NEC

User's Manual

V850E/MA1

32-Bit Single-Chip Microcontroller

Hardware

μPD703103A μPD703105A μPD703106A μPD703106A(A) μPD703107A μPD703107A(A) μPD70F3107A μPD70F3107A(A)

Document No. U14359EJ5V1UD00 (5th edition) Date Published April 2004 N CP(K)

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of January, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-675800

Filiale Italiana

Milano, Italy Tel: 02-66 75 41

Branch The Netherlands

Eindhoven. The Netherlands Tel: 040-2445845

Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 6253-8311

J04.1

INTRODUCTION

Readers

This manual is intended for users who wish to understand the functions of the V850E/MA1 to design application systems using the V850E/MA1.

The target products are as follows:

- Standard models: μPD703103A, 703105A, 703106A, 703107A, and 70F3107A
- Special models: $\mu PD703106A(A)^{Note}$, 703107A(A) Note , and 70F3107A(A)

Note Under development

Purpose

The purpose of this manual is for users to gain an understanding of the hardware functions of the V850E/MA1.

Organization

The **V850E/MA1 User's Manual** is divided into two parts: Hardware (this manual) and Architecture **(V850E1 User's Manual Architecture)**. The organization of each manual is as follows:

Hardware

- _____
- Pin functionsCPU function
- Internal peripheral functions
- Flash memory programming
- Electrical specifications

Architecture

- Data type
- Register set
- Instruction format and instruction set
- · Interrupts and exceptions
- Pipeline operation

How to Read This Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering, logic circuits, and microcontrollers.

- Cautions 1. Application examples in this manual are intended for the "standard" quality models for general-purpose electronic systems.

 When using an example in this manual for an application that requires the "special" quality grade, evaluate each component and circuit to be actually used to see if they satisfy the required quality standard.
 - 2. To use this manual for the products of special grade, take it as follows:

 μ PD703106A \rightarrow μ PD703106A(A) μ PD703107A \rightarrow μ PD703107A(A) μ PD70F3107A \rightarrow μ PD70F3107A(A)

- To find the details of a register where the name is known
 - → Refer to APPENDIX C REGISTER INDEX.
- To understand the details of an instruction function
 - →Refer to the V850E1 Architecture User's Manual.

- To know the electrical specifications of the V850E/MA1
 - →Refer to the CHAPTER 17 ELECTRICAL SPECIFICATIONS.
- To understand the overall functions of the V850E/MA1
 - \rightarrow Read this manual according to the **CONTENTS**.
- · How to interpret the register format
 - → For a bit whose bit number is enclosed in brackets, its bit name is defined as a reserved word in the device file.

The mark ★ shows major revised points.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: \overline{xxx} (overscore over pin or signal name)

Memory map address: Higher addresses on the top and lower addresses on

the bottom

Note: Footnote for item marked with **Note** in the text

Caution: Information requiring particular attention

Remark: Supplementary information Numeric representation: Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating power of 2 (address space, memory

capacity): $K \text{ (kilo): } 2^{10} = 1,024$

M (mega): $2^{20} = 1,024^2$ G (giga): $2^{30} = 1,024^3$

Data type: Word ... 32 bits

Halfword ... 16 bits Byte ... 8 bits

Related documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document related to V850E/MA1

Document Name	Document No.
V850E1 Architecture User's Manual	U14559E
V850E/MA1 Hardware User's Manual	This manual
V850E/MA1 Hardware Application Note	U15179E
V850 Series Flash Memory Self-Programming Library User's Manual	U16573E

Document related to development tools (User's Manuals)

Document Name		Document No.
IE-V850E-MC, IE-V850E-MC-A (In-circuit emulator)	U14487E	
IE-703107-MC-EM1 (In-circuit emulator option board)		U14481E
CA850 Ver. 2.50 C compiler package	Operation	U16053E
	C Language	U16054E
	Assembly Language	U16042E
PM plus Ver. 5.10		U16569E
ID850 Ver. 2.50 Integrated Debugger	Operation	U16217E
SM850 Ver. 2.40 System Simulator	Operation	U15182E
SM850 Ver. 2.00 or Later System Simulator	External Part User Open Interface Specification	U14873E
RX850 Ver. 3.13 or later Real-time OS	Basics	U13430E
	Installation	U13410E
	Technical	U13431E
RX850 Pro Ver. 3.15 Real-time OS	Basics	U13773E
	Installation	U13774E
	Technical	U13772E
RD850 Ver. 3.01 Task Debugger		U13737E
RD850 Pro Ver. 3.01 Task Debugger		U13916E
AZ850 Ver. 3.10 System Performance Analyzer	U14410E	
PG-FP4 Flash Memory Programmer	U15260E	

CONTENTS

CHAPT	ER 1 II	NTRODUCTION	18
1.1	Outline	.	18
1.2	Feature	es	19
1.3	Applica	ations	21
1.4	Orderin	ng Information	21
1.5	Pin Co	nfiguration	22
1.6	Function	on Blocks	26
	1.6.1	Internal block diagram	26
	1.6.2	On-chip units	27
1.7	Differe	nces Among Products	29
СНАРТ	ER 2 F	PIN FUNCTIONS	30
2.1	List of	Pin Functions	30
2.2	Pin Sta	itus	37
2.3	Descri	ption of Pin Functions	38
2.4	Pin I/O	Circuits and Recommended Connection of Unused Pins	53
2.5	Pin I/O	Circuits	55
СНАРТ	ER 3 C	CPU FUNCTION	56
3.1	Feature	9S	56
3.2	CPU R	egister Set	57
	3.2.1	Program register set	58
	3.2.2	System register set	59
3.3	Operat	ing Modes	62
	3.3.1	Operating modes	62
	3.3.2	Operating mode specification	63
3.4	Addres	ss Space	64
	3.4.1	CPU address space	64
	3.4.2	Image	65
	3.4.3	Wrap-around of CPU address space	66
	3.4.4	Memory map	67
	3.4.5	Area	69
	3.4.6	External memory expansion	74
	3.4.7	Recommended use of address space	75
	3.4.8	Peripheral I/O registers	77
	3.4.9	Specific registers	86
	3.4.10	System wait control register (VSWC)	86
	3.4.11	Cautions	86
СНАРТ	ER 4 E	BUS CONTROL FUNCTION	87
4.1	Feature	es	87
4.2	Bus Co	ontrol Pins	88
	4.2.1	Pin status during internal ROM, internal RAM, and on-chip peripheral I/O access	88

4.3	Memor	y Block Function	89
	4.3.1	Chip select control function	90
4.4	Bus Cy	cle Type Control Function	93
4.5	Bus Ad	ccess	95
	4.5.1	Number of access clocks	95
	4.5.2	Bus sizing function	96
	4.5.3	Endian control function	97
	4.5.4	Big endian method usage restrictions in NEC Electronics development tools	98
	4.5.5	Bus width	100
4.6	Wait F	unction	111
	4.6.1	Programmable wait function	111
	4.6.2	External wait function	116
	4.6.3	Relationship between programmable wait and external wait	116
	4.6.4	Bus cycles in which wait function is valid	117
4.7	Idle Sta	ate Insertion Function	118
4.8	Bus Ho	old Function	119
	4.8.1	Function overview	119
	4.8.2	Bus hold procedure	120
	4.8.3	Operation in power-save mode	120
	4.8.4	Bus hold timing (SRAM)	121
	4.8.5	Bus hold timing (EDO DRAM)	123
	4.8.6	Bus hold timing (SDRAM)	127
4.9	Bus Pr	iority Order	131
4.10	Bound	ary Operation Conditions	131
	4.10.1	Program space	131
	4.10.2	Data space	131
CHAPT	ER 5 N	MEMORY ACCESS CONTROL FUNCTION	132
5.1	SRAM,	External ROM, External I/O Interface	132
	5.1.1	Features	132
	5.1.2	SRAM connection	133
	5.1.3	SRAM, external ROM, external I/O access	135
5.2	Page F	ROM Controller (ROMC)	141
	5.2.1	Features	141
	5.2.2	Page ROM connection	142
	5.2.3	On-page/off-page judgment	143
	5.2.4	Page ROM configuration register (PRC)	145
	5.2.5	Page ROM access	146
5.3	DRAM	Controller (EDO DRAM)	150
	5.3.1	Features	150
	5.3.2	DRAM connection	151
	5.3.3	Address multiplex function	152
	5.3.4	DRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)	153
	5.3.5	DRAM access	156
	5.3.6	Refresh control function	161

	5.3.7 Self-refresh control function	166
5.4	DRAM Controller (SDRAM)	168
	5.4.1 Features	168
	5.4.2 SDRAM connection	168
	5.4.3 Address multiplex function	169
	5.4.4 SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)	174
	5.4.5 SDRAM access	176
	5.4.6 Refresh control function	190
	5.4.7 Self-refresh control function	195
	5.4.8 SDRAM initialization sequence	197
CHAPTI	ER 6 DMA FUNCTIONS (DMA CONTROLLER)	200
6.1	Features	200
6.2	Configuration	201
6.3	Control Registers	202
	6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)	202
	6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)	204
	6.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)	206
	6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)	207
	6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	
	6.3.6 DMA disable status register (DDIS)	211
	6.3.7 DMA restart register (DRST)	211
	6.3.8 DMA terminal count output control register (DTOC)	212
	6.3.9 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	213
6.4	DMA Bus States	216
	6.4.1 Types of bus states	216
	6.4.2 DMAC bus cycle state transition	218
6.5	Transfer Modes	219
	6.5.1 Single transfer mode	219
	6.5.2 Single-step transfer mode	221
	6.5.3 Block transfer mode	222
6.6	Transfer Types	223
	6.6.1 2-cycle transfer	223
	6.6.2 Flyby transfer	239
6.7	Transfer Targets	250
	6.7.1 Transfer type and transfer targets	250
	6.7.2 External bus cycles during DMA transfer	251
6.8	DMA Channel Priorities	251
6.9	Next Address Setting Function	252
6.10	DMA Transfer Start Factors	254
6.11	Terminal Count Output upon DMA Transfer End	256
6.12	Forcible Suspension	257
6.13	Forcible Termination	258
	6.13.1 Restriction related to DMA transfer forcible termination	259
6.14	Times Related to DMA Transfer	261

6.15	Respo	onse Time for DMA Transfer Request	261
	6.15.1	Example of response time for DMA request	261
•	6.15.2	Maximum response time for DMA transfer request	263
6.16	Cautio	ons	264
	6.16.1	Suspension factors	265
6.17	DMA T	Transfer End	265
CHAPT	ER 7	INTERRUPT/EXCEPTION PROCESSING FUNCTION	266
7.1		res	
7.2	Non-M	Maskable Interrupts	
	7.2.1	Operation	
	7.2.2	Restore	272
	7.2.3	Non-maskable interrupt status flag (NP)	273
	7.2.4	Noise elimination	273
	7.2.5	Edge detection function	273
7.3	Maska	able Interrupts	274
	7.3.1	Operation	274
	7.3.2	Restore	276
	7.3.3	Priorities of maskable interrupts	277
	7.3.4	Interrupt control register (xxICn)	281
	7.3.5	Interrupt mask registers 0 to 3 (IMR0 to IMR3)	284
	7.3.6	In-service priority register (ISPR)	285
	7.3.7	Maskable interrupt status flag (ID)	286
	7.3.8	Noise elimination	287
	7.3.9	Interrupt trigger mode selection	287
7.4	Softwa	are Exception	291
	7.4.1	Operation	291
	7.4.2	Restore	292
	7.4.3	Exception status flag (EP)	293
7.5	Excep	otion Trap	
	7.5.1	Illegal opcode definition	
	7.5.2	Debug trap	
7.6	Multip	ole Interrupt Servicing Control	
7.7	•	upt Latency Time	
7.8		ds in Which Interrupts Are Not Acknowledged	
		·	
CHAPT	ER 8	PRESCALER UNIT (PRS)	302
		· ,	
CHAPT	ER 9	CLOCK GENERATION FUNCTION	303
9.1	Featur	res	303
9.2	Config	guration	303
9.3		Clock Selection	
	9.3.1	Direct mode	
	9.3.2	PLL mode	
	9.3.3	Peripheral command register (PHCMD)	

	9.3.4	Clock control register (CKC)	306
	9.3.5	Peripheral status register (PHS)	308
9.4	PLL Lo	ockup	309
9.5	Power-	-Save Control	310
	9.5.1	Overview	310
	9.5.2	Control registers	312
	9.5.3	HALT mode	315
	9.5.4	IDLE mode	317
	9.5.5	Software STOP mode	320
9.6	Securi	ng Oscillation Stabilization Time	323
	9.6.1	Oscillation stabilization time security specification	323
	9.6.2	Time base counter (TBC)	325
СНАРТ	ER 10	TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)	326
10.1	Timer (C	326
	10.1.1	Features (timer C)	326
	10.1.2	Function overview (timer C)	326
	10.1.3	Basic configuration of timer C	327
	10.1.4	Timer C	328
	10.1.5	Timer C control registers	332
	10.1.6	Timer C operation	337
	10.1.7	Application examples (timer C)	
	10.1.8	Cautions (timer C)	
10.2	Timer I	D	
	10.2.1	Features (timer D)	
	10.2.2	Function overview (timer D)	
	10.2.3	Basic configuration of timer D	
	10.2.4	Timer D	
	10.2.5	Timer D control registers	
	10.2.6	Timer D operation	358
	10.2.7	Application examples (timer D)	
	10.2.8	Cautions (timer D)	360
CHAPTE		SERIAL INTERFACE FUNCTION	
11.1		es	
	11.1.1	Switching between UART and CSI modes	
11.2		hronous Serial Interfaces 0 to 2 (UART0 to UART2)	
	11.2.1	Features	
	11.2.2	Configuration	
	11.2.3	Control registers	
	11.2.4	Interrupt requests	
	11.2.5	Operation	
	11.2.6	Dedicated baud rate generators 0 to 2 (BRG0 to BRG2)	
	11.2.7	Cautions	
11.3	Clocke	ed Serial Interfaces 0 to 2 (CSI0 to CSI2)	394

	11.3.1 Features	394
	11.3.2 Configuration	394
	11.3.3 Control registers	396
	11.3.4 Operation	403
	11.3.5 Output pins	406
	11.3.6 System configuration example	407
CHAPTI	ER 12 A/D CONVERTER	408
12.1	Features	408
12.2	Configuration	408
12.3	Control Registers	411
12.4	A/D Converter Operation	418
	12.4.1 Basic operation of A/D converter	418
	12.4.2 Operation mode and trigger mode	419
12.5	Operation in A/D Trigger Mode	424
	12.5.1 Select mode operation	424
	12.5.2 Scan mode operations	426
12.6	Operation in Timer Trigger Mode	427
	12.6.1 Select mode operation	428
	12.6.2 Scan mode operation	432
12.7	Operation in External Trigger Mode	436
	12.7.1 Select mode operations (external trigger select)	436
	12.7.2 Scan mode operation (external trigger scan)	438
12.8	Notes on Operation	440
	12.8.1 Stopping conversion operation	440
	12.8.2 Timer trigger/external trigger interval	440
	12.8.3 Operation in standby mode	440
	12.8.4 Compare match interrupt in timer trigger mode	441
	12.8.5 Reconversion operation in timer 1 trigger mode	442
	12.8.6 Supplementary information on A/D conversion time	443
12.9	How to Read A/D Converter's Characteristic Table	445
CHAPTI	ER 13 PWM UNIT	449
13.1	Features	449
13.2	Block Diagram	449
13.3	Control Register	450
13.4	Operation	452
	13.4.1 Basic operations	452
	13.4.2 Repetition frequency	455
13.5	Cautions	455
CHAPTI	ER 14 PORT FUNCTIONS	456
14.1	Features	456
14.2	Port Configuration	457
1/12	Port Din Functions	47/

		14.3.1 Port 0	474
		14.3.2 Port 1	477
		14.3.3 Port 2	479
		14.3.4 Port 3	483
		14.3.5 Port 4	486
		14.3.6 Port 5	489
		14.3.7 Port 7	491
		14.3.8 Port AL	492
		14.3.9 Port AH	494
		14.3.10 Port DL	496
		14.3.11 Port CS	498
		14.3.12 Port CT	502
		14.3.13 Port CM	504
		14.3.14 Port CD	507
		14.3.15 Port BD	510
*	14.4	Setting to Use Alternate Function of Port Pin	511
*	14.5	Operation of Port Function	520
		14.5.1 Writing data to I/O port	520
		14.5.2 Reading data from I/O port	520
*		14.5.3 Output status of alternate function in control mode	520
	14.6	Cautions	521
	15.1	Features	522
	15.2	Pin Functions	522
	15.3	Initialization	524
	CHADT	ER 16 FLASH MEMORY (µPD70F3107A)	527
	16.1	Features	
		Writing with Flash Programmer	
	16.3	Programming Environment	
	16.4		
	_	Pin Connection	
	10.5	16.5.1 MODE2/Vpp pin	
		16.5.2 Serial interface pin	
		16.5.3 RESET pin	
		16.5.4 NMI pin	
		16.5.5 MODE0 to MODE2 pins	
		16.5.6 Port pins	
		16.5.7 Other signal pins	
		16.5.8 Power supply	
	16.6	Programming Method	
		16.6.1 Flash memory control	
		16.6.2 Flash memory programming mode	
		16.6.3 Selection of communication mode	

	16.6.4	Communication commands	538
16.7	Flash M	lemory Programming by Self-Programming	539
	16.7.1	Outline of self-programming	539
	16.7.2	Self-programming function	540
	16.7.3	Outline of self-programming interface	540
	16.7.4	Hardware environment	541
	16.7.5	Software environment	543
	16.7.6	Self-programming function number	544
	16.7.7	Calling parameters	545
	16.7.8	Contents of RAM parameters	546
	16.7.9	Errors during self-programming	547
	16.7.10	Flash information	547
	16.7.11	Area number	548
	16.7.12	Flash programming mode control register (FLPMC)	549
	16.7.13	Calling device internal processing	551
	16.7.14	Erasing flash memory flow	554
	16.7.15	Successive writing flow	555
	16.7.16	Internal verify flow	556
	16.7.17	Acquiring flash information flow	557
	16.7.18	Self-programming library	558
16.8	How to	Distinguish Flash Memory and Mask ROM Versions	560
★ CHAPT	ER 17	ELECTRICAL SPECIFICATIONS	561
17.1	Normal	Operation Mode	561
17.2	Flash M	lemory Programming Mode (μ PD70F3107A and 70F3107A(A) Only)	617
★ CHAPT	ER 18	PACKAGE DRAWINGS	620
* CHAPT	ER 19	RECOMMENDED SOLDERING CONDITIONS	622
* APPEN	DIX A I	NOTES ON TARGET SYSTEM DESIGN	624
		CAUTIONS	
B.1		tion on Page ROM Access	
	B.1.1	Description	
	B.1.2	Countermeasures	
B.2	Restrict	tion on Conflict Between sld Instruction and Interrupt Request	
	B.2.1	Description	
	B.2.2	Countermeasure	629
ADDEN		DECICIED INDEX	200
APPEN	אוע C ו	REGISTER INDEX	630
ADDEN	י ח אוח	INSTRUCTION SET LIST	င္သေဝ
APPEN D.1		ntions	
D.1 D.2		tion Set (in Alphabetical Order)	
U.2	าเาอเเนต	Jel III Albijabelicai Ojuel J	

*	APPEND	DIX E REVISION HISTORY	648
	E.1	Major Revisions in This Edition	.648
	E.2	Revision History up to Preceding Edition	.650

CHAPTER 1 INTRODUCTION

The V850E/MA1 is a product of NEC Electronics' single-chip microcontroller "V850 Series". This chapter gives a simple outline of the V850E/MA1.

1.1 Outline

The V850E/MA1 is a 32-bit single-chip microcontroller that integrates the V850E1 CPU, which is a 32-bit RISC-type CPU core for ASIC, newly developed as the CPU core central to system LSI for the current age of system-on-chip. This device incorporates ROM, RAM, and various peripheral functions such as memory controllers, a DMA controller, real-time pulse unit, serial interfaces, and an A/D converter for realizing high-capacity data processing and sophisticated real-time control.

(1) V850E1 CPU

The V850E1 CPU is a CPU core that enhances the external bus interface performance of the V850 CPU, which is the CPU core integrated in the V850 Series, and has added instructions supporting high-level languages, such as C-language switch statement processing, table lookup branching, stack frame creation/deletion, and data conversion. This enhances the performance of both data processing and control. It is possible to use the software resources of the V850 CPU integrated system since the instruction codes of the V850E1 are upwardly compatible at the object code level with those of the V850 CPU.

(2) External memory interface function

The V850E/MA1 features various on-chip external memory interfaces including separately configured address (26 bits) and data (16 bits) buses, and SDRAM and ROM interfaces, as well as on-chip memory controllers that can be directly linked to EDO DRAM, page ROM, etc., thereby raising system performance and reducing the number of parts needed for application systems.

Also, through the DMA controller, CPU internal calculations and data transfers can be performed simultaneously with transfers to and from the external memory, so it is possible to process large volumes of image data or voice data, etc., and through high-speed execution of instructions using internal ROM and RAM, motor control, communications control and other real-time control tasks can be realized simultaneously.

(3) On-chip flash memory (µPD70F3107A)

The on-chip flash memory version (μ PD70F3107A) has on-chip flash memory, which is capable of high-speed access, and since it is possible to rewrite a program with the V850E/MA1 mounted as is in the application system, system development time can be reduced and system maintainability after shipping can be markedly improved.

(4) A full range of middleware and development environment products

The V850E/MA1 can execute middleware such as JPEG, JBIG, and MH/MR/MMR at high speed. Also, middleware that enables speech recognition, voice synthesis, and other such processing is available, and by including these middleware programs, a multimedia system can be easily realized.

A development environment system that includes an optimized C compiler, debugger, in-circuit emulator, simulator, system performance analyzer, and other elements is also available.

1.2 Features

O Number of instructions: 83

O Minimum instruction execution time: 20 ns (at internal 50 MHz operation)

O General-purpose registers: 32 bits \times 32

O Instruction set: V850E1 CPU

Signed multiplication (16 bits \times 16 bits \rightarrow 32 bits or 32 bits \times 32 bits \rightarrow

64 bits): 1 to 2 clocks

Saturated operation instructions (with overflow/underflow detection

function)

32-bit shift instructions: 1 clock Bit manipulation instructions

Load/store instructions with long/short format

Signed load instructions

O Memory space: 256 MB linear address space (common program/data use)

Chip select output function: 8 spaces

Memory block division function: 2, 4, 8 MB/block

Programmable wait function Idle state insertion function

O External bus interface: 16-bit data bus (address/data separated)

16-/8-bit bus sizing function

Bus hold function
External wait function
Address setup wait function
Endian control function

O Internal memory

Part Number	Internal ROM	Internal RAM
μPD703103A None		4 KB
μPD703105A	128 KB (mask ROM)	4 KB
μPD703106A	128 KB (mask ROM)	10 KB
μPD703107A	256 KB (mask ROM)	10 KB
μPD70F3107A	256 KB (flash memory)	10 KB

O Interrupts/exceptions: External interrupts: 25 (including NMI)

Internal interrupts: 33 sources

Exceptions: 1 source

Eight levels of priorities can be set.

O Memory access controller DRAM controller (compatible with EDO DRAM and SDRAM)

Page ROM controller

CHAPTER 1 INTRODUCTION

O DMA controller:	4 channels Transfer unit: 8 bits/16 bits Maximum transfer count: 65,536 (2¹⁶) Transfer type: Flyby (1-cycle)/2-cycle Transfer mode: Single/single step/block Transfer target: Memory ↔ memory, memory ↔ I/O Transfer request: External request/on-chip peripheral I/O/software DMA transfer terminate (terminal count) output signal Next address setting function
O I/O lines:	Input ports: 9 I/O ports: 106
O Real-time pulse unit:	16-bit timer/event counter: 4 channels 16-bit timers: 4 16-bit capture/compare registers: 8 16-bit interval timer: 4 channels
O Serial interfaces (SIO):	Asynchronous serial interface (UART) Clocked serial interface (CSI) CSI/UART: 2 channels UART: 1 channel CSI: 1 channel
O A/D converter:	10-bit resolution A/D converter: 8 channels
O PWM (Pulse Width Modulation):	8-/9-/10-/12-bit resolution PWM: 2 channels
O Clock generator:	$\mbox{A}\times 10$ function through a PLL clock synthesizer. Divide-by-two function through an external clock input.
O Power-save function:	HALT/IDLE/software STOP mode
O Package:	144-pin plastic LQFP (fine pitch) (20 \times 20) 161-pin plastic FBGA (13 \times 13)
O CMOS technology:	All static circuits

1.3 Applications

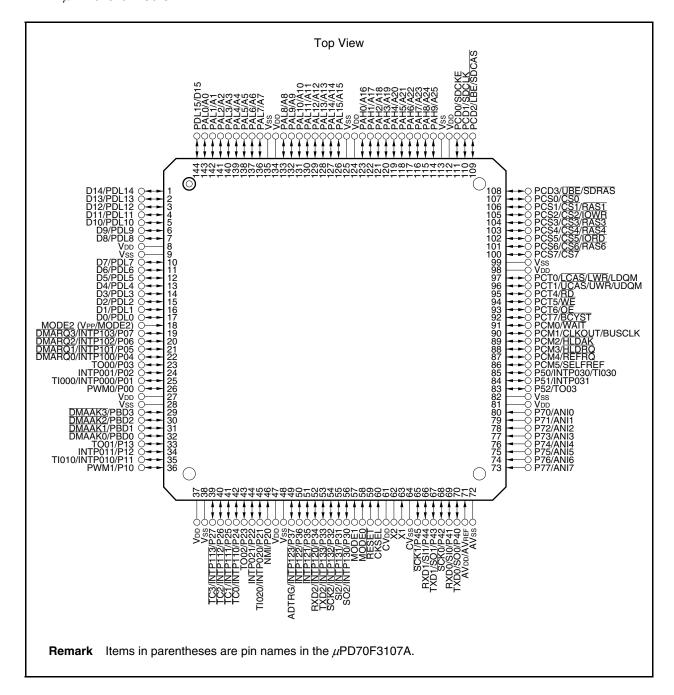
Ink-jet printers, facsimiles, digital still cameras, DVD players, video printers, PPC, information equipment, etc.

1.4 Ordering Information

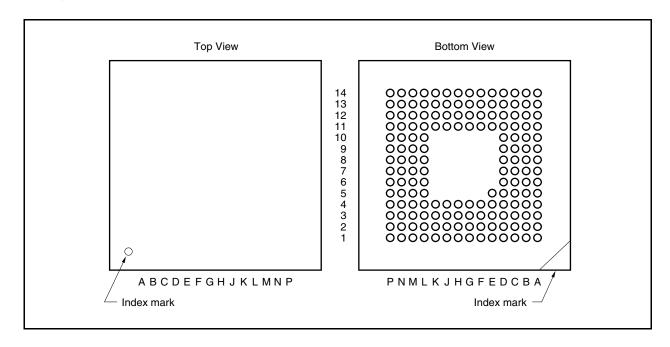
Part Number	Package	Quality Grade
μPD703103AGJ-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard (for general-purpose electronic systems)
μ PD703105AGJ-xxx-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard (for general-purpose electronic systems)
μPD703106AGJ-×××-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard (for general-purpose electronic systems)
μPD703107AGJ-×××-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard (for general-purpose electronic systems)
μPD70F3107AGJ-UEN	144-pin plastic LQFP (fine pitch) (20 \times 20)	Standard (for general-purpose electronic systems)
μPD703106AF1-××-EN4	161-pin plastic FBGA (13 × 13)	Standard (for general-purpose electronic systems)
μ PD703107AF1- \times \times -EN4	161-pin plastic FBGA (13 \times 13)	Standard (for general-purpose electronic systems)
μPD70F3107AF1-EN4	161-pin plastic FBGA (13 \times 13)	Standard (for general-purpose electronic systems)
μ PD703106AGJ(A)- $\times\times$ -UEN ^{Note}	144-pin plastic LQFP (fine pitch) (20 \times 20)	Special (for high-reliability electronic systems)
μ PD703107AGJ(A)- $\times\!\!\times\!\!$ -UEN $^{\text{Note}}$	144-pin plastic LQFP (fine pitch) (20 $\times20)$	Special (for high-reliability electronic systems)
μ PD70F3107AGJ(A)-UEN	144-pin plastic LQFP (fine pitch) (20 $\times20)$	Special (for high-reliability electronic systems)

Note Under development

Remark ××× indicates ROM code suffix.


The μ PD703106A, 703107A, and 70F3107A do not differ from the μ PD703106A(A), 703107A(A), and 70F3107A(A) except the quality grade.

Please refer to **Quality Grades on NEC Semiconductor Devices** (Document No. C11531E) published by NEC Electronics Corporation to know the specification of quality grade on the devices and its recommended applications.


1.5 Pin Configuration

• 144-pin plastic LQFP (fine pitch) (20×20)

```
\mu \text{PD703103AGJ-UEN} \qquad \mu \text{PD703106AGJ(A)-xxx-UEN} \\ \mu \text{PD703105AGJ-xxx-UEN} \qquad \mu \text{PD703107AGJ(A)-xxx-UEN} \\ \mu \text{PD703107AGJ-xxx-UEN} \qquad \mu \text{PD703107AGJ-xxx-UEN} \\ \mu \text{PD7053107AGJ-xxx-UEN} \\ \mu \text{PD70F3107AGJ-UEN}
```


161-pin plastic FBGA (13 x 13)
 μPD703106AF1-xxx-EN4
 μPD703107AF1-xxx-EN4
 μPD70F3107AF1-EN4

(1/2)

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
A1	-	B7	A13/PAL13	C13	CS2/IOWR/PCS2
A2	D15/PDL15	B8	Vss	C14	_
A3	A2/PAL2	В9	A18/PAH2	D1	Vss
A4	A5/PAL5	B10	A21/PAH5	D2	D10/PDL10
A5	-	B11	A25/PAH9	D3	D14/PDL14
A6	A9/PAL9	B12	SDCLK/PCD1	D4	A3/PAL3
A7	A12/PAL12	B13	CS1/RAS1/PCS1	D5	A6/PAL6
A8	A15/PAL15	B14	-	D6	A10/PAL10
A9	A17/PAH1	C1	-	D7	A14/PAL14
A10	ı	C2	D9/PDL9	D8	A16/PAH0
A11	A24/PAH8	C3	D13/PDL13	D9	A20/PAH4
A12	V _{DD}	C4	A1/PAL1	D10	A23/PAH7
A13	LBE/SDCAS/PCD2	C5	A7/PAL7	D11	SDCKE/PCD0
A14	UBE/SDRAS/PCD3	C6	V _{DD}	D12	CS0/PCS0
B1	ı	C7	A11/PAL11	D13	CS5/IORD/PCS5
B2	D12/PDL12	C8	V _{DD}	D14	_
В3	A0/PAL0	C9	A19/PAH3	E1	D5/PDL5
B4	A4/PAL4	C10	A22/PAH6	E2	D7/PDL7
B5	Vss	C11	Vss	E3	D8/PDL8
В6	A8/PAL8	C12	CS3/RAS3/PCS3	E4	D11/PDL11

(2/2)

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
E5	_	J12	TI030/INTP030/P50	M10	SCK1/P45
E11	CS6/RAS6/PCS6	J13	SELFREF/PCM5	M11	TXD0/SO0/P40
E12	CS4/RAS4/PCS4	J14	INTP031/P51	M12	ANI6/P76
E13	CS7/PCS7	K1	PWM0/P00	M13	ANI5/P75
E14	Vss	K2	Vss	M14	-
F1	D2/PDL2	K3	DMAAK1/PBD1	N1	_
F2	D3/PDL3	K4	DMAAK3/PBD3	N2	PWM1/P10
F3	D4/PDL4	K11	ANI1/P71	N3	TC3/INTP113/P27
F4	V _{DD}	K12	ANI0/P70	N4	TC0/INTP110/P24
F11	RD/PCT4	K13	Vss	N5	NMI/P20
F12	V _{DD}	K14	V _{DD}	N6	ADTRG/INTP123/P37
F13	LCAS/LWR/LDQM/PCT0	L1	-	N7	TXD2/INTP133/P33
F14	UCAS/UWR/UDQM/PCT1	L2	DMAAK2/PBD2	N8	SO2/INTP130/P30
G1	MODE2 (MODE2/VPP)	L3	TI010/INTP010/P11	N9	X2
G2	DMARQ3/INTP103/P07	L4	DMAAK0/PBD0	N10	CVss
G3	D0/PDL0	L5	TO02/P23	N11	SCK0/P42
G4	D6/PDL6	L6	V _{DD}	N12	AVDD/AVREF
G11	WAIT/PCM0	L7	INTP122/P36	N13	AVss
G12	WE/PCT5	L8	SI2/INTP131/P31	N14	_
G13	BCYST/PCT7	L9	RESET	P1	V _{DD}
G14	OE/PCT6	L10	TXD1/SO1/P43	P2	Vss
H1	DMARQ2/INTP102/P06	L11	ANI7/P77	P3	TC1/INTP111/P25
H2	DMARQ1/INTP101/P05	L12	ANI4/P74	P4	INTP021/P22
НЗ	DMARQ0/INTP100/P04	L13	ANI3/P73	P5	-
H4	D1/PDL1	L14	ANI2/P72	P6	INTP121/P35
H11	REFRQ/PCM4	M1	-	P7	SCK2/INTP132/P32
H12	HLDRQ/PCM3	M2	INTP011/P12	P8	MODE1
H13	HLDAK/PCM2	M3	TO01/P13	P9	CV _{DD}
H14	CLKOUT/BUSCLK/PCM1	M4	TC2/INTP112/P26	P10	X1
J1	TO00/P03	M5	TI020/INTP020/P21	P11	_
J2	TI000/INTP000/P01	M6	Vss	P12	RXD1/SI1/P44
J3	V _{DD}	M7	RXD2/INTP120/P34	P13	RXD0/SI0/P41
J4	INTP001/P02	M8	MODE0	P14	_
J11	TO03/P52	M9	CKSEL		
		_		-	

Remarks 1. Leave the A1, A5, A10, B1, B14, C1, C14, D14, E5, L1, M1, M14, N1, N14, P5, P11, and P14 pins open.

2. Items in parentheses are pin names in the μ PD70F3107A.

Pin Identification

Address bus P70 to P77: Port 7 A0 to A25: ADTRG: A/D trigger input PAH0 to PAH9: Port AH ANI0 to ANI7: PAL0 to PAL15: Port AL Analog input PBD0 to PBD3: Port BD AV_{DD}: Analog power supply Port CD AVREF: Analog reference voltage PCD0 to PCD3: Port CM AVss: Analog ground PCM0 to PCM5: BCYST: Port CS PCS0 to PCS7: Bus cycle start timing BUSCLK: PCT0, PCT1,: Port CT Bus clock output

CKSEL: Clock generator operating mode select PCT4 to PCT7

CLKOUT: Clock output PDL0 to PDL15: Port DL

CS0 to CS7: Chip select PWM0, PWM1: Pulse width modulation CVDD: RAS1, RAS3, : Row address strobe

CVss: Clock generator ground RAS4, RAS6

D0 to D15: Data bus Read strobe

DMAAK0 to DMAAK3: DMA acknowledge REFRQ: Refresh request

DMARQ0 to DMARQ3: DMA request RESET: Reset

 HLDAK:
 Hold acknowledge
 RXD0 to RXD2:
 Receive data

 HLDRQ:
 Hold request
 SCK0 to SCK2:
 Serial clock

INTP000, INTP001, : External interrupt input SDCAS: SDRAM column address strobe

INTP010, INTP011, SDCKE: SDRAM clock enable INTP020, INTP021, SDCLK: SDRAM clock output

INTP030, INTP031, SDRAS: SDRAM row address strobe

INTP100 to INTP103, SELFREF: Self-refresh request

INTP110 to INTP113, SI0 to SI2: Serial input INTP120 to INTP123, SO0 to SO2: Serial output

INTP130 to INTP133 TC0 to TC3: Terminal count signal

IORD: I/O read strobe TI000, TI010, : Timer input

IOWR: I/O write strobe TI020, TI030

 LBE:
 Lower byte enable
 TO00 to TO03:
 Timer output

 LCAS:
 Lower column address strobe
 TXD0 to TXD2:
 Transmit data

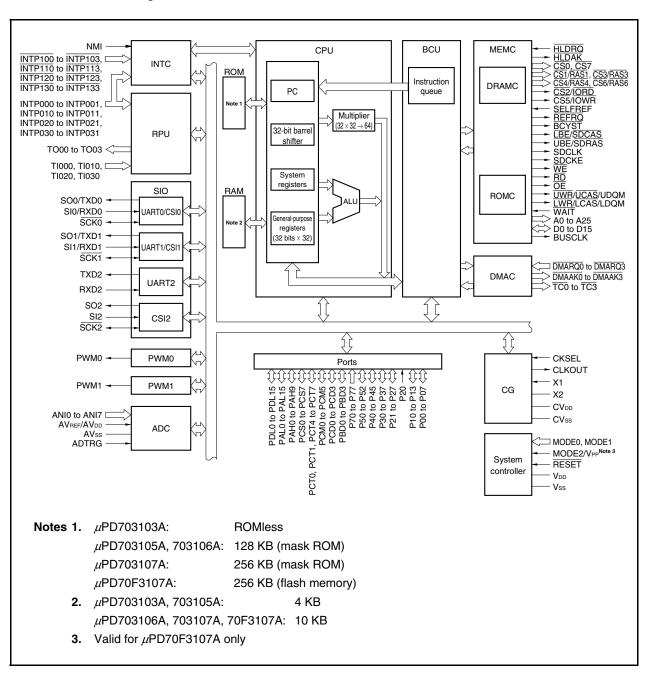
 LDQM:
 Lower DQ mask enable
 UBE:
 Upper byte enable

LWR: Lower write strobe UCAS: Upper column address strobe MODE0 to MODE2: UDQM: Upper DQ mask enable Mode UWR: NMI: Non-maskable interrupt request Upper write strobe OE: Output enable V_{DD}: Power supply

P00 to P07: Port 0 V_{PP}: Programming power supply

 P10 to P13:
 Port 1
 Vss:
 Ground

 P20 to P27:
 Port 2
 WAIT:
 Wait


 P30 to P37:
 Port 3
 WE:
 Write enable

 P40 to P45:
 Port 4
 X1, X2:
 Crystal

P50 to P52: Port 5

1.6 Function Blocks

1.6.1 Internal block diagram

1.6.2 On-chip units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \to 32 bits or 32 bits \times 32 bits \to 64 bits) and a barrel shifter (32 bits), help accelerate processing of complex instructions.

(2) Bus control unit (BCU)

The BCU starts the required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory area and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an instruction queue in the CPU.

The BCU controls a DRAM controller (DRAMC), page ROM controller (ROMC), and DMA controller (DMAC) and performs external memory access and DMA transfer.

(a) DRAM controller (DRAMC)

(i) SDRAM

The DRAM controller generates the SDRAS, SDCAS, UDQM, and LDQM signals and performs access control for SDRAM.

CAS latency 2 and 3 are supported, and the burst length is fixed to 1.

A refresh function that supports the CBR refresh cycle and a dynamic self-refresh function based on an external input are also available.

(ii) EDO DRAM

The DRAM controller generates the RAS, UCAS, and LCAS signals (2CAS control) and performs access control for EDO DRAM.

EDO DRAM is supported, and there are two types of access: normal access (off page) and page access (on page).

A refresh function that supports the CBR refresh cycle and a dynamic self-refresh function based on an external input are also available.

(b) Page ROM controller (ROMC)

This controller supports accessing ROM that includes the page access function.

It performs address comparisons with the immediately preceding bus cycle and executes wait control for normal access (off-page)/page access (on-page). It can handle page widths of 8 to 128 bytes.

(c) DMA controller (DMAC)

This controller controls data transfer between memory and I/O instead of the CPU.

There are two address modes: flyby (1-cycle) transfer, and 2-cycle transfer. There are three bus modes, single transfer, single step transfer, and block transfer.

(3) ROM

The μ PD703105A and 703106A have 128 KB of on-chip mask ROM, the μ PD703107A has 256 KB of on-chip mask ROM and the μ PD70F3107A has 256 KB of on-chip flash memory. The μ PD703103A does not include on-chip ROM.

During instruction fetch, ROM/flash memory can be accessed from the CPU in 1-clock cycles.

If single-chip mode 0 or flash memory programming mode is set, memory mapping occurs from address 00000000H.

If single-chip mode 1 is set, memory mapping occurs from address 00100000H.

If ROMless mode is set, access is not possible.

(4) RAM

RAM is mapped from address FFFFC000H.

During instruction fetch or data access, data can be accessed from the CPU in 1-clock cycles.

(5) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTP0n0, INTP0n1, $\overline{\text{INTP1nn}}$) from on-chip peripheral I/O and external hardware (n = 0 to 3). Eight levels of interrupt priorities can be specified for these interrupt requests, and multiple-interrupt servicing control can be performed for interrupt sources.

(6) Clock generator (CG)

This clock generator supplies frequencies which are 10 times the input clock (fx) (using an on-chip PLL) or 1/2 the input clock (when an on-chip PLL is not used) as the internal system clock (fxx). As the input clock, an external oscillator is connected to pins X1 and X2 (only when an on-chip PLL synthesizer is used) or an external clock is input from the X1 pin.

(7) Real-time pulse unit (RPU)

This unit incorporates a 4-channel 16-bit timer/event counter and 4-channel 16-bit interval timer, and can measure pulse widths or frequency and output a programmable pulse.

(8) Serial interfaces (SIO)

The serial interfaces consist of 4 channels divided between an asynchronous serial interface (UART) and clocked serial interface (CSI). Two of these channels can be switched between UART and CSI, one channel is fixed to CSI, and the remaining channel is fixed to UART.

UART transfers data by using the TXDn and RXDn pins (n = 0 to 2).

CSI transfers data by using the SOn, SIn, and SCKn pins (n = 0 to 2).

(9) A/D converter (ADC)

This high-speed, high-resolution 10-bit A/D converter includes 8 analog input pins. Conversion is performed using the successive approximation method.

(10) PWM

Two channels for PWM signal output of 8-/9-/10-/12-bit resolution have been provided. By connecting an external low-pass filter, PWM output can be used as digital to analog conversion output. PWM is ideal for actuator control signals such as those in motors.

(11) Ports

As shown below, the following ports have general port functions and control pin functions.

Port	Port Function	Control Function			
Port 0	8-bit I/O	Real-time pulse unit I/O, external interrupt input, PWM output, DMA controller input			
Port 1	4-bit I/O	Real-time pulse unit I/O, external interrupt input, PWM output			
Port 2	1-bit input, 7-bit I/O	NMI input, real-time pulse unit I/O, external interrupt input, DMA controller output			
Port 3	8-bit I/O	Serial interface I/O, external interrupt input, A/D converter external trigger input			
Port 4	6-bit I/O	Serial interface I/O			
Port 5	3-bit I/O	Real-time pulse unit I/O, external interrupt input			
Port 7	8-bit input	A/D converter input			
Port AL	8-/16-bit I/O	External address bus			
Port AH	8-/10-bit I/O	External address bus			
Port DL	8-/16-bit I/O	External data bus			
Port CS	8-bit I/O	External bus interface control signal output			
Port CT	6-bit I/O	External bus interface control signal output			
Port CM	6-bit I/O	Wait insertion signal input, internal system clock output, external bus interface control signal I/O, self-refresh request signal input			
Port CD	4-bit I/O	External bus interface control signal output			
Port BD	4-bit I/O	DMA controller output			

1.7 Differences Among Products

Item	μPD703103A	μPD703105A	μPD703106A	μPD703107A	μPD703106A(A)	μPD703107A(A)	μPD70F3107A	μPD70F3107A(A)	
Internal ROM	Mask ROM							Flash memory	
	None	128 KB		256 KB	128 KB	256 KB	256 KB		
Internal RAM	4 KB		10 KB						
Flash memory programming mode	None	None Provided							
V _{PP} pin	None	None Provided							
Package	144LQFP	144LQFP 144LQFP 144LQFP 161FBGA					144LQFP 161FBGA	144LQFP	
Quality grade	Standard Special						Standard	Special	
Electrical characteristics	Power consu	Power consumption differs (refer to CHAPTER 17 ELECTRICAL SPECIFICATIONS).							
Others	Noise immur	nity and noise r	adiation differ	because the c	rcuit scale and	mask layout di	iffer.		

Remark 144LQFP: 144-pin plastic LQFP (fine pitch) (20 × 20)

161FBGA: 161-pin plastic FBGA (13 \times 13)

CHAPTER 2 PIN FUNCTIONS

The names and functions of the pins in the V850E/MA1 are listed below. These pins can be divided into port pins and non-port pins according to their functions.

