 25 °C ± 25 °C. Higher storage temperatures reduce data retention time.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
TBAKETIME	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied A-grade devices E-grade devices	-40 -40		+85 +125	°C O°	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{IOz}	DC voltage applied to tristate	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	-	V	Human body model ESD
LU	Latch up current	-	-	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature A-grade devices E-grade devices	-40 -40	-	+85 +125	°C ℃	
TJ	Junction temperature A-grade devices E-grade devices	-40 -40		+100 +135	°C	The temperature rise from ambient to junction is package specific. See Table 24 on page 27. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip Level Specifications

Table 9 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 9. DC Chip Level Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
V _{DD}	Supply voltage A-grade devices E-grade devices	3.0 4.75	-	5.25 5.25	V V	See Table 14 on page 19
I _{DD}	Supply current A-grade devices, $3.0 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ A-grade devices, $4.75 \text{ V} \le \text{V}_{DD} \le 5.25 \text{ V}$ E-grade devices	_ _ _	4 7 8	7 12 15	mA mA mA	CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, Analog blocks disabled
I _{SB}	Sleep (mode) current A-grade devices, 3.0 V \leq V _{DD} \leq 3.6 V A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	- - -	3 4 4	12 25 25	μΑ μΑ μΑ	Everything disabled except ILO, POR, LVD, Sleep Timer, and WDT circuits
I _{SBXTL}	Sleep (mode) current with ECO A-grade devices, 3.0 V \leq V _{DD} \leq 3.6 V A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V E-grade devices	_ _ _	4 5 5	13 26 26	μΑ μΑ μΑ	Everything disabled except ECO, POR, LVD, Sleep Timer, and WDT circuits
V _{REF}	Reference voltage (Bandgap)	1.275	1.30	1.325	V	Trimmed for appropriate V _{DD} setting.

DC General Purpose I/O Specifications

Table 10 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	_	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (80 mA maximum combined I_{OH} budget)
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (100 mA maximum combined I_{OL} budget)
I _{OH}	High-level source current	10	-	-	mA	$V_{OH} \ge V_{DD} - 1.0$ V, see the limitations of the total current in the note for V_{OH} .
I _{OL}	Low-level sink current	25	-	_	mA	$V_{OL} \le 0.75$ V, see the limitations of the total current in the note for V_{OL} .
V _{IL}	Input low level	-	-	0.8	V	
V _{IH}	Input high level	2.1	-		V	
V _H	Input hysteresis	-	60	_	mV	
۱ _{IL}	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C

Table 10. DC GPIO Specifications

DC Operational Amplifier Specifications

The following table lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25° C, unless specified otherwise, and are for design guidance only.

Table 11. DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
I _{SOA}	Supply current (absolute value) A-grade devices E-grade devices	-	-	30 35	μA μA	
TCV _{OSOA}	Average input offset voltage drift	Ι	10	-	μV/°C	
I _{EBOA} [7]	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.5	-	V _{DD} – 1	V	

Note

7. Atypical behavior: I_{EBOA} of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1 – 7 for the lowest leakage of 200 nA.

DC SAR10 ADC Specifications

Table 12 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 12. DC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ADCREF}	Reference voltage at pin P2[5] when configured as ADC reference voltage	3.0	_	5.25	V	When V_{REF} is buffered inside ADC, the voltage level at P2[5] (when configured as ADC reference voltage) must be always maintained to be at least 300 mV less than the chip supply voltage level on V_{DD} pin. ($V_{ADCREF} < V_{DD}$)
IADCREF	Current into P2[5] when configured as ADC $\mathrm{V}_{\mathrm{REF}}$	_	Ι	100	μA	Disables the internal voltage reference buffer
INL _{ADC}	Integral nonlinearity A-grade devices E-grade devices	3.0 5.0		3.0 5.0	LSbit LSbit	10-bit resolution
DNL _{ADC}	Differential nonlinearity A-grade devices E-grade devices	-1.5 -4.0		1.5 4.0	LSbit LSbit	10-bit resolution

DC Analog Mux Bus Specifications

Table 13 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 13. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400	Ω	
R _{GND}	Resistance of initialization switch to GND	_	_	800	Ω	

DC POR and LVD Specifications

Table 14 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR1}	V _{DD} value for PPOR trip PORLEV[1:0] = 01b	_	2.82	2.95	v	V _{DD} must be greater than or equal to 3.0 V during startup,
V _{PPOR2}	PORLEV[1:0] = 10b	_	4.55	4.73	v	reset from the XRES pin, or
V PPOR2			т.00	4.75	v	reset from Watchdog. V _{PPOR1} is only applicable to A-grade devices.
	V _{DD} value for LVD trip					
V _{LVD2}	VM[2:0] = 010b	2.95	3.02	3.09	V	
V _{LVD3}	VM[2:0] = 011b	3.06	3.13	3.20	V	
V _{LVD4}	VM[2:0] = 100b	4.37	4.48	4.55	V	
V _{LVD5}	VM[2:0] = 101b	4.50	4.64	4.75	V	
V _{LVD6}	VM[2:0] = 110b	4.62	4.73	4.83	V	
V _{LVD7}	VM[2:0] = 111b	4.71	4.81	4.95	V	

DC Programming Specifications

Table 15 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 15. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDIWRITE}	Supply voltage for flash write operations	3.0	-	-	V	
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	_	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	_	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[8, 9] A-grade devices E-grade devices	1,000 100	_	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[9, 10] CY8C21x45 A-grade devices CY8C22x45 A-grade devices CY8C21x45 E-grade devices CY8C22x45 E-grade devices	128,000 256,000 12,800 25,600			_ _ _ _	Erase/write cycles
Flash _{DR}	Flash data retention ^[9] A-grade devices E-grade devices	10 10		_	Years Years	

Notes

For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information. 9.

10. The maximum total number of allowed erase/write cycles is the minimum Flash ENPB value multiplied by the number of flash blocks in the device.

The erase/write cycle limit per block (Flash_{ENPB}) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V. 8.

AC Electrical Characteristics

AC Chip Level Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and $-40 \text{ }^{\circ}\text{C}$ to $85 \text{ }^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40 \text{ }^{\circ}\text{C}$ to $85 \text{ }^{\circ}\text{C}$. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and $-40 \text{ }^{\circ}\text{C}$ to $125 \text{ }^{\circ}\text{C}$. Typical parameters apply to 5 V and 3.3 V at $25 \text{ }^{\circ}\text{C}$, unless specified otherwise, and are for design guidance only.

Table 16.	AC Chip-Level	Specifications
-----------	---------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	Internal main oscillator frequency for 24 MHz A-grade devices, 4.75 V \leq V _{DD} \leq 5.25 V A-grade devices, 3.0 V \leq V _{DD} \leq 3.6 V E-grade devices	22.8 22.5 22.3	24 24 24	25.2 ^[11] 25.5 ^[11] 25.7 ^[11]	MHz MHz MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 7 on page 14.
F _{IMO6}	Internal main oscillator frequency for 6 MHz A-grade devices E-grade devices	5.5 5.5	6 6	6.5 ^[11] 6.5 ^[11]	MHz MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 7 on page 14.
F _{CPU1}	CPU frequency (5 V V _{DD} operation) A-grade devices E-grade devices	0.089 0.089		25.2 ^[11] 12.6 ^[11]	MHz MHz	
F _{CPU2}	CPU frequency (3.3 V V _{DD} operation)	0.089	-	12.6 ^[11]	MHz	A-grade devices only
F _{BLK5}	Digital PSoC block frequency (5 V V _{DD} operation) A-grade devices E-grade devices	0 0	48 24	50.4 ^[11, 12] 25.2 ^[11, 12]	MHz MHz	Refer to Table 19 on page 23.
F _{BLK33}	Digital PSoC block frequency (3.3 V V _{DD} operation)	0	24	24.6 ^[11]	MHz	A-grade devices only
F _{32K1}	ILO frequency	15	32	75	kHz	This specification applies when the ILO has been trimmed.
F _{32KU}	ILO untrimmed frequency	5	-	-	kHz	After a reset and before the M8C processor starts to execute, the ILO is not trimmed.
Jitter32k	32 kHz RMS period jitter	-	100	-	ns	
T _{XRST}	External reset pulse width	10	-	-	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Fout48M	48 MHz output frequency	45.6	48.0	50.4 ^[11]	MHz	
Jitter24M1	24 MHz period jitter (IMO)	-	300	600	ps	
F _{MAX}	Maximum frequency of signal on row input or row output	-	-	12.6	MHz	
SR _{POWERUP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.
T _{POWERUP}	Time between end of POR state and CPU code execution	-	16	100	ms	Power-up from 0 V.