2.1 List of Pin Functions

(1) Port pins

(1/3)

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0	PWM0
P01		8-bit I/O port	TI000/INTP000
P02		Input/output can be specified in 1-bit units.	INTP001
P03			TO00
P04			DMARQ0/INTP100
P05			DMARQ1/INTP101
P06			DMARQ2/INTP102
P07			DMARQ3/INTP103
P10	I/O	Port 1	PWM1
P11		4-bit I/O port	INTP010/TI010
P12		Input/output can be specified in 1-bit units.	INTP011
P13			TO01
P20	Input	Port 2	NMI
P21	I/O	P20 is an input port dedicated to checking the NMI input status.	INTP020/TI020
P22		If a valid edge is input, it operates as an NMI input. P21 to P27 are a 7-bit I/O port.	INTP021
P23		Input/output can be specified in 1-bit units.	TO02
P24			TC0/INTP110
P25			TC1/INTP111
P26			TC2/INTP112
P27			TC3/INTP113
P30	I/O	Port 3	SO2/INTP130
P31		8-bit I/O port	SI2/INTP131
P32		Input/output can be specified in 1-bit units.	SCK2/INTP132
P33			TXD2/INTP133
P34			RXD2/INTP120
P35	1		INTP121
P36	1		ĪNTP122
P37			ADTRG/INTP123

(2/3)

Pin Name	I/O	Function	Alternate Function
P40	I/O	Port 4	TXD0/SO0
P41	-	6-bit I/O port	RXD0/SI0
P42	1	Input/output can be specified in 1-bit units.	SCK0
P43	1		TXD1/SO1
P44			RXD1/SI1
P45			SCK1
P50	I/O	Port 5	INTP030/TI030
P51		3-bit I/O port	INTP031
P52		Input/output can be specified in 1-bit units.	TO03
P70 to P77	Input	Port 7 8-bit input-only port	ANI0 to ANI7
PBD0 to PBD3	I/O	Port BD 4-bit I/O port Input/output can be specified in 1-bit units.	DMAAKO to DMAAKS
РСМ0	I/O	Port CM	WAIT
PCM1		6-bit I/O port	CLKOUT/BUSCLK
PCM2		Input/output can be specified in 1-bit units.	HLDAK
PCM3			HLDRQ
PCM4			REFRQ
PCM5			SELFREF
РСТ0	I/O	Port CT	LCAS/LWR/LDQM
PCT1		6-bit I/O port	UCAS/UWR/UDQM
PCT4		Input/output can be specified in 1-bit units.	RD
PCT5			WE
PCT6			ŌE
PCT7			BCYST
PCS0	I/O	Port CS	CS0
PCS1		8-bit I/O port Input/output can be specified in 1-bit units.	CS1/RAS1
PCS2		impuroutput can be specified in 1-bit units.	CS2/IOWR
PCS3			CS3/RAS3
PCS4	- - -		CS4/RAS4
PCS5			CS5/IORD
PCS6			CS6/RAS6
PCS7			CS7
PCD0	I/O	Port CD	SDCKE
PCD1]	4-bit I/O port Input/output can be specified in 1-bit units.	SDCLK
PCD2		impuroutput can be specified in 1-bit units.	LBE/SDCAS
PCD3		<u> </u>	UBE/SDRAS

(3/3)

Pin Name	I/O	Function	Alternate Function
PAH0 to PAH9	I/O	Port AH 8-/10-bit I/O port Input/output can be specified in 1-bit units.	A16 to A25
PAL0 to PAL15	I/O	Port AL 8-/16-bit I/O port Input/output can be specified in 1-bit units.	A0 to A15
PDL0 to PDL15	I/O	Port DL 8-/16-bit I/O port Input/output can be specified in 1-bit units.	D0 to D15

(2) Non-port pins

(1/4)

Pin Name	I/O	Function	Alternate Function
TO00	Output	Pulse signal output of timer C0 to C3	P03
TO01			P13
TO02			P23
TO03			P52
TI000	Input	External count clock input of timer C0 to C3	P01/INTP000
TI010			P11/INTP010
TI020			P21/INTP020
TI030			P50/INTP030
INTP000	Input	External maskable interrupt request input, or timer C0 external	P01/TI000
INTP001		capture trigger input	P02
INTP010		External maskable interrupt request input, or timer C1 external	P11/TI010
INTP011		capture trigger input	P12
INTP020		External maskable interrupt request input, or timer C2 external	P21/TI020
INTP021		capture trigger input	P22
INTP030		External maskable interrupt request input, or timer C3 external	P50/TI030
INTP031		capture trigger input	P51
INTP100	Input	External maskable interrupt request input	P04/DMARQ0
INTP101			P05/DMARQ1
ĪNTP102			P06/DMARQ2
ĪNTP103			P07/DMARQ3
INTP110	-		P24/TC0
INTP111			P25/TC1
INTP112			P26/TC2
ĪNTP113			P27/TC3
INTP120			P34/RXD2
INTP121			P35
INTP122			P36
INTP123			P37/ADTRG
ĪNTP130			P30/SO2
ĪNTP131			P31/SI2
ĪNTP132			P32/SCK2
ĪNTP133			P33/TXD2
SO0	Output	CSI0 to SCI2 serial transmission data output (3-wire)	P40/TXD0
SO1			P43/TXD1
SO2			P30/INTP130

(2/4)

Pin Name	I/O	Function	Alternate Function
SI0	Input	CSI0 to CSI2 serial reception data input (3-wire)	P41/RXD0
SI1			P44/RXD1
SI2			P31/INTP131
SCK0	I/O	CSI0 to CSI2 serial clock I/O (3-wire)	P42
SCK1			P45
SCK2			P32/INTP132
TXD0	Output	UART0 to UART2 serial transmission data output	P40/S00
TXD1			P43/SO1
TXD2			P33/INTP133
RXD0	Input	UART0 to UART2 serial reception data input	P41/SI0
RXD1			P44/SI1
RXD2			P34/INTP120
PWM0	Output	PWM pulse signal output	P00
PWM1			P10
ANI0 to ANI7	Input	Analog inputs to A/D converter	P70 to P77
ADTRG	Input	A/D converter external trigger input	P37/INTP123
DMARQ0	Input	DMA request signal input	P04/INTP100
DMARQ1			P05/INTP101
DMARQ2			P06/INTP102
DMARQ3			P07/INTP103
DMAAK0	Output	DMA acknowledge signal output	PBD0
DMAAK1			PBD1
DMAAK2			PBD2
DMAAK3			PBD3
TC0	Output	DMA transfer end (terminal count) signal output	P24/INTP110
TC1			P25/INTP111
TC2			P26/INTP112
TC3			P27/INTP113
NMI	Input	Non-maskable interrupt request signal input	P20
MODE0	Input	V850E/MA1 operating mode specification	_
MODE1			_
MODE2			V _{PP}
V _{PP}	Input	Flash memory programming power-supply application pin (μPD70F3107A only)	MODE2
WAIT	Input	Control signal input that inserts a wait in the bus cycle	PCM0
HLDAK	Output	Bus hold acknowledge output	PCM2
HLDRQ	Input	Bus hold request input	РСМ3
REFRQ	Output	Refresh request signal output for DRAM	PCM4
SELFREF	Input	Self-refresh request input for DRAM	PCM5

(3/4)

Pin Name	I/O	Function	Alternate Function
LCAS	Output	Column address strobe signal output for DRAM lower data	PCT0/LWR/LDQM
<u>UCAS</u>	Output	Column address strobe signal output for DRAM higher data	PCT1/UWR/UDQM
LWR	Output	External data lower byte write strobe signal output	PCT0/LCAS/LDQM
ŪWR	Output	External data higher byte write strobe signal output	PCT1/UCAS/UDQM
LDQM	Output	Output disable/write mask signal output for SDRAM lower data	PCT0/LCAS/LWR
UDQM	Output	Output disable/write mask signal output for SDRAM higher data	PCT1/UCAS/UWR
RD	Output	External data bus read strobe signal output	PCT4
WE	Output	Write enable signal output for DRAM	PCT5
ŌĒ	Output	Output enable signal output for DRAM	PCT6
BCYST	Output	Strobe signal output that shows the start of the bus cycle	PCT7
CS0	Output	Chip select signal output	PCS0
CS1			PCS1/RAS1
CS2			PCS2/IOWR
CS3			PCS3/RAS3
CS4			PCS4/RAS4
CS5			PCS5/IORD
CS6			PCS6/RAS6
CS7			PCS7
RAS1	Output	Row address strobe signal output for DRAM	PCS1/CS1
RAS3			PCS3/CS3
RAS4			PCS4/CS4
RAS6			PCS6/CS6
ĪOWR	Output	DMA write strobe signal output	PCS2/CS2
ĪORD	Output	DMA read strobe signal output	PCS5/CS5
SDCKE	Output	SDRAM clock enable signal output	PCD0
SDCLK	Output	SDRAM clock signal output	PCD1
SDCAS	Output	Column address strobe signal output for SDRAM	PCD2/LBE
SDRAS	Output	Row address strobe signal output for SDRAM	PCD3/UBE
LBE	Output	External data bus lower byte enable signal output	PCD2/SDCAS
ŪBĒ	Output	External data bus higher byte enable signal output	PCD3/SDRAS
D0 to D15	I/O	16-bit data bus for external memory	PDL0 to PDL15
A0 to A15	Output	26-bit address bus for external memory	PAL0 to PAL15
A16 to A25	1		PAH0 to PAH9
RESET	Input	System reset input	-
X1	Input	Connects the crystal resonator for system clock oscillation. In the	-
X2	-	case of an external source supplying the clock, it is input to X1.	_
CLKOUT	Output	System clock output	PCM1/BUSCLK
BUSCLK	Output	Bus clock output	PCM1/CLKOUT

CHAPTER 2 PIN FUNCTIONS

(4/4)

Pin Name	I/O	Function	Alternate Function
CKSEL	Input	Input specifying the clock generator's operating mode	-
AVREF	Input	Reference voltage applied to A/D converter	AV _{DD}
AVDD	-	Positive power supply for A/D converter	AVREF
AVss	-	Ground potential for A/D converter	-
CV _{DD}	-	Positive power supply for dedicated clock generator	-
CVss	-	Ground potential for dedicated clock generator	-
V _{DD}	_	Positive power supply	_
Vss	_	Ground potential	_

2.2 Pin Status

The status of each pin after reset, in power-save mode (software STOP, IDLE, HALT modes), and during DMA transfer, refresh, and bus hold (TH) is shown below.

*	Operating Status	Reset (Single-Chip Mode 0)	Reset (Single-Chip Mode 1,	IDLE Mode/Software STOP Mode	HALT Mode/During DMA Transfer,	Bus Hold (TH) ^{Note}
	Pin		ROMless Mode 0,1)		Refresh	
	A0 to A15 (PAL0 to PAL15)	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z
	A16 to A25 (PAH0 to PAH9)	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z
	D0 to D15 (PDL0 to PDL15)	Hi-Z	Hi-Z	Hi-Z	Operating	Hi-Z
	CS0 to CS7 (PCS0 to PCS7)	Hi-Z	Hi-Z	SELF	Operating	Hi-Z
*	RAS1, RAS3, RAS4, RAS6 (PCS1, PCS3, PCS4, PCS6)	×	×	CBR	Operating	Hi-Z
*	IOWR (PCS2)	×	×	Н	Operating	Hi-Z
*	IORD (PCS5)	×	×	Н	Operating	Hi-Z
	TWR, UWR (PCT0, PCT1)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
*	TCAS, UCAS (PCT0, PCT1)	×	×	CBR	Operating	Hi-Z
*	LDQM, UDQM (PCT0, PCT1)	×	×	Н	Operating	Hi-Z
	RD (PCT4)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
	WE (PCT5)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
	OE (PCT6)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
	BCYST (PCT7)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
	WAIT (PCM0)	Hi-Z	Hi-Z	_	Operating	_
	CLKOUT (PCM1)	Hi-Z	Operating	L	Operating	Operating
*	BUSCLK (PCM1)	×	×	L	Operating	Operating
	HLDAK (PCM2)	Hi-Z	Hi-Z	Н	Operating	L
	HLDRQ (PCM3)	Hi-Z	Hi-Z	_	Operating	Operating
	REFRQ (PCM4)	Hi-Z	Hi-Z	CBR	Operating	Operating
	SELFREF (PCM5)	Hi-Z	Hi-Z		Operating	-
	SDCKE (PCD0)	Hi-Z	Hi-Z	L	Operating	Operating
	SDCLK (PCD1)	Hi-Z	Hi-Z	L	Operating	Operating
*	SDCAS (PCD2)	×	×	SELF	Operating	Hi-Z
	TBE (PCD2)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
*	SDRAS (PCD3)	×	×	SELF	Operating	Hi-Z
	UBE (PCD3)	Hi-Z	Hi-Z	Н	Operating	Hi-Z
	DMAAK0 to DMAAK3 (PBD0 to PBD3)	Hi-Z	Hi-Z	Н	Operating	Н

Note The pin set in the port mode holds the status immediately before.

Remark Hi-Z: High-impedance

> H: High-level output Low-level output L: No sampling of input -: No select function at reset ×:

CBR: A DRAM refresh state

SELF: Self-refresh state when pins are connected to SDRAM

2.3 Description of Pin Functions

(1) P00 to P07 (Port 0) ··· 3-state I/O

P00 to P07 function as an 8-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the real-time pulse unit (RPU), external interrupt request inputs, a PWM output, and DMA request inputs.

The operation mode can be set to port or control mode in 1-bit units, specified by the port 0 mode control register (PMC0).

(a) Port mode

P00 to P07 can be set to input or output in 1-bit units using the port 0 mode register (PM0).

(b) Control mode

P00 to P07 can be set to port/control mode in 1-bit units using the PMC0 register.

(i) PWM0 (Pulse width modulation) --- output

This pin outputs the PWM pulse signal.

(ii) TI000 (Timer input) ··· input

This is the external count clock input pin for timer C0.

(iii) TO00 (Timer output) ... output

This pin outputs the pulse signals for timer C0.

(iv) INTP000, INTP001 (External interrupt input) ... input

These are external interrupt request input pins and the external capture trigger input pins for timer C0.

(v) INTP100 to INTP103 (External interrupt input) ... input

These are external interrupt request input pins.

(vi) DMARQ0 to DMARQ3 (DMA request) ... input

These are DMA service request signals. They correspond to DMA channels 0 to 3, respectively, and operate independently of each other. The priority order is fixed to $\overline{\text{DMARQ0}} > \overline{\text{DMARQ1}} > \overline{\text{DMARQ1}} > \overline{\text{DMARQ2}}$

These signals are sampled at the falling edge of the CLKOUT signal. Maintain an active level until a DMA request is acknowledged.

(2) P10 to P13 (Port 1) ... 3-state I/O

P10 to P13 function as a 4-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the real-time pulse unit (RPU), external interrupt request inputs, and a PWM output.

The operation mode can be set to port or control mode in 1-bit units, specified by the port 1 mode control register (PMC1).

(a) Port mode

P10 to P13 can be set to input or output in 1-bit units using the port 1 mode register (PM1).

(b) Control mode

P10 to P13 can be set to port/control mode in 1-bit units using the PMC1 register.

(i) PWM1 (Pulse width modulation) ... output

This pin outputs the PWM pulse signal.

(ii) TI010 (Timer input) ··· input

This is the external count clock input pin for timer C1.

(iii) TO01 (Timer output) ··· output

This pin outputs the pulse signal for timer C1.

(iv) INTP010, INTP011 (External interrupt input) ... input

These are external interrupt request input pins and the external capture trigger input pins for timer C1.

(3) P20 to P27 (Port 2) ... 3-state I/O

Port 2, except P20, which is an input pin dedicated to checking the input status of NMI, is a 7-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the real-time pulse unit (RPU), external interrupt request inputs, and DMA transfer termination outputs (terminal count).

The operation mode can be set to port or control mode in 1-bit units, specified by the port 2 mode control register (PMC2).

(a) Port mode

P21 to P27 can be set to input or output in 1-bit units using the port 2 mode register (PM2). P20 is an input port dedicated to checking the NMI input status, and if a valid edge is input, it operates as an NMI input.

(b) Control mode

P21 to P27 can be set to port/control mode in 1-bit units using the PMC2 register.

(i) NMI (Non-maskable interrupt request) ··· input

This is the non-maskable interrupt request input pin.

(ii) TI020 (Timer input) ··· input

This is the external count clock input pin for timer C2.

(iii) TO02 (Timer output) ··· output

This pin outputs the pulse signal for timer C2.

(iv) INTP020, INTP021 (External interrupt input) ... input

These are external interrupt request input pins and the external capture trigger input pins for timer C2.

(v) INTP110 to INTP113 (External interrupt input) ... input

These are external interrupt request input pins.

(vi) TC0 to TC3 (Terminal count) ... output

These are signals from the DMA controller indicating that DMA transfer is complete. These signals become active for 1 clock at the rising edge of the CLKOUT signal.

(4) P30 to P37 (Port 3) ... 3-state I/O

P30 to P37 function as an 8-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the serial interfaces (CSI2, UART2), external interrupt request inputs, and the A/D converter external trigger input.

The operation mode can be set to port or control mode in 1-bit units, specified by the port 3 mode control register (PMC3).

(a) Port mode

P30 to P37 can be set to input or output in 1-bit units using the port 3 mode register (PM3).

(b) Control mode

P30 to P37 can be set to port/control mode in 1-bit units using the PMC3 register.

(i) TXD2 (Transmit data) ··· output

This pin outputs the serial transmit data of UART2.

(ii) RXD2 (Receive data) ··· input

This pin inputs the serial receive data of UART2.

(iii) SO2 (Serial output) ··· output

This pin outputs the serial transmit data of CSI2.

(iv) SI2 (Serial input) ··· input

This pin inputs the serial receive data of CSI2.

(v) SCK2 (Serial clock) ··· 3-state I/O

This is the CSI2 serial clock I/O pin.

(vi) INTP120 to INTP123, INTP130 to INTP133 (External interrupt input) ... input

These are external interrupt request input pins.

(vii) ADTRG (A/D trigger input) ... input

This is the external trigger input pin for the A/D converter.

(5) P40 to P45 (Port 4) ··· 3-state I/O

P40 to P45 function as a 6-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the serial interfaces (UART0/CSI0, UART1/CSI1).

The operation mode can be set to port or control mode in 1-bit units, specified by the port 4 mode control register (PMC4).

(a) Port mode

P40 to P45 can be set to input or output in 1-bit units using the port 4 mode register (PM4).

(b) Control mode

P40 to P45 can be set to port/control mode in 1-bit units using the PMC4 register.

(i) TXD0, TXD1 (Transmit data) ··· output

These pins output UART0, UART1 serial transmit data.

(ii) RXD0, RXD1 (Receive data) ... input

These pins input UART0, UART1 serial receive data.

(iii) SO0, SO1 (Serial output) ··· output

These pins output CSI0, CSI1 serial transmit data.

(iv) SI0, SI1 (Serial input) ··· input

These pins input CSI0, CSI1 serial receive data.

(v) SCK0, SCK1 (Serial clock) ··· 3-state I/O

These are the CSI0, CSI1 serial clock I/O pins.

(6) P50 to P52 (Port 5) ··· 3-state I/O

P50 to P52 function as a 3-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as I/O for the real-time pulse unit (RPU) and external interrupt request inputs.

The operation mode can be set to port or control mode in 1-bit units, specified by the port 5 mode control register (PMC5).

(a) Port mode

P50 to P52 can be set to input or output in 1-bit units using the port 5 mode register (PM5).

(b) Control mode

P50 to P52 can be set to port/control mode in 1-bit units using the PMC5 register.

(i) TI030 (Timer input) ... input

This is the external count clock input pin for timer C3.

(ii) TO03 (Timer output) ··· output

This pin outputs the pulse signal for timer C3.

(iii) INTP030, INTP031 (External interrupt input) ... input

These are external interrupt request input pins and the external capture trigger input pins for timer C3.

(7) P70 to P77 (Port 7) ... 3-state I/O

P70 to P77 function as an 8-bit input-only port in which all pins are fixed as input pins.

Besides functioning as a port, in the control mode, these pins operate as analog inputs for the A/D converter. However, the input ports and analog input pins cannot be switched.

(a) Port mode

P70 to P77 are input-only pins.

(b) Control mode

P70 to P77 have alternate functions as pins ANI0 to ANI7, but these alternate functions are not switchable.

(i) ANI0 to ANI7 (Analog input) ... input

These are analog input pins for the A/D converter.

Connect a capacitor between these pins and AVss to prevent noise-related operation faults. Also, do not apply voltage that is outside the range for AVss and AVREF to pins that are being used as inputs for the A/D converter. If it is possible for noise above the AVREF range or below the AVss to enter, clamp these pins using a diode that has a small VF value.

(8) PBD0 to PBD3 (Port BD) ··· 3-state I/O

PBD0 to PBD3 function as a 4-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode, these pins operate as DMA acknowledge outputs.

The operation mode can be set to port or control in 1-bit units, specified by the port BD mode control register (PMCBD).

(a) Port mode

PBD0 to PBD3 can be set to input or output in 1-bit units using the port BD mode register (PMBD).

(b) Control mode

PBD0 to PBD3 can be set to port/control mode in 1-bit units using the PMCBD register.

(i) DMAAK0 to DMAAK3 (DMA acknowledge) ... output

These signals show that a DMA service request was granted. They correspond to DMA channel 0 to 3, respectively, and operate independently of each other.

These signals become active only when external memory is being accessed. When DMA transfers are being executed between internal RAM and on-chip peripheral I/O, they do not become active.

These signals are activated at the falling edge of the CLKOUT signal in the T0, T1R, T1FH state of the DMA cycle, and maintained at an active level during DMA transfers.

(9) PCM0 to PCM5 (Port CM) ··· 3-state I/O

PCM0 to PCM5 function as a 6-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode, these pins operate as the wait insertion signal input, system clock output, bus hold control signal, refresh request signal output for DRAM, and self-refresh request signal input.

The operation mode can be set to port or control in 1-bit units, specified by the port CM mode control register (PMCCM).

(a) Port mode

PCM0 to PCM5 can be set to input or output in 1-bit units using the port CM mode register (PMCM).

(b) Control mode

PCM0 to PCM5 can be set to port/control mode in 1-bit units using the PMCCM register.

(i) WAIT (Wait) ... input

This is the control signal input pin at which a data wait is inserted in the bus cycle. The $\overline{\text{WAIT}}$ signal can be input asynchronously to the CLKOUT signal. When the CLKOUT signal rises, sampling is executed. When the set/hold time is not terminated within the sampling timing, wait insertion may not be executed.

Caution In ROMless modes 0 and 1 and single-chip mode 1, input to the WAIT pin is valid immediately after release of reset. If a low level is input to the WAIT pin because an external pull-down resistor is connected to it, the external bus is placed in the wait status.

(ii) CLKOUT (Clock output) ... output

This is the internal system clock output pin. In single-chip mode 0, because port mode is entered during the reset period, output does not occur from the CLKOUT pin. CLKOUT output can be executed by setting the port CM mode control register (PMCCM) and the port CM function control register (PFCCM).

(iii) BUSCLK (Bus clock output) ... output

This pin outputs a bus clock only in the bus cycle when the external bus cycle period is set to two times that of the normal. The bus clock operates at the operating frequency of 1/2 the internal system clock by setting the bus cycle period control register (BCP). To execute BUSCLK output, set the port CM mode control register (PMCCM) and the port CM function control register (PFCCM).

(iv) HLDAK (Hold acknowledge) --- output

In this mode, this pin is the acknowledge signal output pin that indicates the high impedance status for the address bus, data bus, and control bus when the V850E/MA1 receives a bus hold request. While this signal is active, the impedance of the address bus, data bus and control bus becomes high and the bus mastership is transferred to the external bus master.

(v) HLDRQ (Hold request) ... input

In this mode, this pin is the input pin through which an external device requests the V850E/MA1 to release the address bus, data bus, and control bus. The $\overline{\text{HLDRQ}}$ signal can be input asynchronously to the CLKOUT signal. When this pin is active, the address bus, data bus, and control bus are set to the high impedance status. This occurs either when the V850E/MA1 completes execution of the current bus cycle or immediately if no bus cycle is being executed, then the $\overline{\text{HLDAK}}$ signal is set as active and the bus is released.

In order to make the bus hold state secure, keep the $\overline{\text{HLDRQ}}$ signal active until the $\overline{\text{HLDAK}}$ signal is output.

Caution In ROMless modes 0 and 1 and single-chip mode 1, input to the HLDRQ pin is valid immediately after release of reset. If a low level is input to the HLDRQ pin because an external pull-down resistor is connected to it, the external bus is placed in the bus hold status.

(vi) REFRQ (Refresh request) ··· output

This is the refresh request signal for DRAM.

This signal becomes active during the refresh cycle. Also, during bus hold, it becomes active when a refresh request is generated and informs the external bus master that a refresh request was generated.

Also, in cases when the address is decoded by an external circuit to increase the connected DRAM, or in cases when external SIMM's are connected, this signal is used for RAS control during the refresh cycle.

(vii) SELFREF (Self-refresh request) ... input

This is a self-refresh request signal input for DRAM.

The internal ROM and internal RAM can be accessed even in the self-refresh cycle. However, access to a peripheral I/O register or external device is held pending until the self-refresh cycle is cancelled.

*

Caution In ROMless modes 0 and 1, and single-chip mode 1, input to the SELFREF pin becomes valid immediately after the reset signal has been cleared. Note that, consequently, if a high level is input to the SELFREF pin by an external pull-up resistor, the normal instruction fetch cycle does not occur.

(10) PCT0, PCT1, PCT4 to PCT7 (Port CT) ··· 3-state I/O

PCT0, PCT1, PCT4 to PCT7 function as a 6-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode, these pins operate as control signal outputs for when memory is expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port CT mode control register (PMCCT).

(a) Port mode

PCT0, PCT1, PCT4 to PCT7 can be set to input or output in 1-bit units using the port CT mode register (PMCT).

(b) Control mode

PCT0, PCT1, PCT4 to PCT7 can be set to port/control mode in 1-bit units using the PMCCT register.

(i) LCAS (Lower column address strobe) ... 3-state output

This is the column address strobe signal for DRAM and the strobe signal for the CBR refresh cycle. For the data bus, the lower byte is valid.

(ii) UCAS (Upper column address strobe) ... 3-state output

This is the column address strobe signal for DRAM and the strobe signal for the CBR refresh cycle. For the data bus, the higher byte is valid.

(iii) LWR (Lower byte write strobe) ... 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, or external peripheral I/O area.

For the data bus, the lower byte becomes valid. If the bus cycle is a lower memory write, it becomes active at the falling edge of the CLKOUT signal in the T1 state and becomes inactive at the falling edge of the CLKOUT signal in the T2 state.

(iv) UWR (Upper byte write strobe) ... 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, or external peripheral I/O area.

For the data bus, the higher byte becomes valid. If the bus cycle is a higher memory write, it becomes active at the falling edge of the CLKOUT signal in the T1 state and becomes inactive at the falling edge of the CLKOUT signal in the T2 state.

(v) LDQM (Lower DQ mask enable) ··· 3-state output

This is a control signal for the data bus to SDRAM. For the data bus, the lower byte is valid. This signal carries out SDRAM output disable control during a read operation, and SDRAM byte mask control during a write operation.

(vi) UDQM (Upper DQ mask enable) ... 3-state output

This is a control signal for the data bus to SDRAM. For the data bus, the higher byte is valid. This signal carries out SDRAM output disable control during a read operation, and SDRAM byte mask control during a write operation.

(vii) RD (Read strobe) ··· 3-state output

This strobe signal shows that the bus cycle currently being executed is a read cycle for the SRAM, external ROM, external peripheral I/O, or page ROM area. In the idle state (TI), it becomes inactive.

(viii) WE (Write enable) ··· 3-state output

This signal shows that the bus cycle currently being executed is a write cycle for the DRAM area. In the idle state (TI), it becomes inactive.

(ix) OE (Output enable) --- 3-state output

This signal shows that the bus cycle currently being executed is a read cycle for the DRAM area. In the idle state (TI), it becomes inactive.

(x) BCYST (Bus cycle start timing) ... 3-state output

This outputs a status signal showing the start of the bus cycle. It becomes active for 1-clock cycle from the start of each cycle. In the idle state (TI), it becomes inactive.

(11) PCS0 to PCS7 (Port CS) ··· 3-state I/O

PCS0 to PCS7 function as an 8-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode, these pins operate as control signal outputs for when memory and peripheral I/O are expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port CS mode control register (PMCCS).

(a) Port mode

PCS0 to PCS7 can be set to input or output in 1-bit units using the port CS mode register (PMCS).

(b) Control mode

PCS0 to PCS7 can be set to port/control mode in 1-bit units using the PMCCS register.

(i) CS0 to CS7 (Chip select) ··· 3-state output

These are the chip select signals for the SRAM, external ROM, external peripheral I/O, and page ROM area.

The CSn signal is assigned to memory block n (n = 0 to 7).

It becomes active while the bus cycle that accesses the corresponding memory block is activated.

(ii) RAS1, RAS3, RAS4, RAS6 (Row address strobe) ··· 3-state output

These are the row address strobe signals for the DRAM area and the strobe signal for the refresh cycle.

The \overline{RASn} signal is assigned to memory block n (n = 1, 3, 4, 6).

During on-page disable, after the DRAM access bus cycle ends, it becomes inactive.

During on-page enable, even after the DRAM access bus cycle ends, it remains in the active state.

During the reset period and during a bus hold period, it is in the high-impedance state, so connect it to V_{DD} via a resistor.

(iii) IOWR (I/O write) ··· 3-state output

This is the write strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a write cycle for external I/O during flyby transfer, or a write cycle for the SRAM area.

Note that if the IOEN bit of the BCP register is set (1), this signal can be output even in the normal SRAM, external ROM, or external I/O cycle.

(iv) IORD (I/O read) ··· 3-state output

This is the read strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a read cycle for external I/O during flyby transfer, or a read cycle for the SRAM area.

Note that if the IOEN bit of the BCP register is set (1), this signal can be output even in the normal SRAM, external ROM, or external I/O cycle.

(12) PCD0 to PCD3 (Port CD) ··· 3-state I/O

PCD0 to PCD3 function as a 4-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in control mode, these pins operate as control signal outputs for when the memory and peripheral I/O are expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port CD mode control register (PMCCD).

(a) Port mode

PCD0 to PCD3 can be set to input or output in 1-bit units using the port CD mode register (PMCD).

(b) Control mode

PCD0 to PCD3 can be set to port or control mode in 1-bit units using the PMCCD register.

(i) SDCKE (SDRAM clock enable) ··· 3-state output

This is the SDRAM clock enable output signal. It becomes inactive in self-refresh and standby mode.

(ii) SDCLK (SDRAM clock output) ··· 3-state output

This is an SDRAM dedicated clock output signal. The same frequency as the internal system clock is output.

(iii) SDCAS (SDRAM column address strobe) ··· 3-state output

This is a command output signal for SDRAM.

(iv) SDRAS (SDRAM row address strobe) ... 3-state output

This is a command output signal for SDRAM.

(v) LBE (Lower byte enable) ... 3-state output

This is the signal that enables the lower byte of the external data bus.

(vi) UBE (Upper byte enable) ... 3-state output

This is the signal that enables the higher byte of the external data bus.

(13) PAH0 to PAH9 (Port AH) ··· 3-state I/O

PAH0 to PAH9 function as an 8- or 10-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in control mode (external expansion mode), these pins operate as an address bus (A16 to A25) for when the memory is expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port AH mode control register (PMCAH).

(a) Port mode

PAH0 to PAH9 can be set to input or output in 1-bit units using the port AH mode register (PMAH).

(b) Control mode

PAH0 to PAH9 can be set to function alternately as A16 to A25 using the PMCAH register.

(i) A16 to A25 (Address) ··· 3-state output

These are the address output pins of the higher 10 bits of the address bus's 26-bit address when the external memory is accessed.

The output changes in synchronization with the rise of the CLKOUT signal in the T1 state. In the idle state (TI), the address of the bus cycle immediately before is retained.

(14) PAL0 to PAL15 (Port AL) ··· 3-state I/O

PAL0 to PAL15 function as an 8- or 16-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in control mode (external expansion mode), these pins operate as an address bus (A0 to A15) for when the memory is expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port AL mode control register (PMCAL).

(a) Port mode

PAL0 to PAL15 can be set to input or output in 1-bit units using the port AL mode register (PMAL).

(b) Control mode

PAL0 to PAL15 can be set to function alternately as A0 to A15 using the PMCAL register.

(i) A0 to A15 (Address) ··· 3-state output

These are the address output pins of the lower 16 bits of the address bus's 26-bit address when the external memory is accessed.

The output changes in synchronization with the rise of the CLKOUT signal in the T1 state. In the idle state (TI), the address of the bus cycle immediately before is retained.

(15) PDL0 to PDL15 (Port DL) ··· 3-state I/O

PDL0 to PDL15 function as an 8- or 16-bit I/O port that can be set to input or output in 1-bit units.

Besides functioning as a port, in control mode (external expansion mode), these pins operate as a data bus (D0 to D15) for when the memory is expanded externally.

The operation mode can be set to port or control mode in 1-bit units, specified by the port DL mode control register (PMCDL).

(a) Port mode

PDL0 to PDL15 can be set to input or output in 1-bit units using the port DL mode register (PMDL).

(b) Control mode

PDL0 to PDL15 can be set to function alternately as D0 to D15 using the PMCDL register.

(i) D0 to D15 (Data) --- 3-state I/O

These pins constitute a data bus for when the external memory is accessed. These are 16-bit data I/O bus pins.

The output changes in synchronization with the CLKOUT signal in the T1 state. In the idle state (TI), these pins become high impedance.

(16) CKSEL (Clock generator operating mode select) ... input

This is an input pin used to specify the clock generator's operating mode.

(17) MODE0 to MODE2 (Mode) ... input

These are input pins used to specify the operating mode. Fix the operation mode of this pin via a resistor.

(18) RESET (Reset) ... input

RESET is a signal that is input asynchronously and that has a constant low level width regardless of the operating clock's status. When this signal is input, a system reset is executed as the first priority ahead of all other operations.

In addition to being used for ordinary initialization/start operations, this pin can also be used to release a standby mode (HALT, IDLE, or software STOP).

(19) X1, X2 (Crystal)

These pins are used to connect the resonator that generates the system clock.

(20) CV_{DD} (Power supply for clock generator)

This pin supplies positive power to the clock generator.

(21) CVss (Ground for clock generator)

This is the ground pin for the clock generator.

(22) VDD (Power supply)

These are the positive power supply pins for each internal unit. All the V_{DD} pins should be connected to a positive power source.

(23) Vss (Ground)

These are ground pins. All the Vss pins should be grounded.

51

(24) AVDD (Analog power supply)

This is the analog positive power supply pin for the A/D converter.

(25) AVss (Analog ground)

This is the ground pin for the A/D converter.

(26) AVREF (Analog reference voltage) ... input

This is the reference voltage supply pin for the A/D converter.

(27) VPP (Programming power supply)

This is the positive power supply pin used for flash memory programming mode.

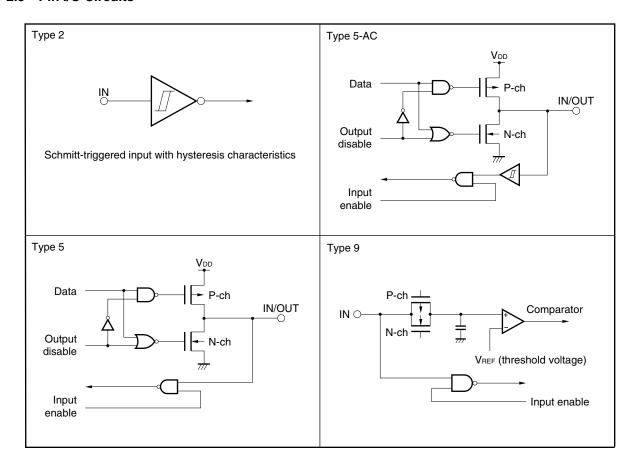
This pin is used for the μ PD70F3107A.

2.4 Pin I/O Circuits and Recommended Connection of Unused Pins

It is recommended that 1 to 10 $k\Omega$ resistors be used when connecting to V_{DD} or V_{SS} via resistors.

(1/2)

Pin Name	I/O Circuit Type	Recommended Connection
P00/PWM0	5	Input: Independently connect to VDD or VSS
P01/INTP000/TI000	5-AC	via a resistor
P02/INTP001		Output: Leave open
P03/TO00	5	
P04/DMARQ0/INTP100 to P07/DMARQ3/INTP103	5-AC	
P10/PWM1	5	
P11/INTP010/TI010, P12/INTP011	5-AC	
P13/TO01	5	
P20/NMI	2	Connect to Vss directly.
P21/INTP020/TI020, P22/INTP021	5-AC	Input: Independently connect to VDD or VSS
P23/TO02	5	via a resistor
P24/TC0/INTP110 to P27/TC3/INTP113	5-AC	Output: Leave open
P30/SO2/INTP130		
P31/Sl2/INTP131		
P32/SCK2/INTP132		
P33/TXD2/INTP133		
P34/RXD2/INTP120		
P35/INTP121		
P36/INTP122		
P37/ADTRG/INTP123		
P40/TXD0/SO0	5	
P41/RXD0/SI0	5-AC	
P42/SCK0		
P43/TXD1/SO1	5	
P44/RXD1/SI1	5-AC	
P45/SCK1		
P50/INTP030/TI030, P51/INTP031		
P52/TO03	5	
P70/ANI0 to P77/ANI7	9	Connect to Vss directly.
PBD0/DMAAK0 to PBD3/DMAAK3	5	Input: Independently connect to VDD or Vss via a resistor Output: Leave open
PCM0/WAIT	5	Input: Independently connect to VDD via a resistor
PCM1/CLKOUT/BUSCLK	5	Input: Independently connect to VDD or Vss via a resistor Output: Leave open


(2/2)

Pin Name	I/O Circuit Type	Recommended Connection
PCM2/HLDAK	5	Input: Independently connect to VDD or Vss via a resistor Output: Leave open
PCM3/HLDRQ	5	Input: Independently connect to V _{DD} via a resistor
PCM4/REFRQ	5	Input: Independently connect to V _{DD} or V _{SS} via a resistor Output: Leave open
PCM5/SELFREF	5	Input: Independently connect to Vss via a resistor
PCT0/LCAS/LWR/LDQM	5	Input: Independently connect to VDD or Vss
PCT1/UCAS/UWR/UDQM		via a resistor
PCT4/RD		Output: Leave open
PCT5/WE		
PCT6/OE		
PCT7/BCYST		
PCS0/CS0		
PCS1/CS1/RAS1		
PCS2/CS2/IOWR		
PCS3/CS3/RAS3		
PCS4/ CS4 / RAS4		
PCS5/CS5/IORD		
PCS6/CS6/RAS6		
PCS7/CS7		
PCD0/SDCKE		
PCD1/SDCLK		
PCD2/LBE/SDCAS		
PCD3/UBE/SDRAS		
PAH0/A16 to PAH9/A25		
PAL0/A0 to PAL15/A15		
PDL0/D0 to PDL15/D15		
MODE0, MODE1	2	-
MODE2 ^{Note 1}		
MODE2/V _{PP} Note 2		
RESET		-
CKSEL		-
AVss	-	Connect to Vss.
AVDD/AVREF	-	Connect to V _{DD} .

Notes 1. μ PD703103A, 703105A, 703106A, 703107A only.

2. μ PD70F3107A only

2.5 Pin I/O Circuits

* Remark Type 2, type 5, and type 5-AC are 5 V tolerant buffers. Design the pattern ensuring that the coupling capacitance is small.

CHAPTER 3 CPU FUNCTION

The CPU of the V850E/MA1 is based on RISC architecture and executes almost all the instructions in one clock cycle using 5-stage pipeline control.

3.1 Features

- Minimum instruction cycle: 20 ns (@ 50 MHz internal operation)
- Memory space Program space: 64 MB linear

Data space: 4 GB linear

- Thirty-two 32-bit general-purpose registers
- Internal 32-bit architecture
- Five-stage pipeline control
- Multiply/divide instructions
- Saturated operation instructions
- One-clock 32-bit shift instruction
- Load/store instruction with long/short instruction format
- Four types of bit manipulation instructions
 - SET1
 - CLR1
 - NOT1
 - TST1

3.2 CPU Register Set

The registers of the V850E/MA1 can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers have a 32-bit width.

For details, refer to V850E1 User's Manual Architecture.

(1) Program register set (2) System register set 0 EIPC (Zero register) (Status saving register during interrupt) r0 r1 (Assembler-reserved register) **EIPSW** (Status saving register during interrupt) r2 r3 (Stack pointer (SP)) FEPC (Status saving register during NMI) (Global pointer (GP)) r4 FEPSW (Status saving register during NMI) r5 (Text pointer (TP)) r6 ECR (Interrrupt source register) r7 r8 **PSW** (Program status word) r9 r10 CTPC (Status saving register during CALLT execution) r11 CTPSW (Status saving register during CALLT execution) r12 r13 DBPC (Status saving register during exception/debug trap) r14 DBPSW (Status saving register during exception/debug trap) r15 r16 r17 **CTBP** (CALLT base pointer) r18 r19 r20 r22 r23 r24 r25 r26 r27 r28 r29 r30 (Element pointer (EP)) r31 (Link pointer (LP)) PC (Program counter)

3.2.1 Program register set

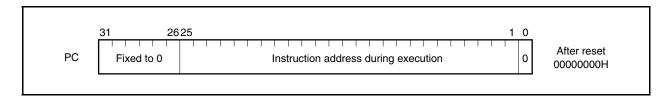
The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing. r30 is used, by means of the SLD and SST instructions, as a base pointer for when memory is accessed. Also, r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used. r2 may be used by the real-time OS. If the real-time OS does not use r2, it can be used as a variable register.

Name	Usage	Operation		
r0	Zero register	Always holds 0		
r1	Assembler-reserved register	Working register for generating 32-bit immediate data		
r2	Address/data variable register (when r2 is not used by the real-time OS)			
r3	Stack pointer	Used to generate stack frame when function is called		
r4	Global pointer	Used to access global variable in data area		
r5	Text pointer	Register to indicate the start of the text area (where program code is located)		
r6 to r29	Address/data variable register	s		
r30	Element pointer	Base pointer when memory is accessed		
r31	Link pointer	Used by compiler when calling function		
PC	Program counter	Holds instruction address during program execution		


Table 3-1. Program Registers

Remark For detailed descriptions of r1, r3 to r5, and r31, which are used by the assembler and C compiler, refer to the CA850 (C Compiler Package) Assembly Language User's Manual.

(2) Program counter (PC)

This register holds the instruction address during program execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to 26, it is ignored.

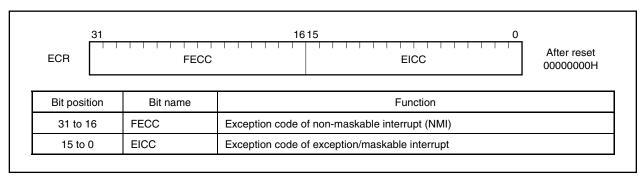
Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

To read/write these system registers, specify a system register number indicated below using the system register load/store instruction (LDSR or STSR instruction).

No. System Register Name Operand Specification LDSR Instruction STSR Instruction 0 Status saving register during interrupt (EIPC) Note 1 0 Status saving register during interrupt (EIPSW) Note 1 0 1 0 Status saving register during NMI (FEPC) 0 0 3 Status saving register during NMI (FEPSW) 0 0 Interrupt source register (ECR) 4 0 X 5 Program status word (PSW) 0 0 6 to 15 Reserved for future function expansion (operations that access these register numbers cannot be guaranteed). 16 Status saving register during CALLT execution (CTPC) 0 0 17 0 Status saving register during CALLT execution (CTPSW) 0 O^{Note 2} 18 Status saving register during exception/debug trap (DBPC) 0 O^{Note 2} Status saving register during exception/debug trap (DBPSW) 19 0 20 CALLT base pointer (CTBP) 0 0 21 to 31 Reserved for future function expansion (operations that access these × register numbers cannot be guaranteed).


Table 3-2. System Register Numbers

- **Notes 1.** Because this register has only one set, to approve multiple interrupts, it is necessary to save this register by program.
 - 2. These registers can be accessed only between DBTRAP instruction execution and DBRET instruction execution.

Caution Even if bit 0 of EIPC, FEPC, or CTPC is set to 1 with the LDSR instruction, bit 0 will be ignored when the program is returned by the RETI instruction after interrupt servicing (because bit 0 of the PC is fixed to 0). When setting the value of EIPC, FEPC, or CTPC, use an even value (bit 0 = 0).

Remark O: Access allowed
×: Access prohibited

(1) Interrupt source register (ECR)

(2) Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction execution) and the status of the CPU.

If the contents of a bit of this register are changed by using the LDSR instruction, the new contents are validated immediately after completion of LDSR instruction execution.

Interrupt request acknowledgement is held pending while the PSW write instruction is being executed by the LDSR instruction.

Bits 31 to 8 of this register are reserved for future function expansion (these bits are fixed to 0).

PSW RFU NP EP ID SAT CY OV S Z After reset 00000020H

Bit position	Flag name	Meaning
31 to 8	RFU	Reserved field. Fixed to 0.
7	NP	Indicates that a non-maskable interrupt (NMI) is being serviced. This bit is set to 1 when an NMI request is acknowledged, disabling multiple interrupt servicing. 0: NMI is not being serviced. 1: NMI is being serviced.
6	EP	Indicates that an exception is being processed. This bit is set to 1 when an exception occurs. Even if this bit is set, interrupt requests are acknowledged. 0: Exception is not being processed. 1: Exception is being processed.
5	ID	Indicates whether a maskable interrupt can be acknowledged. 0: Interrupt enabled 1: Interrupt disabled
4	SAT ^{Note}	Indicates that the result of a saturation operation has overflowed and is saturated. Because this is a cumulative flag, it is set to 1 when the result of a saturation operation instruction is saturated, and is not cleared to 0 even if the subsequent operation result is not saturated. Use the LDSR instruction to clear this bit. This flag is neither set to 1 nor cleared to 0 by execution of an arithmetic operation instruction. 0: Not saturated 1: Saturated
3	CY	Indicates whether a carry or a borrow occurred as a result of an operation. 0: Carry or borrow did not occur. 1: Carry or borrow occurred.
2	OV ^{Note}	Indicates whether an overflow occurred during operation. 0: Overflow did not occur. 1: Overflow occurred.
1	S ^{Note}	Indicates whether the result of an operation is negative. 0: The result is positive or 0. 1: The result is negative.
0	Z	Indicates whether the result of an operation is 0. 0: The result is not 0. 1: The result is 0.

Remark Also read Note on the next page.

(2/2)

Note The result of a saturation-processed operation is determined by the contents of the OV and S flags in the saturation operation. Simply setting the OV flag (1) will set the SAT flag (1) in a saturation operation.

Status of operation result		Flag status		Saturation-processed
	SAT	OV	S	operation result
Maximum positive value exceeded	1	1	0	7FFFFFFH
Maximum negative value exceeded	1	1	1	80000000H
Positive (not exceeding the maximum)	Retains the value	0	0	Operation result itself
Negative (not exceeding the maximum)	before operation		1	

3.3 Operating Modes

3.3.1 Operating modes

The V850E/MA1 has the following operating modes. Mode specification is carried out using the MODE0 to MODE2 pins.

(1) Normal operation mode

(a) Single-chip modes 0, 1

Access to the internal ROM is enabled.

In single-chip mode 0, after system reset is cleared, each pin related to the bus interface enters the port mode, program execution branches to the reset entry address of the internal ROM, and instruction processing starts. By setting the PMCAL, PMCAH, PMCDL, PMCCS, PMCCT, PMCCM, and PMCCD registers to control mode by instruction, an external device can be connected to the external memory area.

In single-chip mode 1, after system reset is cleared, each pin related to the bus interface enters the control mode, program execution branches to the external device's (memory) reset entry address, and instruction processing starts.

The internal ROM area is mapped from address 100000H.

(b) ROMIess modes 0, 1

After system reset is cleared, each pin related to the bus interface enters the control mode, program execution branches to the external device's (memory) reset entry address, and instruction processing starts. Fetching of instructions and data access for internal ROM becomes impossible.

In ROMless mode 0, the data bus is a 16-bit data bus and in ROMless mode 1, the data bus is an 8-bit data bus.

(2) Flash memory programming mode (µPD70F3107A only)

If this mode is specified, it becomes possible for the flash programmer to run a program to the on-chip flash memory.

The initial value of the register differs depending on the mode.

Op	Operating Mode		PMCAH	PMCDL	PMCCS	PMCCT	PMCCM	PMCCD	BSC
Normal	ROMless mode 0	FFFFH	03FFH	FFFFH	FFH	F3H	3FH	0FH	5555H
operation mode	ROMless mode 1	FFFFH	03FFH	FFFFH	FFH	F3H	3FH	0FH	0000H
inoue	Single-chip mode 0	0000H	0000H	0000H	00H	00H	00H	00H	5555H
	Single-chip mode 1	FFFFH	03FFH	FFFFH	FFH	F3H	3FH	0FH	5555H

3.3.2 Operating mode specification

The operating mode is specified according to the status of the MODE0 to MODE2 pins. In an application system fix the specification of these pins and do not change them during operation. Operation is not guaranteed if these pins are changed during operation.