Figure 8. 24 MHz Period Jitter (IMO) Timing Diagram

Notes

11. Accuracy derived from IMO with appropriate trim for V_{DD} range

12. Refer to the individual user module data sheets for information on maximum frequencies for user modules.

Figure 9. 32 kHz Period Jitter (ILO) Timing Diagram

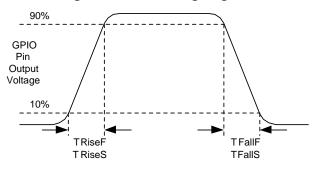

AC General Purpose I/O Specifications

Table 17 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 17. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.6	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF A-grade devices E-grade devices	3 3	-	18 24	ns ns	Refer to Figure 10
TFallF	Fall time, normal strong mode, Cload = 50 pF A-grade devices E-grade devices	2 2		18 28	ns ns	Refer to Figure 10
TRiseS	Rise time, slow strong mode, Cload = 50 pF A-grade devices E-grade devices	7 7	27 32		ns ns	Refer to Figure 10
TFallS	Fall time, slow strong mode, Cload = 50 pF A-grade devices E-grade devices	7 7	22 28		ns ns	Refer to Figure 10

Figure 10. GPIO Timing Diagram

AC Operational Amplifier Specifications

Table 18 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 18. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP}	Comparator mode response time, 50 mV	-	_	100	ns	

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Function	Description	Min	Тур	Max	Units	Notes
All	Maximum block clocking frequency (\geq 4.75 V)	-	_	50.4	MHz	Note [14]
Functions	Maximum block clocking frequency (< 4.75 V)	-	-	25.2	MHz	V _{DD} < 4.75 V and/or temperature > 85 °C
Timer	Capture pulse width	50 ^[13]	_	_	ns	
	Maximum frequency, no capture	-	—	50.4	MHz	Note [14]
	Maximum frequency, with or without capture	-	—	25.2	MHz	
Counter	Enable pulse width	50 ^[13]	—	_	ns	
	Maximum frequency, no enable input	-	—	50.4	MHz	Note [14]
	Maximum frequency, enable input	-	—	25.2	MHz	
Dead Band	Kill pulse width:					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	50 ^[13]	—	-	ns	
	Disable mode	50 ^[13]	—	-	ns	
	Maximum frequency	-	—	50.4	MHz	Note [14]
CRCPRS (PRS Mode)	Maximum input clock frequency	-	-	50.4	MHz	Note [14]
CRCPRS (CRC Mode)	Maximum input clock frequency	-	-	25.2	MHz	
SPIM	Maximum input clock frequency	-	-	8.4	MHz	Maximum nominal data rate is 4 Mbps due to 2 x overclocking
SPIS	Maximum input clock frequency	-	—	4.2	MHz	
	Width of SS_ negated between transmissions	50 ^[13]	_	_	ns	
Transmitter	Maximum input clock frequency	-	-	25.2	MHz	Maximum nominal baud rate is 3 Mbaud due to 8 × overclocking
	Maximum input clock frequency with $V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	Maximum nominal baud rate is 6 Mbaud due to 8 × overclocking
Receiver	Maximum input clock frequency	-	_	25.2	MHz	Maximum nominal baud rate is 3 Mbaud due to 8 × overclocking
	Maximum input clock frequency with $V_{DD} \ge 4.75$ V, 2 stop bits	-	_	50.4	MHz	Maximum nominal baud rate is 6 Mbaud due to 8 × overclocking

Table 19. AC Digital Block Specifications

Notes

13.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

14. 4.75 V \leq V $_{DD}$ \leq 5.25 V at –40 °C to 85 °C

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 20. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High period	20.0	-	5300	ns	
-	Low period	20.0	-	_	ns	
-	Power-up IMO to switch	150	-	_	μS	

AC SAR10 ADC Specifications

Table 21 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 21. AC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{INADC}	SAR ADC input clock frequency	-	-	2		The sample rate of the SAR10 ADC is equal to F_{INADC} divided by 13.

AC Programming Specifications

Table 22 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

Table 22. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall time of SCLK	1	-	20	ns	
T _{SSCLK}	Data setup time to falling edge of SCLK	40	-	_	ns	
T _{HSCLK}	Data hold time from falling edge of SCLK	40	-	_	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
F _{SCLK3}	Frequency of SCLK	0	-	6	MHz	$V_{DD} \le 3.6 \text{ V}$
T _{ERASEB}	Flash erase time (block)	-	10	40 ^[15]	ms	
T _{WRITE}	Flash block write time	-	40	160 ^[15]	ms	
T _{DSCLK}	Data out delay from falling edge of SCLK	-	-	55	ns	V _{DD} > 3.6 V, 30 pF load
T _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	65	ns	3.0 V \leq V_{DD} \leq 3.6 V, 30 pF load
T _{PRGH}	Total flash block program time (T _{ERASEB} + T _{WRITE}), Hot	-	-	100 ^[15]	ms	T _J ≥0 °C
T _{PRGC}	Total flash block program time (T _{ERASEB} + T _{WRITE}), Cold	_	-	200 ^[15]	ms	T _J < 0 °C

Note

15. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

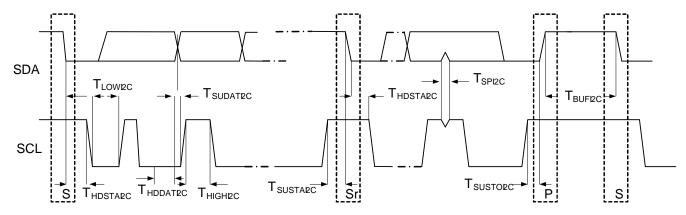

AC I²C Specifications

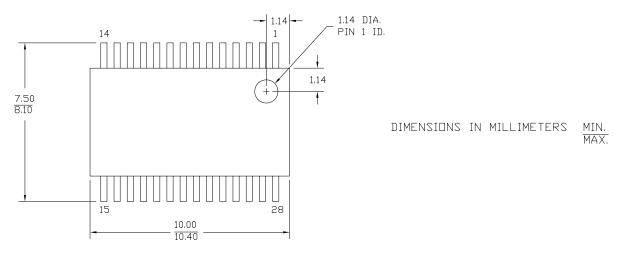
Table 23 lists the guaranteed maximum and minimum specifications for automotive A-grade and E-grade devices. Unless otherwise noted, all specifications in the table apply to A-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 85 °C, or 3.0 V to 3.6 V and -40 °C to 85 °C. Unless otherwise noted, all specifications in the table also apply to E-grade devices for the voltage and temperature ranges of: 4.75 V to 5.25 V and -40 °C to 125 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C, unless specified otherwise, and are for design guidance only.

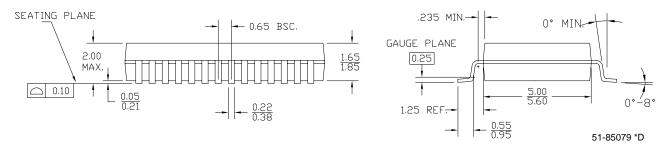
Table 23. AC Characteristics o	of the I ² C SDA and SCL Pins
--------------------------------	--

Symbol	Description	Standa	d Mode	Fast	Units	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100 ^[16]	0	400 ^[16]	kHz
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	_	0.6	-	μS
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	GHI2C HIGH period of the SCL clock		-	0.6	_	μS
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
T _{HDDATI2C}	Data hold time	0	-	0	-	μS
T _{SUDATI2C}	Data setup time	250	-	100 ^[17]	_	ns
T _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS
T _{BUFI2C}			_	1.3	-	μS
T _{SPI2C}			_	0	50	ns

Figure 11. Definition for Timing for Fast/Standard Mode on the I²C Bus

Notes


- 16. F_{SCLI2C} is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the F_{SCLI2C} specification adjusts accordingly.
 17. A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement T_{SUDATI2C} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + T_{SUDATI2C} = 1000 + 250 = 1250 ns (according to the standard-mode I²C-bus specification) before the SCL line is released.