(a) μ PD703103A

MODE2	MODE1	MODE0	Operating Mode		Remarks
L	L	L	Normal operation mode	ROMless mode 0	16-bit data bus
L	L	Н	ROMless mode 1		8-bit data bus
Other than above Setting prohibited			Setting prohibited		

(b) μ PD703105A, 703106A, 703107A

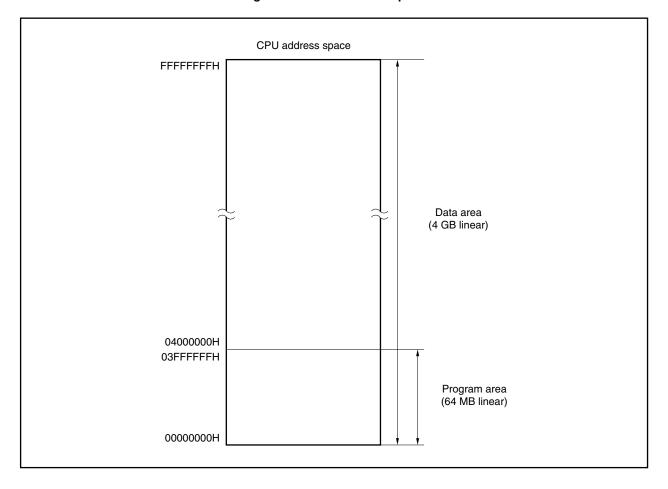
MODE2	MODE1	MODE0	Operating Mode		Remarks
L	L	L	Normal operation mode	ROMless mode 0	16-bit data bus
L	L	Н		ROMless mode 1	8-bit data bus
L	Н	L		Single-chip mode 0	Internal ROM area is allocated from address 000000H.
L	Н	Н		Single-chip mode 1	Internal ROM area is allocated from address 100000H.
Other than above		Setting prohibited			

(c) μ PD70F3107A

MODE2/ V _{PP}	MODE1	MODE0	Operating Mode		Remarks
0 V	L	L	Normal operation mode	ROMless mode 0	16-bit data bus
0 V	L	Н		ROMless mode 1	8-bit data bus
0 V	Н	L		Single-chip mode 0	Internal ROM area is allocated from address 000000H.
0 V	Н	Н		Single-chip mode 1	Internal ROM area is allocated from address 100000H.
7.8 V	Н	H/L	Flash memory programming mode		-
Other than above			Setting prohibited		

Remark L: Low-level input

H: High-level input


3.4 Address Space

3.4.1 CPU address space

The CPU of the V850E/MA1 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). Also, in instruction address addressing, a maximum of 64 MB of linear address space (program space) is supported.

The following shows the CPU address space.

Figure 3-1. CPU Address Space

3.4.2 Image

A 256 MB physical address space is seen as 16 images in the 4 GB CPU address space. In actuality, the same 256 MB physical address space is accessed regardless of the values of bits 31 to 28 of the CPU address. Figure 3-2 shows the image of the virtual addressing space.

Physical address x0000000H can be seen as CPU address 00000000H, and in addition, can be seen as address 10000000H, address 20000000H, ..., address E0000000H, or address F0000000H.

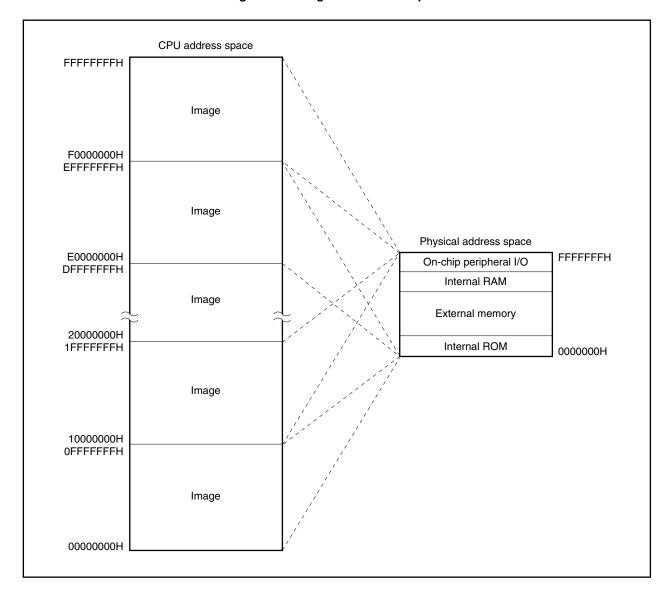
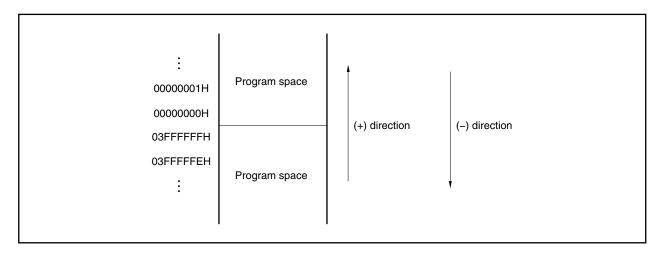


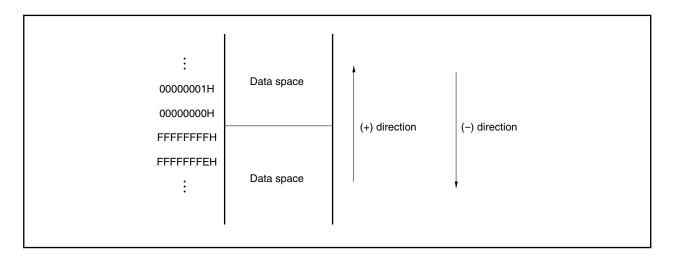
Figure 3-2. Images on Address Space


3.4.3 Wrap-around of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to 26 as a result of a branch address calculation, the higher 6 bits ignore the carry or borrow.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 03FFFFFH become contiguous addresses. Wrap-around refers to a situation like this whereby the lower-limit address and upper-limit address become contiguous.


Caution The 4 KB area of 03FFF000H to 03FFFFFH can be seen as an image of 0FFF000H to 0FFFFFFH. This area is access-prohibited. Therefore, do not execute any branch address calculation in which the result will reside in any part of this area.

(2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

3.4.4 Memory map

The V850E/MA1 reserves areas as shown in Figures 3-3 and 3-4. The mode is specified by the MODE0 to MODE2 pins.

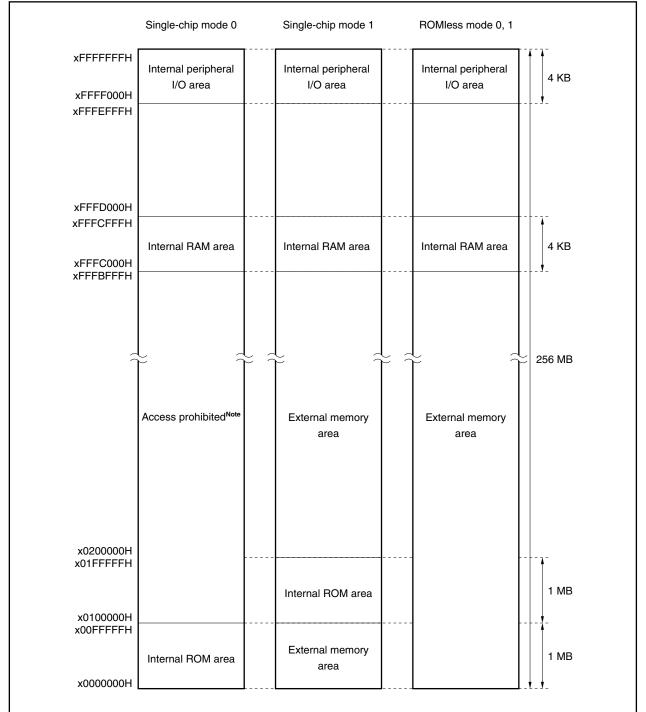


Figure 3-3. Memory Map (μPD703103A, 703105A)

Note By setting the PMCAL, PMCAH, PMCDL, PMCCS, PMCCT, PMCCM, and PMCCD registers to control mode, this area can be used as external memory area.

Remark For the μ PD703103A, only ROMless modes 0 and 1 are supported as the operating mode.

Single-chip mode 0 ROMless mode 0, 1 Single-chip mode 1 xFFFFFFH On-chip peripheral On-chip peripheral On-chip peripheral 4 KB I/O area I/O area I/O area xFFFF000H xFFFEFFFH xFFFE800H xFFFE7FFH Internal RAM area Internal RAM area Internal RAM area 10 KB xFFFC000H xFFFBFFFH 256 MB Access prohibited^{Note} External memory External memory area area x0200000H x01FFFFFH 1 MB Internal ROM area x0100000H x00FFFFFH External memory 1 MB Internal ROM area area H0000000X Note By setting the PMCAL, PMCAH, PMCDL, PMCCS, PMCCT, PMCCM, and PMCCD registers to control mode, this area can be used as external memory area.

Figure 3-4. Memory Map (µPD703106A, 703107A, 70F3107A)

3.4.5 Area

(1) Internal ROM area

(a) Memory map (μ PD703105A, 703106A, 703107A, 70F3107A)

1 MB of internal ROM area, addresses 00000H to FFFFFH, is reserved.

$<1> \mu PD703105A, 703106A$

128 KB are provided at the following addresses as physical internal ROM (mask ROM).

- In single-chip mode 0: Addresses 000000H to 01FFFFH
- In single-chip mode 1: Addresses 100000H to 11FFFFH

<2> μPD703107A

256 KB are provided at the following addresses as physical internal ROM (mask ROM).

- In single-chip mode 0: Addresses 000000H to 03FFFFH
- In single-chip mode 1: Addresses 100000H to 13FFFFH

<3> μPD70F3107A

256 KB are provided at the following addresses as physical internal ROM (flash memory).

- In single-chip mode 0: Addresses 000000H to 03FFFFH
- In single-chip mode 1: Addresses 100000H to 13FFFFH

(b) Interrupt/exception table

The V850E/MA1 increases the interrupt response speed by assigning handler addresses corresponding to interrupts/exceptions.

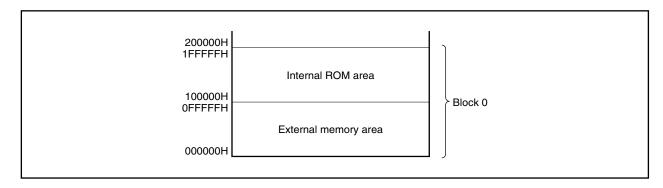
The collection of these handler addresses is called an interrupt/exception table, which is located in the internal ROM area. When an interrupt/exception request is acknowledged, execution jumps to the handler address, and the program written in that memory is executed. Table 3-3 shows the sources of interrupts/exceptions, and the corresponding addresses.

Remark When in ROMless modes 0 and 1, in single-chip mode 1, or in the case of the μ PD703103A, in order to restore correct operation after reset, provide a handler address to the reset routine at address 0 of the external memory.

Table 3-3. Interrupt/Exception Table (1/2)

Start Address of Interrupt/Exception Table	Interrupt/Exception Source
00000000H	RESET
00000010H	NMI
00000040H	TRAP0n (n = 0 to F)
0000050H	TRAP1n (n = 0 to F)
00000060H	ILGOP/DBG0
00000080H	INTOV00
00000090H	INTOV01
00000A0H	INTOV02
000000В0Н	INTOV03
000000C0H	INTP000/INTM000
00000D0H	INTP001/INTM001
000000E0H	INTP010/INTM010
000000F0H	INTP011/INTM011
00000100H	INTP020/INTM020
00000110H	INTP021/INTM021
00000120H	INTP030/INTM030
00000130H	INTP031/INTM031
00000140H	INTP100
00000150H	INTP101
00000160H	INTP102
00000170H	INTP103
00000180H	INTP110
00000190H	INTP111
000001A0H	INTP112
000001B0H	INTP113
000001C0H	INTP120
000001D0H	INTP121
000001E0H	INTP122
000001F0H	INTP123
00000200H	INTP130
00000210H	INTP131
00000220H	INTP132
00000230H	INTP133
00000240H	INTCMD0
00000250H	INTCMD1
00000260H	INTCMD2
00000270H	INTCMD3

Table 3-3. Interrupt/Exception Table (2/2)


Start Address of Interrupt/Exception Table	Interrupt/Exception Source
00000280H	INTDMA0
00000290H	INTDMA1
000002A0H	INTDMA2
000002B0H	INTDMA3
000002C0H	INTCSI0
000002D0H	INTSER0
000002E0H	INTSR0
000002F0H	INTST0
00000300H	INTCSI1
00000310H	INTSER1
00000320H	INTSR1
00000330H	INTST1
00000340H	INTCSI2
00000350H	INTSER2
00000360H	INTSR2
00000370H	INTST2
00000380H	INTAD

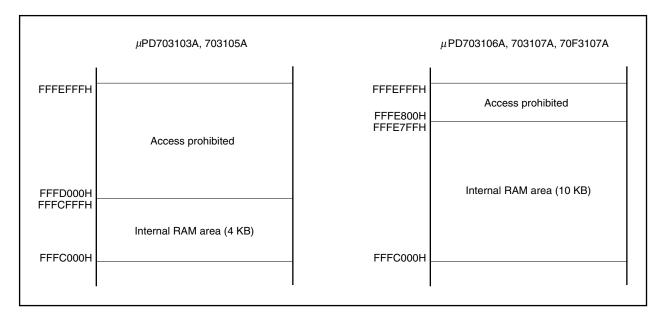
(c) Internal ROM area relocation function

If set in single-chip mode 1, the internal ROM area is located beginning from address 100000H, so booting from external memory becomes possible.

Therefore, in order to resume correct operation after reset, provide a handler address to the reset routine at address 0 of the external memory.

Figure 3-5. Internal ROM Area in Single-Chip Mode 1

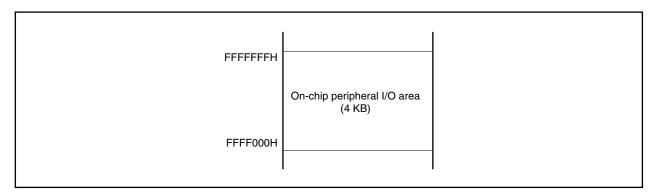
(2) Internal RAM area


The 12 KB area of addresses FFFC000H to FFFEFFFH are reserved for the internal RAM area. The 12 KB area of 3FFC000H to 3FFEFFFH can be seen as an image of FFFC000H to FFFEFFFH.

In the μ PD703103A and 703105A, the 4 KB area of addresses FFFC000H to FFFCFFFH are provided as physical internal RAM.

In the μ PD703106A, 703107A, and 70F3107A, the 10 KB area of addresses FFFC000H to FFFE7FFH are provided as physical internal RAM.

Caution The following areas are access-prohibited.


 μ PD703103A, 703105A: Addresses FFFD000H to FFFEFFH μ PD703106A, 703107A, 70F3107A: Addresses FFFE800H to FFFEFFH

(3) On-chip peripheral I/O area

4 KB of memory, addresses FFFF000H to FFFFFFH, are provided as an on-chip peripheral I/O area. An image of addresses FFFF000H to FFFFFFH can be seen at addresses 3FFF000H to 3FFFFFFH^{Note}.

Note Addresses 3FFF000H to 3FFFFFFH are access-prohibited. To access the on-chip peripheral I/O, specify addresses FFFF000H to FFFFFFFH.

Peripheral I/O registers associated with the operating mode specification and the state monitoring for the onchip peripheral I/O are all memory-mapped to the on-chip peripheral I/O area. Program fetches cannot be executed from this area.

- Cautions 1. In the V850E/MA1, no registers exist which are capable of word access, but if a register is word accessed, halfword access is performed twice in the order of lower address, then higher address of the word area, disregarding the lower 2 bits of the address.
 - 2. For registers in which byte access is possible, if halfword access is executed, the higher 8 bits become undefined during the read operation, and the lower 8 bits of data are written to the register during the write operation.
 - 3. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed. Addresses 3FFF000H to 3FFFFFFH cannot be specified as the source/destination address of DMA transfer. Be sure to use addresses FFFF000H to FFFFFFH for the source/destination address of DMA transfer.

(4) External memory area

256 MB are available for external memory area. The lower 64 MB can be used as program/data area and the higher 192 MB as data area.

When in single-chip mode 0: x0100000H to xFFFBFFFH

When in single-chip mode 1: x0000000H to x00FFFFFH, x0200000H to xFFFBFFH

When in ROMless modes 0 and 1: x0000000H to xFFFBFFFH

Access to the external memory area uses the chip select signal assigned to each memory block (which is carried out in the CS unit set by chip area select control registers 0 and 1 (CSC0, CSC1)).

Note that the internal ROM, internal RAM, and on-chip peripheral I/O areas cannot be accessed as external memory areas.

3.4.6 External memory expansion

By setting the port n mode control register (PMCn) to control mode, an external memory device can be connected to the external memory space using each pin of ports AL, AH, DL, CS, CT, CM, and CD. Each register is set by selecting control mode for each pin of these ports using PMCn (n = AL, AH, DL, CS, CT, CM, CD).

Note that the status after reset differs as shown below in accordance with the operating mode specification set by pins MODE0 to MODE2 (refer to **3.3 Operating Modes** for details of the operating modes).

(a) In the case of ROMless mode 0

Because each pin of ports AL, AH, DL, CS, CT, CM, and CD enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 16 bits).

(b) In the case of ROMless mode 1

Because each pin of ports AL, AH, DL, CS, CT, CM, and CD enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 8 bits).

(c) In the case of single-chip mode 0

After reset, since the internal ROM area is accessed, each pin of ports AL, AH, DL, CS, CT, CM, and CD enters the port mode and external devices cannot be used.

To use external memory, set the port n mode control register (PMCn).

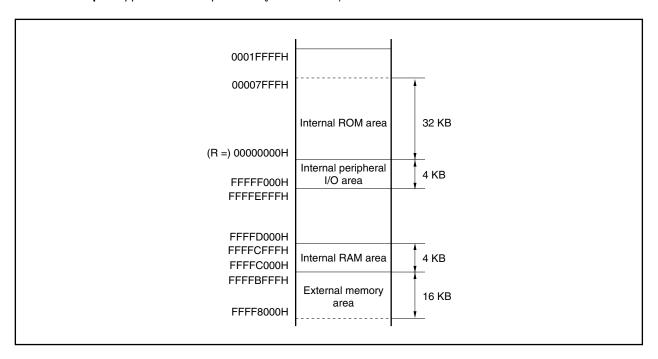
(d) In the case of single-chip mode 1

The internal ROM area is allocated from address 100000H. As a result, because each pin of ports AL, AH, DL, CS, CT, CM, and CD enters control mode following a reset, external memory can be used without making changes to the port n mode control register (PMCn) (the external data bus width is 16 bits).

Remark n = AL, AH, DL, CS, CT, CM, CD

3.4.7 Recommended use of address space

The architecture of the V850E/MA1 requires that a register that serves as a pointer be secured for address generation in operand data accessing of data space. Operand data access from instruction can be directly executed at the address in this pointer register ± 32 KB. However, because the general-purpose registers that can be used as a pointer register are limited, by minimizing the deterioration of address calculation performance when changing the pointer value, the number of usable general-purpose registers for handling variables is maximized, and the program size can be saved.


(1) Program space

Of the 32 bits of the program counter (PC), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Of those valid bits, a contiguous 64 MB space, starting from address 00000000H, corresponds to the memory map of the program space.

(2) Data space

With the V850E/MA1, a 256 MB physical address space is seen as 16 images in the 4 GB CPU address space. The highest bit (bit 25) of this 26-bit address is assigned as an address sign-extended to 32 bits.

Example Application of wrap-around (μ PD703105A)

When R = r0 (zero register) is specified with the LD/ST disp16 [R] instruction, an addressing range of 00000000H ± 32 KB can be referenced with the sign-extended disp 16. By mapping the external memory in the 16 KB area in the figure, all resources including internal hardware can be accessed with one pointer.

The zero register (r0) is a register set to 0 by the hardware, and eliminates the need for additional registers for the pointer.

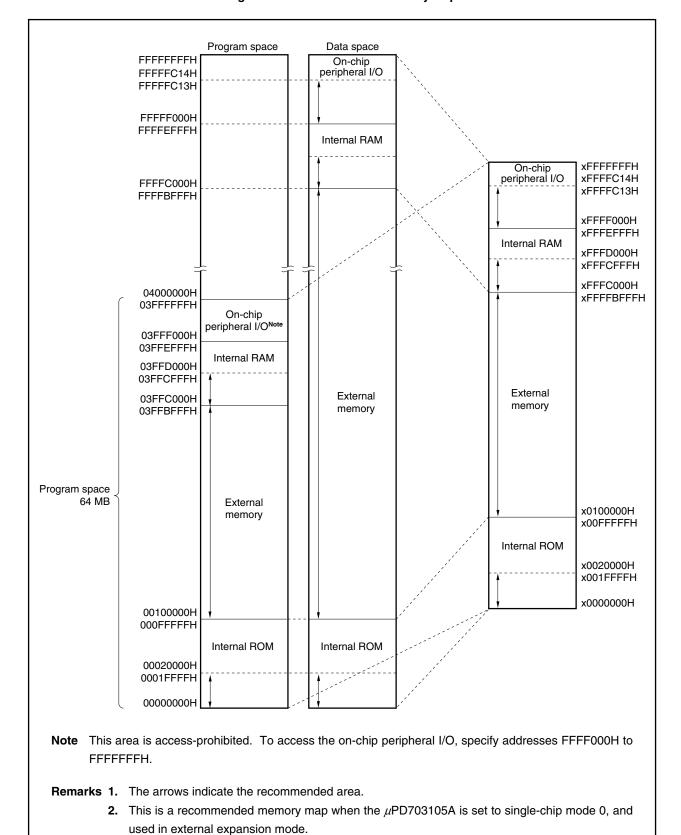


Figure 3-6. Recommended Memory Map

76

3.4.8 Peripheral I/O registers

(1/9)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(1/9) After Reset
	· ·			1 Bit	8 Bits	16 Bits	
FFFFF000H	Port AL	PAL	R/W			√	Undefined
FFFFF000H	Port ALL	PALL	R/W	√	√		Undefined
FFFFF001H	Port ALH	PALH	R/W	√	√		Undefined
FFFFF002H	Port AH	PAH	R/W			√	Undefined
FFFFF002H	Port AHL	PAHL	R/W	√	√		Undefined
FFFFF003H	Port AHH	PAHH	R/W	√	√		Undefined
FFFFF004H	Port DL	PDL	R/W			√	Undefined
FFFF004H	Port DLL	PDLL	R/W	√	√		Undefined
FFFFF005H	Port DLH	PDLH	R/W	√	√		Undefined
FFFFF008H	Port CS	PCS	R/W	√	√		Undefined
FFFFF00AH	Port CT	PCT	R/W	√	√		Undefined
FFFFF00CH	Port CM	PCM	R/W	√	√		Undefined
FFFFF00EH	Port CD	PCD	R/W	√	√		Undefined
FFFFF012H	Port BD	PBD	R/W	√	√		Undefined
FFFFF020H	Port AL mode register	PMAL	R/W			√	FFFFH
FFFFF020H	Port AL mode register L	PMALL	R/W	√	√		FFH
FFFFF021H	Port AL mode register H	PMALH	R/W	√	√		FFH
FFFFF022H	Port AH mode register	PMAH	R/W			√	FFFFH
FFFFF022H	Port AH mode register L	PMAHL	R/W	√	√		FFH
FFFFF023H	Port AH mode register H	PMAHH	R/W	√	√		FFH
FFFFF024H	Port DL mode register	PMDL	R/W			√	FFFFH
FFFFF024H	Port DL mode register L	PMDLL	R/W	√	√		FFH
FFFFF025H	Port DL mode register H	PMDLH	R/W	√	√		FFH
FFFFF028H	Port CS mode register	PMCS	R/W	√	√		FFH
FFFFF02AH	Port CT mode register	PMCT	R/W	√	√		FFH
FFFFF02CH	Port CM mode register	PMCM	R/W	√	√		FFH
FFFFF02EH	Port CD mode register	PMCD	R/W	√	√		FFH
FFFFF032H	Port BD mode register	PMBD	R/W	√	√		FFH
FFFFF040H	Port AL mode control register	PMCAL	R/W			√	0000H/FFFFH
FFFF040H	Port AL mode control register L	PMCALL	R/W	√	√		00H/FFH
FFFF041H	Port AL mode control register H	PMCALH	R/W	V	√		00H/FFH
FFFFF042H	Port AH mode control register	PMCAH	R/W			V	0000H/03FFH
FFFFF042H	Port AH mode control register L	PMCAHL	R/W	V	√		00H/FFH
FFFFF043H	Port AH mode control register H	PMCAHH	R/W	√	√		00H/03H

(2/9)

	A al al	Function Devictor Name	C: mala al	DAV	Bit Units for Manipulation		(2/9)	
	Address	Function Register Name	Symbol	R/W			i	After Reset
Ļ,		Det Discontinuo de control de cistos	DMODI	DAM	1 Bit	8 Bits	16 Bits	000011/555511
	FFF044H	Port DL mode control register	PMCDL	R/W			√	0000H/FFFH
	FFFFF044H	Port DL mode control register L	PMCDLL	R/W	√ /	√ /		00H/FFH
<u> </u>	FFFFF045H	Port DL mode control register H	PMCDLH	R/W	√ /	√ 		00H/FFH
	FFF048H	Port CS mode control register	PMCCS	R/W	√	√		00H/FFH
	FFF049H	Port CS function control register	PFCCS	R/W	√	√		00H
	FFF04AH	Port CT mode control register	PMCCT	R/W	√	√		00H/F3H
	FFFF04CH	Port CM mode control register	PMCCM	R/W	√	√,		00H/3FH
FF	FFFF04DH	Port CM function control register	PFCCM	R/W	√	√		00H
FF	FFF04EH	Port CD mode control register	PMCCD	R/W	√	√		00H/0FH
FF	FFF04FH	Port CD function control register	PFCCD	R/W	V	√		00H
FF	FFF052H	Port BD mode control register	PMCBD	R/W	V	√		00H
FF	FFF060H	Chip area select control register 0	CSC0	R/W			√	2C11H
FF	FFF062H	Chip area select control register 1	CSC1	R/W			√	2C11H
FF	FFF066H	Bus size configuration register	BSC	R/W			√	0000H/5555H
FF	FFF068H	Endian configuration register	BEC	R/W			√	0000H
FF	FFF06EH	System wait control register	VSWC	R/W		$\sqrt{}$		77H
FF	FFF080H	DMA source address register 0L	DSA0L	R/W			√	Undefined
FF	FFF082H	DMA source address register 0H	DSA0H	R/W			√	Undefined
FF	FFF084H	DMA destination address register 0L	DDA0L	R/W			$\sqrt{}$	Undefined
FF	FFF086H	DMA destination address register 0H	DDA0H	R/W			$\sqrt{}$	Undefined
FF	FFF088H	DMA source address register 1L	DSA1L	R/W			√	Undefined
FF	FFF08AH	DMA source address register 1H	DSA1H	R/W			√	Undefined
FF	FFF08CH	DMA destination address register 1L	DDA1L	R/W			√	Undefined
FF	FFF08EH	DMA destination address register 1H	DDA1H	R/W			√	Undefined
FF	FFF090H	DMA source address register 2L	DSA2L	R/W			√	Undefined
FF	FFF092H	DMA source address register 2H	DSA2H	R/W			√	Undefined
FF	FFF094H	DMA destination address register 2L	DDA2L	R/W			√	Undefined
FF	FFF096H	DMA destination address register 2H	DDA2H	R/W		1		Undefined
FF	FFF098H	DMA source address register 3L	DSA3L	R/W				Undefined
FF	FFF09AH	DMA source address register 3H	DSA3H	R/W			√	Undefined
FF	FFF09CH	DMA destination address register 3L	DDA3L	R/W			√	Undefined
FF	FFF09EH	DMA destination address register 3H	DDA3H	R/W			√	Undefined
FF	FFF0C0H	DMA transfer count register 0	DBC0	R/W			√	Undefined
FF	FFF0C2H	DMA transfer count register 1	DBC1	R/W	√ √		Undefined	
FF	FFF0C4H	DMA transfer count register 2	DBC2	R/W			√	Undefined
FF	FFF0C6H	DMA transfer count register 3	DBC3	R/W			√	Undefined
FF	FFF0D0H	DMA addressing control register 0	DADC0	R/W			√	0000H

(3/9)

	Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
					1 Bit	8 Bits	16 Bits	
FF	FFF0D2H	DMA addressing control register 1	DADC1	R/W			√	0000H
FF	FFF0D4H	DMA addressing control register 2	DADC2	R/W		√		0000H
FF	FFF0D6H	DMA addressing control register 3	DADC3	R/W			√	0000H
FF	FFF0E0H	DMA channel control register 0	DCHC0	R/W	V	√		00H
FF	FFF0E2H	DMA channel control register 1	DCHC1	R/W	√	√		00H
FF	FFF0E4H	DMA channel control register 2	DCHC2	R/W	√	√		00H
FF	FFF0E6H	DMA channel control register 3	DCHC3	R/W	V	√		00H
FF	FFF0F0H	DMA disable status register	DDIS	R		√		00H
FF	FFF0F2H	DMA restart register	DRST	R/W		√		00H
FF	FFF100H	Interrupt mask register 0	IMR0	R/W			√	FFFFH
	FFFFF100H	Interrupt mask register 0L	IMR0L	R/W	V	√		FFH
	FFFFF101H	Interrupt mask register 0H	IMR0H	R/W	V	V		FFH
FF	FFF102H	Interrupt mask register 1	IMR1	R/W			√	FFFFH
	FFFFF102H	Interrupt mask register 1L	IMR1L	R/W	V	√		FFH
•	FFFFF103H	Interrupt mask register 1H	IMR1H	R/W	V	√		FFH
FF	FFF104H	Interrupt mask register 2	IMR2	R/W			√	FFFFH
	FFFFF104H	Interrupt mask register 2L	IMR2L	R/W	V	√		FFH
•	FFFFF105H	Interrupt mask register 2H	IMR2H	R/W	V	√		FFH
FF	FFF106H	Interrupt mask register 3	IMR3	R/W			√	FFFFH
	FFFFF106H	Interrupt mask register 3L	IMR3L	R/W	V	√		FFH
	FFFFF107H	Interrupt mask register 3H	IMR3H	R/W	V	V		FFH
FF	FFF110H	Interrupt control register	OVIC00	R/W	V	V		47H
FF	FFF112H	Interrupt control register	OVIC01	R/W	V	V		47H
FF	FFF114H	Interrupt control register	OVIC02	R/W	V	V		47H
FF	FFF116H	Interrupt control register	OVIC03	R/W	V	V		47H
FF	FFFF118H	Interrupt control register	P00IC0	R/W	V	V		47H
FF	FFF11AH	Interrupt control register	P00IC1	R/W	V	√		47H
FF	FFFF11CH	Interrupt control register	P01IC0	R/W	V	V		47H
FF	FFF11EH	Interrupt control register	P01IC1	R/W	V	√		47H
FF	FFF120H	Interrupt control register	P02IC0	R/W	R/W √ √			47H
FF	FFF122H	Interrupt control register	P02IC1	R/W √ √			47H	
FF	FFF124H	Interrupt control register	P03IC0	R/W		√		47H
FF	FFF126H	Interrupt control register	P03IC1	R/W √		√		47H
FF	FFF128H	Interrupt control register	P10IC0	R/W	√	√		47H
FF	FFF12AH	Interrupt control register	P10IC1	R/W	√	√		47H
FF	FFF12CH	Interrupt control register	P10IC2	R/W	√	√		47H
FF	FFFF12EH	Interrupt control register	P10IC3	R/W	V	√		47H

(4/9)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(4/9) After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF130H	Interrupt control register	P11IC0	R/W	√	√		47H
FFFFF132H	Interrupt control register	P11IC1	R/W	V	√		47H
FFFFF134H	Interrupt control register	P11IC2	R/W	V	√		47H
FFFFF136H	Interrupt control register	P11IC3	R/W	V	√		47H
FFFFF138H	Interrupt control register	P12IC0	R/W	V	√		47H
FFFFF13AH	Interrupt control register	P12IC1	R/W	V	√		47H
FFFFF13CH	Interrupt control register	P12IC2	R/W	V	√		47H
FFFFF13EH	Interrupt control register	P12IC3	R/W	V	√		47H
FFFFF140H	Interrupt control register	P13IC0	R/W	V	√		47H
FFFFF142H	Interrupt control register	P13IC1	R/W	V	√		47H
FFFFF144H	Interrupt control register	P13IC2	R/W	V	√		47H
FFFFF146H	Interrupt control register	P13IC3	R/W	V	√		47H
FFFFF148H	Interrupt control register	CMICD0	R/W	V	√		47H
FFFFF14AH	Interrupt control register	CMICD1	R/W	V	√		47H
FFFFF14CH	Interrupt control register	CMICD2	R/W	V	√		47H
FFFFF14EH	Interrupt control register	CMICD3	R/W	V	√		47H
FFFFF150H	Interrupt control register	DMAIC0	R/W	V	√		47H
FFFFF152H	Interrupt control register	DMAIC1	R/W	V	√		47H
FFFFF154H	Interrupt control register	DMAIC2	R/W	√	√		47H
FFFFF156H	Interrupt control register	DMAIC3	R/W	V	√		47H
FFFFF158H	Interrupt control register	CSIIC0	R/W	√	√		47H
FFFFF15AH	Interrupt control register	SEIC0	R/W	√	√		47H
FFFFF15CH	Interrupt control register	SRIC0	R/W	√	√		47H
FFFFF15EH	Interrupt control register	STIC0	R/W	√	√		47H
FFFFF160H	Interrupt control register	CSIIC1	R/W	√	√		47H
FFFFF162H	Interrupt control register	SEIC1	R/W	√	√		47H
FFFFF164H	Interrupt control register	SRIC1	R/W	√	√		47H
FFFFF166H	Interrupt control register	STIC1	R/W	√	√		47H
FFFFF168H	Interrupt control register	CSIIC2	R/W	√	√		47H
FFFFF16AH	Interrupt control register	SEIC2	R/W	√	√		47H
FFFFF16CH	Interrupt control register	SRIC2	R/W	√	√		47H
FFFFF16EH	Interrupt control register	STIC2	R/W	√	√		47H
FFFFF170H	Interrupt control register	ADIC	R/W	√	√		47H
FFFFF1FAH	In-service priority register	ISPR	R	√	√		00H
FFFFF1FCH	Command register	PRCMD	W		√		Undefined
FFFFF1FEH	Power-save control register	PSC	R/W	V	√		00H
FFFFF200H	A/D converter mode register 0	ADM0	R/W	V	√		00H

(5/9)

Address	Function Register Name	Symbol	R/W	Bit Units	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF201H	A/D converter mode register 1	ADM1	R/W		V		07H
FFFFF202H	A/D converter mode register 2	ADM2	R/W	V	√ √		00H
FFFFF210H	A/D conversion result register 0 (10 bits)	ADCR0	R			√	0000H
FFFFF212H	A/D conversion result register 1 (10 bits)	ADCR1	R			√	0000H
FFFFF214H	A/D conversion result register 2 (10 bits)	ADCR2	R			√	0000H
FFFFF216H	A/D conversion result register 3 (10 bits)	ADCR3	R			√	0000H
FFFFF218H	A/D conversion result register 4 (10 bits)	ADCR4	R			√	0000H
FFFFF21AH	A/D conversion result register 5 (10 bits)	ADCR5	R			√	0000H
FFFFF21CH	A/D conversion result register 6 (10 bits)	ADCR6	R			√	0000H
FFFFF21EH	A/D conversion result register 7 (10 bits)	ADCR7	R			√	0000H
FFFFF220H	A/D conversion result register 0H (8 bits)	ADCR0H	R		√		00H
FFFFF221H	A/D conversion result register 1H (8 bits)	ADCR1H	R		V		00H
FFFFF222H	A/D conversion result register 2H (8 bits)	ADCR2H	R		V		00H
FFFFF223H	A/D conversion result register 3H (8 bits)	ADCR3H	R		V		00H
FFFFF224H	A/D conversion result register 4H (8 bits)	ADCR4H	R		V		00H
FFFFF225H	A/D conversion result register 5H (8 bits)	ADCR5H	R		V		00H
FFFFF226H	A/D conversion result register 6H (8 bits)	ADCR6H	R		V		00H
FFFFF227H	A/D conversion result register 7H (8 bits)	ADCR7H	R		V		00H
FFFFF400H	Port 0	P0	R/W	V	V		Undefined
FFFFF402H	Port 1	P1	R/W	V	V		Undefined
FFFFF404H	Port 2	P2	R/W	V	V		Undefined
FFFFF406H	Port 3	P3	R/W	V	V		Undefined
FFFFF408H	Port 4	P4	R/W	V	V		Undefined
FFFFF40AH	Port 5	P5	R/W	V	V		Undefined
FFFFF40EH	Port 7	P7	R/W	V	V		Undefined
FFFFF420H	Port 0 mode register	PM0	R/W	V	V		FFH
FFFFF422H	Port 1 mode register	PM1	R/W	V	V		FFH
FFFFF424H	Port 2 mode register	PM2	R/W	V	V		FFH
FFFFF426H	Port 3 mode register	РМ3	R/W	V	V		FFH
FFFFF428H	Port 4 mode register	PM4	R/W	V	√		FFH
FFFFF42AH	Port 5 mode register	PM5	R/W	V	√		FFH
FFFFF440H	Port 0 mode control register	PMC0	R/W	V	√		00H
FFFFF442H	Port 1 mode control register	PMC1	R/W	V	√		00H
FFFFF444H	Port 2 mode control register	PMC2	R/W	V	√		01H
FFFFF446H	Port 3 mode control register	РМС3	R/W	V	√		00H
FFFFF448H	Port 4 mode control register	PMC4	R/W	√	√		00H
FFFFF44AH	Port 5 mode control register	PMC5	R/W	V	V		00H

(6/9)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(6/9) After Reset	
	and an analysis of the same			1 Bit	8 Bits	16 Bits		
FFFFF460H	Port 0 function control register	PFC0	R/W	√	√ √		00H	
FFFFF464H	Port 2 function control register	PFC2	R/W	√	V V		00H	
FFFFF466H	Port 3 function control register	PFC3	R/W	√	√		00H	
FFFFF468H	Port 4 function control register	PFC4	R/W	√	√		00H	
FFFFF480H	Bus cycle type configuration register 0	всто	R/W			√	8888H	
FFFFF482H	Bus cycle type configuration register 1	BCT1	R/W			√	8888H	
FFFFF484H	Data wait control register 0	DWC0	R/W			√	7777H	
FFFFF486H	Data wait control register 1	DWC1	R/W			√	7777H	
FFFFF488H	Bus cycle control register	всс	R/W			√	FFFFH	
FFFFF48AH	Address setup wait control register	ASC	R/W			√	FFFFH	
FFFFF48CH	Bus cycle period control register	ВСР	R/W		√		00H	
FFFFF49AH	Page-ROM configuration register	PRC	R/W			√	7000H	
FFFFF49EH	Refresh wait control register	RWC	R/W		√		00H	
FFFFF4A4H	DRAM configuration register 1	SCR1	R/W			√	3FC1H	
	SDRAM configuration register 1		R/W			√	0000H	
FFFFF4A6H	Refresh control register 1	RFS1	R/W			√	0000H	
	SDRAM refresh control register 1		R/W			√	0000H	
FFFFF4ACH	DRAM configuration register 3	SCR3	R/W			√	3FC1H	
	SDRAM configuration register 3		R/W			√	0000H	
FFFFF4AEH	Refresh control register 3	RFS3	R/W			$\sqrt{}$	0000H	
	SDRAM refresh control register 3		R/W			√	0000H	
FFFFF4B0H	DRAM configuration register 4	SCR4	R/W			$\sqrt{}$	3FC1H	
	SDRAM configuration register 4		R/W			$\sqrt{}$	0000H	
FFFFF4B2H	Refresh control register 4	RFS4	R/W			$\sqrt{}$	0000H	
	SDRAM refresh control register 4		R/W			$\sqrt{}$	0000H	
FFFFF4B8H	DRAM configuration register 6	SCR6	R/W			√	3FC1H	
	SDRAM configuration register 6		R/W			√	0000H	
FFFFF4BAH	Refresh control register 6	RFS6	R/W			√	0000H	
	SDRAM refresh control register 6		R/W			√	0000H	
FFFFF540H	Timer D0	TMD0	R			√	0000H	
FFFFF542H	Compare register D0	CMD0	R/W			√	0000H	
FFFFF544H	Timer mode control register D0	TMCD0	R/W	√	$\sqrt{}$		00H	
FFFFF550H	Timer D1	TMD1	R			√	0000H	
FFFFF552H	Compare register D1	CMD1	R/W			√	0000H	
FFFFF554H	Timer mode control register D1	TMCD1	R/W	V	√		00H	
FFFFF560H	Timer D2	TMD2	R			√	0000H	
FFFFF562H	Compare register D2	CMD2	R/W			√	0000H	

(7/9)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(7/9) After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF564H	Timer mode control register D2	TMCD2	R/W	√	√		00H
FFFFF570H	Timer D3	TMD3	R		√		0000H
FFFFF572H	Compare register D3	CMD3	R/W			√	0000H
FFFFF574H	Timer mode control register D3	TMCD3	R/W	√	√		00H
FFFFF600H	Timer C0	TMC0	R			√	0000H
FFFFF602H	Capture/compare register C00	CCC00	R/W			√	0000H
FFFFF604H	Capture/compare register C01	CCC01	R/W			√	0000H
FFFFF606H	Timer mode control register C00	TMCC00	R/W	√	√		00H
FFFFF608H	Timer mode control register C01	TMCC01	R/W		√		20H
FFFFF609H	Valid edge select register C0	SESC0	R/W		√		00H
FFFFF610H	Timer C1	TMC1	R			√	0000H
FFFFF612H	Capture/compare register C10	CCC10	R/W			√	0000H
FFFFF614H	Capture/compare register C11	CCC11	R/W			√	0000H
FFFFF616H	Timer mode control register C10	TMCC10	R/W	√	√		00H
FFFFF618H	Timer mode control register C11	TMCC11	R/W		√		20H
FFFFF619H	Valid edge select register C1	SESC1	R/W		√		00H
FFFFF620H	Timer C2	TMC2	R			√	0000H
FFFFF622H	Capture/compare register C20	CCC20	R/W			√	0000H
FFFFF624H	Capture/compare register C21	CCC21	R/W			√	0000H
FFFFF626H	Timer mode control register C20	TMCC20	R/W	√	√		00H
FFFFF628H	Timer mode control register C21	TMCC21	R/W		√		20H
FFFFF629H	Valid edge select register C2	SESC2	R/W		√		00H
FFFFF630H	Timer C3	ТМС3	R			√	0000H
FFFFF632H	Capture/compare register C30	CCC30	R/W			√	0000H
FFFFF634H	Capture/compare register C31	CCC31	R/W			√	0000H
FFFFF636H	Timer mode control register C30	TMCC30	R/W	√	√		00H
FFFFF638H	Timer mode control register C31	TMCC31	R/W		√		20H
FFFFF639H	Valid edge select register C3	SESC3	R/W		√		00H
FFFFF800H	Peripheral command register	PHCMD	W		√		Undefined
FFFFF802H	Peripheral status register	PHS	R/W	√	√		00H
FFFFF810H	DMA trigger factor register 0	DTFR0	R/W	√	√		00H
FFFFF812H	DMA trigger factor register 1	DTFR1	R/W	√	√		00H
FFFFF814H	DMA trigger factor register 2	DTFR2	R/W	√	√		00H
FFFFF816H	DMA trigger factor register 3	DTFR3	R/W	√	√		00H
FFFFF820H	Power-save mode register	PSMR	R/W	√	√		00H
FFFFF822H	Clock control register	СКС	R/W		√		00H
FFFFF824H	Lock register	LOCKR	R	√	√		0xH

(8/9)

Address	Function Register Name	Symbol	R/W	Bit Units	for Man	ipulation	(8/9) After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF880H	External interrupt mode register 0	INTM0	R/W	V	√		00H
FFFFF882H	External interrupt mode register 1	INTM1	R/W		$\sqrt{}$		00H
FFFFF884H	External interrupt mode register 2	INTM2	R/W		√		00H
FFFFF886H	External interrupt mode register 3	INTM3	R/W		√		00H
FFFFF888H	External interrupt mode register 4	INTM4	R/W		√		00H
FFFFF8A0H	DMA terminal count output control register	DTOC	R/W	√	√		01H
FFFFF8D4H	Flash programming mode control register	FLPMC	R/W	√	√		08H/0CH/00H
FFFF900H	Clocked serial interface mode register 0	CSIM0	R/W	V	√		00H
FFFFF901H	Clocked serial interface clock select register 0	CSIC0	R/W		√		00H
FFFFF902H	Serial I/O shift register 0	SIO0	R		√		00H
FFFFF903H	Receive-only serial I/O shift register 0	SIOE0	R		√		00H
FFFFF904H	Clocked serial interface transmit buffer register 0	SOTB0	R/W		√		00H
FFFFF910H	Clocked serial interface mode register 1	CSIM1	R/W	√	√		00H
FFFFF911H	Clocked serial interface clock select register 1	CSIC1	R/W		√		00H
FFFFF912H	Serial I/O shift register 1	SIO1	R		√		00H
FFFFF913H	Receive-only serial I/O shift register 1	SIOE1	R		√		00H
FFFFF914H	Clocked serial interface transmit buffer register 1	SOTB1	R/W		√		00H
FFFFF920H	Clocked serial interface mode register 2	CSIM2	R/W	√	√		00H
FFFFF921H	Clocked serial interface clock select register 2	CSIC2	R/W		√		00H
FFFFF922H	Serial I/O shift register 2	SIO2	R		√		00H
FFFFF923H	Receive-only serial I/O shift register 2	SIOE2	R		√		00H
FFFFF924H	Clocked serial interface transmit buffer register 2	SOTB2	R/W		√		00H
FFFFFA00H	Asynchronous serial interface mode register 0	ASIM0	R/W	√	√		01H
FFFFFA02H	Receive buffer register 0	RXB0	R		√		FFH
FFFFFA03H	Asynchronous serial interface status register 0	ASIS0	R		√		00H
FFFFA04H	Transmit buffer register 0	TXB0	R/W		√		FFH
FFFFFA05H	Asynchronous serial interface transmit status register 0	ASIF0	R	√	√		00H
FFFFFA06H	Clock select register 0	CKSR0	R/W		√		00H
FFFFFA07H	Baud rate generator control register 0	BRGC0	R/W		√		FFH
FFFFFA10H	Aynchronous serial interface mode register 1	ASIM1	R/W	V	√ √ 0		01H
FFFFFA12H	Receive buffer register 1	RXB1	R	√ Fi		FFH	
FFFFFA13H	Asynchronous serial interface status register 1	ASIS1	R	√ 00⊢		00H	
FFFFFA14H	Transmit buffer register 1	TXB1	R/W		√ FFH		FFH
FFFFFA15H	Aynchronous serial interface transmit status register 1	ASIF1	R	√ √ 00		00H	
FFFFFA16H	Clock select register 1	CKSR1	R/W		√		00H
FFFFFA17H	Baud rate generator control register 1	BRGC1	R/W		√		FFH

CHAPTER 3 CPU FUNCTION

(9/9)

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation		After Reset	
		1		1 Bit	8 Bits	16 Bits	
FFFFFA20H	Aynchronous serial interface mode register 2	ASIM2	R/W	√	√		01H
FFFFFA22H	Receive buffer register 2	RXB2	R		√		FFH
FFFFFA23H	Asynchronous serial interface status register 2	ASIS2	R		√		00H
FFFFFA24H	Transmit buffer register 2	TXB2	R/W		√		FFH
FFFFFA25H	Asynchronous serial interface transmit status register 2	ASIF2	R √		√		00H
FFFFFA26H	Clock select register 2	CKSR2	R/W		√		00H
FFFFFA27H	Baud rate generator control register 2	BRGC2	R/W		√		FFH
FFFFFC00H	PWM control register 0	PWMC0	R/W	√	√		40H
FFFFFC02H	PWM buffer register 0	PWMB0	R/W			√	0000H
FFFFFC10H	PWM control register 1	PWMC1	R/W	√	√		40H
FFFFFC12H	PWM buffer register 1	PWMB1	R/W			√	0000H

3.4.9 Specific registers

Specific registers are registers that are protected from being written with illegal data due to erroneous program execution, etc. The V850E/MA1 has three specific registers, the power-save control register (PSC) (refer to 9.5.2 (3) Power-save control register (PSC)), clock control register (CKC) (refer to 9.3.4 Clock control register (CKC)), and flash programming mode control register (FLPMC) (refer to 16.7.12 Flash programming mode control register (FLPMC)). Disable DMA transfer when writing to a specific register.

There are also two protection registers supporting write operations for specific registers to avoid an unexpected stoppage of the application system due to erroneous program execution. These two registers are the command register (PRCMD) and peripheral command register (PHCMD) (refer to 9.5.2 (2) Command register (PRCMD) and 9.3.3 Peripheral command register (PHCMD)).

3.4.10 System wait control register (VSWC)

The system wait control register (VSWC) is a register that controls the bus access wait for the on-chip peripheral I/O registers.

Access to on-chip peripheral I/O registers is made in 3 clocks (without wait), however, in the V850E/MA1 waits may be required depending on the operation frequency. Set the values described in the table below to the VSWC register in accordance with the operation frequency used.

This register can be read/written in 8-bit units (address: FFFFF06EH, initial value: 77H).

Operation Frequency (fxx)	Set Value of VSWC	Number of Waits for On-chip Peripheral I/O Register Access
4 MHz ≤ fxx < 33 MHz	11H	2
33 MHz ≤ fxx ≤ 50 MHz	12H (recommended), or 13H	When VSWC = 12H: 3 (recommended), or when VSWC = 13H: 4

Remark If the timing of changing a count value contend with the timing of accessing a register when accessing a register having status flags that indicate the status of the internal peripheral functions (such as ASIFn) or a register that indicates the count value of a timer (such as TMCn), the register access is retried. As a result, it may take a longer time to access an on-chip peripheral I/O register.

3.4.11 Cautions

When using the V850E/MA1, the following registers must be set in the beginning.

- System wait control register (VSWC)
 - (See 3.4.10 System wait control register (VSWC))
- Clock control register (CKC)
 - (See 9.3.4 Clock control register (CKC))

After setting VSWC and CKC, set other registers if necessary.

To use the external bus, initialize each register in the following sequence after setting the above registers.

- <1> Set each pin to the control mode by setting each port-related register.
- <2> Select a chip select space by using chip area select control register n (CSCn) (n = 0, 1).
- <3> Specify the type of memory of each chip select space by using bus cycle type configuration register n (BCTn).

CHAPTER 4 BUS CONTROL FUNCTION

The V850E/MA1 is provided with an external bus interface function by which external I/O and memories, such as ROM and RAM, can be connected.

4.1 Features

- 16-bit/8-bit data bus sizing function
- 8-space chip select function
- Wait function
 - Programmable wait function, through which up to 7 wait states can be inserted for each memory block
 - External wait function via WAIT pin
- Idle state insertion function
- Bus mastership arbitration function
- Bus hold function
- External device connection enabled via bus control/port alternate function pins

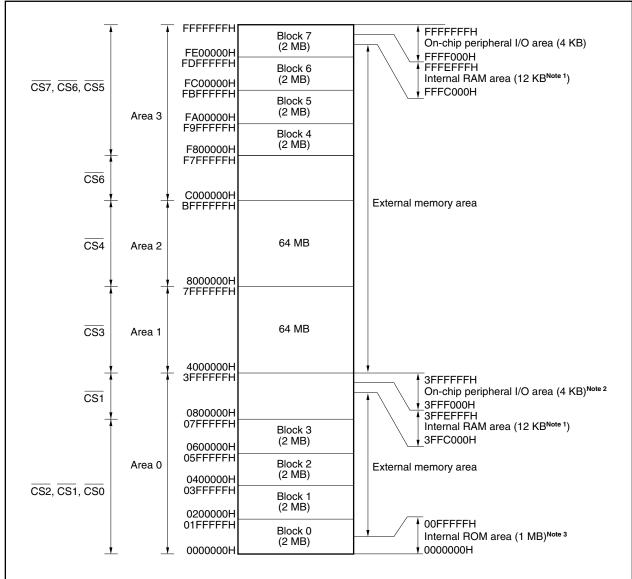
4.2 Bus Control Pins

The following pins are used for connection to external devices.

Bus Control Pin (Function When in Control Mode)	Function When in Port Mode	Register for Port/Control Mode Switching
Data bus (D0 to D15)	PDL0 to PDL15 (port DL)	PMCDL
Address bus (A0 to A15)	PAL0 to PAL15 (port AL)	PMCAL
Address bus (A16 to A25)	PAH0 to PAH9 (port AH)	PMCAH
Chip select (CS0 to SC7, RAS1, RAS3, RAS4, RAS6, IOWR, IORD)	PCS0 to PCS7 (port CS)	PMCCS
SDRAM sync control (SDCKE, SDCLK)	DCLK) PCD0, PCD1 (port CD)	
Byte access control/SDRAM control (LBE/SDCAS, UBE/SDRAS)	PCD2, PCD3 (port CD)	
Read/write control (LCAS/LWR/LDQM, UCAS/UWR/UDQM, RD, WE, OE)	PCT0, PCT1, PCT4 to PCT6 (port CT)	PMCCT
Bus cycle start (BCYST)	PCT7 (port CT)	
External wait control (WAIT)	PCM0 (port CM)	PMCCM
Internal system clock (CLKOUT)	PCM1 (port CM)	
Bus hold control (HLDRQ, HLDAK)	PCM2, PCM3 (port CM)	
DRAM refresh control (REFRQ)	PCM4 (port CM)	
Self-refresh control (SELFREF)	PCM5 (port CM)	

Remark In the case of single-chip mode 1 and ROMless modes 0 and 1, when the system is reset, each bus control pin becomes unconditionally valid. (However, D8 to D15 are valid only in single-chip mode 1 and ROMless mode 0.)

★ 4.2.1 Pin status during internal ROM, internal RAM, and on-chip peripheral I/O access


While accessing internal ROM and RAM, the address bus becomes undefined, and the data bus control signals are not output and enter the high-impedance state. The external bus control signals become inactive.

While accessing on-chip peripheral I/O, the address bus outputs the address data of the on-chip peripheral I/O currently being accessed. The data bus enters the output state when write-accessing the on-chip peripheral I/O, and the high-impedance state when read-accessing the on-chip peripheral I/O. The external bus control signals become inactive.

4.3 Memory Block Function

The 256 MB memory space is divided into memory blocks of 2 MB and 64 MB units. The programmable wait function and bus cycle operation mode can be independently controlled for each block.

The area that can be used as program area is the 64 MB space of addresses 00000000H to 3FFFFFFH.

Notes 1. μPD703103A, 703105A: 4 KB μPD703106A, 703107A, 70F3107A: 10 KB

- 2. This area is access-prohibited. To access the on-chip peripheral I/O, specify addresses FFFF000H to FFFFFFH.
- **3.** When in single-chip mode 1 and ROMless modes 0 and 1, this becomes an external memory area. When in single-chip mode 1, addresses 0100000H to 01FFFFFH become an internal ROM area.

4.3.1 Chip select control function

Of the 256 MB memory area, the lower 8 MB (0000000H to 07FFFFFH) and the higher 8 MB (F800000H to FFFFFFFH) can be divided into 2 MB memory blocks by chip area select control registers 0 and 1 (CSC0, CSC1) to control the chip select signal.

The memory area can be effectively used by dividing it into memory blocks using the chip select control function. The priority order is described below.

(1) Chip area select control registers 0, 1 (CSC0, CSC1)

These registers can be read/written in 16-bit units and become valid by setting each bit to 1.

If different chip select signal outputs are set to the same block, the priority order is controlled as follows.

CSC0: $\overline{CS0} > \overline{CS2} > \overline{CS1}$ CSC1: $\overline{CS7} > \overline{CS5} > \overline{CS6}$

If both the CS0m and CS2m bits of the CSC0 register are set to 0, $\overline{CS1}$ is output to the corresponding block (m = 0 to 3).

Similarly, if both the CS5n and CS7n bits of the CSC1 register are set to 0, $\overline{CS6}$ is output to the corresponding block (n = 0 to 3).

Caution Write to the CSC0 and CSC1 registers after rest, and then do not change the set value.

	14 13 12 1 S32 CS31 CS30 CS		6 5 4 3 2 1 0 CS12 CS11 CS10 CS03 CS02 CS01 CS00 Address FFFFF060H 2C11H			
	14 13 12 1 S42 CS41 CS40 CS		6 5 4 3 2 1 0 CS62 CS61 CS60 CS73 CS72 CS71 CS70 Address FFFFF062H After rese 2C11H			
Bit position	Bit name		Function			
15 to 0	CSnm (n = 0 to 7) (m = 0 to 3)	Chip Select Chip select is enabled	d by setting the CSnm bit to 1.			
		CSnm	CS operation			
		CS00	CS0 output during block 0 access			
		CS01	CS0 output during block 1 access.			
		CS02	CS0 output during block 2 access.			
		CS03	CS0 output during block 3 access.			
		CS10 to CS13	Setting has no meaning.			
		CS20	CS2 output during block 0 access.			
		CS21	CS2 output during block 1 access.			
		CS22	CS2 output during block 2 access.			
		CS23	CS2 output during block 3 access.			
		CS30 to CS33	Setting has no meaning.			
		CS40 to CS43	Setting has no meaning.			
		CS50	CS5 output during block 7 access.			
		CS51	CS5 output during block 6 access.			
		CS52	CS5 output during block 5 access.			
		CS53	CS5 output during block 4 access.			
		CS60 to CS63 Setting has no meaning.				
		CS70	CS7 output during block 7 access.			
		CS71	CS7 output during block 6 access.			
		CS72	CS7 output during block 5 access.			
		CS73	CS7 output during block 4 access.			

The following diagram shows the $\overline{\text{CS}}$ signal that is enabled for area 0 when the CSC0 register is set to 0703H.

When the CSC0 register is set to 0703H, $\overline{CS0}$ and $\overline{CS2}$ are output to block 0 and block 1, but since $\overline{CS0}$ has priority over $\overline{CS2}$, $\overline{CS0}$ is output if the addresses of block 0 and block 1 are accessed.

If the address of block 3 is accessed, both the CS03 and CS23 bits of the CSC0 register are 0, and $\overline{\text{CS1}}$ is output.

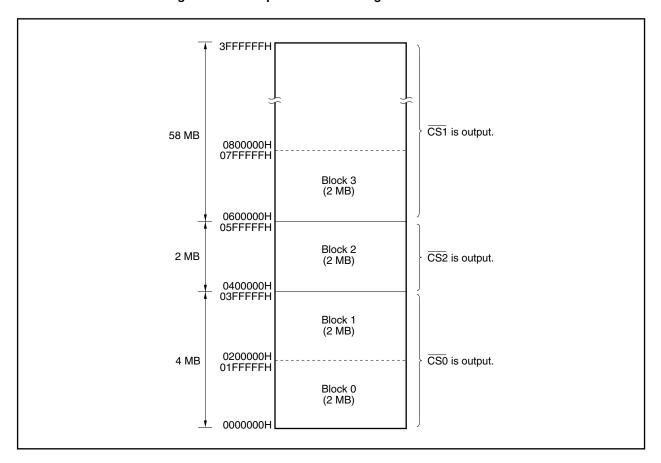


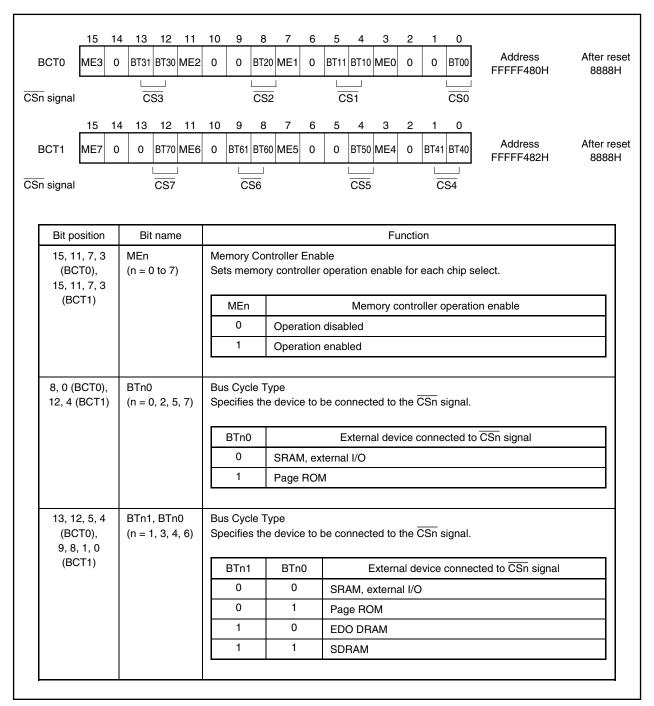
Figure 4-1. Example When CSC0 Register Is Set to 0703H

4.4 Bus Cycle Type Control Function

In the V850E/MA1, the following external devices can be connected directly to each memory block.

- SRAM, external ROM, external I/O
- Page ROM
- EDO DRAM
- SDRAM

Connected external devices are specified by bus cycle type configuration registers 0 and 1 (BCT0 and BCT1).


(1) Bus cycle type configuration registers 0, 1 (BCT0, BCT1)

These registers can be read/written in 16-bit units.

★ Be sure to set bits 14, 10, 9, 6, 2, and 1 of the BCT0 register to 0, and bits 14, 13, 10, 6, 5 and 2 of the BCT1 register to 0. If they are set to 1, the operation is not guaranteed.

Caution Write to the BCT0 and BCT1 registers after reset, and then do not change the set value.

Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCT0 and BCT1 registers is complete. However, it is possible to access external memory areas whose initialization settings are complete.

4.5 Bus Access

4.5.1 Number of access clocks

The number of basic clocks necessary for accessing each resource is as follows.

Resource (Bus Width)	Bus Cycle Configuration	Instruction Fetch	Operand Data Access
Internal ROM (32 bits)		1 ^{Note 1}	5
Internal RAM (32 bits)		1 Note 2	1

Notes 1. 2 for a branch instruction

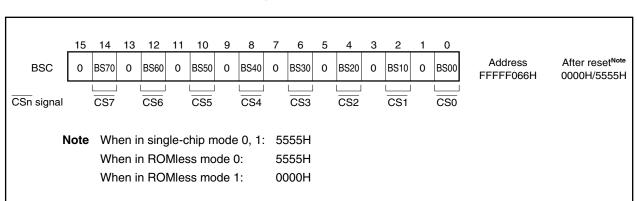
2. 2 if bus access contends with a data access

Remark Unit: Clock/access

4.5.2 Bus sizing function

The bus sizing function controls the data bus width for each CS space. The data bus width is specified by using the bus size configuration register (BSC).

(1) Bus size configuration register (BSC)


This register can be read/written in 16-bit units.

Be sure to set bits 15, 13, 11, 9, 7, 5, 3, and 1 to 0. If they are set to 1, the operation is not guaranteed.

- Cautions 1. Write to the BSC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BSC register is complete. However, it is possible to access external memory areas whose initialization settings are complete.
 - 2. When the data bus width is specified as 8 bits, only the signals shown below become active.

LWR: When accessing SRAM, external ROM, or external I/O (write cycle)

LCAS: When accessing EDO DRAM

Bit position	Bit name	Function							
14, 12, 10, 8, 6, 4, 2, 0	BSn0 (n = 0 to 7)	Data Bus W Sets the da	fidth ta bus width of the CSn space.						
		BSn0	Data bus width of CSn space						
		0	8 bits						
		1	16 bits						
			•						

4.5.3 Endian control function

The endian control function can be used to set processing of word data in memory using either the big endian method or the little endian method for each CS space selected with the chip select signals ($\overline{\text{CS0}}$ to $\overline{\text{CS7}}$). Switching of the endian method is specified using the endian configuration register (BEC).

Caution In the following areas, the data processing method is fixed to little endian, so the setting of the BEC register is invalid.

- On-chip peripheral I/O area
- Internal ROM area
- Internal RAM area
- · Program fetch area for external memory

(1) Endian configuration register (BEC)

This register can be read/written in 16-bit units.

Be sure to set bits 15, 13, 11, 9, 7, 5, 3, and 1 to 0. If they are set to 1, the operation is not guaranteed.

Caution Write to the BEC register after reset, and then do not change the set value.

BEC	0	14 BE70		12 BE60		10 BE50	0	8 BE40	0	6 BE30	0	BE20	0	BE10	0	BE00	Address FFFFF068H	After rese
CSn signa	ıl	CS7	ı	CS6		CS5		CS4		CS3		CS2		CS1		CS0		
Bit	osition	1	Bit name			Function												
14, 12, 10, 8, BEn0 6, 4, 2, 0 (n = 0 to 7)						Big Endian Specifies the endian method.												
						E	3En()						Endi	an c	ontrol		
							0	l	_ittle	endia	n me	ethod						
							1	E	3ig e	endian	met	hod						

Figure 4-2. Big Endian Addresses Within Word

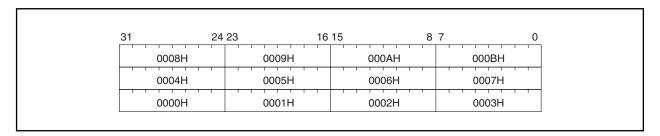
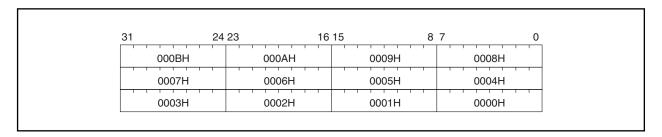



Figure 4-3. Little Endian Addresses Within Word

4.5.4 Big endian method usage restrictions in NEC Electronics development tools

(1) When using a debugger (ID850)

The big endian method is supported only in the memory window display.

(2) When using a compiler (CA850)

(a) Restrictions in C language

- (i) There are restrictions for variables allocated to/located in the big endian space, as shown below.
 - · union cannot be used.
 - · bitfield cannot be used.
 - Access with cast (changing access size) cannot be used.
 - · Variables with initial values cannot be used.
- (ii) It is necessary to specify the following optimization inhibit options because optimization may cause a change in the access size.
 - For global optimization part (opt850)... -Wo, -XTb
 - For optimization depending on model part (impr850)... -Wi, +arg_reg_opt=OFF, +stld_trans_opt=OFF

The specification of the optimization inhibit options shown above is not necessary, however, if the access is not an access with cast or with masking/shifting^{Note}.

Note This is on the condition that a pattern that may cause the following optimization is not used. However, because it is very difficult for users to check the patterns completely in cases such as when several patterns are mixed (especially for optimization depending on model part), it is recommended that the optimization inhibit options shown above be specified.

[Related global optimization part]

```
1-bit set using bit or int i; i ^=1;
1-bit clear using bit and i &= ~1;
1-bit not using bit xor i ^= 1;
```

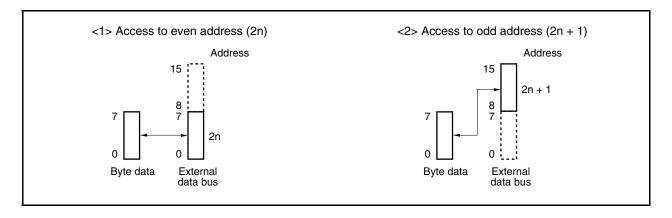
 1-bit test using bit and if(i & 1);

[Related optimization depending on model part]

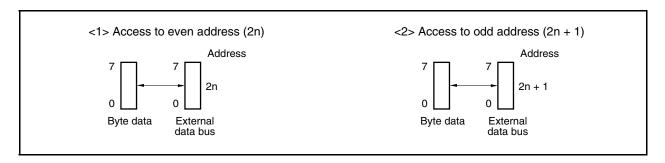
Accessing the same variable in a different size

- Cast
- Mask
- Shift

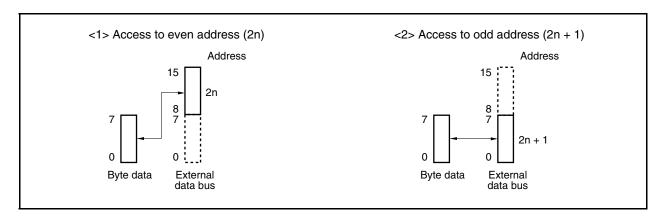
(b) Restrictions in assembly language

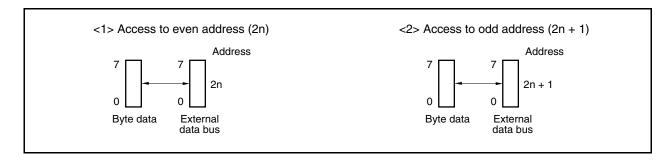

For variables located in the big endian space, a quasi directive that secures an area of other than byte size (.hword, .word, .float, .shword) cannot be used.

4.5.5 Bus width

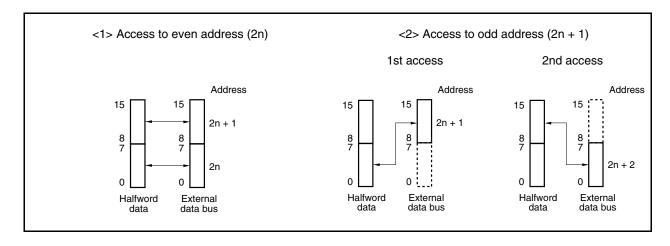

The V850E/MA1 accesses on-chip peripheral I/O and external memory in 8-bit, 16-bit, or 32-bit units. The following shows the operation for each type of access. All data is accessed in order starting from the lower order side.

(1) Byte access (8 bits)

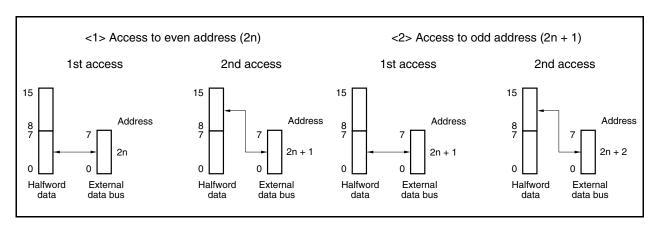

(a) When the data bus width is 16 bits (little endian)


(b) When the data bus width is 8 bits (little endian)

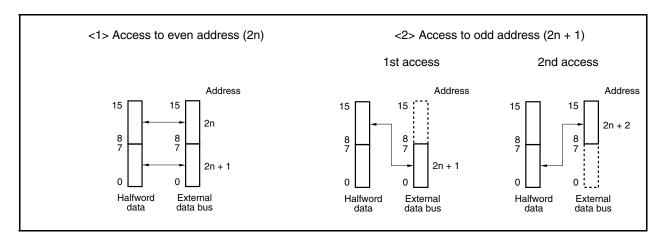
(c) When the data bus width is 16 bits (big endian)

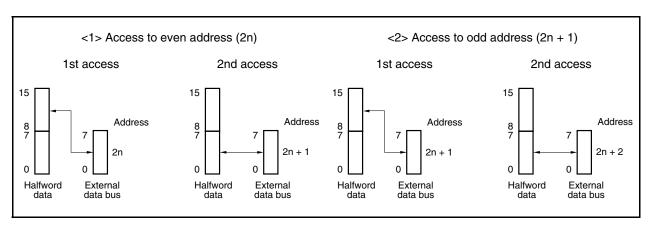


(d) When the data bus width is 8 bits (big endian)

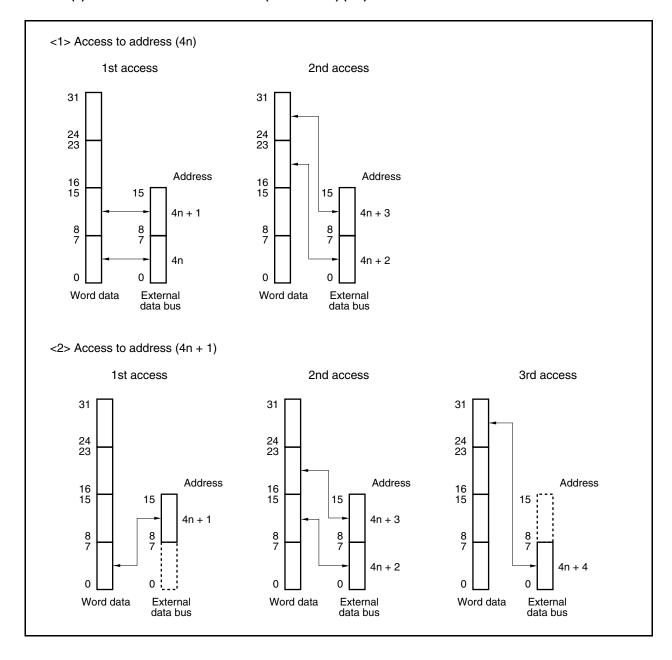


(2) Halfword access (16 bits)

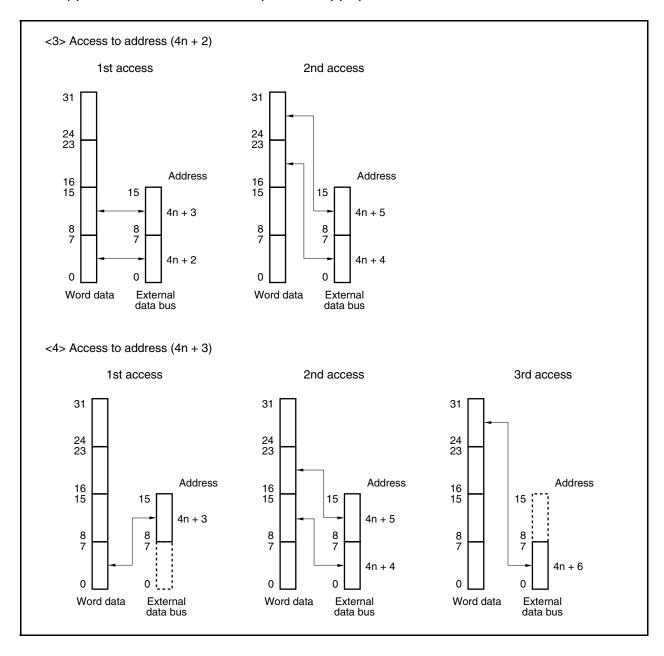

(a) When the bus width is 16 bits (little endian)


(b) When the data bus width is 8 bits (little endian)

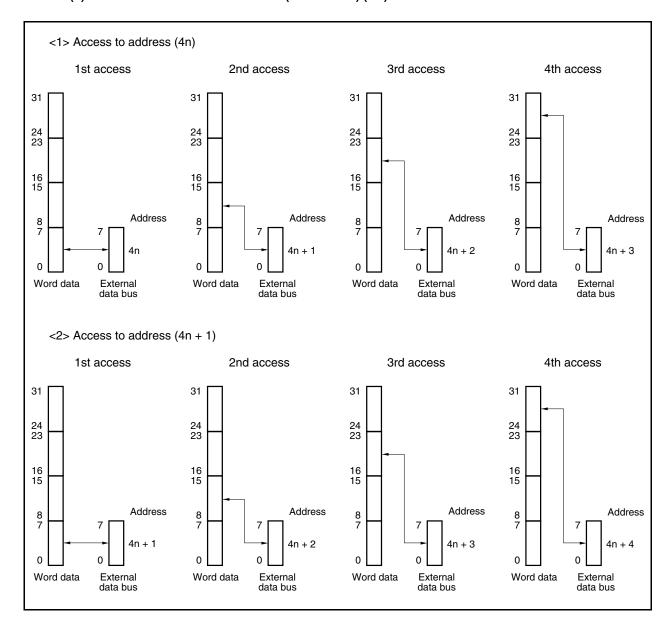
(c) When the data bus width is 16 bits (big endian)



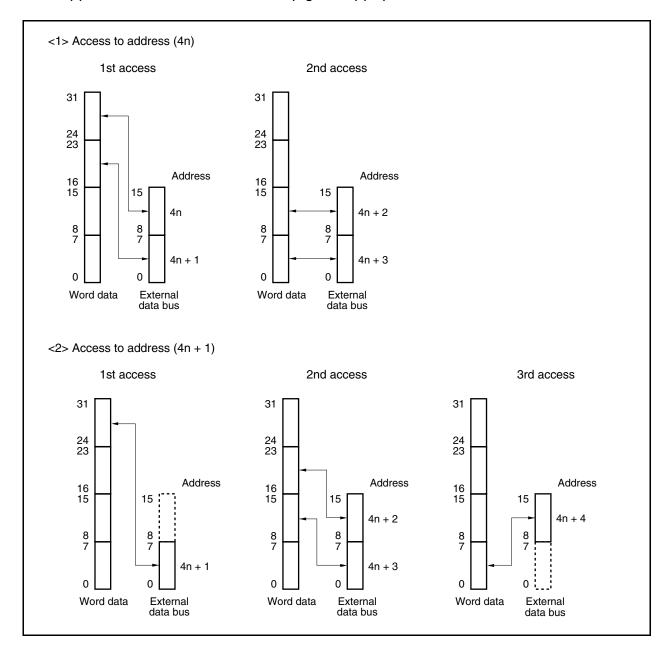
(d) When the data bus width is 8 bits (big endian)

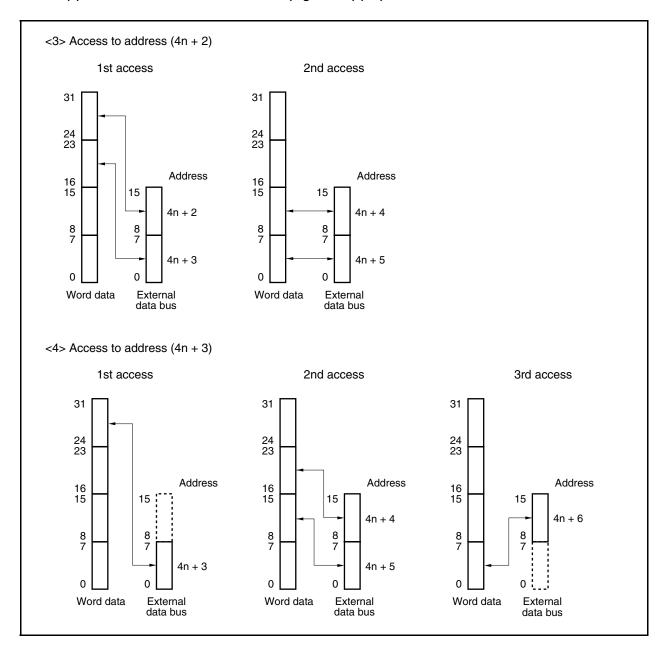


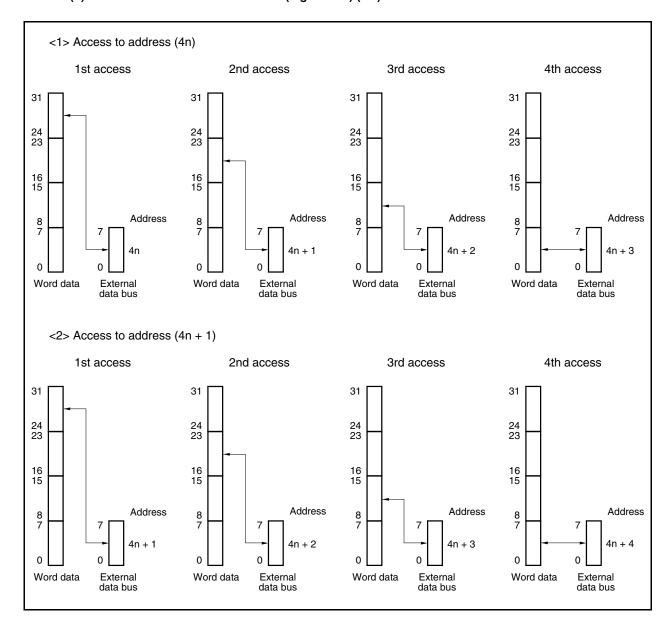
(3) Word access (32 bits)

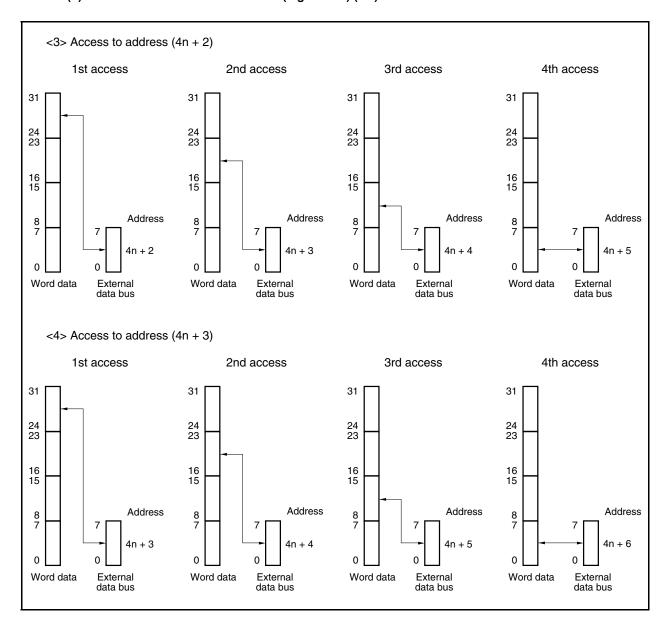

(a) When the bus width is 16 bits (little endian) (1/2)

(a) When the bus width is 16 bits (little endian) (2/2)


(b) When the data bus width is 8 bits (little endian) (1/2)


(b) When the data bus width is 8 bits (little endian) (2/2)


(c) When the data bus width is 16 bits (big endian) (1/2)

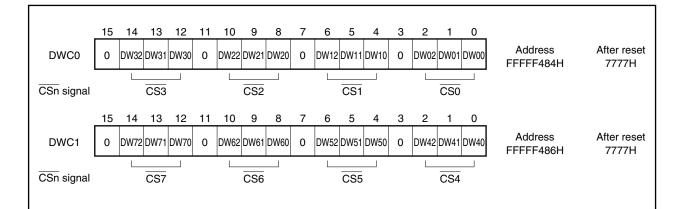

(c) When the data bus width is 16 bits (big endian) (2/2)

(d) When the data bus width is 8 bits (big endian) (1/2)

(d) When the data bus width is 8 bits (big endian) (2/2)

4.6 Wait Function

4.6.1 Programmable wait function


(1) Data wait control registers 0, 1 (DWC0, DWC1)

To facilitate interfacing with low-speed memory and I/Os, it is possible to insert up to 7 data wait states in the starting bus cycle for each CS space.

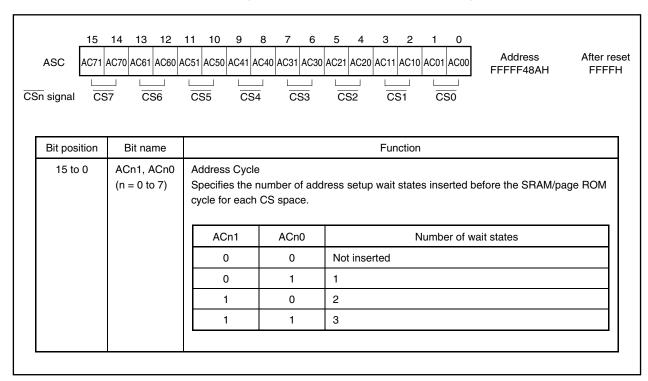
The number of wait states can be specified by program using data wait control registers 0 and 1 (DWC0, DWC1). Just after system reset, all blocks have 7 data wait states inserted.

These registers can be read/written in 16-bit units.

- Cautions 1. The internal ROM area and internal RAM area are not subject to programmable waits and ordinarily no wait access is carried out. The on-chip peripheral I/O area is also not subject to programmable wait states, with wait control performed by each peripheral function only.
 - 2. In the following cases, the settings of registers DWC0 and DWC1 are invalid (wait control is performed by each memory controller).
 - Page ROM on-page access
 - EDO DRAM access
 - SDRAM access
 - 3. Write to the DWC0 and DWC1 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DWC0 and DWC1 registers is complete. However, it is possible to access external memory areas whose initialization settings are complete.

Bit position	Bit name	Function					
14 to 12, 10 to 8, 6 to 4,	DWn2 to DWn0 (n = 0 to 7)	Data Wait Specifies the number of wait states inserted in the CSn space.					
2 to 0		DWn2	DWn2 DWn1 DWn0 Number of wait states inserted in CSn space				
		0	0	0	Not inserted		
		0	0	1	1		
		0	1	0	2		
		0	1	1	3		
		1	0	0	4		
		1	0	1	5		
		1	1	0	6		
		1	1	1	7		

(2) Address setup wait control register (ASC)


The V850E/MA1 allows insertion of address setup wait states before the SRAM/page ROM cycle (the setting of the ASC register in the EDO DRAM/SDRAM cycle is invalid).

The number of address setup wait states can be set with the ASC register for each CS space.

This register can be read/written in 16-bit units.

Cautions 1. During an address setup wait, the WAIT pin-based external wait function is disabled.

2. Write to the ASC register after reset, and then do not change the set value.

(3) Bus cycle period control register (BCP)

In the V850E/MA1, the bus cycle period can be doubled during SRAM, external ROM, and external I/O access. The bus cycle period is controlled using the BCP register. When the BCP bit of the BCP register is set to 1, the external bus operates at one half the frequency of the internal system clock.

The clock can be output from the BUSCLK pin only in the bus cycle if the external bus cycle period is set to two times that of the normal. Specify the bus cycle period as "Double" with the BCP register, then set the port CM mode control register (PMCCM) and port CM function control register (PFCCM).

This register can be read/written in 8-bit units.

- Cautions 1. During a flyby DMA transfer for SRAM, external ROM, or external I/O, the IORD and IOWR signals are always output, irrespective of the IOEN bit setting.

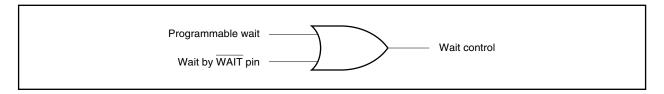
 In page ROM and EDO DRAM cycles, on the other hand, the IOEN bit setting has no meaning.
 - 2. Write to the BCP register after reset, and then do not change the set values.
 - 3. If the CLKOUT output mode is selected for the PCM1 pin by using the PMCCM register when the bus cycle period is doubled (BCP = 1), the bus cycle is half the frequency of the internal system clock, but the same frequency as the internal system clock is output from the PCM1 pin.
 - 4. The BUSCLK signal is asserted active only when the external memory is accessed. Otherwise, it is kept low.

	7		6	5	4	3	2	1	0	Address After reset	
BCP	BCF	2	0	0	0	IOEN	0	0	0	FFFFF48CH 00H	
Bit position Bit name Function											
7 BCP			Bus Cycle Period Specifies the length of the bus cycle period.								
		BCP Bus cycle period									
			0 Normal								
			1	1 Double							
3 IOEN			:N	Specifie				e operatior	of IORD	and IOWR in SRAM, external	
				IOEN Enable/disable IORD and IOWR operation					WR operation		
				Disables the operation of IORD and IOWR in SRAM, external Reand external I/O cycles. Enables the operation of IORD and IOWR in SRAM, external Reand external I/O cycles.						in SRAM, external ROM,	
										in SRAM, external ROM,	

T2 T1 T2 T1 Internal system clock BUSCLK (output) Address Address A0 to A25 (output) BCYST (output) CSn/RASm (output) RD (output) OE (output) WE (output) UWR/UCAS (output) TWR/LCAS (output) IORD (output) Note IOWR (output) LBE (output) UBE (output) D0 to D15 (I/O) Data Data WAIT (input) Note When the IOEN bit of the BCP register is set to 1. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. **3.** n = 0 to 7, m = 1, 3, 4, 6

Figure 4-4. Timing Example of Access to SRAM, External ROM, and External I/O (Read → Write)

4.6.2 External wait function


When an extremely slow device, I/O, or asynchronous system is connected, an arbitrary number of wait states can be inserted in the bus cycle by the external wait pin (WAIT) for synchronization with the external device.

Just as with programmable waits, accessing internal ROM, internal RAM, and on-chip peripheral I/O areas cannot be controlled by external waits.

The external WAIT signal can be input asynchronously to CLKOUT and is sampled at the rising edge of the CLKOUT signal immediately after the T1 and TW states of a bus cycle. If the setup/hold time in the sampling timing is not satisfied, the wait state may or may not be inserted in the next state.

4.6.3 Relationship between programmable wait and external wait

A wait cycle is inserted as the result of an OR operation between the wait cycle specified by the set value of the programmable wait and the wait cycle controlled by the $\overline{\text{WAIT}}$ pin.

For example, if the timings of the programmable wait and the WAIT pin signal are as illustrated below, three wait states will be inserted in the bus cycle.

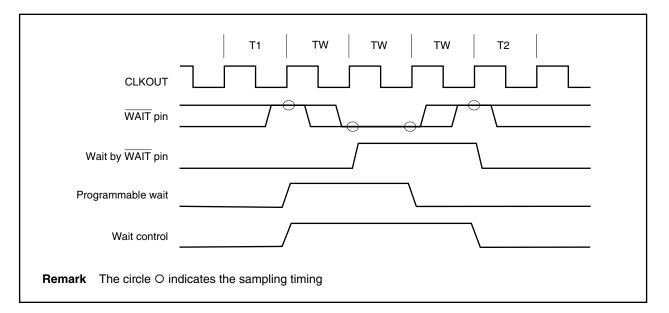


Figure 4-5. Example of Wait Insertion

4.6.4 Bus cycles in which wait function is valid

In the V850E/MA1, the number of waits can be specified according to the memory type specified for each memory block. The following shows the bus cycles in which the wait function is valid and the registers used for wait setting.

Table 4-1. Bus Cycles in Which Wait Function Is Valid

Bus Cycle			Type of Wait	Programmable Wait Setting			Wait from	
			Register	Bit				
SRAM, external ROM, external I/O cycles			Address setup wait	ASC	ACn1, ACn0	0 to 3	– (invalid)	
			Data access wait	DWC0, DWC1	DWn2 to DWn0	0 to 7	√ (valid)	
Page ROM cycle			Address setup wait	ASC	ACn1, ACn0	0 to 3	- (invalid)	
		Off-page	Data access wait	DWC0, DWC1	DWn2 to DWn0	0 to 7	√ (valid)	
On-page		Data access wait	PRC	PRW2 to PRW0	0 to 7	√ (valid)		
EDO DRAM	Read access	Off-page On-page	RAS precharge SCRm RPC1n		RPC1m, RPC0m	1 to 3	- (invalid)	
cycle			Row address hold	SCRm	RHC1m, RHC0m	0 to 3	to 3 – (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	- (invalid)	
			CAS precharge SCRm CPC1rr		CPC1m, CPC0m	0 to 3	– (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	– (invalid)	
	Write access	Off-page	RAS precharge SCRm RPC1m,		RPC1m, RPC0m	1 to 3	– (invalid)	
			Row address hold	SCRm	RHC1m, RHC0m	0 to 3	– (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	– (invalid)	
		On-page	CAS precharge	SCRm	CPC1m, CPC0m	1 to 3	– (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	– (invalid)	
	CBR refresh cycle		RAS precharge	RWC	RRW1, RRW0	0 to 3	– (invalid)	
			RAS active width	RWC	RCW2 to RCW0	1 to 7	– (invalid)	
	CBR self-refresh cycle		RAS precharge	RWC	RRW1, RRW0	0 to 3	– (invalid)	
			RAS active width	RWC	RCW2 to RCW0	1 to 7	– (invalid)	
			Self-refresh release width	RWC	SRW2 to SRW0	0 to 7	– (invalid)	
SDRAM cycle			Row address precharge SCRm BCW1m, BCW0m		*	1 to 3	- (invalid)	
DMA flyby transfer cycle	External I/O -	SRAM	Data access wait	DWC0, DWC1	DWn2 to DWn0	0 to 7	√ (valid)	
	DRAM → external I/O	Off-page	RAS precharge	SCRm	RPC1m, RPC0m	1 to 3	– (invalid)	
			Row address hold	SCRm	RHC1m, RHC0m	0 to 3	– (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	√ (valid)	
		On-page	CAS precharge	SCRm	CPC1m, CPC0m	0 to 3	– (invalid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	√ (valid)	
	External I/O → DRAM	Off-page On-page	RAS precharge	SCRm	RPC1m, RPC0m	1 to 3	– (invalid)	
			Row address hold	SCRm	RHC1m, RHC0m	0 to 3	√ (valid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	– (invalid)	
			CAS precharge	SCRm	CPC1m, CPC0m	1 to 3	√ (valid)	
			Data access wait	SCRm	DAC1m, DAC0m	0 to 3	– (invalid)	

Remark n = 0 to 7, m = 1, 3, 4, 6

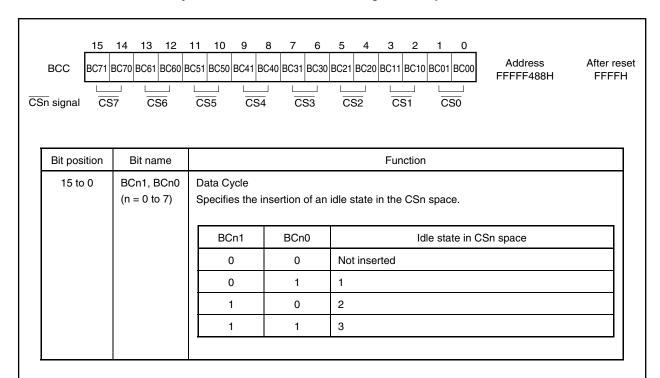
4.7 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices, an idle state (TI) can be inserted into the current bus cycle after the T2 state to meet the data output float delay time (tbF) on memory read access for each CS space. The bus cycle following the T2 state starts after the idle state is inserted.

An idle state is inserted at the timing shown below.

- After read/write cycles for SRAM, external I/O, or external ROM
- After a read cycle for page ROM
- After a read cycle for EDO DRAM (no idle state is inserted when accessing the same CS space)
- · After a read cycle for SDRAM

The idle state insertion setting can be specified by program using the bus cycle control register (BCC).


Immediately after the system reset, idle state insertion is automatically programmed for all memory blocks.

For the timing when an idle state is inserted, see the memory access timings in Chapter 5.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.

- Cautions 1. The internal ROM area, internal RAM area, and on-chip peripheral I/O area are not subject to idle state insertion.
 - 2. Write to the BCC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCC register is complete. However, it is possible to access external memory areas whose initialization settings are complete.

4.8 Bus Hold Function

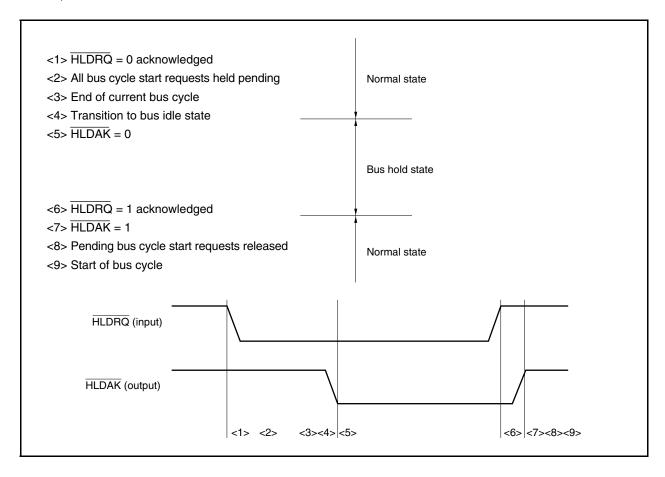
4.8.1 Function overview

If the PCM2 and PCM3 pins are specified in the control mode, the HLDAK and HLDRQ functions become valid.

If it is determined that the HLDRQ pin has become active (low level) as a bus mastership request from another bus master, the external address/data bus and each strobe pin are shifted to high impedance and then released (bus hold state). If the HLDRQ pin becomes inactive (high level) and the bus mastership request is canceled, driving of these pins begins again.

During the bus hold period, the internal operations of the V850E/MA1 continue until the external memory or an onchip peripheral I/O register is accessed.

The bus hold state can be known by the HLDAK pin becoming active (low level). The period from when the $\overline{\text{HLDRQ}}$ pin becomes active (low level) to when the $\overline{\text{HLDAK}}$ pin becomes active (low level) is at least 2 clocks.