Packaging Information

This section provides the packaging specifications for the automotive CY8C21x45 and CY8C22x45 PSoC devices. The thermal impedances for each package and the typical package capacitance on crystal pins are given.

Package Dimensions

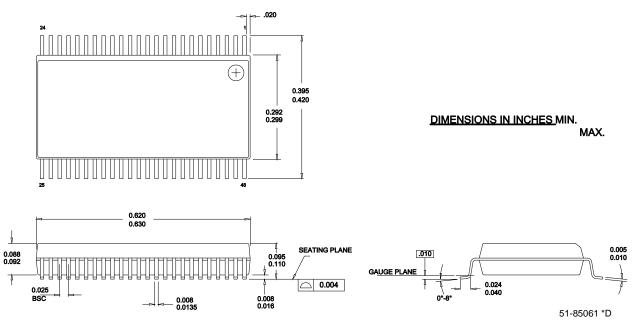


Figure 12. 28-Pin (210-Mil) SSOP

Figure 13. 48-Pin (300-Mil) SSOP

Thermal Impedances

Package 28-pin SSOP 48-pin SSOP

Table 24. Thermal Impedances per Package

Capacitance on Crystal Pins Table 25. Typical Package Capacitance on Crystal Pins

48-pin SSOP

 e poi i aonage		
Typical θ _{JA} ^[18]	Package	Package Capacitance
97.6 °C/W	28-pin SSOP	2.8 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

69 °C/W

Table 26. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[19]	Maximum Peak Temperature
28-pin SSOP	240 °C	260 °C
48-pin SSOP	240 °C	260 °C

Notes

18. $T_J = T_A + POWER \times \theta_{JA}$ 19. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

3.3 pF

CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

Tape and Reel Information

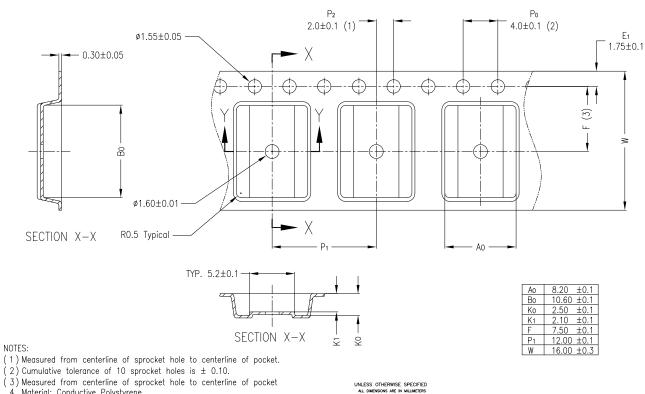
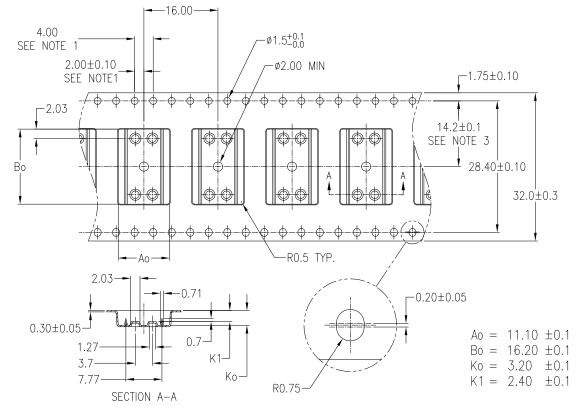


Figure 14. 28-Pin SSOP Carrier Tape Drawing

4 Material: Conductive Polystyrene


5 Camber not to exceed 1mm in 100mm 6 Supplier P/N: SSOP28-3 CL3 22B3 Lxx W16

51-51100 *B

CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

Figure 15. 48-Pin SSOP Carrier Tape Drawing

UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE IN MILLIMETERS

NOTES:

1.	10	SPROCKET	HOLE	PITCH	CUMULATIVE	TOLERANCE	±0.2
----	----	----------	------	-------	------------	-----------	------

2. CAMBER IN COMPLIANCE WITH EIA 481

3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

51-51104 *D

Table 27. Tape and Reel Specifications

Package	Cover Tape Width (mm)	Hub Size (inches)	Minimum Leading Empty Pockets	Minimum Trailing Empty Pockets	Standard Full Reel Quantity
28-Pin SSOP	13.3	7	42	25	1000
48-Pin SSOP	25.5	4	32	19	1000

Development Tool Selection

This section presents the development tools available for the automotive CY8C21x45 and CY8C22x45 families.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store. The online store also has the most up to date information on kit contents, descriptions, and availability.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the contents of specific memory locations. Advanced emulation features are also supported through PSoC Designer. The kit includes:

- ICE-Cube unit
- 28-pin PDIP emulation pod for CY8C29466-24PXI
- 28-pin CY8C29466-24PXI PDIP PSoC device samples (two)
- PSoC Designer software CD
- ISSP cable
- MiniEval socket programming and evaluation board
- Backward compatibility cable (for connecting to legacy pods)
- Universal 110/220 power supply (12 V)
- European plug adapter
- USB 2.0 cable
- Getting Started guide
- Development kit registration form

CY3280-22X45 Universal CapSense Controller Board

The CY3280-22X45 controller board is an additional controller board for the CY3280-BK1 Universal CapSense Controller Kit. The Universal CapSense Controller kit is designed for easy prototyping and debug of CapSense designs with pre-defined control circuitry and plug-in hardware. The CY3280-22X45 kit contains no plug-in hardware. Therefore, it is only usable if plug-in hardware is purchased as part of the CY3280-BK1 kit or other separate kits. The kit includes:

- CY3280-22X45 universal CapSense controller board
- CY3280-22X45 universal CapSense controller board CD
- DC power supply
- Printed documentation

CY3280-CPM1 CapSensePlus Module

The CY3280-CPM1 CapSensePlus Module is a plug-in module board for the CY3280-22X45 CapSense controller board kit. This plug-in module has no capacitive sensors on it. Instead, it has other general circuitry (such as a seven-segment display, potentiometer, LEDs, buttons, thermistor) that can be used to develop applications that require capacitive sensing along with other additional functionality. To use this kit, a CY3280-22X45 kit is required.

Evaluation Tools

All evaluation tools can be purchased from the Cypress online store. The online store also has the most up-to-date information on kit contents, descriptions, and availability.

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, an RS-232 port, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-pin CY8C29466-24PXI PDIP PSoC device sample (two)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows the user to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 28. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

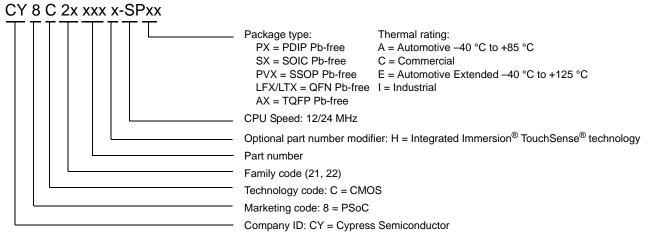
Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. This software is free and can be downloaded from http://www.cypress.com. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240-V power supply, Euro-Plug adapter
- USB 2.0 cable

Part Number	Pin Package	Pod Kit ^[20]	Foot Kit ^[21]	Prototyping Module	Adapter ^[22]
CY8C21345-24PVXA CY8C21345-12PVXE CY8C22345-24PVXA CY8C22345H-24PVXA CY8C22345H-24PVXA CY8C22345-12PVXE	28-pin SSOP	CY3250-22345	CY3250-28SSOP-FK	_	AS-28-28-02SS-6ENP-GANG
CY8C21645-24PVXA CY8C21645-12PVXE CY8C22645-24PVXA CY8C22645-12PVXE	48-pin SSOP	_	-	-	AS-48-48-01SS-6-GANG

Notes

- 20. Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.
- 21. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 22. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.