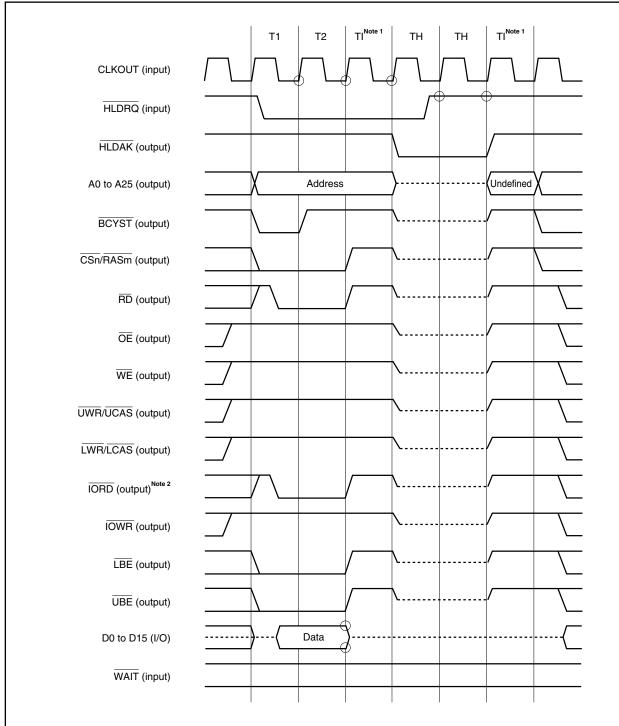

In a multiprocessor configuration, etc., a system with multiple bus masters can be configured.

State	Data Bus Width	Access Type	Timing at Which Bus Hold Request Cannot Be Acknowledged		
CPU bus lock	16 bits	Word access for even address	Between first and second accesses		
		Word access for odd address	Between first and second accesses		
			Between second and third accesses		
		Halfword access for odd address	Between first and second accesses		
	8 bits	Word access	Between first and second accesses		
			Between second and third accesses		
			Between third and forth accesses		
		Halfword access	Between first and second accesses		
Read modify write access of bit manipulation instruction	_	_	Between read access and write access		

- Cautions 1. When an external bus master accesses EDO DRAM during a bus hold state, make sure that the external bus master secures the RAS precharge time.
 - 2. When an external bus master accesses SDRAM during a bus hold state, make sure that the external bus master executes the all bank precharge command.
 - The CPU always executes the all bank precharge command to release a bus hold state. In a bus hold state, do not allow an external bus master to change the SDRAM command register value.
 - 3. The HLDRQ function is invalid during a reset period. The HLDAK pin becomes active either immediately after or after the insertion of a 1-clock address cycle from when the RESET pin is set to inactive following the simultaneous activation of the RESET and HLDRQ pins.
 - When a bus master other than the V850E/MA1 is externally connected, use the RESET signal for bus arbitration at power-on.

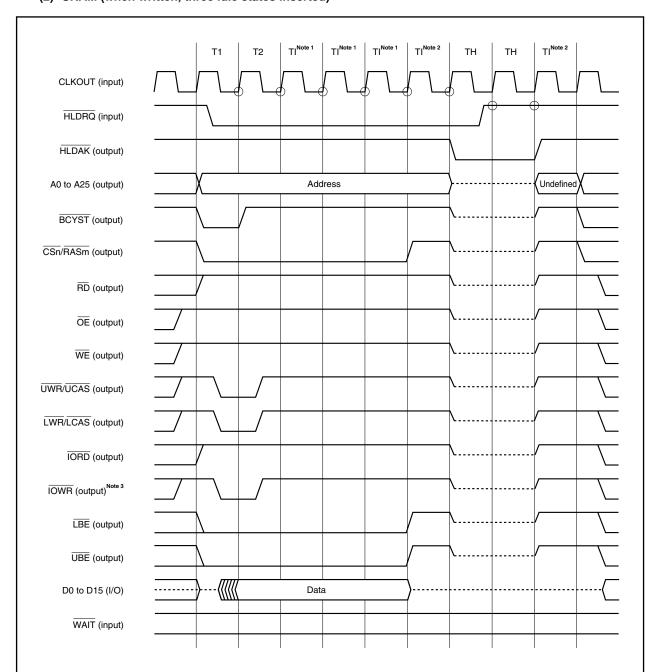
4.8.2 Bus hold procedure

The procedure of the bus hold function is illustrated below.


4.8.3 Operation in power-save mode

In the software STOP or IDLE mode, the internal system clock is stopped. Consequently, the bus hold state is not set since the $\overline{\text{HLDRQ}}$ pin cannot be acknowledged even if it becomes active.

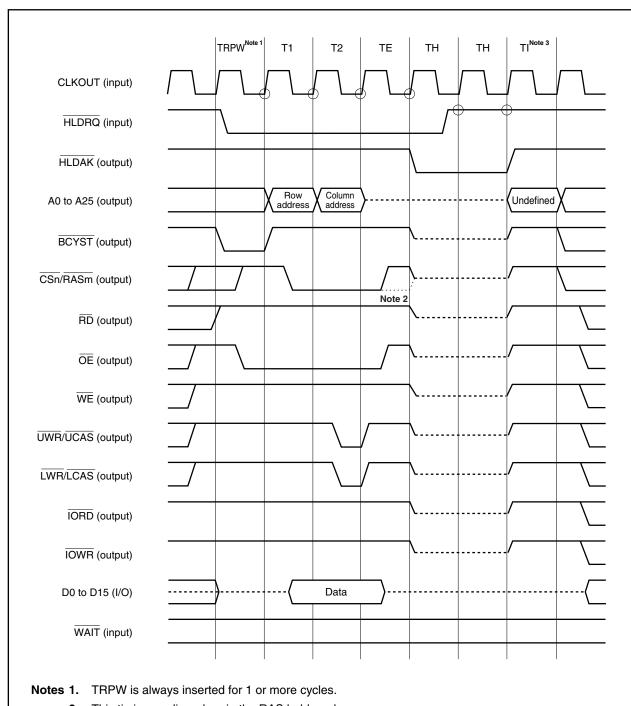
In the HALT mode, the $\overline{\text{HLDAK}}$ pin immediately becomes active when the $\overline{\text{HLDAK}}$ pin becomes active, and the bus hold state is set. When the $\overline{\text{HLDAK}}$ pin becomes inactive after that, the $\overline{\text{HLDAK}}$ pin also becomes inactive. As a result, the bus hold state is cleared and the HALT mode is set again.


4.8.4 Bus hold timing (SRAM)

(1) SRAM (when read, no idle states inserted)

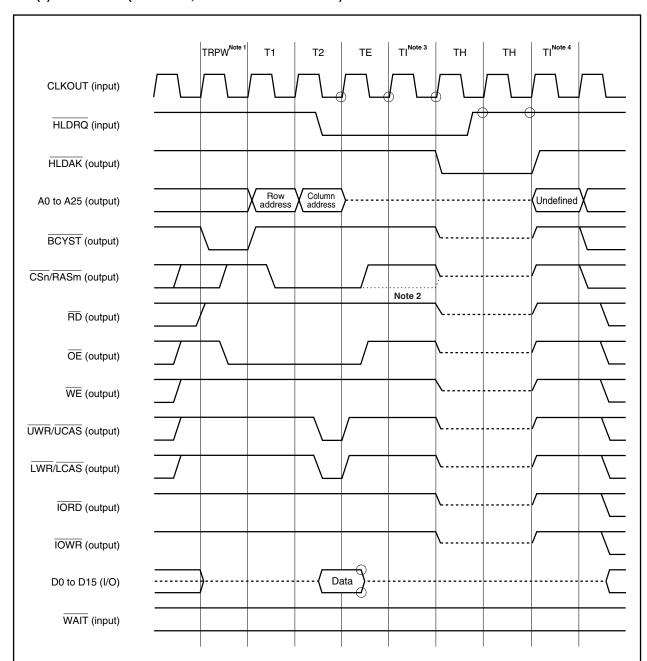
- **Notes 1.** This idle state (TI) is independent of the BCC register setting.
 - 2. When the IOEN bit of the BCP register is set to 1.
- Remarks 1. The circle O indicates the sampling timing.
 - **2.** The broken lines indicate the high-impedance state.
 - 3. n = 0 to 7, m = 1, 3, 4, 6

(2) SRAM (when written, three idle states inserted)

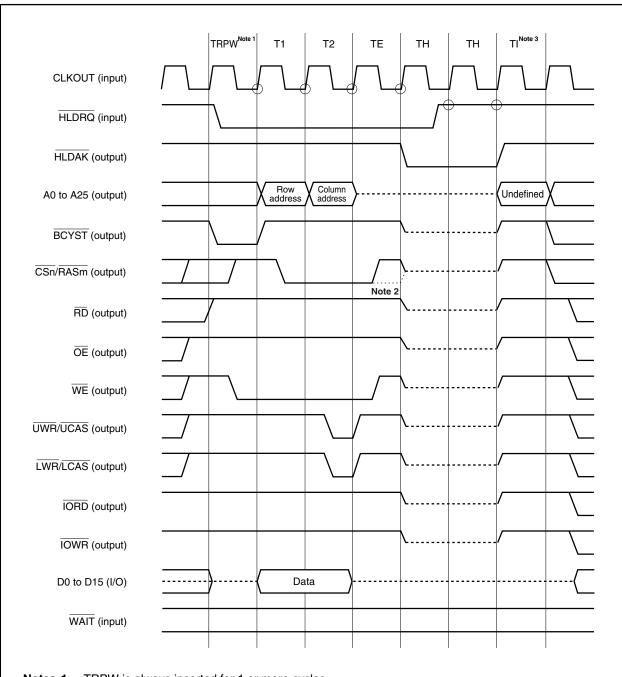

- Notes 1. This idle state (TI) is inserted by means of a BCC register setting.
 - 2. This idle state (TI) is independent of the BCC register setting.
 - 3. When the IOEN bit of the BCP register is set to 1.

Remarks 1. The circle O indicates the sampling timing.

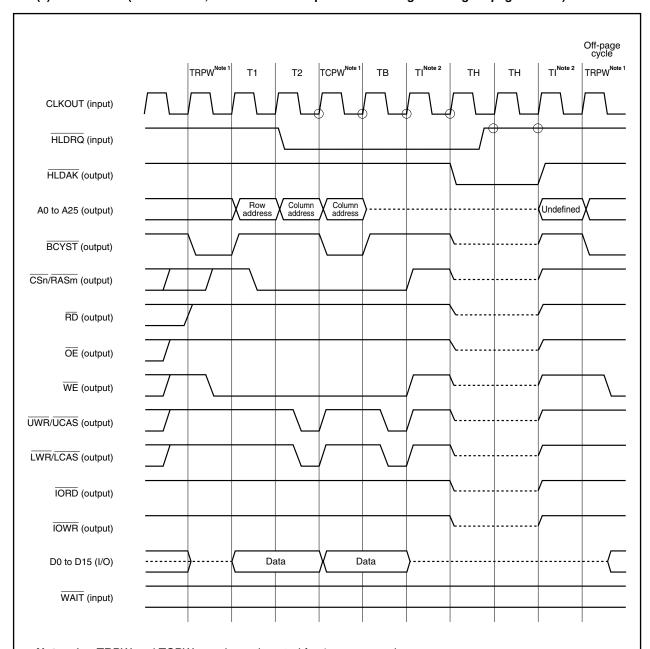
- 2. The broken lines indicate the high-impedance state.
- **3.** n = 0 to 7, m = 1, 3, 4, 6


4.8.5 Bus hold timing (EDO DRAM)

(1) EDO DRAM (when read, no idle states inserted)


- 2. This timing applies when in the RAS hold mode.
- 3. This idle state (TI) is independent of the BCC register setting.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - 3. n = 0 to 7, m = 1, 3, 4, 6
 - 4. Timing from DRAM access to bus hold state.

(2) EDO DRAM (when read, three idle states inserted)

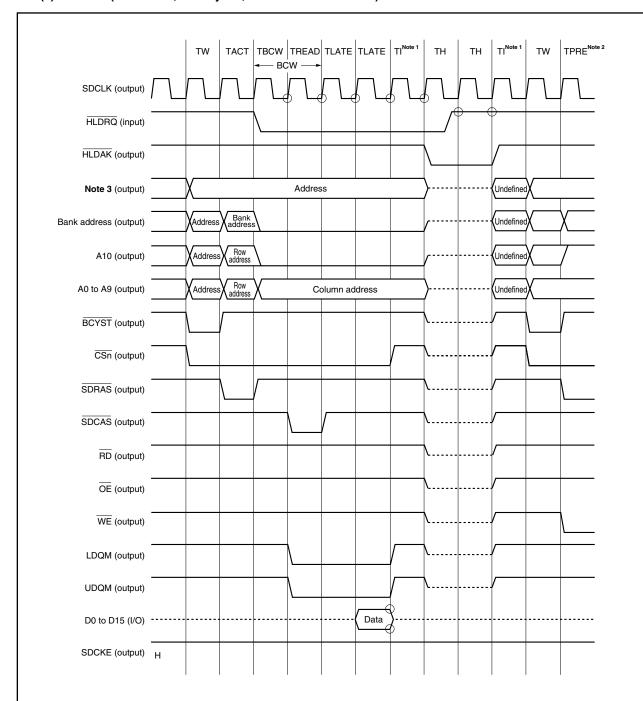

- Notes 1. TRPW is always inserted for 1 or more cycles.
 - 2. This timing applies when in the RAS hold mode.
 - **3.** This idle state (TI) is inserted by means of a BCC register setting. The number of idle states (TI) to be inserted depends on the timing of bus hold request acknowledgement.
 - 4. This idle state (TI) is independent of the BCC register setting.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - 3. n = 0 to 7, m = 1, 3, 4, 6
 - 4. Timing from DRAM access to bus hold state.

(3) EDO DRAM (when written)

- Notes 1. TRPW is always inserted for 1 or more cycles.
 - 2. This timing applies when in the RAS hold mode.
 - 3. This idle state (TI) is independent of the BCC register setting.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - **3.** n = 0 to 7, m = 1, 3, 4, 6
 - 4. Timing from DRAM access to bus hold state.

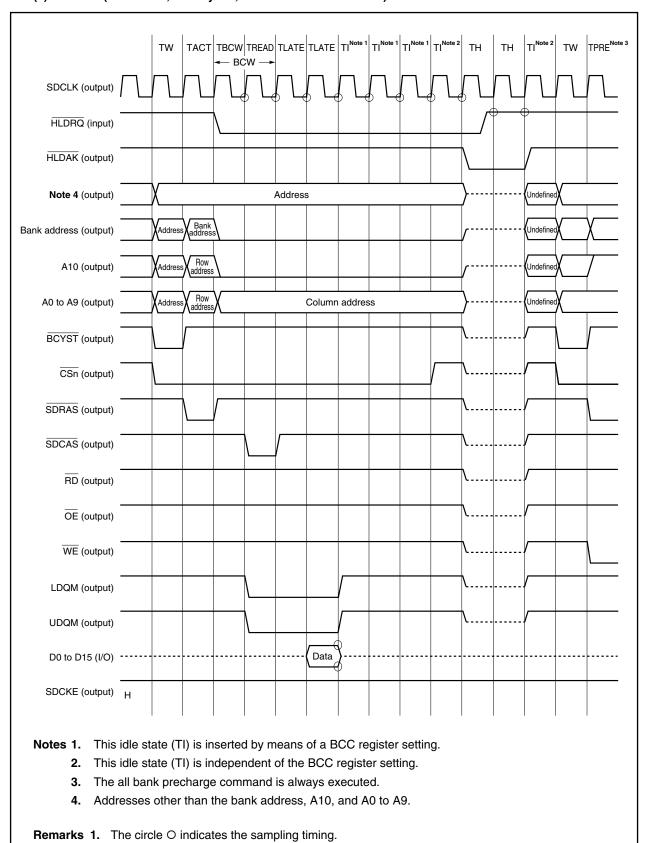
(4) EDO DRAM (when written, when bus hold request acknowledged during on-page access)

Notes 1. TRPW and TCPW are always inserted for 1 or more cycles.


2. This idle state (TI) is independent of the BCC register setting.

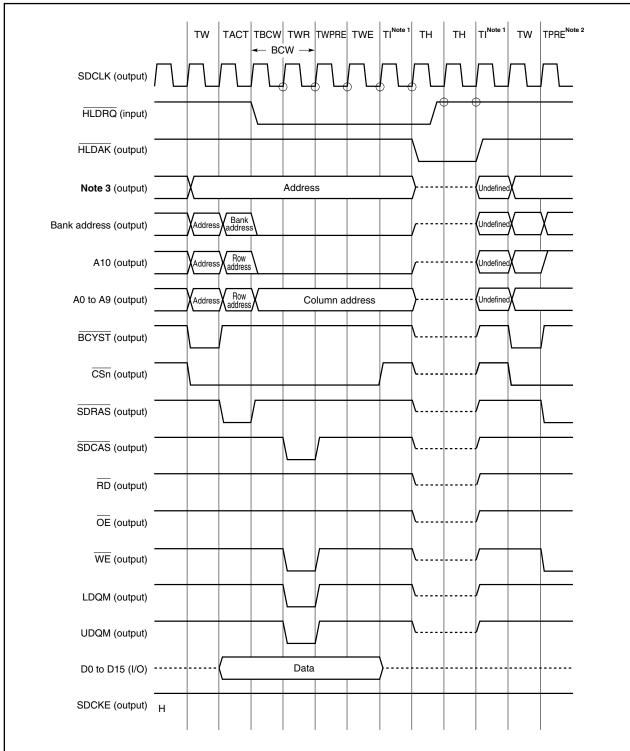
Remarks 1. The circle O indicates the sampling timing.

- 2. The broken lines indicate the high-impedance state.
- **3.** n = 0 to 7, m = 1, 3, 4, 6
- 4. Timing from DRAM access to bus hold state.

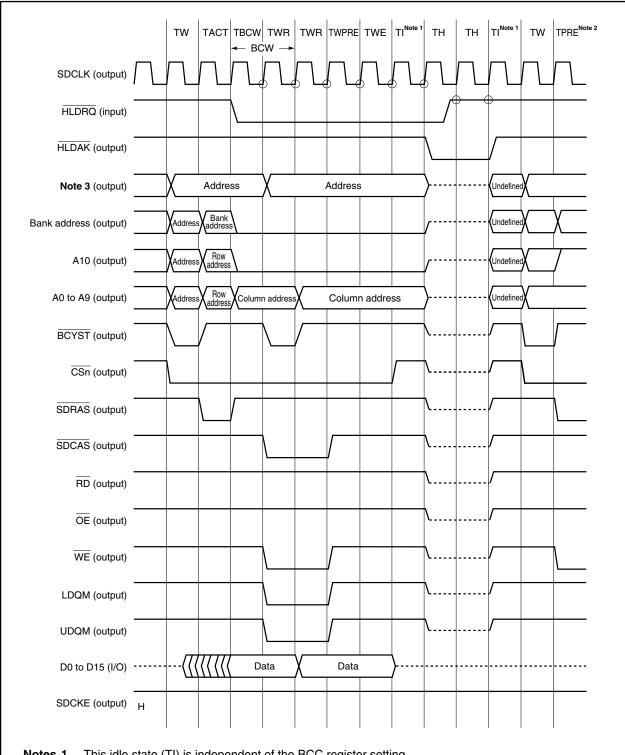

4.8.6 Bus hold timing (SDRAM)

(1) SDRAM (when read, latency = 2, no idle states inserted)

- Notes 1. This idle state (TI) is independent of the BCC register setting.
 - 2. The all bank precharge command is always executed.
 - 3. Addresses other than the bank address, A10, and A0 to A9.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - 3. n = 1, 3, 4, 6


(2) SDRAM (when read, latency = 2, three idle states inserted)

2. The broken lines indicate the high-impedance state.


3. n = 1, 3, 4, 6

(3) SDRAM (when written)

- Notes 1. This idle state (TI) is independent of the BCC register setting.
 - 2. The all bank precharge command is always executed.
 - 3. Addresses other than the bank address, A10, and A0 to A9.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - 3. n = 1, 3, 4, 6

(4) SDRAM (when written, when bus hold request acknowledged during on-page access)

- Notes 1. This idle state (TI) is independent of the BCC register setting.
 - 2. The all bank precharge command is always executed.
 - 3. Addresses other than the bank address, A10, and A0 to A9.

Remarks 1. The circle O indicates the sampling timing.

- 2. The broken lines indicate the high-impedance state.
- 3. n = 1, 3, 4, 6

4.9 Bus Priority Order

There are five external bus cycles: bus hold, instruction fetch, operand data access, DMA cycle, and refresh cycle. In order of priority, bus hold is the highest, followed by the refresh cycle, DMA cycle, operand data access, and instruction fetch, in that order.

An instruction fetch may be inserted between a read access and write access during a read modify write access. Also, an instruction fetch may be inserted between bus accesses when the CPU bus is locked.

Priority External Bus Cycle **Bus Master** Order High Bus hold External device Refresh cycle DRAM controller DMA controller DMA cycle Operand data access CPU I ow Instruction fetch CPU

Table 4-2. Bus Priority Order

4.10 Boundary Operation Conditions

★ 4.10.1 Program space

- (1) Branching to the on-chip peripheral I/O area or successive fetches from the internal RAM area to the on-chip peripheral I/O area are prohibited. If the above is performed (branching or successive fetch), undefined data is fetched, and fetching from the external memory is not performed.
- (2) If a branch instruction exists at the upper limit of the internal RAM area, a prefetch operation (invalid fetch) that straddles over the on-chip peripheral I/O area does not occur.

4.10.2 Data space

The V850E/MA1 is provided with an address misalign function.

Through this function, regardless of the data format (word or halfword), data can be allocated to all addresses. However, in the case of word data and halfword data, if the data is not subject to boundary alignment, the bus cycle will be generated at least 2 times and bus efficiency will drop.

(1) In the case of halfword-length data access

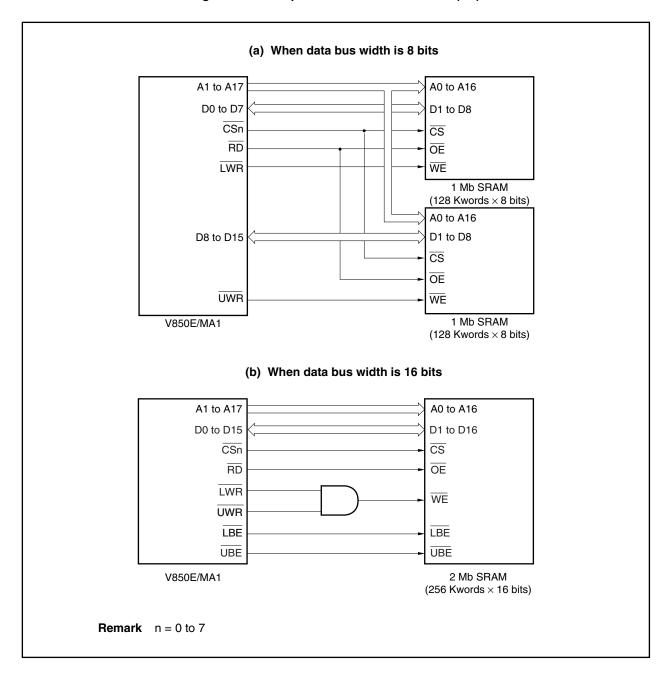
When the address's LSB is 1, a byte-length bus cycle will be generated 2 times.

(2) In the case of word-length data access

- (a) When the address's LSB is 1, bus cycles will be generated in the order of byte-length bus cycle, halfword-length bus cycle, and byte-length bus cycle.
- (b) When the address's lower 2 bits are 10, a halfword-length bus cycle will be generated 2 times.

CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION

5.1 SRAM, External ROM, External I/O Interface


5.1.1 Features

- SRAM is accessed in a minimum of 2 states.
- Up to 7 states of programmable data waits can be inserted by setting the DWC0 and DWC1 registers.
- Data wait can be controlled via WAIT pin input.
- Up to 3 idle states can be inserted after a read/write cycle by setting the BCC register.
- Up to 3 address setup wait states can be inserted by setting the ASC register.
- DMA flyby transfer can be activated (SRAM \rightarrow external I/O, external I/O \rightarrow SRAM)

5.1.2 SRAM connection

Examples of connection to SRAM are shown below.

Figure 5-1. Examples of Connection to SRAM (1/2)

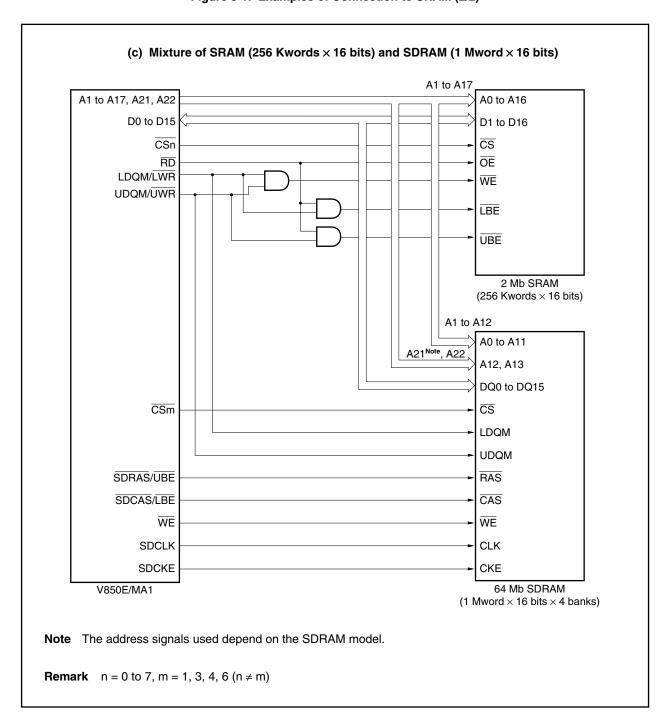
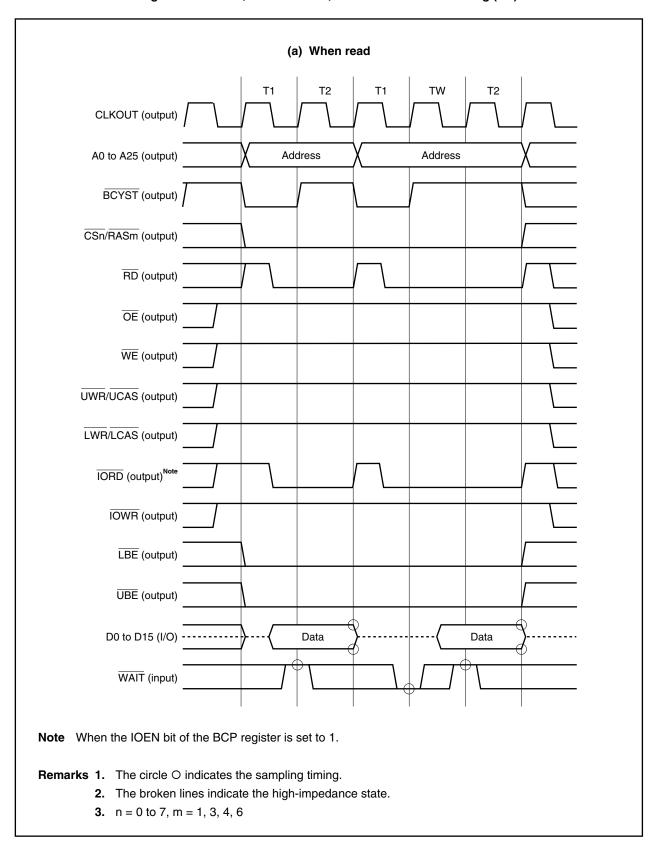



Figure 5-1. Examples of Connection to SRAM (2/2)

5.1.3 SRAM, external ROM, external I/O access

Figure 5-2. SRAM, External ROM, External I/O Access Timing (1/6)

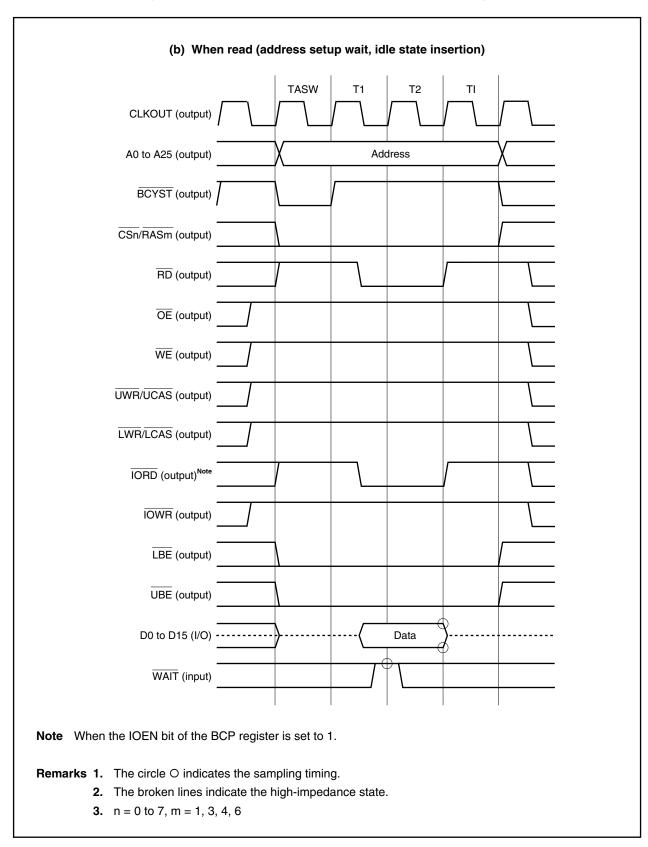


Figure 5-2. SRAM, External ROM, External I/O Access Timing (2/6)

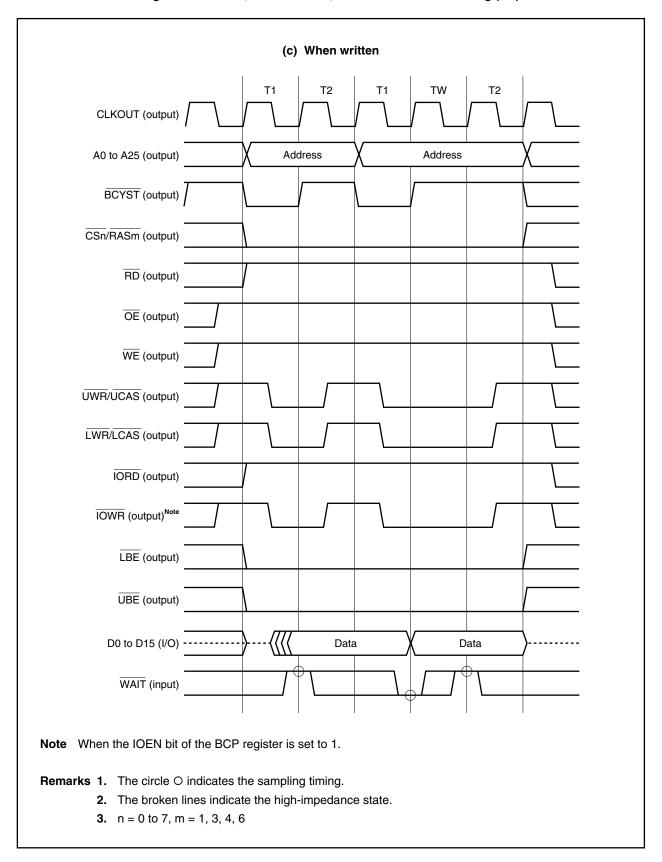


Figure 5-2. SRAM, External ROM, External I/O Access Timing (3/6)

(d) When written (address setup wait, idle state insertion) **TASW** T1 T2 ΤI CLKOUT (output) A0 to A25 (output) Address BCYST (output) CSn/RASm (output) RD (output) OE (output) WE (output) UWR/UCAS (output) LWR/LCAS (output) IORD (output) IOWR (output) Note LBE (output) UBE (output) D0 to D15 (I/O) ----Data WAIT (input) Note When the IOEN bit of the BCP register is set to 1. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. 3. n = 0 to 7, m = 1, 3, 4, 6

Figure 5-2. SRAM, External ROM, External I/O Access Timing (4/6)

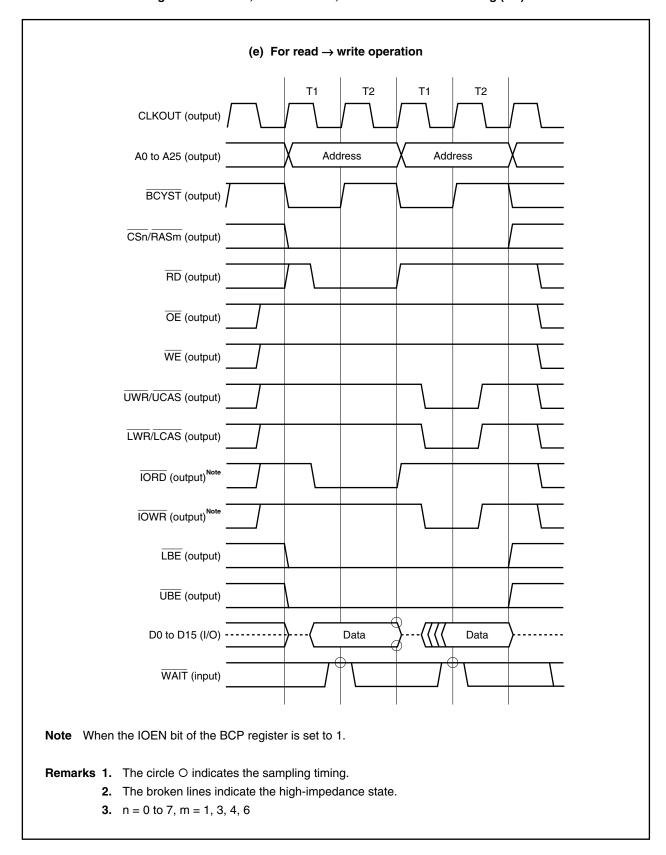


Figure 5-2. SRAM, External ROM, External I/O Access Timing (5/6)

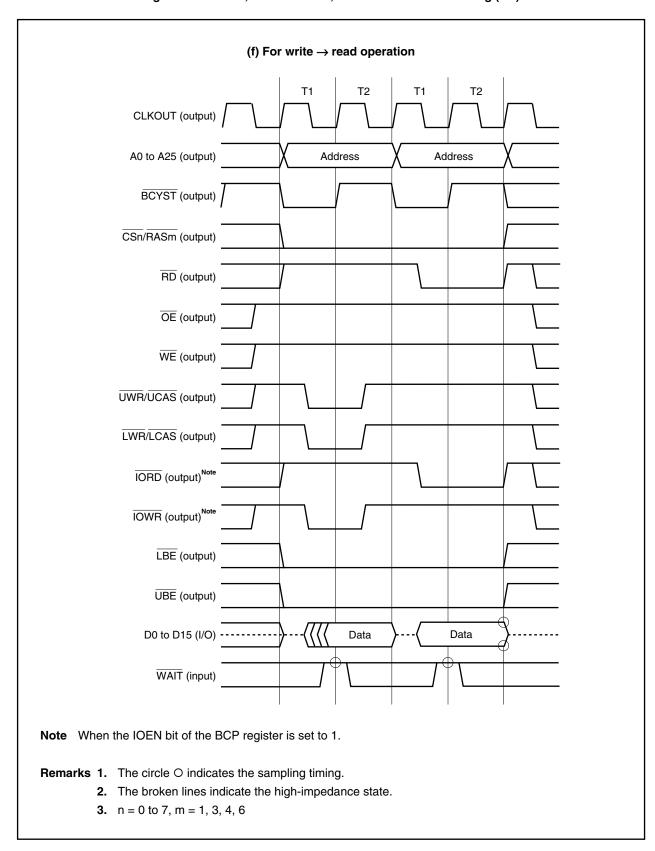
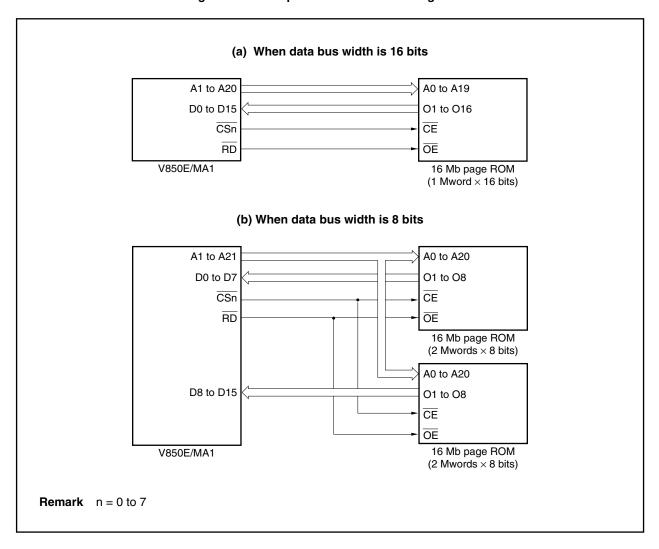


Figure 5-2. SRAM, External ROM, External I/O Access Timing (6/6)

5.2 Page ROM Controller (ROMC)

The page ROM controller (ROMC) is provided for accessing ROM (page ROM) with a page access function.

Addresses are compared with the immediately preceding bus cycle and wait control for normal access (off-page) and page access (on-page) is executed. This controller can handle page widths from 8 to 128 bytes.


5.2.1 Features

- Direct connection to 8-bit/16-bit page ROM supported
- For 16-bit bus width: 4/8/16/32/64-word page access supported For 8-bit bus width: 8/16/32/64/128-word page access supported
- Page ROM is accessed in a minimum of 2 states.
- · On-page judgment function
- Addresses to be compared can be changed by setting the PRC register.
- Up to 7 states of programmable data waits can be inserted during an on-page cycle by setting the PRC register.
- Up to 7 states of programmable data waits can be inserted during an off-page cycle by setting the DWC0 and DWC1 registers.
- Waits can be controlled via WAIT pin input.
- DMA flyby cycle can be activated (page ROM → external I/O)

5.2.2 Page ROM connection

Examples of connection to page ROM are shown below.

Figure 5-3. Examples of Connection to Page ROM

5.2.3 On-page/off-page judgment

Whether a page ROM cycle is on-page or off-page is judged by latching the address of the previous cycle and comparing it with the address of the current cycle.

Through the page ROM configuration register (PRC), according to the configuration of the connected page ROM and the number of continuously readable bits, one of the addresses (A3 to A6) is set as the masking address (no comparison is made).

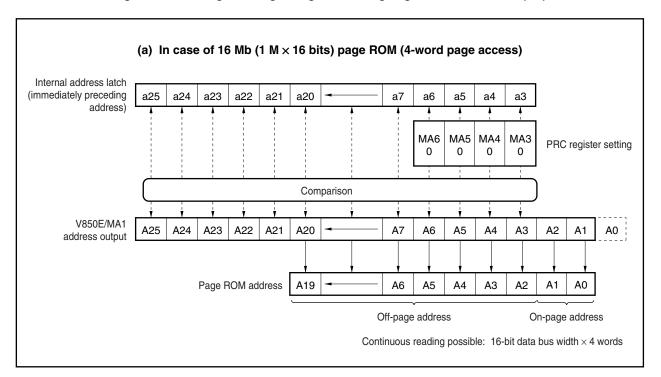


Figure 5-4. On-Page/Off-Page Judgment During Page ROM Connection (1/2)

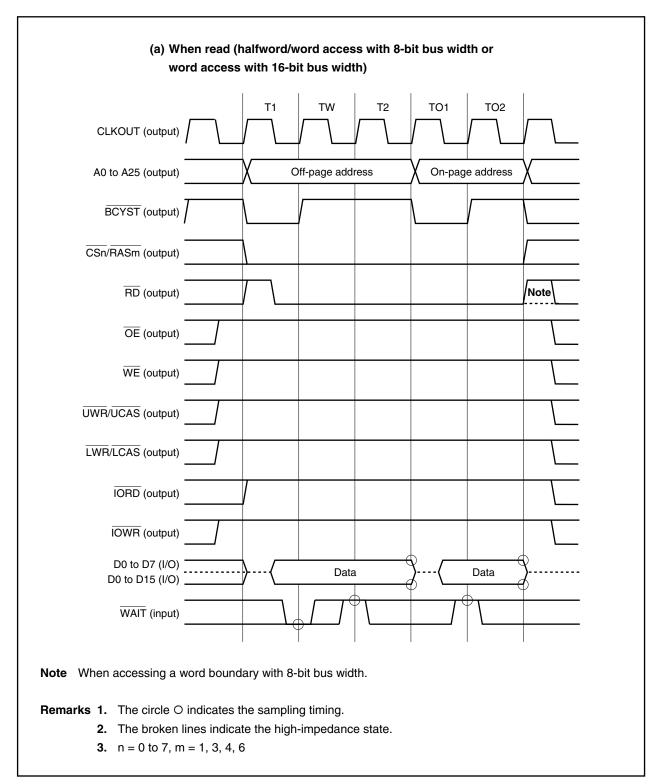
(b) In case of 16 Mb (1 M \times 16 bits) page ROM (8-word page access) Internal address latch (immediately preceding a25 a24 a23 a22 a21 a20 a6 а5 a4 аЗ address) MA6 MA5 MA4 MA3 PRC register setting 0 0 0 Comparison V850E/MA1 A25 A24 A23 A22 A21 A20 Α7 A6 Α5 Α4 АЗ A2 Α1 A0 address output Page ROM address A19 A6 **A5** A4 АЗ A2 Α1 A0 Off-page address On-page address Continuous reading possible: 16-bit data bus width \times 8 words (c) In case of 32 Mb (2 M \times 16 bits) page ROM (16-word page access) Internal address latch (immediately preceding a25 a24 a23 a22 a21 a20 аЗ а7 a6 а5 a4 address) MA6 MA5 MA4 MA3 PRC register setting 0 0 Comparison V850E/MA1 A22 A25 A24 A23 A21 A20 Α7 A6 Α5 АЗ A4 A2 Α1 Α0 address output Page ROM address A6 Α5 АЗ Α0 A19 Α4 A2 Α1 Off-page address On-page address Continuous reading possible: 16-bit data bus width \times 16 words

Figure 5-4. On-Page/Off-Page Judgment During Page ROM Connection (2/2)

5.2.4 Page ROM configuration register (PRC)

This register is used to set the address comparison width and the number of wait states to be inserted in the onpage cycle.

The masking address (no comparison is made) out of the addresses (A3 to A6) corresponding to the configuration of the connected page ROM and the number of bits that can be read continuously, as well as the number of waits corresponding to the internal system clock, are set.


This register can be read/written in 16-bit units.

Caution Write to the PRC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the PRC register is complete. However, it is possible to access external memory areas whose initialization settings are complete.

DDO		14	13	12	_		9	8	_	6	5	4	3	2		4 1 4 4 6	Address	After rese
PRC	0	PRW	PRW1	PRWU	0	0	0	0	0	0	0	0	MAG	MAS	IVIA	4 MA3	FFFFF49AH	7000H
Bit p	ositio	n	Bit n	ame	Function													
14	14 to 12		PRW2 PRW0		Se Th	ne num	num ber	nber of of wa	of wai	ts co et by	rresp these	ondii bits	is ins	erted	only		m clock. page access. For o erted.	ff-page
					ı	PRW2	PF	RW1	PR	W0				Num	ber o	of insert	ed wait cycles	
						0		0	C)	0							
						0		0	1		1							
						0		1	C)	2							
						0		1	1		3							
						1		0	C)	4							
						1		0	1		5							
						1		1	C		6							
					L	1		1	1		7							
3	3 to 0		MA6 t	0	Ea ma		spec addi g to	tive a ress is the n	s not umbe	subj er of	ect to	com	paris	on du	ring	on/off-p	o MA3 is masked (by age judgment, and i	
						MA6	N	1A5	MA	۹4	MA	3		Nur	nber	of cont	inuously readable bi	its
						0		0	C)	0		4 wo	rds ×	16 b	its (8 w	ords × 8 bits)	
						0		0	C)	1		8 wo	rds ×	16 b	its (16 v	words × 8 bits)	
						0		0	1		1		16 w	ords :	× 16	bits (32	words × 8 bits)	
						0		1	1		1		32 w	ords :	× 16	bits (64	words × 8 bits)	
						1		1	1		1		64 w	ords :	× 16	bits (12	8 words × 8 bits)	
						Other	than	abov	/e				Setti	ng pro	ohibi	ted		

5.2.5 Page ROM access

Figure 5-5. Page ROM Access Timing (1/4)

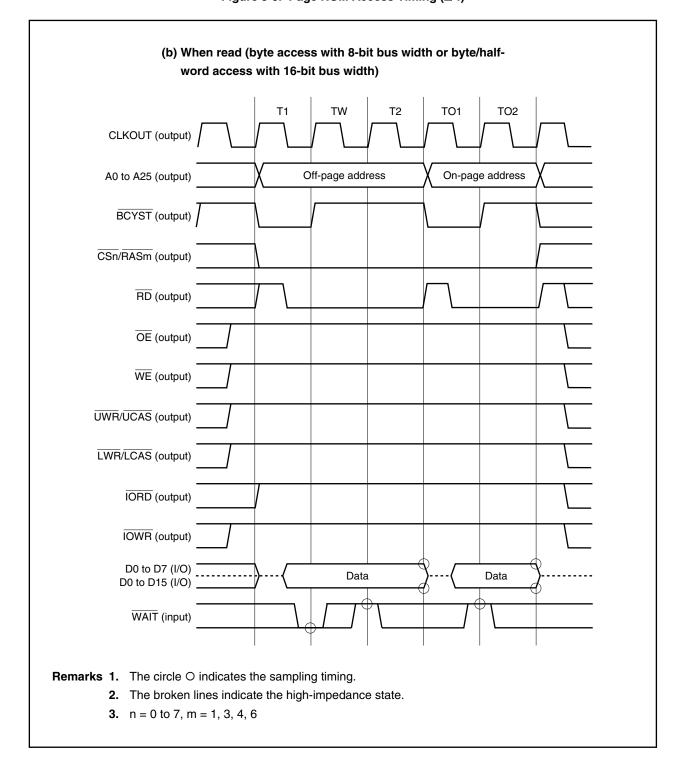


Figure 5-5. Page ROM Access Timing (2/4)

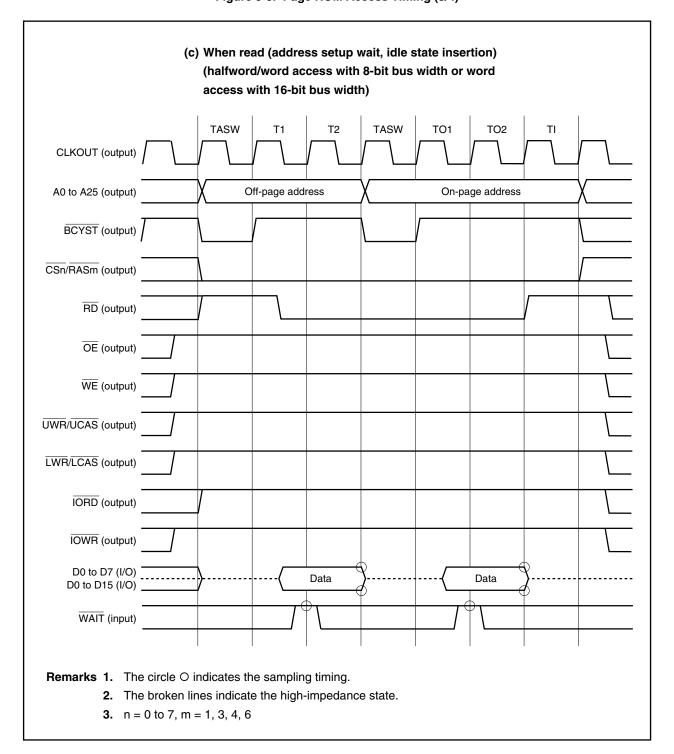


Figure 5-5. Page ROM Access Timing (3/4)

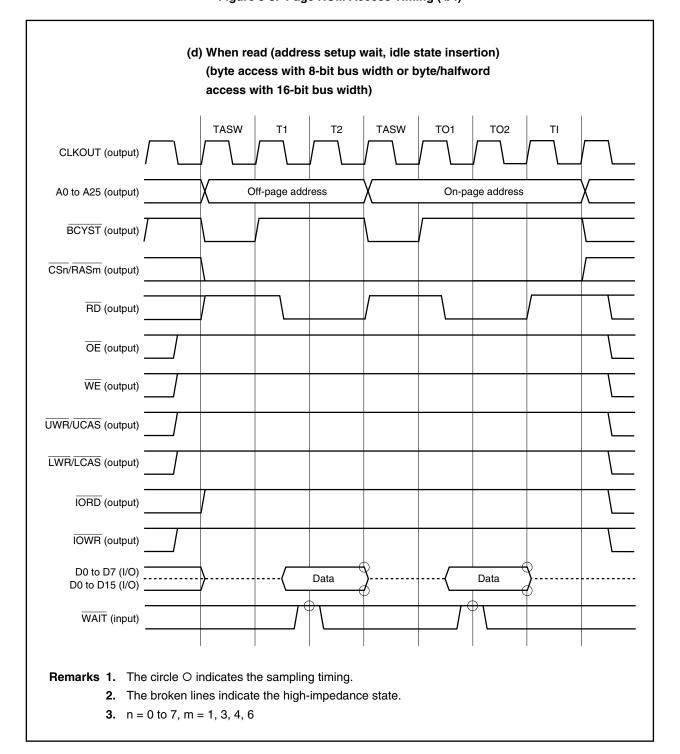
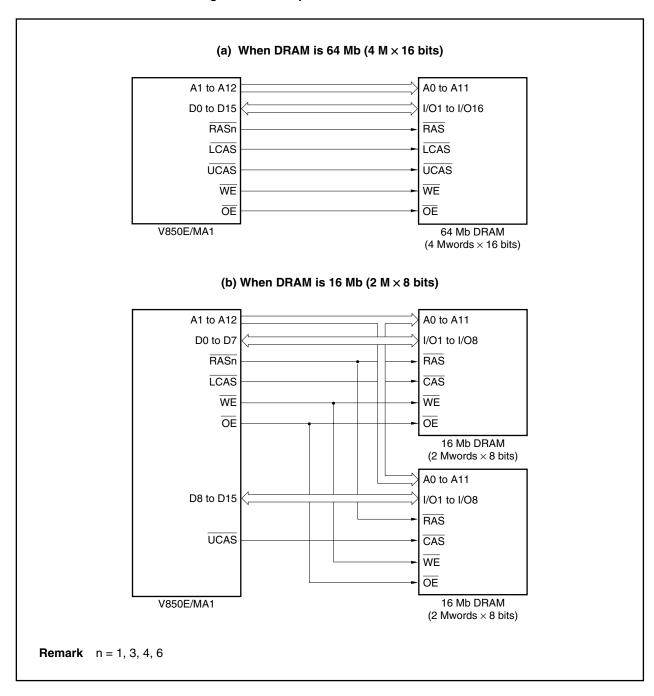


Figure 5-5. Page ROM Access Timing (4/4)

5.3 DRAM Controller (EDO DRAM)


5.3.1 Features

- Generates the RAS, LCAS, and UCAS signals
- Can be connected directly to EDO DRAM.
- Supports the RAS hold mode.
- 4 types of DRAM can be assigned to 4 memory block spaces.
- Supports 2CAS type DRAM.
- Row and column address multiplex widths can be changed.
- Waits (0 to 3 waits) can be inserted at the following timings:
 - Row address precharge wait
 - · Row address hold wait
 - · Data access wait
 - Column address precharge wait
- Supports CBR refresh and CBR self-refresh.