Ordering Information

The following table lists the key package features and ordering codes of the automotive CY8C21x45 and CY8C22x45 device families. Table 29. PSoC Device Family Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
28-pin (210-Mil) SSOP	CY8C21345-24PVXA	8 K	512	–40 °C to +85 °C	4	6	24	24	0	Yes
28-pin (210-Mil) SSOP (Tape and Reel)	CY8C21345-24PVXAT	8 K	512	–40 °C to +85 °C	4	6	24	24	0	Yes
28-pin (210-Mil) SSOP	CY8C21345-12PVXE	8 K	512	–40 °C to +125 °C	4	6	24	24	0	Yes
28-pin (210-Mil) SSOP (Tape and Reel)	CY8C21345-12PVXET	8 K	512	–40 °C to +125 °C	4	6	24	24	0	Yes
28-pin (210-Mil) SSOP	CY8C22345-24PVXA	16 K	1 K	–40 °C to +85 °C	8	6	24	24	0	Yes
28-pin (210-Mil) SSOP (Tape and Reel)	CY8C22345-24PVXAT	16 K	1 K	–40 °C to +85 °C	8	6	24	24	0	Yes
28-pin (210-Mil) SSOP	CY8C22345H-24PVXA	16 K	1 K	–40 °C to +85 °C	8	6	24	24	0	Yes
28-pin (210-Mil) SSOP (Tape and Reel)	CY8C22345H-24PVXAT	16 K	1 K	–40 °C to +85 °C	8	6	24	24	0	Yes
28-pin (210-Mil) SSOP	CY8C22345-12PVXE	16 K	1 K	–40 °C to +125 °C	8	6	24	24	0	Yes
28-pin (210-Mil) SSOP (Tape and Reel)	CY8C22345-12PVXET	16 K	1 K	–40 °C to +125 °C	8	6	24	24	0	Yes
48-pin (300-Mil) SSOP	CY8C21645-24PVXA	8 K	512	–40 °C to +85 °C	4	6	38	38	0	Yes
48-pin (300-Mil) SSOP (Tape and Reel)	CY8C21645-24PVXAT	8 K	512	–40 °C to +85 °C	4	6	38	38	0	Yes
48-pin (300-Mil) SSOP	CY8C21645-12PVXE	8 K	512	–40 °C to +125 °C	4	6	38	38	0	Yes
48-pin (300-Mil) SSOP (Tape and Reel)	CY8C21645-12PVXET	8 K	512	–40 °C to +125 °C	4	6	38	38	0	Yes
48-pin (300-Mil) SSOP	CY8C22645-24PVXA	16 K	1 K	–40 °C to +85 °C	8	6	38	38	0	Yes
48-pin (300-Mil) SSOP (Tape and Reel)	CY8C22645-24PVXAT	16 K	1 K	–40 °C to +85 °C	8	6	38	38	0	Yes
48-pin (300-Mil) SSOP	CY8C22645-12PVXE	16 K	1 K	–40 °C to +125 °C	8	6	38	38	0	Yes
48-pin (300-Mil) SSOP (Tape and Reel)	CY8C22645-12PVXET	16 K	1 K	–40 °C to +125 °C	8	6	38	38	0	Yes

Ordering Code Definitions

CY8C21345, CY8C21645 CY8C22345, CY8C22345H, CY8C22645

Document Conventions

Acronyms Used

Table 30. Acronyms

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
AEC	Automotive Electronics Council
API	application programming interface
CPU	central processing unit
CRC	cyclic redundancy check
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
ERM	eccentric rotating motor
FSR	full scale range
GPIO	general purpose I/O
ICE	in-circuit emulator
IDE	integrated development environment
I/O	input/output
ILO	internal low-speed oscillator
IMO	internal main oscillator
IPOR	imprecise power on reset
LSbit	least significant bit
LVD	low voltage detect
MSbit	most significant bit
PC	program counter
PCB	printed circuit board
POR	power on reset
PPOR	precision power on reset
PRS	pseudo-random sequence
PSoC	Programmable System-on-Chip
PWM	pulse width modulator
RAM	random access memory
ROM	read only memory
SC	switched capacitor
SMP	switch mode pump
SPI	serial peripheral interface
UART	universal asynchronous receiver/transmitter

Units of Measure

Table 31. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
dB	decibels
fF	femto farad
Hz	hertz
KB	1024 bytes
Kbit	1024 bits
kHz	kilohertz
kΩ	kilohm
LSbit	least significant bit
Mbaud	megabaud
Mbps	megabits per second
MHz	megahertz
MΩ	megaohm
μΑ	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolts
μVrms	microvolts root-mean-square
μW	microwatts
mA	milliampere
ms	millisecond
mV	millivolts
nA	nanoampere
ns	nanosecond
nV	nanovolts
Ω	ohm
рА	picoampere
pF	picofarad
рр	peak-to-peak
ppm	parts per million
ps	picosecond
sps	samples per second
σ	sigma: one standard deviation
V	volts

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h', '0x', or 'b' are decimal.