5.3.2 DRAM connection

Examples of connection to DRAM are shown below.

Figure 5-6. Examples of Connection to DRAM

5.3.3 Address multiplex function

Depending on the value of the DAW0n and DAW1n bits in DRAM configuration register n (SCRn), the row address and column address outputs in the DRAM cycle are multiplexed as shown in Figure 5-7 (n = 1, 3, 4, 6). In Figure 5-7, a0 to a25 show the addresses output from the CPU and A0 to A25 show the address pins of the V850E/MA1.

For example, when DAW1n and DAW0n = 11, it indicates that a12 to a22 are output as row addresses and a1 to a11 are output as column addresses from the address pins (A1 to A11).

Address pin A25 to A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Row address a25 to a18 a17 a16 a15 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 (DAW1n, DAW0n = 11)Row address a25 to a18 | a17 | a16 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 (DAW1n, DAW0n = 10)Row address a25 to a18 a17 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 (DAW1n, DAW0n = 01)Row address a25 to a18 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 a10 a9 a8 (DAW1n, DAW0n = 00)Column address | a25 to a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 | a9 a8 a7 a6 а5 a4 аЗ a2 a1 a0 **Remark** n = 1, 3, 4, 6

Figure 5-7. Row Address/Column Address Output

Table 5-1 shows the relationship between the DRAM that can be connected and the address multiplex width. The DRAM space differs according to the DRAM that is connected, as shown in Table 5-1.

DRAM Space^{Note} Address Multiplex Width DRAM Capacity (Bits) and Configuration (Bytes) 256 K 1 M 4 M 16 M 64 M 8 bits (DAW1n, DAW0n = 00) 64 K×4 128 K 9 bits (DAW1n, DAW0n = 01) $256 \text{ K} \times 4$ $256 \text{ K} \times 16$ 512 K 512 K × 8 $4 \text{ M} \times 16$ 8 M 10 bits (DAW1n, DAW0n = 10) 2 M $1 \text{ M} \times 4$ $1 \text{ M} \times 16$ $2 M \times 8$ 4 M $4 \text{ M} \times 16$ 8 M 11 bits (DAW1n, DAW0n = 11) $4~\text{M}\times4$ 8 M

Table 5-1. Example of DRAM and Address Multiplex Width

Note When the data bus width is 16 bits

Remark n = 1, 3, 4, 6

5.3.4 DRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)

These registers are used to set the type of DRAM to be connected. SCRn corresponds to \overline{CSn} (n = 1, 3, 4, 6). For example, to connect DRAM to $\overline{CS1}$, set SCR1. These registers can be read/written in 16-bit units.

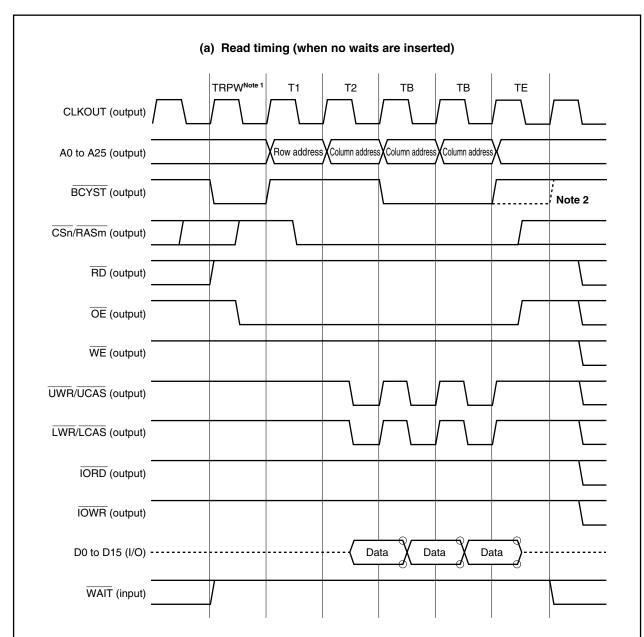
Be sure to set bits 14 and 5 to 0. If they are set to 1, the operation is not guaranteed.

- Cautions 1. If the object of access is a DRAM area, the wait set by registers DWC0 and DWC1 becomes invalid. In this case, waits are controlled by registers SCR1, SCR3, SCR4, and SCR6.
 - 2. Write to the SCR1, SCR3, SCR4, and SCR6 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial settings of the SCR1, SCR3, SCR4, and SCR6 registers are complete. However, it is possible to access external memory areas whose initialization settings are complete.

(1/3)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(0					
SCR1	PAE11	0	RPC11								0		ASO11					Addr FFFFF		After rese 3FC1H		
SCR3	PAE13	0	RPC13	RPC03	RHC13	RHC03	DAC13	DAC03	CPC13	CPC03	0	RHD3	ASO13	ASO03	DAW	13DAV	W03	FFFFF	4ACH	3FC1H		
SCR4	PAE14	0	RPC14	RPC04	RHC14	RHC04	DAC14	DAC04	CPC14	CPC04	0	RHD4	ASO14	ASO04	DAW	14DAV	W04	FFFFF	4B0H	3FC1H		
SCR6	PAE16	0	RPC16	RPC06	RHC16	RHC06	DAC16	DAC06	CPC16	CPC06	0	RHD6	ASO16	ASO06	DAW	16DAV	W06	FFFFF	4B8H	3FC1H		
	Bit position Bit name 15 PAE1n (n = 1, 3,							-		s Mod		ontrol	Fui	nctior	1							
	4, 6)			F	PAE1n Access mode 0 On-page access disabled 1 On-page access enabled																	
13	13, 12		RPC0n (n = 1, 3,						dress	s Pre-	-char	ge Co	ntrol		erted	as ro	ow a	ddre	ess pi	recharge	time.	
		2	1, 6)		F	RPC1	n I	RPC0)n				Nur	nber	of w	ait s	states	sinserted				
						0		0		1 (at le	east	1 wai	t is al	ways	inse	ertec	d)					
						0		1		1												
I						1		0	- 2	2												
						1		1		3												

(2/3)


Bit position	Bit name			Function								
11, 10	RHC1n, RHC0n (n = 1, 3,		Row Address Hold Wait Control Specifies the number of wait states inserted as row address hold time.									
	4, 6)	RHC1n	RHC0n	Number of wait states inserted								
		0	0	0								
		0	1	1								
		1	0	2								
		1	1	3								
9, 8	DAC1n, DAC0n (n = 1, 3,		_	nmable Wait Control of wait states inserted as data access time during DRAM access.								
	4, 6)	DAC1n	DAC0n	Number of wait states inserted								
		0	0	0								
		0	1	1								
		1	0	2								
		1	1	3								
7, 6	CPC1n, CPC0n (n = 1, 3,			-charge Control r of wait states inserted as column address precharge time.								
	4, 6)	CPC1n	CPC0n	Number of wait states inserted								
		0	0	0 (at least 1 wait is always inserted during on-page write access)								
		0	1	1								
		1	0	2								
		1	1	3								
4	RHDn (n = 1, 3, 4, 6)	RAS Hold Disable Sets the RAS hold mode. If access to DRAM during on-page operation is not continuous and another space is accessed midway, the RASn signal is maintained in the active state (low level) during time the other space is being accessed in the RAS hold mode. In this way, if access continues in the same DRAM row address following access of the other space, on-page operation can be continued. 0: RAS hold mode enabled										

(3/3)

Bit position	Bit name		Function							
3, 2	ASO1n, ASO0n (n = 1, 3, 4, 6	This sets the When the	he address external da	On-page Control s shift width during on-page judgment. sta bus width is 8 bits: Set ASO1n, ASO0n = 00B sta bus width is 16 bits: Set ASO1n, ASO0n = 01B						
		ASO1n	ASO0n	Address shift width						
		0	0	0 (data bus width: 8 bits)						
		0	1	1 (data bus width: 16 bits)						
		1	0	Setting prohibited						
		1	1	Setting prohibited						
1, 0	DAW1n, DAW0n (n = 1, 3,			plex Width Control multiplex width (refer to 5.3.3 Address multiplex function).						
	4, 6)	DAW1n	DAW0n	Address multiplex width						
		0	0	8 bits						
		0	1	9 bits						
		1	0	10 bits						
		1	1	11 bits						

5.3.5 DRAM access

- Notes 1. TRPW is always inserted for 1 or more cycles.
 - 2. When a bus cycle accessing another CS space or a write cycle accessing the same CS space follows this read cycle.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - **3.** n = 0 to 7, m = 1, 3, 4, 6

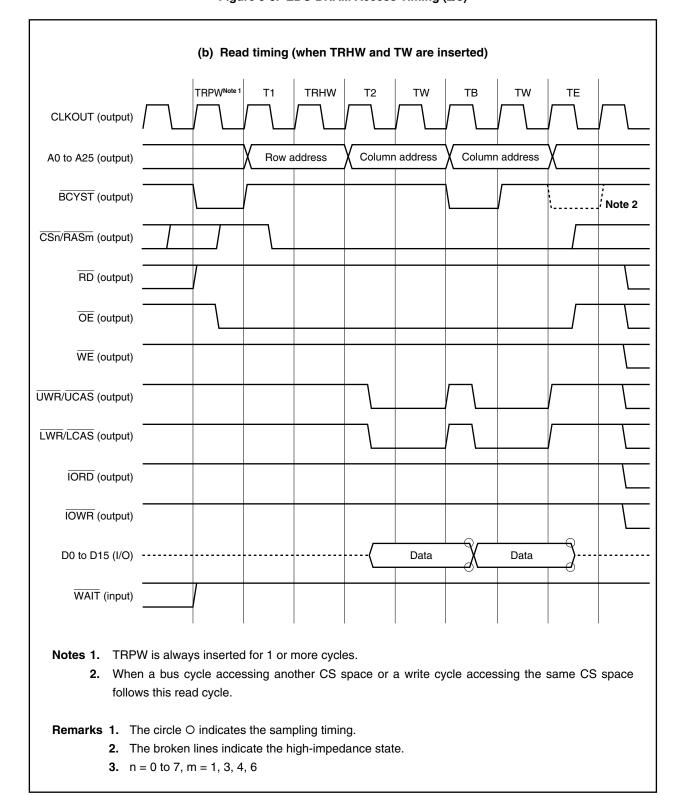


Figure 5-8. EDO DRAM Access Timing (2/5)

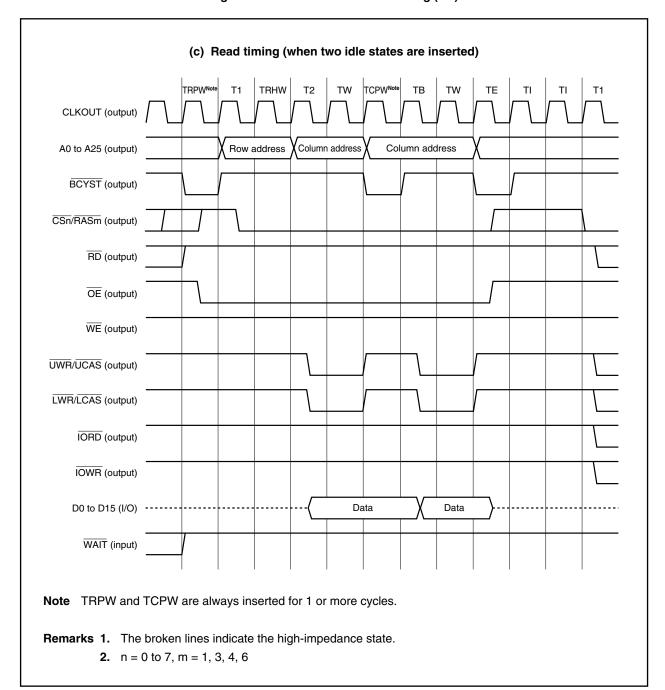


Figure 5-8. EDO DRAM Access Timing (3/5)

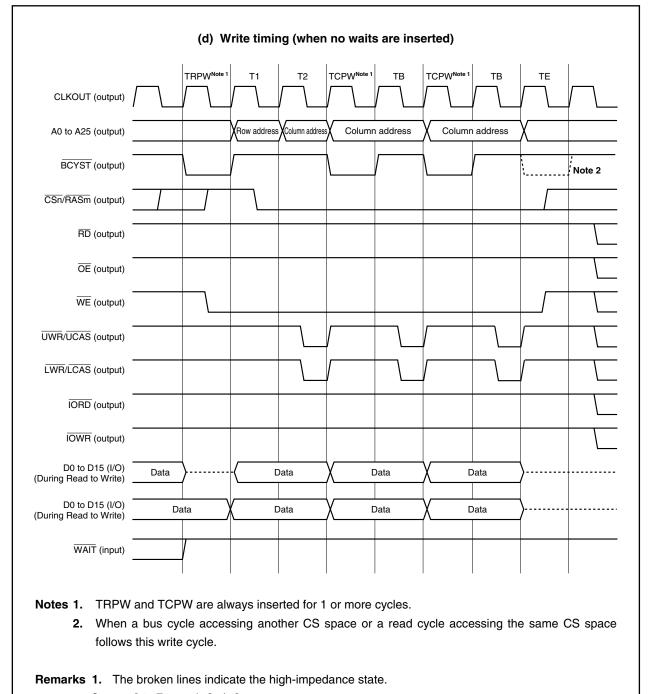


Figure 5-8. EDO DRAM Access Timing (4/5)

2. n = 0 to 7, m = 1, 3, 4, 6

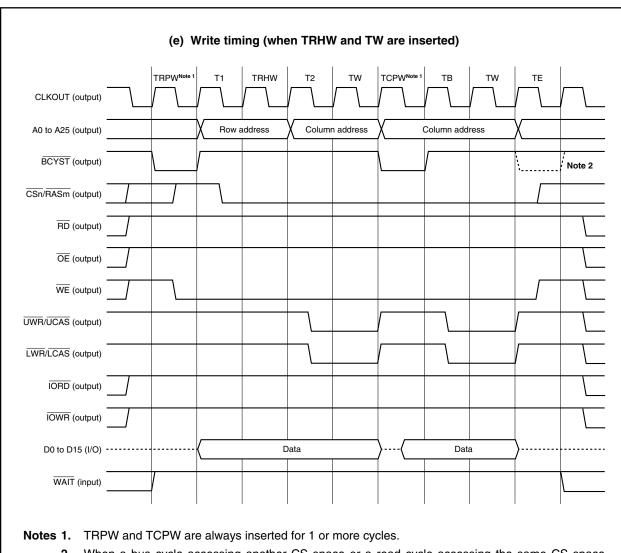


Figure 5-8. EDO DRAM Access Timing (5/5)

2. When a bus cycle accessing another CS space or a read cycle accessing the same CS space follows this write cycle.

Remarks 1. The broken lines indicate the high-impedance state.

2. n = 0 to 7, m = 1, 3, 4, 6

5.3.6 Refresh control function

The V850E/MA1 can generate the CBR (CAS-before-RAS) refresh cycle. The refresh cycle is set with refresh control registers 1, 3, 4, and 6 (RFS1, RFS3, RFS4, RFS6). The RFSn register corresponds to \overline{CSn} (n = 1, 3, 4, 6). For example, to connect DRAM to $\overline{CS1}$, set RFS1.

When another bus master occupies the external bus, the DRAM controller cannot occupy the external bus. In this case, the DRAM controller issues a refresh request to the bus master by changing the REFRQ signal to active (low level).

During a refresh operation, the address bus retains the state it was in just before the refresh cycle.

(1) Refresh control registers 1, 3, 4, 6 (RFS1, RFS3, RFS4, RFS6)

These registers are used to enable or disable a refresh and set the refresh interval. The refresh interval is determined by the following calculation formula.

Refresh interval (μ s) = Refresh count clock (TRCY) × Interval factor

The refresh count clock and interval factor are determined by the RENn bit and RIN5n to RIN0n bits, respectively, of the RFSn register.

Note that n corresponds to the register number (1, 3, 4, 6) of DRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6).

These registers can be read/written in 16-bit units.

Caution Write to the RFS1, RFS3, RFS4, and RFS6 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial settings of the RFS1, RFS3, RFS4, and RFS6 registers are complete. However, it is possible to access external memory areas whose initialization settings are complete.

	15	14 13	12	11	10	9 8	7 6	5 5	4 3	2 1	0		
RFS1	REN1	0 0	0	0	0	RCC11 RCC01	0 0	RIN51 RI	N41 RIN31 F	RIN21 RIN11	RIN01	Address FFFFF4A6H	After rese 0000H
RFS3	REN3	0 0	0	0	0	RCC13 RCC03	0 (RIN53 RI	N43 RIN33 F	RIN23 RIN13	RIN03	FFFFF4AEH	0000H
RFS4	REN4	0 0	0	0	0	RCC14 RCC04	0 0) RIN54 RI	N44 RIN34 F	RIN24 RIN14	RIN04	FFFFF4B2H	0000H
RFS6	REN6	0 0	0	0	0	RCC16 RCC06	0 (RIN56 RI	N46 RIN36 F	RIN26 RIN16	RIN06	FFFF4BAH	0000H
Bit p	osition	Bit na	ame						Fun	ction			
	15 RENn (n = 1, 3, 4, 6)				ecifies 0: Ref	Enable s whether resh disat resh enab	oled	resh is en	abled or	disabled.			
9, 8		RCC1 RCC0 (n = 1	n			Count Clo		t clock (Tr	cy)				
		4, 6)		F	RCC1n	RCC0n			Ref	esh coun	t clock	(Trcy)	
					0	0	32/fxx						
				╙	0	1	128/fx	(
					1	0							
				۱L	1	1	Setting	g prohibite	d				
5	5 to 0		to , 3,			Interval interval fa	actor of t	he interva	l timer fo	the gene	eration (of the refresh timin	g.
		4, 6)		F	RIN5n	RIN4n	RIN3n	RIN2n	RIN1n	RIN0n		Interval factor	
					0	0	0	0	0	0	1		
				$ \downarrow $	0	0	0	0	0	1	2		
				$ \downarrow$	0	0	0	0	1	0	3		
				-	0	0	0	0	1	1	4		
				1 1	:	:	:	:	:	:	:		
				lH	1	1	1	1	1	1	64		

Remark fxx: Internal system clock

Table 5-2. Interval Factor Setting Examples

Specified Refresh Interval	Refresh Count Clock (TRCY)	Interval Factor Value Notes 1, 2						
Value (μs)		fxx = 20 MHz	fxx = 33 MHz	fxx = 50 MHz				
7.8	32/fxx	4 (6.4)	8 (7.8)	12 (7.7)				
	128/fxx	1 (6.4)	2 (7.8)	5 (7.7)				
	256/fxx	_	1 (7.8)	1 (5.1)				
15.6	32/fxx	9 (14.4)	16 (15.5)	24 (15.4)				
	128/fxx	2 (12.8)	4 (15.5)	6 (15.4)				
	256/fxx	1 (12.8)	2 (15.5)	3 (15.4)				
31.2	32/fxx	19 (30.4)	32 (31.0)	48 (30.7)				
	128/fxx	4 (25.6)	8 (31.0)	12 (30.7)				
	256/fxx	2 (25.6)	4 (31.0)	6 (30.7)				
62.5	32/fxx	39 (62.4)	64 (62.1)	_				
	128/fxx	9 (57.6)	16 (62.1)	24 (61.4)				
	256/fxx	4 (51.2)	8 (62.1)	12 (61.4)				
125	128/fxx	19 (121.6)	32 (124.1)	48 (122.9)				
	256/fxx	9 (115.2)	16 (124.1)	24 (122.9)				
250	128/fxx	39 (249.6)	64 (248.2)	_				
	256/fxx	19 (243.2)	32 (248.2)	48 (245.8)				

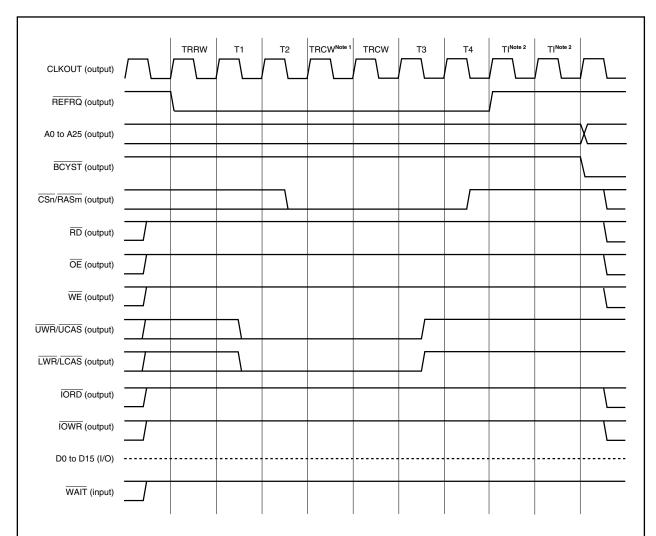
Notes 1. The interval factor is set by bits RIN0n to RIN5n of the RFSn register (n = 1, 3, 4, 6).

2. The values in parentheses are the calculated values for the refresh interval (μ s). Refresh interval (μ s) = Refresh count clock (TRCY) × Interval factor

Remark fxx: Internal system clock

(2) Refresh wait control register (RWC)

This register specifies the number of wait states inserted during the refresh cycle.


This register can be read/written in 8-bit units.

Caution Write to the RWC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the RWC register is complete. However, it is possible to access external memory areas whose initialization settings are complete.

	7	- (5	5	4	3	2	1	0	A -l -l	A 4 -				
RWC	RRW	/1 RR	W0	RCW2	RCW1	RCW	SRW2	SRW1	SRW0	Address FFFFF49EH	After rese				
Bit po	sition	Bit nar	ne					Function							
7,		RRW1,		Refresh RAS Wait Control											
		RRW0					it states inse n = 1, 3, 4, 6		ld time for th	e RASm signal's	high level				
				RRW1	RRW0		1	Number of	inserted wai	t states					
				0	0	0									
				0	1	1									
				1	0	2									
				1	1	3									
				•											
5 to	o 3	RCW2 RCW0	to	Refresh Cycle Wait Control Specifies the number of wait states inserted as hold time for the RASm signal's width during CBR refresh (m = 1, 3, 4, 6).											
				RCW2	RCW1	RCW0		Numbe	er of inserted	d wait states					
				0	0	0	1 (at least	1 wait is al	ways inserte	ed)					
				0	0	1	1								
				0	1	0	2								
				0	1	1	3								
				1	0	0	4								
				1	0	1	5								
				1	1	0	6								
				1	1	1	7								
2 to	o 0	SRW2 SRW0	to		the numl	ber of wa				sh release time.					
				SRW2	SRW1	SRW0	0	Numbe	ei oi irisertet	d wait states					
				0	0	0	0								
				0	0	1	1								
				0	1	0	2								
				0	1	1	3								
				1	0	0	4								
				1	0	1	5								
				1	1	0	7								
				1											

(3) Refresh timing

- **Notes 1.** The TRCW cycle is always inserted for one or more clocks, irrespective of the setting of bits RCW2 to RCW0 of the RWC register.
 - 2. This idle state (TI) is independent of the BCC register setting.

Remark n = 0 to 7, m = 1, 3, 4, 6

5.3.7 Self-refresh control function

When transferring to the IDLE or software STOP mode, or if the SELFREF signal becomes active, the DRAM controller generates the CBR self-refresh cycle.

Note that the \overline{RASn} pulse width of DRAM must meet the specifications for DRAM to enable the self-refresh operation (n = 1, 3, 4, 6).

- Cautions 1. When the transition to the self-refresh cycle is caused by SELFREF signal input, releasing the self-refresh cycle is only possible by inputting an inactive level to the SELFREF pin.
 - The internal ROM and internal RAM can be accessed even in the self-refresh cycle.
 However, access to a peripheral I/O register or external device is held pending until the self-refresh cycle is cleared.

To release the self-refresh cycle, use one of the three methods below.

(1) Release by NMI input

(a) In the case of self-refresh cycle in IDLE mode

To release the self-refresh cycle, make the \overline{RASn} , \overline{LCAS} , and \overline{UCAS} signals inactive (high level) immediately.

(b) In the case of self-refresh cycle in software STOP mode

To release the self-refresh cycle, make the RASn, LCAS, and UCAS signals inactive (high level) after stabilizing oscillation.

(2) Release by INTP1nm input (n = 0 to 3, m = 0 to 3)

(a) In the case of self-refresh cycle in IDLE mode

To release the self-refresh cycle, make the \overline{RASn} , \overline{LCAS} , and \overline{UCAS} signals inactive (high level) immediately.

(b) In the case of self-refresh cycle in software STOP mode

To release the self-refresh cycle, make the RASn, LCAS, and UCAS signals inactive (high level) after stabilizing oscillation.

(3) Release by RESET input

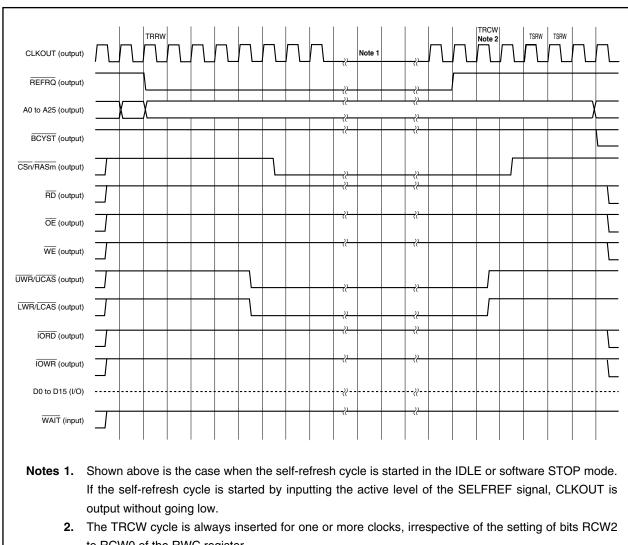


Figure 5-10. Self-Refresh Timing (DRAM)

- to RCW0 of the RWC register.
- Remarks 1. This timing is obtained when the bits of the RWC register have the following settings.

RRW1, RRW0 = 01B: 1 wait (TRRW)

RCW2 to RCW0 = 001B: 1 wait (TRCW)

SRW2 to SRW0 = 001B: 1 wait (TSRW) (double the number of wait states than the set value will be inserted)

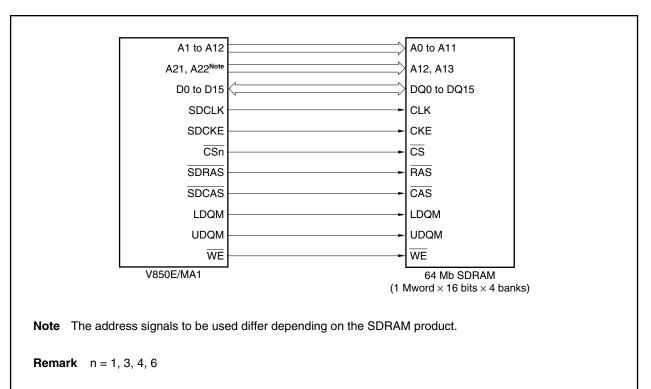
2. n = 0 to 7, m = 1, 3, 4, 6

5.4 DRAM Controller (SDRAM)

5.4.1 Features

• Burst length: 1

• Wrap type: Sequential


· CAS latency: 2 and 3 supported

- 4 types of SDRAM can be assigned to 4 memory blocks.
- Row and column address multiplex widths can be changed.
- Waits (0 to 3 waits) can be inserted between the bank active command and the read/write command.
- Supports CBR refresh and CBR self-refresh.

5.4.2 SDRAM connection

An example of connection to SDRAM is shown below.

Figure 5-11. Example of Connection to SDRAM

5.4.3 Address multiplex function

Depending on the value of the SAW0n and SAW1n bits in SDRAM configuration register n (SCRn), the row address output in the SDRAM cycle is multiplexed as shown in Figure 5-12 (a) (n = 1, 3, 4, 6). Depending on the value of the SSO0n and SSO1n bits, the column address output in the SDRAM cycle is multiplexed as shown in Figure 5-12 (b) (n = 1, 3, 4, 6). In Figures 5-12 (a) and (b), a0 to a25 indicate the addresses output from the CPU, and A0 to A25 indicate the address pins of the V850E/MA1.

Figure 5-12. Row Address/Column Address Output (1/2)

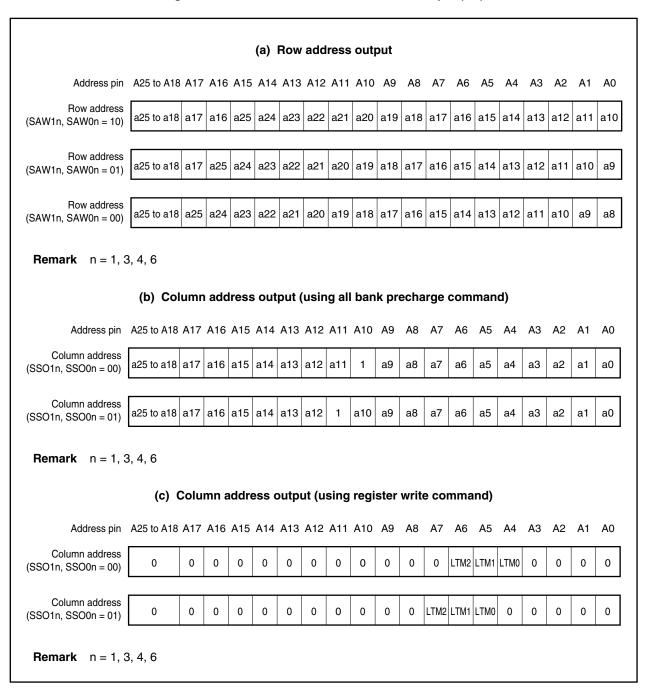


Figure 5-12. Row Address/Column Address Output (2/2)

(d) Column address output (using read/write command) Address pin A25 to A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Column address a25 to a18 a17 a16 a15 a14 a13 a12 a11 а9 а8 а7 а6 а5 a4 аЗ a2 a1 a0 (SSO1n, SSO0n = 00) Column address a25 to a18 a17 a16 a15 a14 a13 a12 a10 a9 a8 a7 аЗ a6 а5 a4 a2 a1 a0 (SSO1n, SSO0n = 01) **Remark** n = 1, 3, 4, 6

★ (1) Output of each address and connection of SDRAM

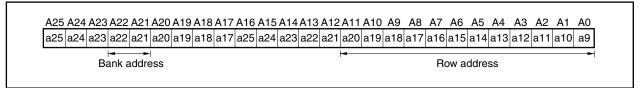
The setting and physical address of SDRAM configuration register n (SCRn), address output from the V850E/MA1, and connection of the V850E/MA1 with SDRAM are explained for each data bus width (8 bits or 16 bits).

(a) 8-bit data bus width

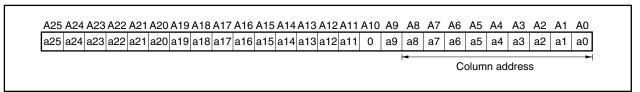
Here is an example of connecting 64 Mb SDRAM (2M words x 8 bits x 4 banks) when the data bus width is 8 bits.

· Setting of SCRn register

SSO1n and SSO0n bits = 00: Data bus width = 8 bits
RAW1n and RAW0n bits = 01: Row address width = 12 bits
SAW1n and SAW0n bits = 01: Column address width = 9 bits


· Physical address

A22 and A21: Bank address
A20 to A9: Row address
A8 to A0: Column address


 Address output from V850E/MA1 A22 and A21: Bank address

A11 to A0: Row address (12 bits), column address (9 bits)

Figure 5-13. Row Address and Bank Address Output When Active Command Is Executed (8-Bit Data Bus Width)

Figure 5-14. Column Address Output When Read/Write Command Is Executed (8-Bit Data Bus Width)

Connection of V850E/MA1 and SDRAM

A22 and A21 (V850E/MA1) - ABA0 (A12) and

A22 and A21 (V850E/MA1) \rightarrow BA0 (A13) and BA1 (A12) (SDRAM)

A11 to A0 (V850E/MA1) \rightarrow A11 to A0 (SDRAM)

(b) 16-bit data bus width

Here is an example of connecting 128 Mb SDRAM (2M words x 16 bits x 4 banks) when the data bus width is 16 bits.

· Setting of SCRn register

SSO1n and SSO0n bits = 01: Data bus width = 16 bits

RAW1n and RAW0n bits = 01: Row address width = 12 bits

SAW1n and SAW0n bits = 01: Column address width = 9 bits

· Physical address

A23 and A22: Bank address
A21 to A10: Row address
A9 to A1: Column address

Address output from V850E/MA1

A23 and A22: Bank address

A12 to A1: Row address (12 bits), column address (9 bits)

Figure 5-15. Row Address and Bank Address Output When Active Command Is Executed (16-Bit Data Bus Width)

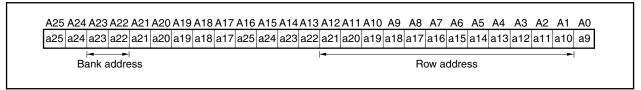
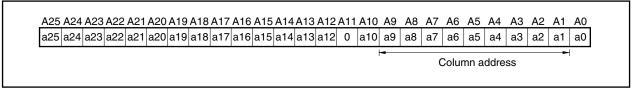



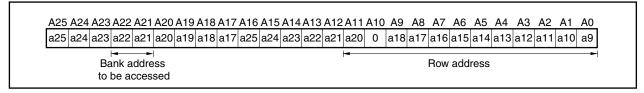
Figure 5-16. Column Address Output When Read/Write Command Is Executed (16-Bit Data Bus Width)

Connection of V850E/MA1 and SDRAM

A23 and A22 (V850E/MA1) \rightarrow BA0 (A13) and BA1 (A12) (SDRAM)

A12 to A1 (V850E/MA1) \rightarrow A11 to A0 (SDRAM)

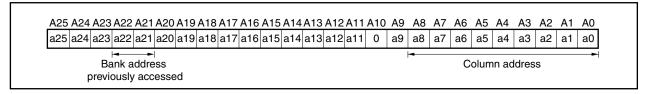
(2) Bank address output


The V850E/MA1 precharges the bank to be accessed by using a bank precharge command when a row address is output immediately after the page is changed. After the bank is changed, the bank previously accessed is precharged when a column address is output. Therefore, the bank is precharged both when a row address is output and when a column address is output. If the V850E/MA1 is connected with SDRAM as explained in **5.4.3** (1) (a) 8-bit data bus width, therefore, always connect pins that output a bank address of the V850E/MA1 (pins A22 and A21) to the bank address pins of the SDRAM (A13 and A12).

An example of outputting an address by the bank precharge command when the page is changed and when the bank is changed if the V850E/MA1 is connected with SDRAM as explained in **5.4.3** (1) (a) **8-bit data bus width** is shown below.

(a) When page is changed (8-bit data bus width)

Because the bank to be accessed is precharged, the physical address to be accessed (A25 to A9) is output from the A25 to A0 pins of the V850E/MA1.


Figure 5-17. Address Output by Bank Precharge Command When Page Is Changed (8-Bit Data Bus Width)

(b) When bank is changed (8-bit data bus width)

Because the bank previously accessed is precharged, the physical address previously accessed (A25 to A9) is output from the A25 to A9 pins of the V850E/MA1.

Figure 5-18. Address Output by Bank Precharge Command When Bank Is Changed (8-Bit Data Bus Width)

The bit that determines the precharge mode (A10: 8-bit data bus width, A11: 16-bit data bus width) outputs a high level when the all bank precharge command is executed, and outputs a low level when another precharge command is executed.

5.4.4 SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)

These registers specify the number of waits and the address multiplex width. SCRn corresponds to \overline{CSn} (n = 1, 3, 4, 6). For example, to connect SDRAM to $\overline{CS1}$, set SCR1.

These registers can be read/written in 16-bit units.

- Cautions 1. The SDRAM read/write cycle is not generated prior to executing the power-on cycle. Access SDRAM after waiting 20 clocks following a program write to the SCR register. To write to the SCR register again following access to SDRAM, clear the MEn bit of the BCT0 and BCT1 registers to 0, and then set it to 1 again before performing access (n = 0 to 7).
 - 2. Do not execute continuous instructions to write to the SCR register. Be sure to insert another instruction between commands to write to the SCR register.

(1/2)10 9 13 3 12 11 After reset Address SCR1 LTM21 LTM11 LTM01 0 0 BCW11BCW01SSO11SSO01RAW11RAW01SAW11SAW01 0000H FFFFF4A4H SCR3 BCW13 BCW03 SSO13 SSO03 RAW13 RAW03 SAW13 SAW03 LTM23 LTM13 LTM03 0 0 0 FFFFF4ACH 0000H SCR4 LTM24 LTM14 LTM04 0 0 0 BCW14BCW04SSO14SSO04RAW14RAW04SAW14SAW04 FFFFF4B0H 0000H SCR6 LTM26 LTM16 LTM06 0 BCW16 BCW06 SSO16 SSO06 RAW16 RAW06 SAW16 SAW06 FFFFF4B8H 0000H Bit position Bit name Function 14 to 12 LTM2n to Latency LTM0n Sets the CAS latency value for reading. (n = 1, 3,4, 6) LTM2n LTM1n LTM0n Latency 2 0 1 0 0 1 1 3 1 Setting prohibited 7, 6 BCW1n, Bank Active Command Wait Control BCW0n Specifies the number of wait states inserted from the bank active command to a read/write (n = 1, 3,command, or from the precharge command to the bank active command. 4, 6) BCW1n BCW0n Number of wait states inserted 0 0 1 (at least 1 wait is always inserted) 0 1 1 0 1 1

Remark x: don't care

(2/2)

Bit position	Bit name		Function						
5, 4	SSO1n, SSO0n (n = 1 3, 4, 6)	Specifies When the	the addr e external	th On-Page Control ess shift width during on-page judgment. data bus width is 8 bits: Set SSO1n, SSO0n = 00B data bus width is 16 bits: Set SSO1n, SSO0n = 01B					
		SSO1n	SSO0n	Address shift width					
		0	0	8 bits					
		0	1	16 bits					
		1	0	Setting prohibited					
		1	1	Setting prohibited					
3, 2	RAW1n, RAW0n (n = 1, 3, 4, 6)	Specifies		th Control address width. Row address width					
		0	0	11					
		0	1	12					
		1	0	Setting prohibited					
		1	1	Setting prohibited					
		Caution	Memorie	es with a row address width of 13 or above cannot be controlled.					
1, 0	SAW1n, SAW0n (n = 1, 3,			iplex Width Control ess multiplex width during SDRAM access.					
	4, 6)	SAW1n	SAW0n	Address multiplex width					
		0	0	8					
		0	1	9					
		1	0	10					
	ĺ	1	1	Setting prohibited					

5.4.5 SDRAM access

During power-on or a refresh operation, the all bank precharge command is always issued for SDRAM. When accessing SDRAM after that, therefore, the active command and read/write command are issued in that order (see <1> in Figure 5-19).

If a page change occurs following this, the precharge command, active command, and read/write command are issued in that order (see <2> in Figure 5-19).

If a bank change occurs, the active command and read/write command for the bank to be accessed next are issued in that order. Following this read/write command, the precharge command for the bank that was accessed before the bank currently being accessed will be issued (see <3> in Figure 5-19).

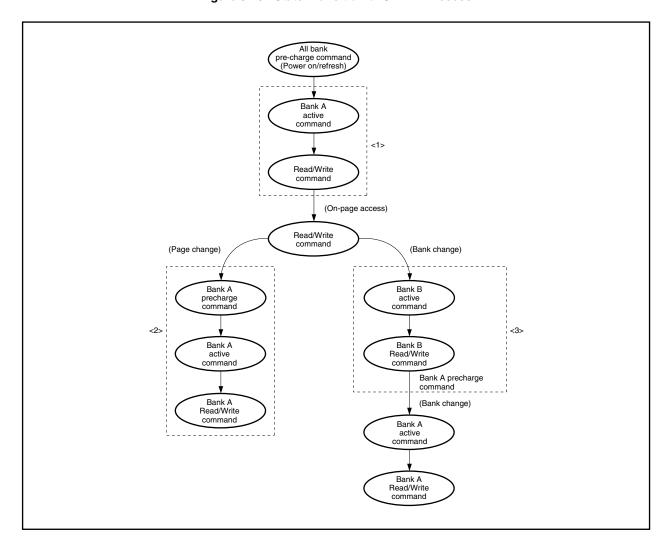


Figure 5-19. State Transition of SDRAM Access

(1) SDRAM single read cycle

The SDRAM single read cycle is a cycle for reading from SDRAM by executing a load instruction (LD) for the SDRAM area, by fetching an instruction, or by 2-cycle DMA transfer.

In the SDRAM single read cycle, the active command (ACT) and read command (RD) are issued for SDRAM in that order. During on-page access, however, only the read command is issued and the precharge command and active command are not issued. When a page change occurs in the same bank, the precharge command (PR) is issued before the active command.

The timing to sample data is synchronized with rising of the UDQM and LDQM signals.

A one-state TW cycle is always inserted immediately before every read command, which is activated by the CPU.

The number of idle states set by the bus cycle control register (BCC) are inserted before the read cycle (no idle states are inserted, however, if BCn1 and BCn0 are 00) (n = 1, 3, 4, 6). The timing charts of the SDRAM single read cycle are shown below.

Caution When executing a write access to SRAM or external I/O after read accessing SDRAM, data conflict may occur depending on the SDRAM data output float delay time. In such a case, avoid data conflict by inserting an idle state in the SDRAM space via a setting in the BCC register.

(a) During off-page access (when latency = 2) Off-page TLATE TLATE TW TACT TREAD SDCLK (output) Command ACT RD BCYST (output) SDCKE (output) H CSn (output) SDRAS (output) SDCAS (output) WE (output) LDQM (output) UDQM (output) Note (output) Address Address Bank address (output) Address Address A10 (output) Address Address A0 to A9 (output) Address Column address D0 to D15 (I/O) -----Note Addresses other than the bank address, A10, and A0 to A9. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. 3. n = 1, 3, 4, 6

Figure 5-20. SDRAM Single Read Cycle (1/3)

(b) During off-page access (when latency = 2, page change) Off-page TREAD | TLATE | TLATE TW **TPREC** TACT SDCLK (output) Command PRE **ACT** RD BCYST (output) SDCKE (output) CSn (output) SDRAS (output) SDCAS (output) WE (output) LDQM (output) UDQM (output) Note (output) Address Address Bank Bank Bank address (output) Address Address Row A10 (output) Address Address address A0 to A9 (output) Address Column address D0 to D15 (I/O) --Data Note Addresses other than the bank address, A10, and A0 to A9. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. 3. n = 1, 3, 4, 6

Figure 5-20. SDRAM Single Read Cycle (2/3)

(c) During on-page access (when latency = 2) On-page TLATE TLATE TW TREAD SDCLK (output) Command RD BCYST (output) SDCKE (output) CSn (output) SDRAS (output) SDCAS (output) WE (output) LDQM (output) UDQM (output) Note (output) Address Address Bank address (output) Address Address A10 (output) A0 to A9 (output) Column address D0 to D15 (I/O) Data

Figure 5-20. SDRAM Single Read Cycle (3/3)

Note Addresses other than the bank address, A10, and A0 to A9.

Remarks 1. The circle O indicates the sampling timing.

- 2. The broken lines indicate the high-impedance state.
- 3. n = 1, 3, 4, 6
- **4.** The timing chart shown here is the timing when the previous cycle accessed another CS space or when the bus was in an idle state. If access to the same CS space continues, a TW state is not inserted (the BCYST signal becomes active in the TREAD state).

(2) SDRAM single write cycle

The SDRAM single write cycle is a cycle for writing to SDRAM by executing a write instruction (ST) for the SDRAM area or by 2-cycle DMA transfer.

In the SDRAM single write cycle, the active command (ACT) and write command (WR) are issued for SDRAM in that order. During on-page access, however, only the write command is issued and the precharge command and active command are not issued. When a page change occurs in the same bank, the precharge command (PR) is issued before the active command.

A one-state TW cycle is always inserted immediately before every write command, which is activated by the CPU.

The timing charts of the SDRAM single write cycle are shown below.

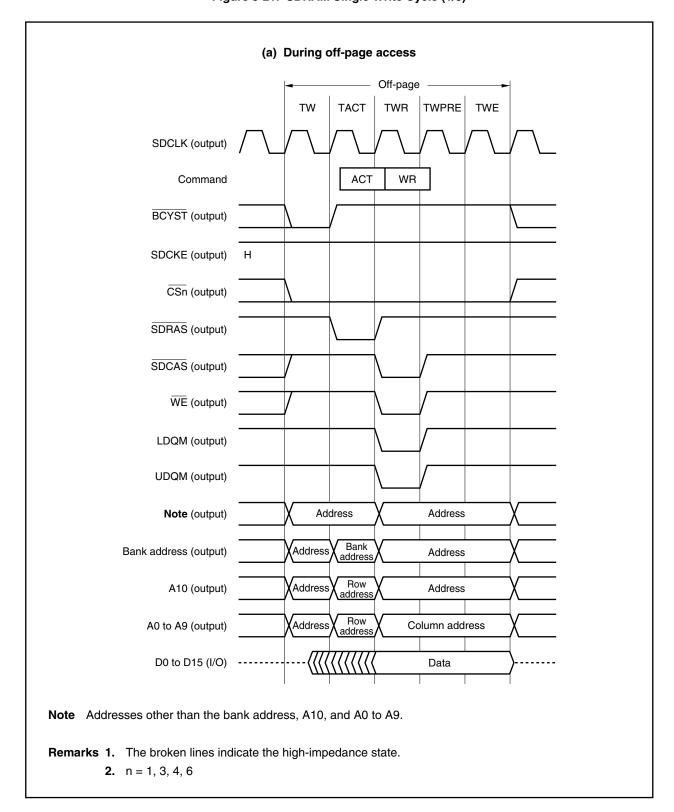


Figure 5-21. SDRAM Single Write Cycle (1/3)

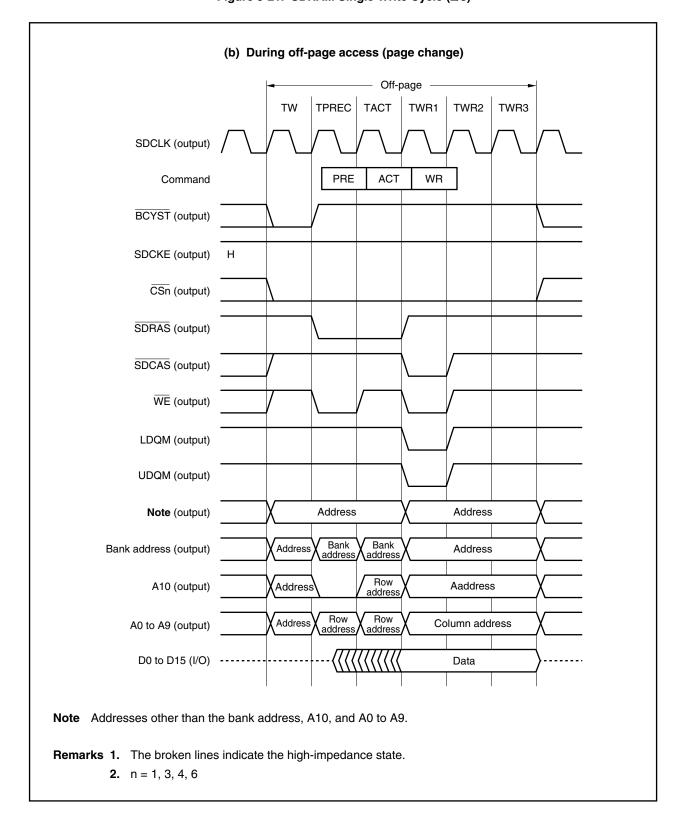


Figure 5-21. SDRAM Single Write Cycle (2/3)

(c) During on-page access On-page TWPRE TW **TWR** TWE SDCLK (output) Command WR BCYST (output) SDCKE (output) CSn (output) SDRAS (output) SDCAS (output) WE (output) LDQM (output) UDQM (output) Address Note (output) Address Bank address (output) Address A10 (output) Address A0 to A9 (output) Column address D0 to D15 (I/O) Data

Figure 5-21. SDRAM Single Write Cycle (3/3)

Note Addresses other than the bank address, A10, and A0 to A9.

Remarks 1. The broken lines indicate the high-impedance state.

- **2.** n = 1, 3, 4, 6
- 3. The timing chart shown here is the timing when the previous cycle accessed another CS space or when the bus is an idle state. If access to the same CS space continues, a TW state is not inserted (the BCYST signal becomes active in the TWR1 state).

(3) SDRAM access timing control

The SDRAM access timing can be controlled by SDRAM configuration register n (SCRn) (n = 1, 3, 4, 6). For details, see **5.4.4 SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)**.

Caution Wait control by the WAIT pin is not available during SDRAM access.

(a) Number of waits from bank active command to read/write command

The number of wait states from bank active command issue to read/write command issue can be set by setting the BCW1n and BCW0n bits of the SCRn register.

BCW1n, BCW0n = 01B: 1 wait BCW1n, BCW0n = 10B: 2 waits BCW1n, BCW0n = 11B: 3 waits

(b) Number of waits from precharge command to bank active command

The number of wait states from precharge command issue to bank active command issue can be set by setting the BCW1n and BCW0n bits of the SCRn register.

BCW1n, BCW0n = 01B: 1 wait BCW1n, BCW0n = 10B: 2 waits BCW1n, BCW0n = 11B: 3 waits

(c) CAS latency setting when read

The CAS latency during a read operation can be set by setting the LTM2n to LTM0n bits of the SCRn register.

LTM2n to LTM0n = 010B: Latency = 2 LTM2n to LTM0n = 011B: Latency = 3

(d) Number of waits from refresh command to next command

The number of wait states from refresh command issue to next command issue can be set by setting the BCW1n and BCW0n bits of the SCRn register. The number of wait states becomes four times the value set by BCW1n and BCW0n.

BCW1n, BCW0n = 01B: 4 waits BCW1n, BCW0n = 10B: 8 waits BCW1n, BCW0n = 11B: 12 waits

(a) Read timing (16-bit bus width word access, page change, BCW = 2, latency = 2) TW | TACT | TBCW| TREAD | TREAD | TLATE | TW | TPREC | TBCW | TACT | TBCW | TREAD | TREAD | TLATE | TLATE | ■— BĊW **←** BĊW **→** SDCLK (output) Note (output) Add. Add. Add. Bank address (output) Bnk. Add. Bnk. hhA Add. Bnk. Add. Add. Add. A11 (output) Add. Row Add. Add. Row Add. A0 to A10 (output) Add. Row Col. Col. Add. Row Col. Col. BCYST (output) CSn (output) SDRAS (output) SDCAS (output) RD (output) OE (output) WE (output) LDQM (output) UDQM (output) D0 to D15 (I/O) Data Data Data Data SDCKE (output) H Bank A precharge command (Page change) Bank A active command Bank A read command Bank A read command (On-page) Bank A active command Bank A read command Bank A read command (On-page) Note Addresses other than the bank address, A11, and A0 to A10. **Remarks 1.** The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. 3. n = 1, 3, 4, 64. Add.: Address Bnk.: Bank address Col.: Column address Row: Row address

Figure 5-22. SDRAM Access Timing (1/4)

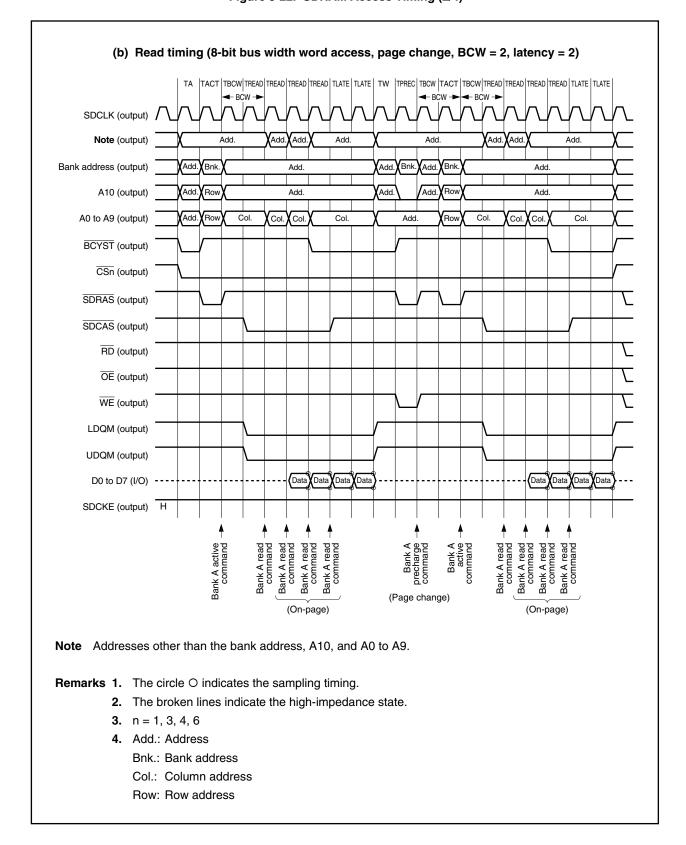


Figure 5-22. SDRAM Access Timing (2/4)

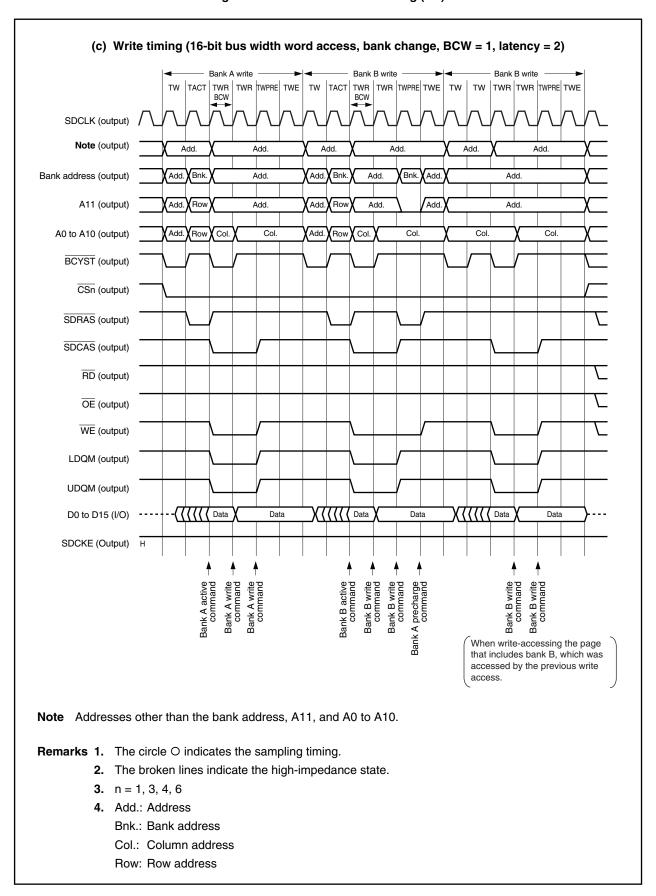


Figure 5-22. SDRAM Access Timing (3/4)

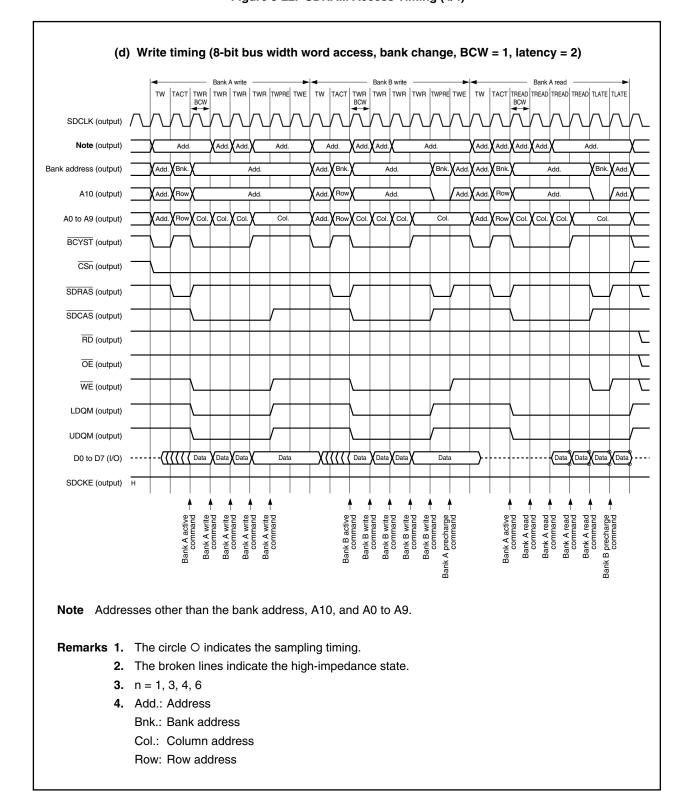


Figure 5-22. SDRAM Access Timing (4/4)

5.4.6 Refresh control function

The V850E/MA1 can generate a refresh cycle. The refresh cycle is set with SDRAM refresh control registers 1, 3, 4, and 6 (RFS1, RFS3, RFS4, RFS6). The RFSn register corresponds to \overline{CSn} (n = 1, 3, 4, 6). For example, to connect SDRAM to $\overline{CS1}$, set RFS1.

When another bus master occupies the external bus, the DRAM controller cannot occupy the external bus. In this case, the DRAM controller issues a refresh request to the bus master by changing the REFRQ signal to active (low level).

During a refresh operation, the address bus retains the state it was in just before the refresh cycle.

(1) SDRAM refresh control registers 1, 3, 4, 6 (RFS1, RFS3, RFS4, RFS6)

These registers are used to enable or disable a refresh and set the refresh interval. The refresh interval is determined by the following calculation formula.

Refresh interval (μ s) = Refresh count clock (TRCY) × Interval factor

The refresh count clock and interval factor are determined by the RENn bit and RIN5n to RIN0n bits, respectively, of the RFSn register.

Note that n corresponds to the register number (1, 3, 4, 6) of SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6).

These registers can be read/written in 16-bit units.

- Cautions 1. Write to the RFS1, RFS3, RFS4, and RFS6 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial settings of the RFS1, RFS3, RFS4, and RFS6 registers are complete. However, it is possible to access external memory areas whose initialization settings are complete.
 - 2. Immediately after the RENn bit of the RFSn register is set (1), the refresh cycle may be executed for the SDRAM (n = 1, 3, 4, 6). This does not affect the refresh cycle occurring at this time nor the operations after the refresh cycle is executed. The refresh cycles occurring thereafter will be executed normally according to the set interval. However, set the RFSn register as shown below for applications which will have problems with this refresh cycle.
 - <1> With the MEa bit of the BCTm register set (1), set the BTa1 and BTa0 bits to 01 (page ROM connection) (m = 0, 1, a: a = 1, 3 when m = 0, a = 4, 6 when m = 1).
 - <2> Set the RENn bit of the RFSn register (1) to enable refresh (n = 1, 3, 4, 6).
 - <3> With the MEa bit of the BCTm register set (1), set the BTa1 and BTa0 bits to 11 (SDRAM connection) (m = 0, 1, a: a = 1, 3 when m = 0, a = 4, 6 when m = 1).
 - <4> Set the SCRn register to initialize the SDRAM (n = 1, 3, 4, 6).

*

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	A ()
RFS1	REN1	0	0	0	0	0	RCC11	RCC01	0	0	RIN51	RIN41	RIN31	RIN21	RIN11	RIN01	Address FFFFF4A6H	After reset 0000H
RFS3	REN3	0	0	0	0	0	RCC13	RCC03	0	0	RIN53	RIN43	RIN33	RIN23	RIN13	RIN03	FFFFF4AEH	0000H
RFS4	REN4	0	0	0	0	0	RCC14	RCC04	0	0	RIN54	RIN44	RIN34	RIN24	RIN14	RIN04	FFFFF4B2H	0000H
RFS6	REN6	0	0	0	0	0	RCC16	RCC06	0	0	RIN56	RIN46	RIN36	RIN26	RIN16	RIN06	FFFFF4BAH	0000H
Bit p	oosition		Bit na	ıme									Fui	nction	า			
	15	(1	RENn n = 1, , 6)	3,	Sp	efresh ecifie 0: Ref 1: Ref	s whe	ether (disab	led	efre	sh is e	enabl	ed or	disa	bled.			
!	9, 8	F (i	RCC11 RCC01 n = 1,	n		efresh ecifie				ınt c	elock (T	Гвсу)						
		4	, 6)		F	RCC1r	RC	C0n					Ref	fresh	cour	nt clock	(TRCY)	
						0		0	32/f>	ΚX								
						0	_	1	128/									
					-	1	-	0	256/									
						1		1	Setti	ing p	orohibi	ted						
5	to 0	F	RIN5n RIN0n n = 1,			efresh ets the			ctor o	f the	e interv	/al tir	ner fo	or the	gene	eration	of the refresh timin	g.
		4	, 6)		F	RIN5n	RII	N4n	RIN	3n	RIN2r	n F	IN1n	RI	N0n		Interval factor	
						0		0	0		0		0		0	1		
						0	1	0	0		0		0		1	2		
						0		0	0		0		1		0	3		
						0		0	0		0		1		1	4		
						:		:	:		:		:		:	:		
					L	1		1	1		1		1		1	64		

Remark fxx: Internal system clock

Table 5-3. Example of Interval Factor Settings

Specified Refresh Interval	Refresh Count Clock (TRCY)	In	terval Factor Value Notes	1, 2
Value (µs)		fxx = 20 MHz	fxx = 33 MHz	fxx = 50 MHz
15.6	32/fxx	9 (14.4)	16 (15.5)	24 (15.4)
	128/fxx	2 (12.8)	4 (15.5)	6 (15.4)
	256/fxx	1 (12.8)	2 (15.5)	3 (15.4)

- **Notes 1.** The interval factor is set by bits RIN0n to RIN5n of the RFSn register (n = 1, 3, 4, 6).
 - **2.** The values in parentheses are the calculated values for the refresh interval (μ s). Refresh interval (μ s) = Refresh count clock (TRCY) × Interval factor

Remark fxx: Internal system clock

The V850E/MA1 can automatically generate an auto-refresh cycle and a self-refresh cycle.

(2) Auto-refresh cycle

In the auto-refresh cycle, the auto-refresh command (REF) is issued four clocks after the precharge command for all banks (PALL) is issued.

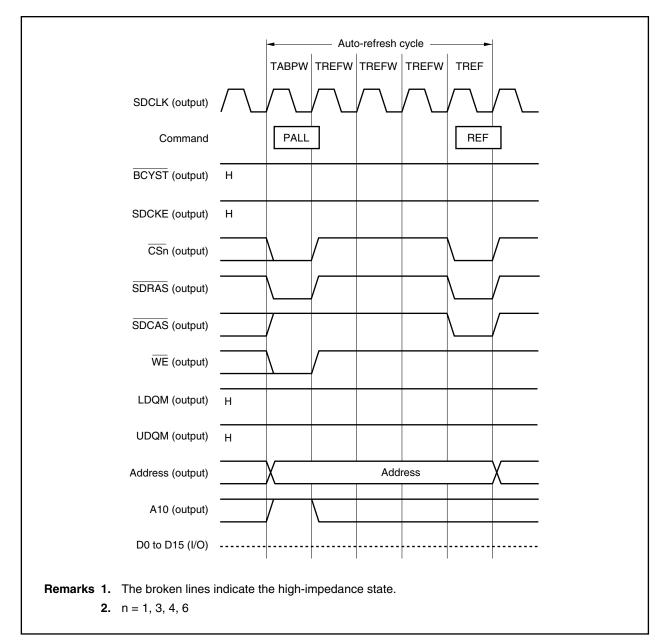
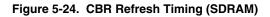
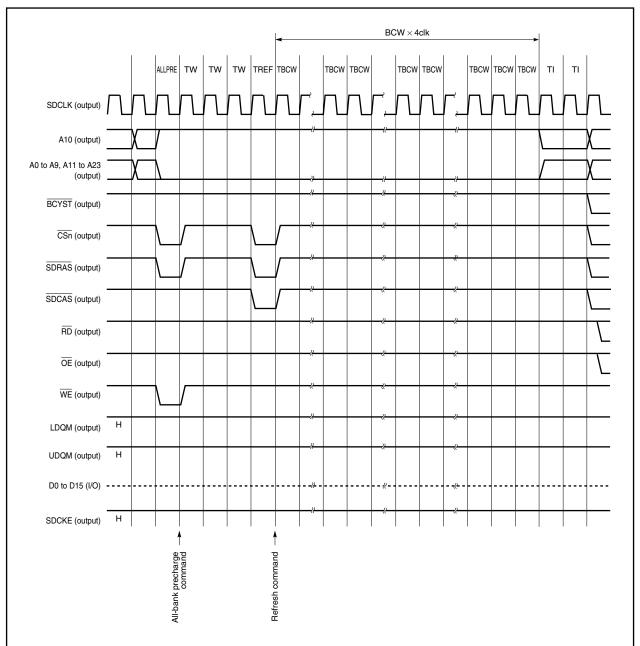




Figure 5-23. Auto-Refresh Cycle

(3) Refresh timing

Remarks 1. The number of wait states set by the BCW1n and BCW0n bits of the SCRn register × 4 clocks will be inserted in the BCW × 4 clk period.

- **2.** n = 1, 3, 4, 6
- 3. The broken lines indicate the high-impedance state.

5.4.7 Self-refresh control function

In the case of transition to the IDLE or software STOP mode, or if the SELFREF signal becomes active, the DRAM controller generates the CBR self-refresh cycle (the system enters a state in which not only SDRAM, but also all DRAM is self-refreshed).

Note that the SDRAS pulse width of SDRAM must meet the specifications for SDRAM to enter the self-refresh operation.

- Cautions 1. When the transition to the self-refresh cycle is caused by SELFREF signal input, releasing the self-refresh cycle is only possible by inputting an inactive level to the SELFREF pin.
 - 2. The internal ROM and internal RAM can be accessed even in the self-refresh cycle. However, access to an on-chip peripheral I/O register or external device is held pending until the self-refresh cycle is cleared.

To release the self-refresh cycle, use one of the three methods below.

(1) Release by NMI input

(a) In the case of self-refresh cycle in IDLE mode

To release the self-refresh cycle, make the SDRAS, SDCAS, LDQM, and UDQM signals inactive immediately.

(b) In the case of self-refresh cycle in software STOP mode

To release the self-refresh cycle, make the SDRAS, SDCAS, LDQM, and UDQM signals inactive after stabilizing oscillation.

(2) Release by INTP0n0 and INTP0n1 inputs (n = 0 to 3)

(a) In the case of self-refresh cycle in IDLE mode

To release the self-refresh cycle, make the SDRAS, SDCAS, LDQM, and UDQM signals inactive immediately.

(b) In the case of self-refresh cycle in software STOP mode

To release the self-refresh cycle, make the SDRAS, SDCAS, LDQM, and UDQM signals inactive after stabilizing oscillation.

(3) Release by RESET input

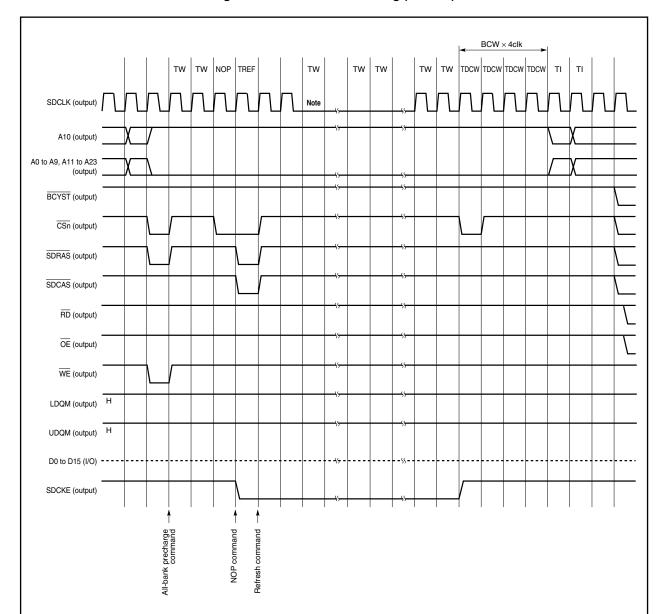


Figure 5-25. Self-Refresh Timing (SDRAM)

Note Shown above is the case when the self-refresh cycle is started in the IDLE or software STOP mode. If the self-refresh cycle is started by inputting the active level of the SELFREF signal, SDCLK is output without going low.

Remarks 1. The number of wait states set by the BCW1n and BCW0n bits of the SCRn register \times 4 clocks will be inserted in the BCW \times 4 clk period.

- **2.** n = 1, 3, 4, 6
- 3. The broken lines indicate the high-impedance state.

5.4.8 SDRAM initialization sequence

Be sure to initialize SDRAM when applying power.

- (1) Set the registers of SDRAM (other than SDRAM configuration register n (SCRn))
 - Bus cycle type configuration registers 0 and 1 (BCT0 and BCT1)
 - Bus cycle control register (BCC)
 - SDRAM refresh control registers 1, 3, 4, 6 (RFS1, RFS3, RFS4, RFS6)
- (2) Set SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6). When writing data to these registers, the following commands are issued for SDRAM in the order shown below.
 - All bank precharge command
 - Refresh command (8 times)
 - · Command that is used to set a mode register

Figures 5-26 and 5-27 show examples of the SDRAM mode register setting timing.

Caution When using the SDCLK and SDCKE signals, it is necessary to set the SDCLK output mode and the SDCKE output mode for these signals by setting the PMCCD register. In this case, however, these settings must not be executed at the same time.

Be sure to set the SDCKE output mode after setting the SDCLK output mode (refer to 14.3.14 (2)

(b) Port CD mode control register (PMCCD)).

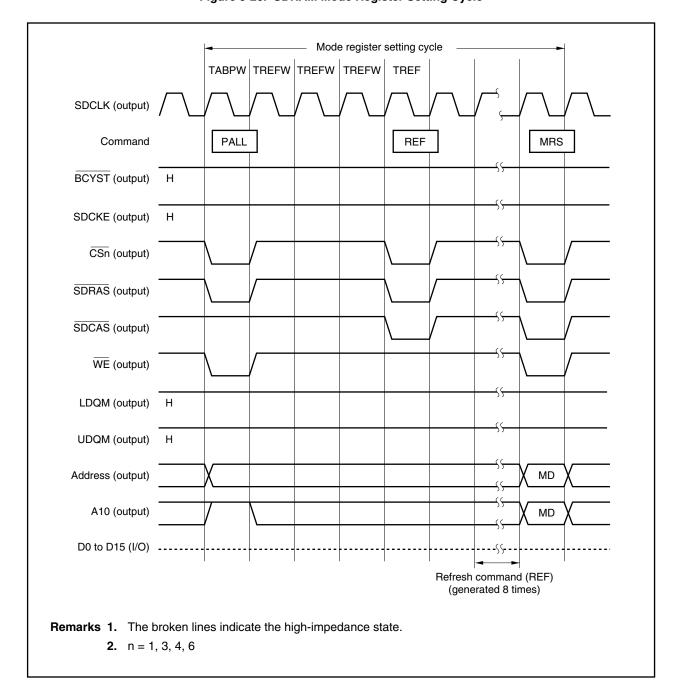


Figure 5-26. SDRAM Mode Register Setting Cycle

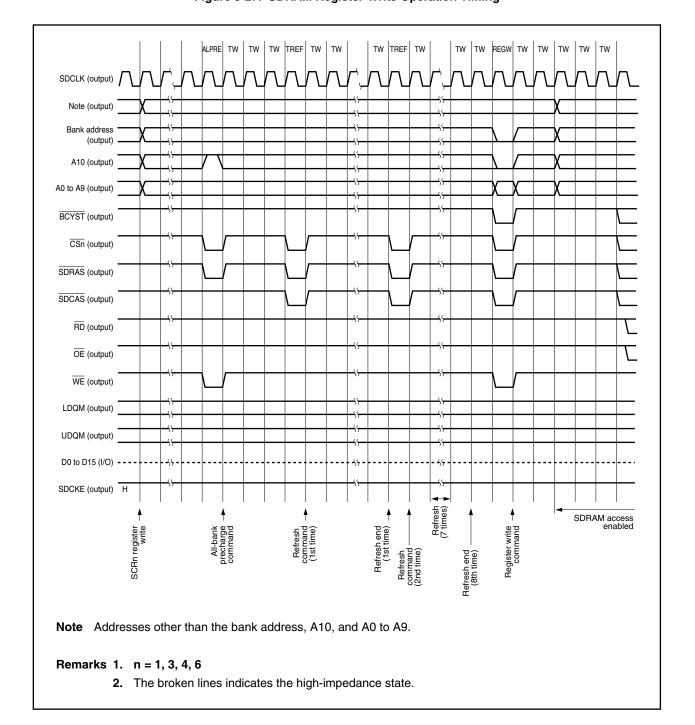
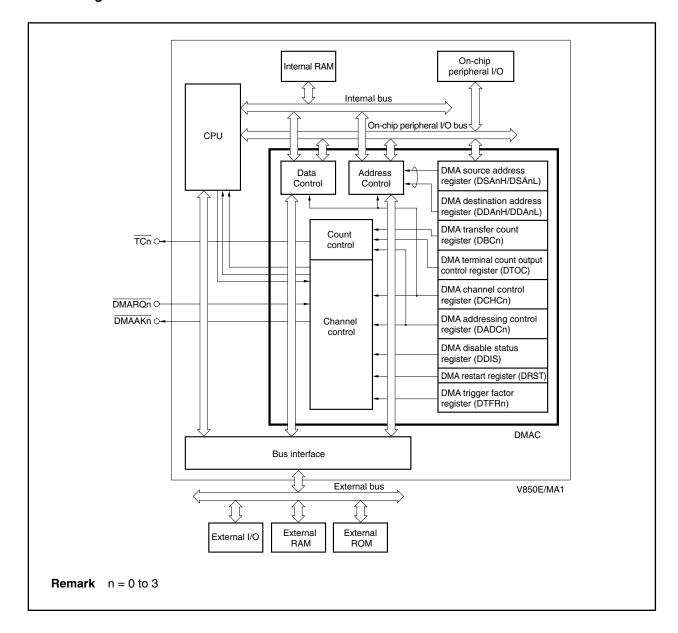


Figure 5-27. SDRAM Register Write Operation Timing

CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)


The V850E/MA1 includes a direct memory access (DMA) controller (DMAC) that executes and controls DMA transfer.

The DMAC controls data transfer between memory and I/O, or among memories, based on DMA requests issued by the on-chip peripheral I/O (such as serial interface, real-time pulse unit, and A/D converter), DMARQ0 to DMARQ3 pins, or software triggers (memory refers to internal RAM or external memory).

6.1 Features

- 4 independent DMA channels
- Transfer unit: 8/16 bits
- Maximum transfer count: 65,536 (2¹⁶)
- Two types of transfer
 - Flyby (1-cycle) transfer
 - 2-cycle transfer
- · Three transfer modes
 - · Single transfer mode
 - · Single-step transfer mode
 - · Block transfer mode
- Transfer requests
 - Request by interrupts from on-chip peripheral I/O (such as serial interface, real-time pulse unit, A/D converter)
 - Requests via DMARQ0 to DMARQ3 pin input
 - · Requests by software trigger
- · Transfer objects
 - Memory ↔ I/O
 - Memory ↔ memory
- DMA transfer end output signals (TC0 to TC3)
- · Next address setting function

6.2 Configuration

6.3 Control Registers

6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA source address (28 bits) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL.

* Also, since these registers are configured as 2-stage FIFO buffer registers consisting of a master register and a slave register, a new transfer source address for DMA transfer can be specified during DMA transfer. (Refer to 6.9 Next Address Setting Function.) In this case, the newly set value of the DSAn register is transferred to the slave register and becomes valid only when DMA transfer has been completed normally and the TCn bit of the DCHCn register is set to 1, or when the INITn bit of the DCHCn register is set to 1 (n = 0 to 3).

When flyby transfer is specified with the TTYP bit of DMA addressing control register n (DADCn), the external memory addresses are set by the DSAn register, regardless of the transfer direction. At this time, the setting of DMA destination address register n (DDAn) is ignored (n = 0 to 3).

(1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

These registers can be read/written in 16-bit units.

- ★ Be sure to clear bits 14 to 12 to 0. If they are set to 1, the operation is not guaranteed.
 - Cautions 1. When setting an address of an on-chip peripheral I/O register for the source address, be sure to specify an address between FFFF000H and FFFFFFH. An address of the on-chip peripheral I/O register image (3FFF000H to 3FFFFFFH) must not be specified.
- 2. Do not set the DSAnH register while DMA is suspended.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DS	SA0H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	Address FFFFF082H	After reset Undefined
DS	SA1H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	FFFFF08AH	Undefined
DS	SA2H	IR	0	0	0	SA27	SA26	SA25	SA24	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16	FFFFF092H	Undefined
	0.4.01.1	[_		_	0407	0400	0405	0404	0400	0400	0404	0400	0440	0440	0447	0440		
0	SA3H	IR	0	0	0	5A27	SA26	SA25	SA24	SA23	5A22	5A21	5A20	5A19	SAI8	SAT	SA16	FFFFF09AH	Undefined
	Bit po	sition		Bit na	ıme									Fu	nctio	า			
	15	5	IR			In	terna	IRAN	/I Sel	ect									
						S			e DM					!!	'				
									al me Il RAN	•	, on-c	пір р	eriph	erai I	/0				
	11 t	0 0		\27 tc)		ource												
			SA	A16												_		ansfer, it stores the external memory add	

(2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

These registers can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DSA0L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	Address FFFFF080H	After rese Undefined
DSA1L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFFF088H	Undefined
DSA2L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFFF090H	Undefined
DSA3L	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	FFFFF098H	Undefine
Bit p	osition		Bit n	ame									Fu	nctio	า			
15	to 0	S	A15 t	o SA(s		e DN	IA so			,		,		•		nsfer, it stores the r external memory ad	

6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA destination address (28 bits) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL.

* Also, since these registers are configured as 2-stage FIFO buffer registers consisting of a master register and a slave register, a new transfer destination address for DMA transfer can be specified during DMA transfer. (Refer to 6.9 Next Address Setting Function.) In this case, the newly set value of the DDAn register is transferred to the slave register and becomes valid only when DMA transfer has been completed normally and the TCn bit of the DCHCn register is set to 1, or when the INITn bit of the DCHCn register is set to 1 (n = 0 to 3).

When flyby transfer is specified with bit TTYP of DMA addressing control register n (DADCn), regardless of the transfer direction, the setting of DMA destination address register n (DDAn) is ignored (n = 0 to 3).

(1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

These registers can be read/written in 16-bit units.

- ★ Be sure to clear bits 14 to 12 to 0. If they are set to 1, the operation is not guaranteed.
 - Cautions 1. When setting an address of an on-chip peripheral I/O register for the destination address, be sure to specify an address between FFFF000H and FFFFFFH. An address of the on-chip peripheral I/O register image (3FFF000H to 3FFFFFFH) must not be specified.
- Do not set the DDAnH register while DMA is suspended.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_		
DD	H0A0	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	Address FFFFF086H	After reset Undefined
DD	A1H	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	FFFFF08EH	Undefined
	A2H	IR	0	0	0	DA27	DASS	DA25	DA24	DV33	DA22	DA21	DA20	DA10	DA18	DA17	DA16	FFFFF096H	Undefined
	AZII					DALI	DAZO	DAZJ	DAZ4	DAZU	DAZZ	DAZI	DAZU	DAIS	DATO	DAII	DATO	FFFF09011	Ondelined
DD	АЗН	IR	0	0	0	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20	DA19	DA18	DA17	DA16	FFFFF09EH	Undefined
[Bit po	sition		Bit na	ame									Fu	nctio	า			
	15	5	IB	l			terna												
						S	pecifi n· F		e DM. al me						/O				
									I RAN		, 511 6	p p	pii						
	11 t	o 0	D.	427 to	0	D	estina	ation	Addre	ess									

DA16

Sets the DMA destination address (A27 to A16). During DMA transfer, it stores the next

DMA transfer destination address. This setting is ignored during flyby transfer.

(2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

These registers can be read/written in 16-bit units.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DI	DA0L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	Address FFFFF084H	After reset Undefined
DI	DA1L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF08CH	Undefined
DI	DA2L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF094H	Undefined
DI	DA3L	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	FFFFF09CH	Undefined
_																			
	Bit po	sition		Bit na	ame									Fu	nctio	า			
	15	to 0	D	A15 to	DA0	Se		e DM	A de	stinat			`		,		•	A transfer, it stores turing flyby transfer.	the next

6.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the byte transfer count for DMA channel n (n = 0 to 3). They store the remaining transfer count during DMA transfer.

* Also, since these registers are configured as 2-stage FIFO buffer registers consisting of a master register and a slave register, a new DMA byte transfer count for DMA transfer can be specified during DMA transfer. (Refer to 6.9 Next Address Setting Function.) In this case, the newly set value of the DBCn register is transferred to the slave register and becomes valid only when DMA transfer has been completed normally and the TCn bit of the DCHCn register is set to 1, or when the INITn bit of the DCHCn register is set to 1 (n = 0 to 3).

These registers are decremented by 1 for each transfer, and transfer ends when a borrow occurs.

These registers can be read/written in 16-bit units.

- * Cautions 1. If the transfer type is flyby transfer or if data is transferred to the internal RAM in two cycles, do not set the transfer count to two (set value of DBCn register = 0001H). If DMA transfer must be executed twice, be sure to set the transfer count to one (set value of DBCn register = 0000H) and execute DMA transfer twice.
- ★ 2. Do not set the DBCn register while DMA transfer is suspended.

Remark If the DBCn register is read during DMA transfer after a terminal count has occurred without the register being overwritten, the value set immediately before the DMA transfer will be read out (0000H will not be read, even if DMA transfer has ended).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	_0_		
DBC0	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	ВС7	BC6	BC5	BC4	всз	BC2	BC1	BC0	Address FFFFF0C0H	After rese Undefined
DBC1	BC15	BC14	BC13	BC12	BC11	BC10	ВС9	BC8	вс7	BC6	BC5	BC4	всз	BC2	BC1	BC0	FFFFF0C2H	Undefined
DBC2	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	ВС7	BC6	BC5	BC4	всз	BC2	BC1	BC0	FFFFF0C4H	Undefined
DBC3	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8	BC7	BC6	BC5	BC4	всз	BC2	BC1	BC0	FFFFF0C6H	Undefined
Bit	position pos	on		iit nar 5 to I		Se				nsfer (count	and:		Funct		ining b	yte transfer count c	during
Bit	positio	on				Se	ets th MA tr	e byte ansfe n (n =	er. = 0 to	ı	count	and :				ining b		during
Bit	positio	on				Se	ets th MA tr	e byte ansfe n (n =	er. = 0 to DH	ı	Byte	e tran	stores	s the	rema 1 or	State	es ing byte transfer co	punt
Bit	positio	on				Se	ets th MA tr	e byte ansfe n (n =	er. = 0 to DH	ı	Byte	e tran	stores	s the	rema 1 or	State	es	punt

6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

These 16-bit registers are used to control the DMA transfer mode for DMA channel n (n = 0 to 3). These registers cannot be accessed during DMA operation.

* When flyby transfer is specified by the TTYP bit of the DADCn register, the count direction of the external memory addresses is set by the SAD1 and SAD0 bits, regardless of the transfer direction. At this time, the settings of the DDA1 and DDA0 bits are ignored.

They can be read/written in 16-bit units.

- ★ Be sure to clear bits 13 to 8 to 0. If they are set to 1, the operation is not guaranteed.
- **★** Cautions 1. The DS1 and DS0 bits are used to set how many bits of data are to be transferred.

When 8-bit data is set (DS1 and DS0 bits = 00), the lower bytes of the data bus (D0 to D7) are not always used.

If the transfer data size is set to 16 bits, transfer is always started from an address with the lowest bit of the address aligned to "0". In this case, transfer cannot be started from an odd address.

- 2. Set the DADCn register when the target channels is in one of the following periods (the operation is not guaranteed if the register is set at any other time).
 - Period from system reset to the generation of the first DMA transfer request
 - Period from completion of DMA transfer (after terminal count) to the generation of the next DMA transfer request
 - Period from forced termination of DMA transfer (after the INITn bit of the DCHCn register was set to 1) to the generation of the next DMA transfer request

(1/2)14 13 12 10 9 15 11 3 Address After reset DADC0 DS1 DS0 0 0 0 SAD1 SAD0 DAD1 DAD0 TM1 TM0 TTYP TDIR FFFFF0D0H 0000H DADC1 DS1 DS0 0 0 SAD1 SAD0 DAD1 DAD0 TM1 TM0 TTYP FFFFF0D2H 0000H DADC2 DS1 DS0 0 0 0 0 0 SAD1 SAD0 DAD1 DAD0 TM1 TM0 TTYP TDIR FFFF0D4H 0000H DADC3 DS1 DS0 0 SAD1|SAD0|DAD1|DAD0|TM1|TM0|TTYP|TDIR FFFFF0D6H 0 O 0 0 0000H Bit name Bit position **Function DS1, DS0** Data Size 15, 14 Sets the transfer data size for DMA transfer. DS₁ DS₀ Transfer data size 0 0 8 bits 0 16 bits 1 0 Setting prohibited 1 1 Setting prohibited

207

(2/2)

Bit position	Bit name			Function
7, 6	SAD1, SAD0			nt Direction ion of the source address for DMA channel n (n = 0 to 3).
		SAD1	SAD0	Count direction
		0	0	Increment
		0	1	Decrement
		1	0	Fixed
		1	1	Setting prohibited
5, 4	DAD1, DAD0			count Direction ion of the destination address for DMA channel n (n = 0 to 3).
		DAD1	DAD0	Count direction
		0	0	Increment
		0	1	Decrement
		1	0	Fixed
		1	1	Setting prohibited
3, 2	TM1, TM0	Transfer M Sets the tra		de during DMA transfer.
		TM1	TM0	Transfer mode
		0	0	Single transfer mode
		0	1	Single-step transfer mode
		1	0	Setting prohibited
		1	1	Block transfer mode
	TT)/C	1		Block transfer mode
1	TTYP	1 Transfer Ty	уре	
1	TTYP	Transfer Ty Sets the DI	ype MA transfe	er type.
1	TTYP	Transfer Ty Sets the DI	ype MA transfe le transfer	er type.
1 0	TTYP	Transfer Ty Sets the DI 0: 2-cycl 1: Flyby Transfer Di	ype MA transfe le transfer transfer	er type.
		Transfer Ty Sets the DI 0: 2-cyc 1: Flyby Transfer Di Sets the tra	ype MA transfer transfer transfer irection ansfer dire	er type. ction during transfer between I/O and memory. The setting is valid
		Transfer Ty Sets the DI 0: 2-cycl 1: Flyby Transfer Di Sets the tra during flyby	ype MA transfer transfer transfer irection ansfer dire	er type. action during transfer between I/O and memory. The setting is valid only and ignored during 2-cycle transfer.

6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operating mode for DMA channel n (n = 0 to 3).

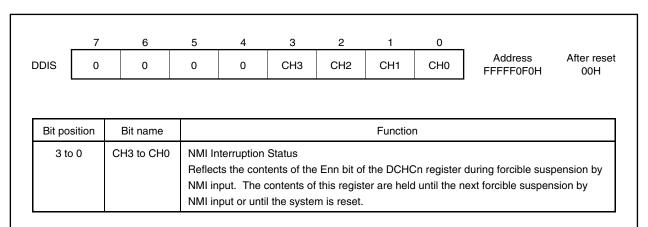
These registers can be read/written in 8-bit or 1-bit units. (However, bit 7 is read only and bits 2 and 1 are write only. If bits 2 and 1 are read, the read value is always 0.)

- ★ Be sure to clear bits 6 to 4 to 0. If they are set to 1, the operation is not guaranteed.
 - Cautions 1. If transfer has been completed with the MLEn bit set to 1 and if the next transfer request is made by DMA transfer (hardware DMA) that is started by DMARQn pin input or an interrupt from the on-chip peripheral I/O, the next transfer is executed with the TCn bit set to 1 (not automatically cleared to 0).
 - 2. Set the MLEn bit when the target channel is in one of the following periods (the operation is not guaranteed if the bit is set at any other time).
 - Period from system reset to the generation of the first DMA transfer request
 - Period from completion of DMA transfer (after terminal count) to the generation of the next DMA transfer request
 - Period from forced termination of DMA transfer (after the INITn bit of the DCHCn register was set to 1) to the generation of the next DMA transfer request
 - 3. If DMA transfer is forcibly terminated in the last transfer cycle with the MLEn bit set to 1, the operation is performed in the same manner as when transfer is completed (the TCn bit is set to 1 and the TCn signal is output). (The Enn bit is cleared to 0 upon forced termination, regardless of the value of the MLEn bit.)
 In this case, the Enn bit must be set to 1 and the TCn bit must be read (cleared to 0) when the next DMA transfer request is made.
 - 4. Upon completion of DMA transfer (during terminal count), each bit is updated with the Enn bit cleared to 0 and then the TCn bit set to 1. If the statuses of the TCn bit and Enn bit are polled and if the DCHCn register is read while each bit is updated, therefore, a value indicating the status "transfer not completed and prohibited" (TCn bit = 0 and Enn bit = 0) may be read (this is not abnormal).
 - Do not set the Enn and STGn bits while DMA is suspended.If they are set while DMA is suspended, the operation is not guaranteed.

209

	<7>	6	5	4	<3>	<2>	<1>	<0>		
DCHC0	TC0	0	0	0	MLE0	INIT0	STG0	E00	Address FFFFF0E0H	After reset 00H
					•	•				
DCHC1	TC1	0	0	0	MLE1	INIT1	STG1	E11	FFFFF0E2H	00H
DCHC2	TC2	0	0	0	MLE2	INIT2	STG2	E22	FFFF0E4H	00H
DCHC3	TC3	0	0	0	MLE3	INIT3	STG3	E33	FFFF0E6H	00H

Bit position	Bit name	Function
7	TCn (n = 0 to 3)	Terminal Count This status bit indicates whether DMA transfer through DMA channel n is complete or not. This bit is read-only. It is set to 1 at the last DMA transfer and cleared (to 0) when it is read. 0: DMA transfer is not complete. 1: DMA transfer is complete.
3	MLEn (n = 0 to 3)	Multi Link Enable Bit If this bit is set to 1 when DMA transfer is complete (at terminal count output), the Enn bit is not cleared to 0 and the DMA transfer enable state is retained. If the next DMA transfer startup factor is input from the DMARQn pin or is an interrupt from the on-chip peripheral I/O (hardware DMA), the DMA transfer request is acknowledged even if the TCn bit is not read. If the next DMA transfer startup factor is input by setting the STGn bit to 1 (software DMA), the DMA transfer request is acknowledged if the TCn bit is read and cleared to 0. If this bit is cleared to 0 when DMA transfer is complete (at terminal count output), the Enn bit is cleared to 0 and the DMA transfer disable state is entered. At the next DMA request, the Enn bit must be set to 1 and the TCn bit read.
2	INITn (n = 0 to 3)	Initialize If this bit is set to 1 during DMA transfer or while DMA transfer is suspended, DMA transfer is forcibly terminated (refer to 6.13.1 Restriction related to DMA transfer forcible termination).
1	STGn (n = 0 to 3)	Software Trigger If this bit is set to 1 in the DMA transfer enable state (TCn bit = 0, Enn bit = 1), DMA transfer is started.
0	Enn (n = 0 to 3)	Enable Specifies whether DMA transfer through DMA channel n is to be enabled or disabled. This bit is cleared to 0 when DMA transfer ends. It is also cleared to 0 when DMA transfer is forcibly suspended or terminated by setting the INITn bit to 1 or by NMI input. 0: DMA transfer disabled 1: DMA transfer enabled
		Caution If the Enn bit is set to 1, do not set it until DMA transfer has been completed the number of times set by the DBCn register or DMA transfer is forcibly terminated by the INITn bit.