Document History Page

Document Title: CY8C21345, CY8C21645, CY8C22345, CY8C22345H, CY8C22645 Automotive PSoC [®] Programmable System-on-Chip™ Document Number: 001-55397				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	2759868	VIVG	09/04/09	New Datasheet
*A	2788690	VIVG	10/20/09	Added 48 SSOP to the marketing part numbers. Corrected the I _{SOA} spec in table 13/14. Changed the ThetaJA values based on PE inputs.
*В	2792800	VIVG	10/26/09	Corrected typo in ordering information table (Digital I/O for 48-SSOP devices)
*C	2822630	ВТК	12/07/09	Added CY8C22345H devices and updated Features section and PSoC Functional Overview section to include haptics device information. Updated Features section. Added Contents section. Updated PSoC Functional Overview section. Updated Block Diagram of device. Updated PSoC Device Character- istics table. Updated Pinouts section. Fixed issues with the Register Map tables. Added a figure for SLIMO configuration. Updated footnotes for the DC Programming Specifications table. Corrected V _{DDIWRITE} and Flash _{ENT} electrical specifications. Updated Ordering Information section. Added Development Tool Selection section. Combined 5 V DC Operational Amplifier Specifications table with 3.3 V DC Operational Amplifier Specifications table. Updated all AC speci- fications to conform to 5% IMO accuracy and 8.33% SLIMO accuracy. Split up electrical specifications for A-grade and E-grade devices in the Absolute Maximum Ratings, Operating Temperature, DC Chip Level Specifications, DC Programming Specifications, and AC Chip-Level Specifications tables. Added Solder Reflow Peak Temperature table. Added T _{PRGH} , T _{PRGC} , I _{OL} , I _{OH} , F _{32KU} , DC _{ILO} , and T _{POWERUP} electrical specifications. Added maximum values and updated typical values for T _{ERASEB} and T _{WRITE} electrical specifications. Replaced T _{RAMP} electrical specification with SR _{POWERUP} electrical specification. This revision fixes CDT 62018.
*D	2905459	NJF	04/06/10	Updated Cypress website links Added T _{BAKETEMP} , T _{BAKETIME} , and Fout48M electrical specifications Removed sections 'Third Party Tools' 'Build a PSoC Emulator into your Board' Updated package diagrams Updated Ordering Information table Updated Solder Reflow Peak Temperature specifications. Updated the Getting Started and Designing with PSoC Designer sections. Converted data sheet from Preliminary to Final Fixes from CDT 72358: Deleted 5% oscillator accuracy reference in the Features section. Deleted reference to a specific SAR10 ADC sample rate in the Analog System section. Updated the following Electrical Specifications: I _{DD} , I _{SB} , I _{SBXTL} V _{REF} , V _{CMOA} , I _{ADCREF} , INL _{ADC} , DNL _{ADC} , V _{PPOR2} , Flash _{DR} , F _{IMO24} , TRiseF, TFallF, TRiseS, TFallS. Deleted the SPS _{ADC} electrical specification, the DC Low Power Comparator Specifications, the AC Low Power Comparator Specifica- tions, and the AC Analog Mux Bus Specifications.
*E	2915673	VIVG	04/16/10	Post to external web
*F	2991841	ВТК	07/23/10	Added a clarifying note to the V _{PPOR1} electrical specification. Added CY8C22345-12PVXE(T) devices. Moved Document Conventions to the end of the document. This revision fixes the following CDTs: 72476, 75127, 78329.
*G	3037161	BTK	09/23/10	Added CY8C21345-12PVXE(T) devices to the Ordering Information section.
*H	3085024	ВТК	11/12/10	Added CY8C21645-12PVXE(T), CY8C21645-24PVXA(T), CY8C22645-12PVXE(T), and CY8C22645-24PVXA(T) devices to the Ordering Information section. Refer to CDT 87793.
*	3200275	BTK	03/18/11	Added tape and reel packaging information (CDT 96026).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-55397 Rev. *I

Revised March 18, 2011

Page 36 of 36

PSoC Designer™ is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.