×

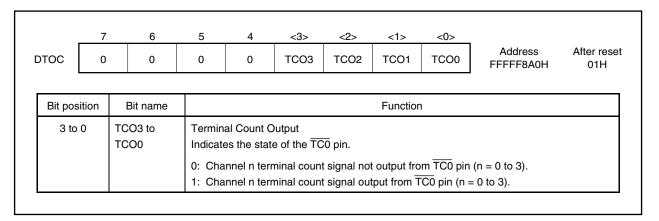
6.3.6 DMA disable status register (DDIS)

This register holds the contents of the Enn bit of the DCHCn register during forcible suspension by NMI input (n = 0 to 3).

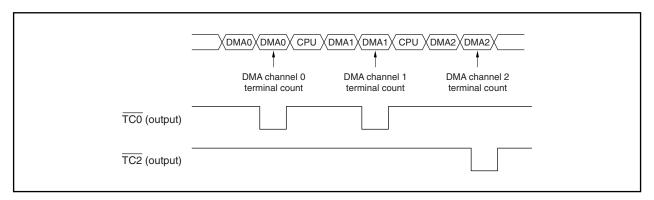
This register is read-only in 8-bit units.

★ Be sure to clear bits 4 to 7 to 0. If they are set to 1, the operation is not guaranteed.

6.3.7 DMA restart register (DRST)


- \star The ENn bit of the DRST register and the Enn bit of the DCHCn register are linked to each other (n = 0 to 3).
 - This register can be read/written in 8-bit units.
- ★ Be sure to clear bits 4 to 7 to 0. If they are set to 1, the operation is not guaranteed.

DRST	7	6	5 0	0	3 EN3	2 EN2	1 EN1	0 EN0	Address FFFFF0F2H	After reset
									1111101211	0011
Bit pos	sition	Bit name					Function	1		
3 to	O E	EN3 to EN0	Specific This bit count of the DC 0: D	t is cleared output.	I to 0 wher to 0 when ter to 1 or er disabled	n DMA tran DMA trans by NMI inp	nsfer is con efer is forcil	npleted in a	to be enabled or di accordance with the ted by setting the II	e terminal


6.3.8 DMA terminal count output control register (DTOC)

The DMA terminal count output control register (DTOC) is an 8-bit register that controls the terminal count output from each DMA channel. Terminal count signals from each DMA channel can be brought together and output from the $\overline{\text{TCO}}$ pin.

This register can be read/written in 8- or 1-bit units.

The following shows an example of the case when the DTOC register is set to 03H.

6.3.9 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

These 8-bit registers are used to control the DMA transfer start trigger through interrupt requests from on-chip peripheral I/O.

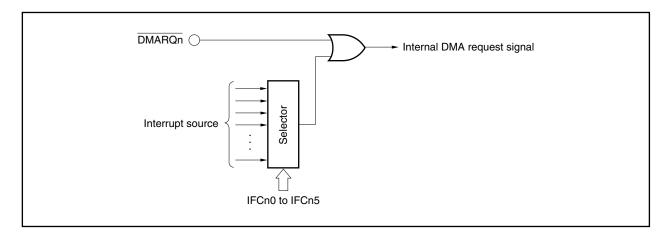
The interrupt requests set by these registers serve as DMA transfer startup factors.

These registers can be read/written in 8-bit units. However, only bit 7 (DFn) can be read/written in 1-bit units.

Be sure to clear bit 6 to 0. If the it is set to 1, the operation is not guaranteed.

Cautions 1. To change the setting of the DTFRn register, be sure to stop the DMA operation.

2. An interrupt request input in the standby mode (IDLE or software STOP mode) cannot be a DMA transfer start factor.


	<7:	>	6	5	4	3	2		1	0		
DTFR0	DF	0	0	IFC05	IFC04	IFC0:	3 IFC	02 IF	C01	IFC00	Address FFFFF810H	After rese
DTFR1	DF	1	0	IFC15	IFC14	IFC1:	3 IFC	12 IF	C11	IFC10	FFFFF812H	00H
DTFR2	DF	2	0	IFC25	IFC24	IFC2	3 IFC2	22 IF	C21	IFC20	FFFFF814H	00H
DTFR3	DF	3	0	IFC35	IFC34	IFC3	3 IFC	32 IF	C31	IFC30	FFFFF816H	00H
Bit pos	ition	Bit	name					Fun	ction			
				This is a Only 0 ca			•					
				Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is	transfer transfer transfer transfer trupt specific DMA transfer forcibly transfer then between the transfer forcibly transfer then between transfer transfer forcibly transfer transfer forcible	en to this not reque requested cified as the sfer reque rerminate clear the fit is clea ssary to s	s flag. ested d the DMA flest while d by softw DFn bit the	DMA tra ware), sto to 0 (for e interrup	nsfer is op the o example t will not	disabled peration of the disable to coour ur	curs and it is neces (including when it i of the source causi reception in the ca til DMA transfer is using the interrupt.	s aborted ng the se of
5 to	0	IFC IFC	Cn5 to	Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is	transfer transfer transfer transfer for the transfer for the transfer for cibly transfer for the transfer fo	en to this not requested as the sfer requested as the sfer requerminated clear the fit is clear sarry to stoode	s flag. ested d the DMA flest while d by softe DFn bit the tar that the	DMA tra ware), sto to 0 (for e interrupt peration	nsfer is op the op example t will not of the se	disabled peration of , disable coccur ur ource cau	(including when it in the source causing the source causing the causing DMA transfer is	is aborted ng the se of resumed
5 to	0			Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is	transfer transfer transfer transfer for the transfer for the transfer for cibly transfer for the transfer fo	en to this not requested as the sfer requested as the sfer requerminated clear the fit is clear sarry to stoode	s flag. ested d the DMA flest while d by softe DFn bit the tar that the	DMA tra ware), sto to 0 (for e interrupt peration	nsfer is op the op example t will not of the se	disabled peration of the disable of the disable occur under cause as DMA	(including when it in the source causing the source causing the cautil DMA transfer is using the interrupt.	is aborted ng the se of resumed
5 to	0			Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code	transfer transfer transfer transfer transfer transfer truth special distribution to the transfer trans	en to this not requester cified as the serminate clear the fit is clear to serminate constant to service	s flag. sted d the DMA flest while d by softv DFn bit t ar that the stop the o	DMA tra ware), sto to 0 (for e interrupt peration sources	nsfer is op the serving	disabled peration of the disable of	(including when it in the source causing the source causing the causing the interrupt.	is aborted ing the se of resumed iters.
5 to	0			Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code	transfer tra	en to this not requester cified as the ser requester cified as the ser requester clear the fit is clear the fit is clear to set the ser the se	s flag. ested d the DMA the basest while and by software that the stop the output	DMA tra ware), sto to 0 (for e interrup peration sources	nsfer is op the o example t will not of the se serving	disabled peration of a disable of the coccur uncource causes DMA	(including when it in the source causing the source causing the interrupt. Interrupt source request from on-ch	is aborted ing the se of resumed stors.
5 to	0			Only 0 ca 0: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code	transfer tra	en to this not requester cified as it is ser requester cified as it is ser requester the clear the fit is clear the fit is clear to set the conset the con	s flag. seted d the DMA frest while d by softw DFn bit the stop the officerupt IFCn2 0	DMA tra ware), sto o 0 (for e interrupt peration sources IFCn1	nsfer is op the operample to will not of the serving	disabled peration of the disable of	(including when it in it is in the source causing the source causing the interrupt.) It is in the interrupt in the read interrupt source in the interrupt source in the interrupt in the interrupt source in the interrupt so	is aborted ing the se of resumed stors.
5 to	0			Only 0 ca 0: DMA 1: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code IFCn5 0	transfer transfer transfer transfer transfer transfer trupt spec DMA transfer forcibly tand then eption). I not neces is used to the transfer trans	en to this not requester requester cified as the sfer reque reminate clear the fit is clea ssary to se and the to set the IFCn3 0	s flag. ested d the DMA intest while interted by software that the stop the output limiterrupt IFCn2 0	DMA tra ware), sto to 0 (for e interrup peration sources IFCn1 0	nsfer is op the operation of the serving IFCn0	disabled peration of a disable of the coccur uncource causes as DMA DMA peripher INTPO	(including when it in the source causing the source causing the interrupt.) Interrupt source Trequest from on-cheral I/O disabled	is aborted ing the se of resumed stors.
5 to	0			Only 0 ca 0: DMA 1: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code IFCn5 0 0 0	transfer tra	en to this not requested in the requester in the remarkable in the requester in the remarkable in the rema	s flag. sted d the DMA sest while d by softw DFn bit t ar that the stop the o interrupt IFCn2 0 0	DMA tra ware), sto o 0 (for e interrupt peration sources IFCn1 0 0 1	nsfer is op the operample to will not of the serving IFCn0 0 1 0	DMA I periph	(including when it in it is in the source causing the source causing the interrupt.) It is in the interrupt. Interrupt source request from on-cheral I/O disabled 100/INTM000 101/INTM001	is aborted ing the se of resumed stors.
5 to	0			Only 0 ca 0: DMA 1: DMA 1: DMA If the inte clear the by NMI o interrupt, serial rec next, it is Interrupt This code IFCn5 0 0 0	transfer tra	en to this not requester requester cified as the service reminate clear the fit is clear the fit is clear the service reminate conservation of the service reminate clear the fit is clear the service reminate re	s flag. ested d the DMA flest while led by software that the stop the output limiterrupt IFCn2 0 0 0 0	DMA tra ware), sto to 0 (for e interrupt peration Sources IFCn1 0 1 1	nsfer is op the operation of the set of the	as DMA DMA I periph INTPO	(including when it in the source causing the source causing the interrupt.) Interrupt source request from on-chemical I/O disabled (including the interrupt).	is aborted ing the se of resumed stors.

(2/2)

Bit position	Bit name	Function						
5 to 0	IFCn5 to IFCn0	IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt source
		0	0	0	1	1	1	INTP030/INTM030
		0	0	1	0	0	0	INTP031/INTM031
		0	0	1	0	0	1	INTP100
		0	0	1	0	1	0	INTP101
		0	0	1	0	1	1	INTP102
		0	0	1	1	0	0	INTP103
		0	0	1	1	0	1	INTP110
		0	0	1	1	1	0	INTP111
		0	0	1	1	1	1	INTP112
		0	1	0	0	0	0	INTP113
		0	1	0	0	0	1	INTP120
		0	1	0	0	1	0	INTP121
		0	1	0	0	1	1	INTP122
		0	1	0	1	0	0	INTP123
		0	1	0	1	0	1	INTP130
		0	1	0	1	1	0	INTP131
		0	1	0	1	1	1	INTP132
		0	1	1	0	0	0	INTP133
		0	1	1	0	0	1	INTCMD0
		0	1	1	0	1	0	INTCMD1
		0	1	1	0	1	1	INTCMD2
		0	1	1	1	0	0	INTCMD3
		0	1	1	1	0	1	INTCSI0
		0	1	1	1	1	0	INTSR0
		0	1	1	1	1	1	INTST0
		1	0	0	0	0	0	INTCSI1
		1	0	0	0	0	1	INTSR1
		1	0	0	0	1	0	INTST1
		1	0	0	0	1	1	INTCSI2
		1	0	0	1	0	0	INTSR2
		1	0	0	1	0	1	INTST2
		1	0	0	1	1	0	INTAD
		Other t	han abov	е				Setting prohibited

Remark n = 0 to 3

The relationship between the \overline{DMARQn} signal and the interrupt source that serves as a DMA transfer trigger is as follows (n = 0 to 3).

* Caution If a DMARQn pin is specified as the DMA transfer start factor, clear the DTFRn register to 00H. If an interrupt request is specified as the DMA transfer start factor, mask the DMARQn signal input on the port side (PMC0 register, etc.). In this case, an interrupt request will be generated with the start of DMA transfer. To prevent an interrupt request from being generated, mask the interrupt by setting the interrupt request control register. DMA transfer starts even if an interrupt is masked.

6.4 DMA Bus States

6.4.1 Types of bus states

The DMAC bus states consist of the following 13 states.

(1) TI state

The TI state is an idle state, during which no access request is issued.

The DMARQ0 to DMARQ3 signals are sampled at the rising edge of the CLKOUT signal.

(2) T0 state

DMA transfer ready state (state in which a DMA transfer request has been issued and the bus mastership is acquired for the first DMA transfer).

(3) T1R state

The bus enters the T1R state at the beginning of a read operation in the 2-cycle transfer mode.

Address driving starts. After entering the T1R state, the bus invariably enters the T2R state.

(4) T1RI state

The T1RI state is a state in which the bus waits for the acknowledge signal corresponding to an external memory read request.

After entering the last T1RI state, the bus invariably enters the T2R state.

(5) T2R state

The T2R state corresponds to the last state of a read operation in the 2-cycle transfer mode, or to a wait state

In the last T2R state, read data is sampled. After entering the last T2R state, the bus invariably enters the T1W state.

(6) T2RI state

State in which the bus is ready for DMA transfer to on-chip peripheral I/O or internal RAM (state in which the bus mastership is acquired for DMA transfer to on-chip peripheral I/O or internal RAM).

After entering the last T2RI state, the bus invariably enters the T1W state.

(7) T1W state

The bus enters the T1W state at the beginning of a write operation in the 2-cycle transfer mode.

Address driving starts. After entering the T1W state, the bus invariably enters the T2W state.

(8) T1WI state

State in which the bus waits for the acknowledge signal corresponding to an external memory write request. After entering the last T1WI state, the bus invariably enters the T2W state.

(9) T2W state

The T2W state corresponds to the last state of a write operation in the 2-cycle transfer mode, or to a wait state

In the last T2W state, the write strobe signal is made inactive.

(10) T1FH state

The basic flyby transfer state, this state corresponds to the transfer execution cycle.

After entering the T1FH state, the bus enters the T2FH state.

(11) T1FHI state

The T1FHI state corresponds to the last state of a flyby transfer, during which the end of transfer is waited for.

After entering the T1FHI state, the bus is released and enters the TE state.

(12) T2FH state

The T2FH state is the state during which it is judged whether flyby transfer is to be continued or not.

If the next transfer is executed in the block transfer mode, the bus enters the T1FH state after the T2FH state.

Under other conditions, the bus enters the T1FHI state when a wait is issued. If no wait is issued, the bus is released and enters the TE state.

(13) TE state

The TE state corresponds to DMA transfer completion. Various internal signals are initialized. After entering the TE state, the bus invariably enters the TI state.

6.4.2 DMAC bus cycle state transition

Except for the block transfer mode, each time the processing for a DMA transfer is completed, the bus mastership is released.

Figure 6-1. DMAC Bus Cycle State Transition

6.5 Transfer Modes

6.5.1 Single transfer mode

In single transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again once. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence. If other DMA transfer request with the lower priority occurs one clock after single transfer has been completed, however, this request does not take precedence even if the previous DMA transfer request signal with the higher priority remains active. DMA transfer with the lower priority newly request is executed after the CPU bus has been released.

Figures 6-2 to 6-5 show examples of single transfer.

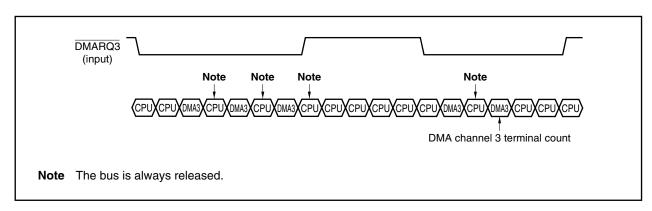


Figure 6-2. Single Transfer Example 1

Figure 6-3 shows an example of a single transfer in which a higher priority DMA request is issued. DMA channels 0 to 2 are in the block transfer mode and channel 3 is in the single transfer mode.

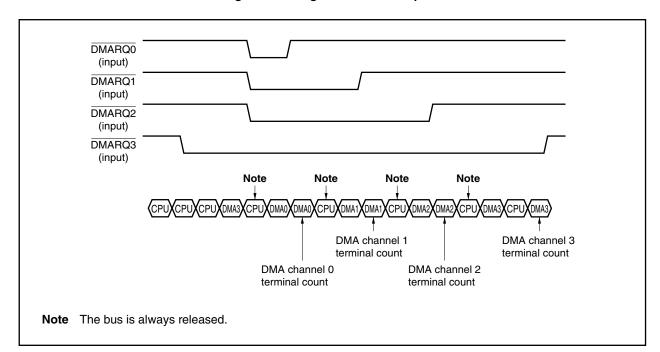


Figure 6-3. Single Transfer Example 2

Figure 6-4 is an example of single transfer where a DMA transfer request with the lower priority is issued one clock after single transfer has been completed. DMA channels 0 and 3 are used for single transfer. If two DMA transfer request signals are asserted active at the same time, two DMA transfer operations are alternately executed.

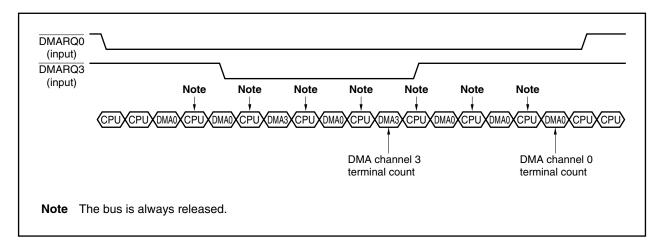


Figure 6-4. Single Transfer Example 3

Figure 6-5 is an example of single transfer where two or more DMA transfer requests with the lower priority are issued one clock after single transfer has been completed. DMA channels 0, 2, and 3 are used for single transfer. If three or more DMA transfer request signals are asserted active at the same time, two DMA transfer operations are alternately executed, always starting from the one with the highest priority.

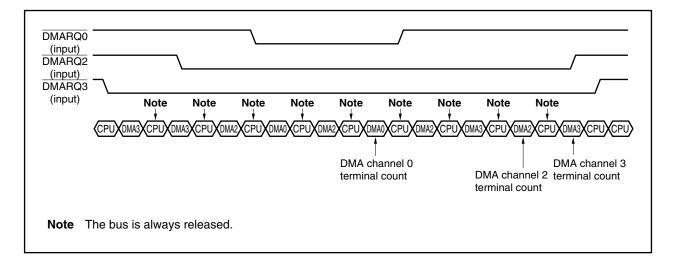


Figure 6-5. Single Transfer Example 4

6.5.2 Single-step transfer mode

In single-step transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request signal (DMARQ0 to DMARQ3), transfer is performed again. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

The following shows an example of a single-step transfer. Figure 6-7 shows an example of single-step transfer made in which a higher priority DMA request is issued. DMA channels 0 and 1 are in the single-step transfer mode.

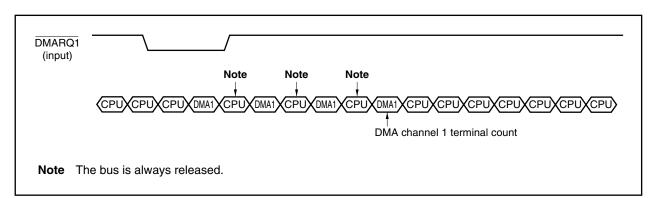
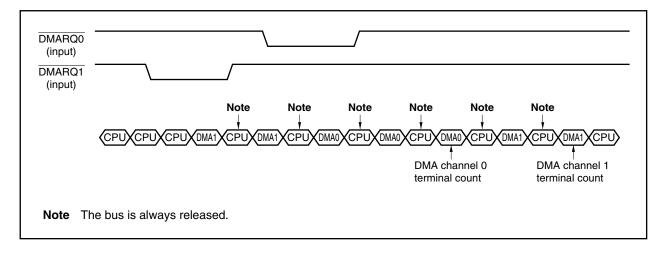



Figure 6-6. Single-Step Transfer Example 1

6.5.3 Block transfer mode

In the block transfer mode, once transfer starts, the DMAC continues the transfer operation without releasing the bus until a terminal count occurs. No other DMA requests are acknowledged during block transfer.

After the block transfer ends and the DMAC releases the bus, another DMA transfer can be acknowledged. The bus cycle of the CPU is not inserted during block transfer, but bus hold and refresh cycles are inserted in between DMA transfer operations.

The following shows an example of block transfer in which a higher priority DMA request is issued. DMA channels 2 and 3 are in the block transfer mode.

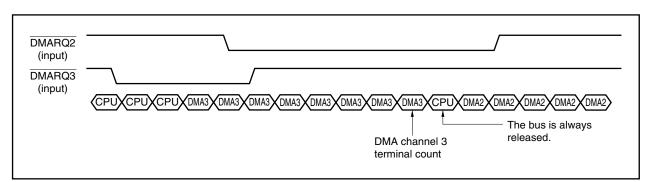
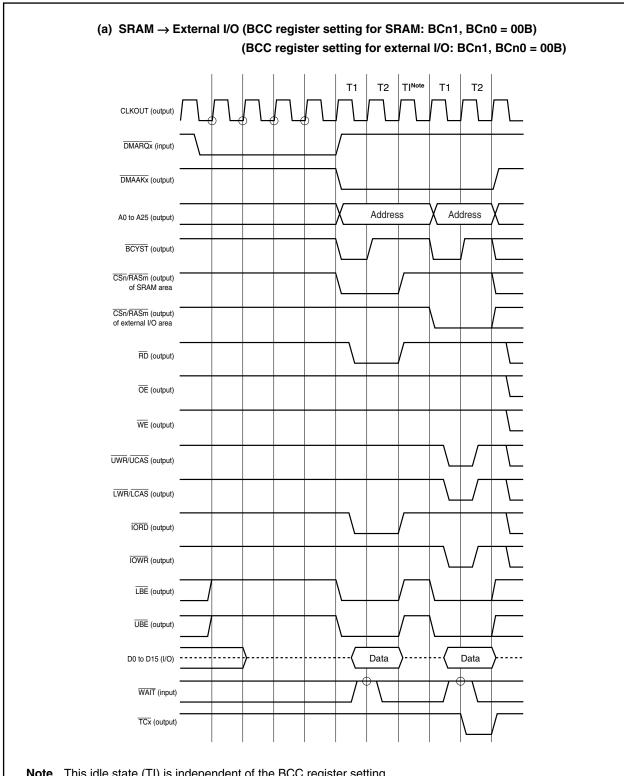


Figure 6-8. Block Transfer Example

6.6 Transfer Types


6.6.1 2-cycle transfer

In 2-cycle transfer, data transfer is performed in two cycles, a read cycle (source to DMAC) and a write cycle (DMAC to destination).

In the first cycle, the source address is output and reading is performed from the source to the DMAC. In the second cycle, the destination address is output and writing is performed from the DMAC to the destination.

★ Caution An idle cycle of 1 clock is always inserted between the read cycle and write cycle.

Figure 6-9. Timing of Access to SRAM, External ROM, and External I/O During 2-Cycle DMA Transfer (1/2)

Note This idle state (TI) is independent of the BCC register setting.

- 2. The broken lines indicate the high-impedance state.
- 3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

(b) SRAM → External I/O (BCC register setting for SRAM: BCn1, BCn0 = 11B) (BCC register setting for external I/O: BCn1, BCn0 = 00B) TINote 1 TINote 1 TINote 2 CLKOUT (output) DMARQx (input) DMAAKx (output) Address Address A0 to A25 (output) BCYST (output) CSn/RASm (output) CSn/RASm (output) RD (output) OE (output) WE (output) UWR/UCAS (output) TWR/TCAS (output) IORD (output) IOWR (output) LBE (output) UBE (output) Data D0 to D15 (I/O) Data WAIT (input) TCx (output) Notes 1. This idle state (TI) is inserted by means of a BCC register setting. 2. This idle state (TI) is independent of the BCC register setting. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state.

Figure 6-9. Timing of Access to SRAM, External ROM, and External I/O During 2-Cycle DMA Transfer (2/2)

3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

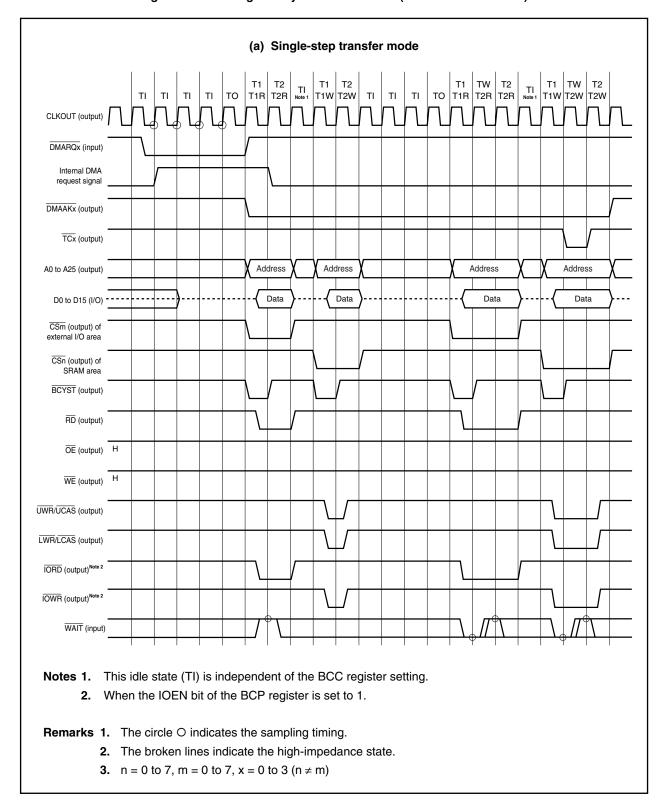


Figure 6-10. Timing of 2-Cycle DMA Transfer (External I/O \rightarrow SRAM)

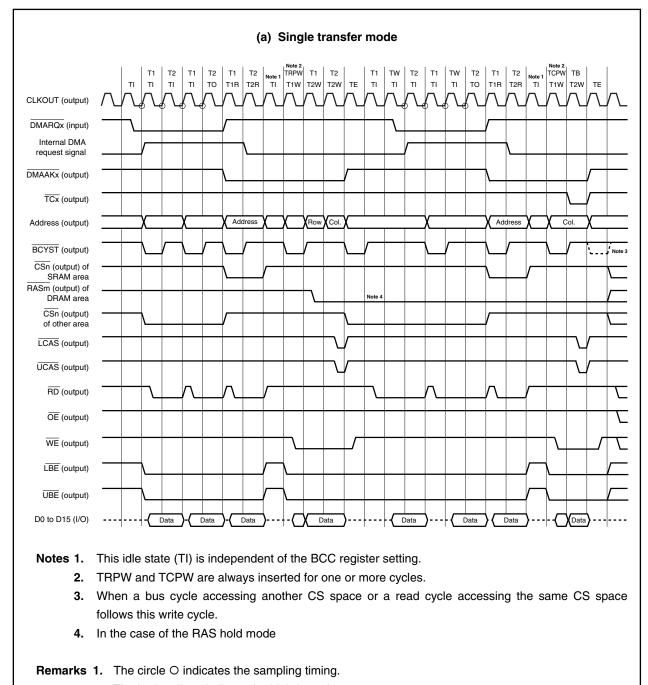


Figure 6-11. Timing of 2-Cycle DMA Transfer (SRAM → EDO DRAM) (1/3)

- **2.** The broken lines indicate the high-impedance state.
- 3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3
- 4. Col.: Column address

Row: Row address

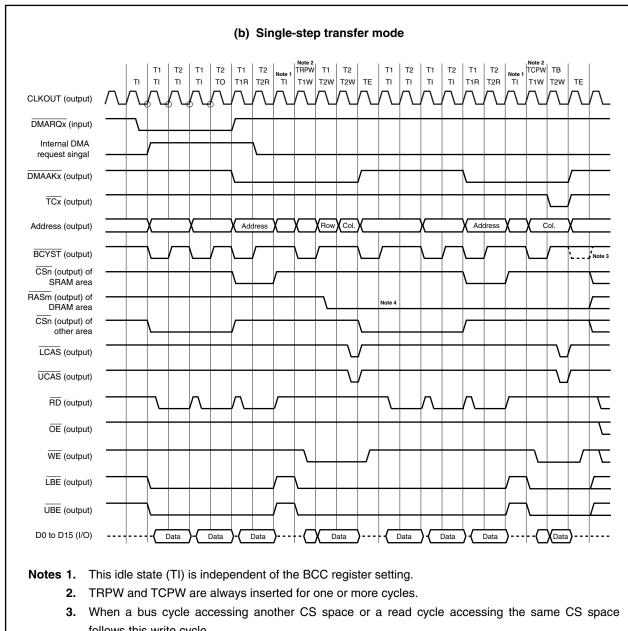


Figure 6-11. Timing of 2-Cycle DMA Transfer (SRAM → EDO DRAM) (2/3)

- follows this write cycle.
- 4. In the case of the RAS hold mode

- 2. The broken lines indicate the high-impedance state.
- 3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3
- 4. Col.: Column address Row: Row address

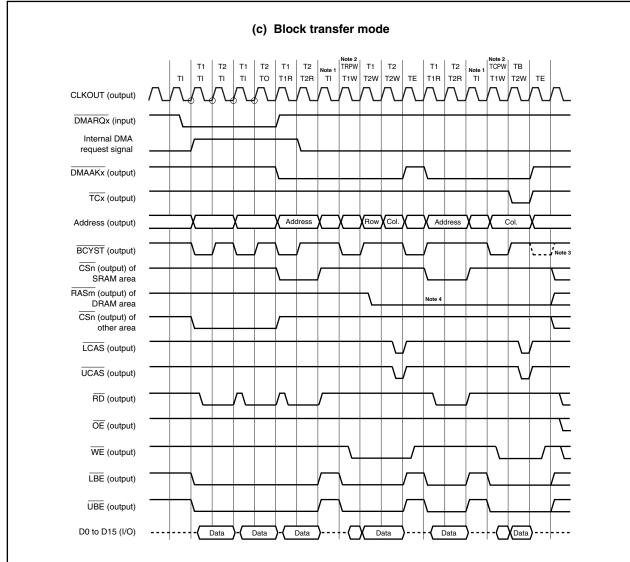


Figure 6-11. Timing of 2-Cycle DMA Transfer (SRAM \rightarrow EDO DRAM) (3/3)

- Notes 1. This idle state (TI) is independent of the BCC register setting.
 - 2. TRPW and TCPW are always inserted for one or more cycles.
 - **3.** When a bus cycle accessing another CS space or a read cycle accessing the same CS space follows this write cycle.
 - 4. In the case of the RAS hold mode

- 2. The broken lines indicate the high-impedance state.
- **3.** n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3
- **4.** Col.: Column address Row: Row address

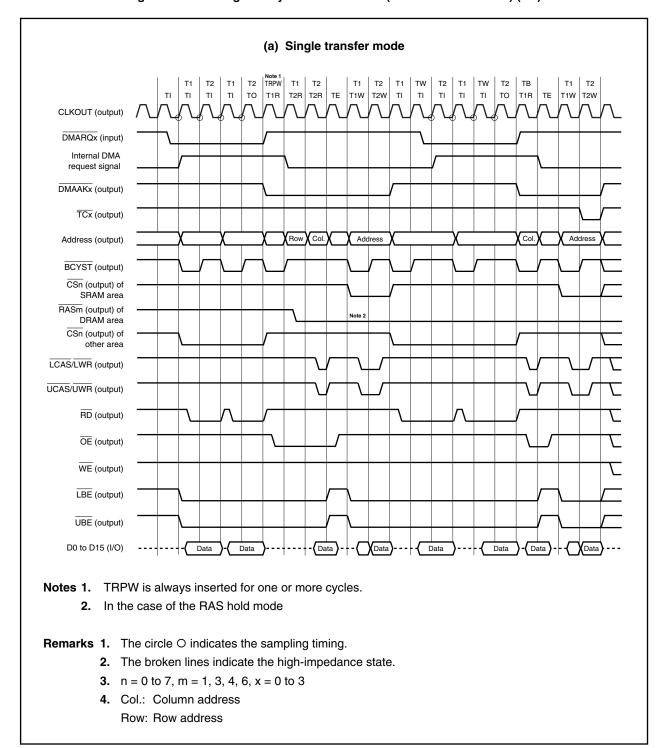


Figure 6-12. Timing of 2-Cycle DMA Transfer (EDO DRAM → SRAM) (1/3)

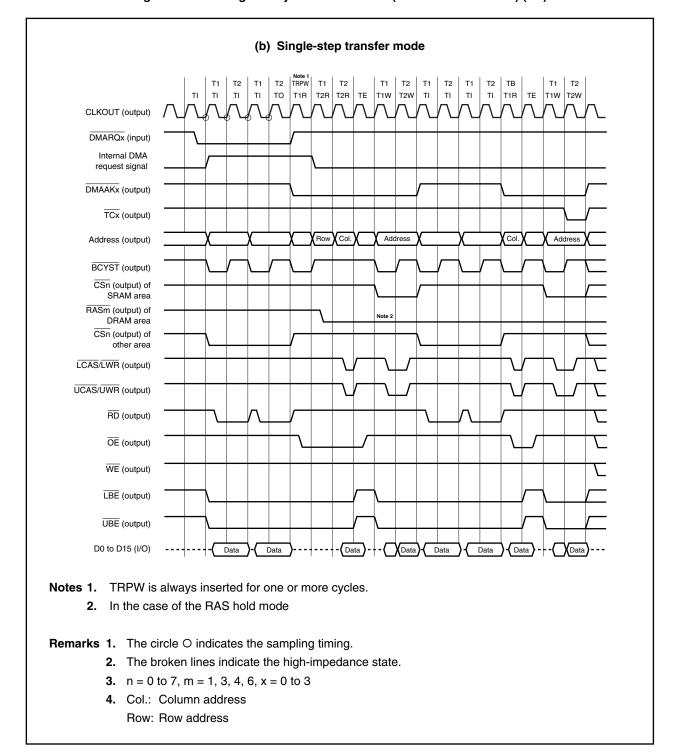


Figure 6-12. Timing of 2-Cycle DMA Transfer (EDO DRAM → SRAM) (2/3)

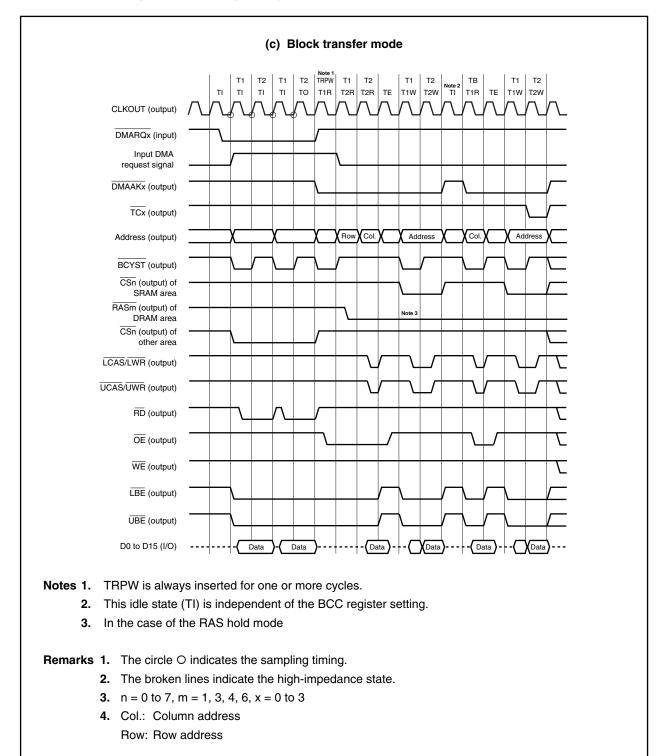


Figure 6-12. Timing of 2-Cycle DMA Transfer (EDO DRAM → SRAM) (3/3)

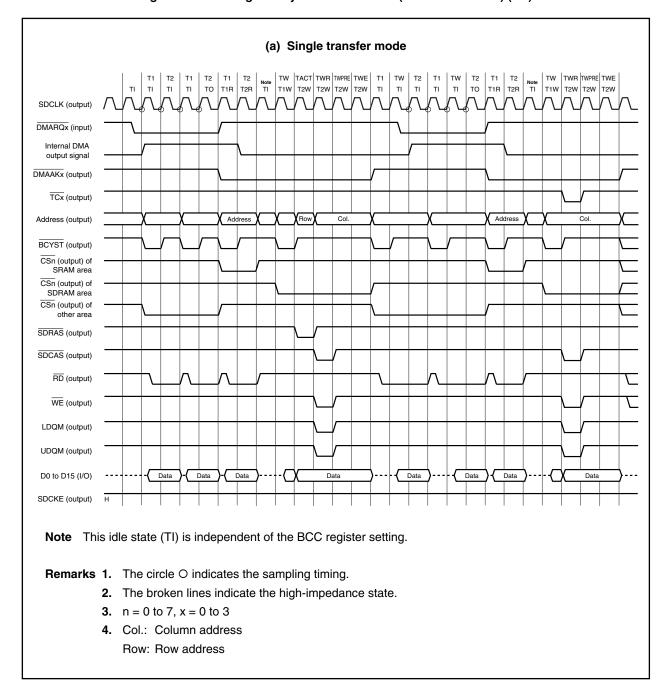


Figure 6-13. Timing of 2-Cycle DMA Transfer (SRAM → SDRAM) (1/3)

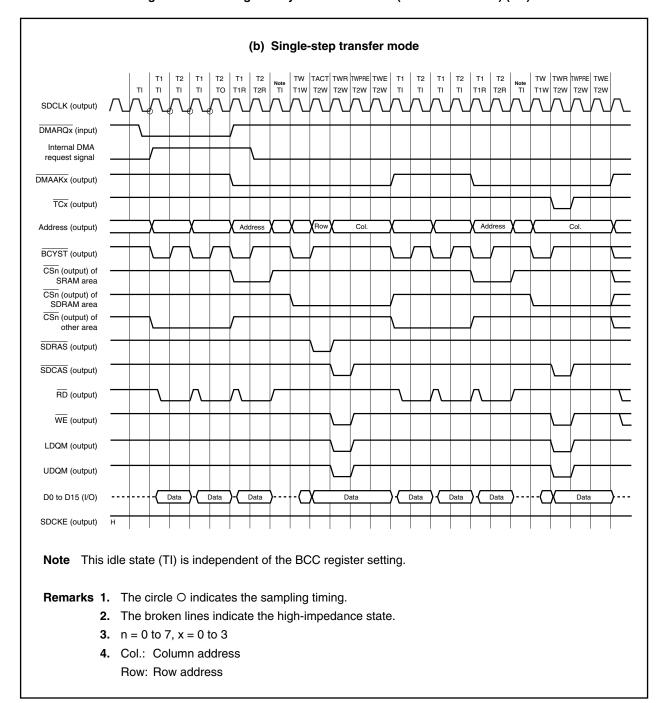


Figure 6-13. Timing of 2-Cycle DMA Transfer (SRAM → SDRAM) (2/3)

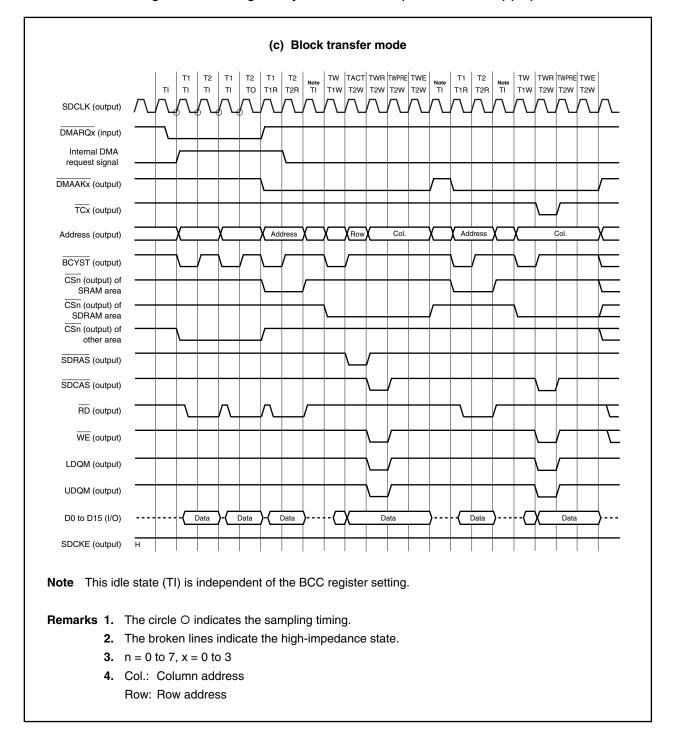


Figure 6-13. Timing of 2-Cycle DMA Transfer (SRAM \rightarrow SDRAM) (3/3)

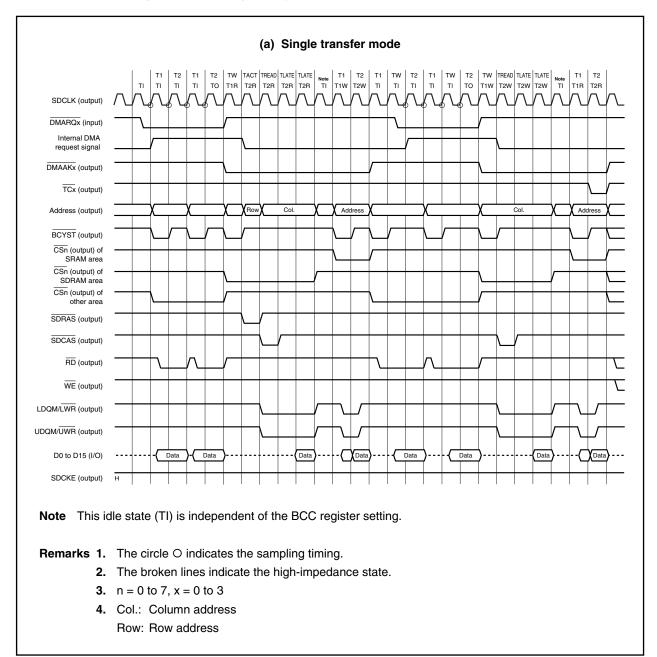


Figure 6-14. Timing of 2-Cycle DMA Transfer (SDRAM \rightarrow SRAM) (1/3)

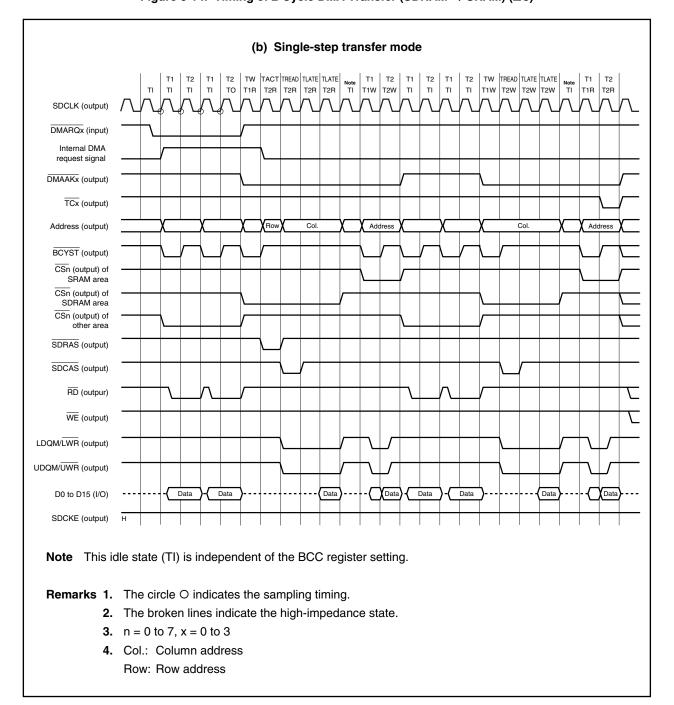
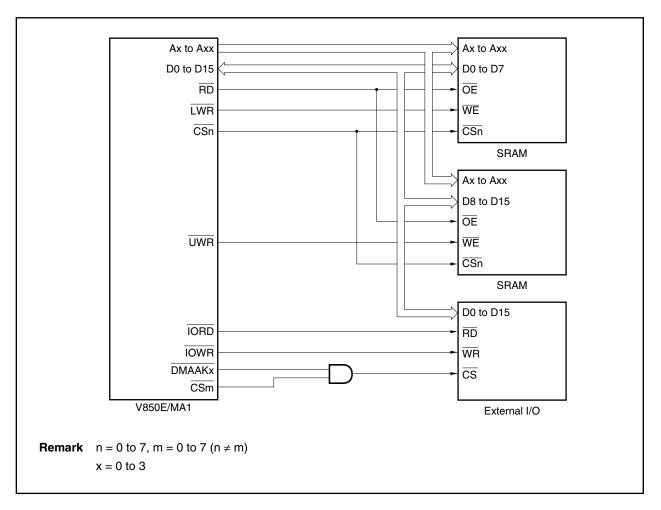


Figure 6-14. Timing of 2-Cycle DMA Transfer (SDRAM → SRAM) (2/3)




Figure 6-14. Timing of 2-Cycle DMA Transfer (SDRAM \rightarrow SRAM) (3/3)

6.6.2 Flyby transfer

Since data is transferred in 1 cycle during a flyby transfer, a memory address is always output irrespective whether it is a source address or a destination address, and read/write signals of the memory and peripheral I/O become active at the same time. Therefore, the external I/O is selected by the DMAAKO to DMAAKO signals.

To perform a normal access to the external I/O by means other than DMA transfer, externally AND the \overline{CSm} and \overline{DMAAKx} signals (m = 0 to 7, x = 0 to 3), and connect the resultant signal to the chip select signal of the external I/O. A circuit example of a normal access, other than DMA transfer, to external I/O is shown below.

Figure 6-15. Circuit Example When Flyby Transfer Is Performed Between External I/O and SRAM

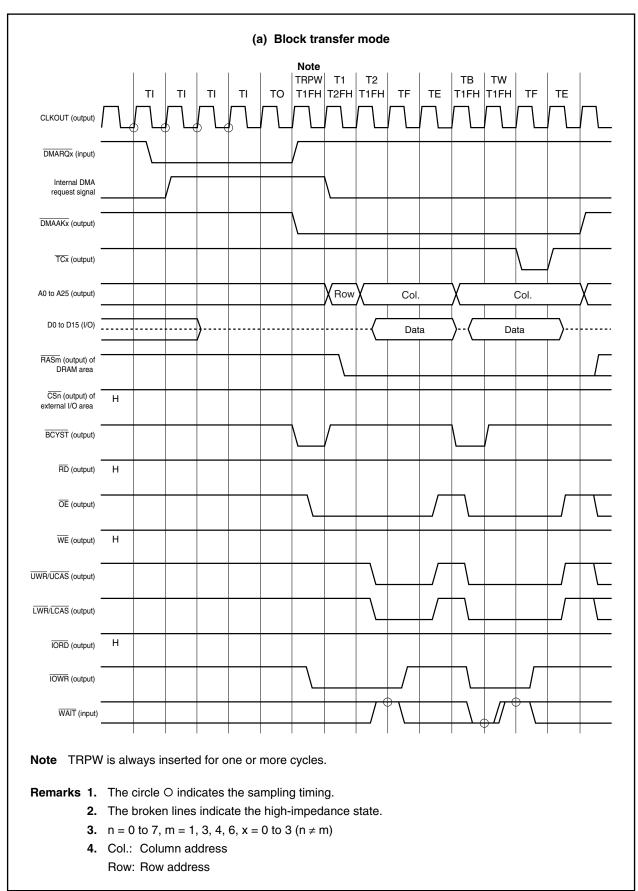


Figure 6-16. Timing of Flyby Transfer (DRAM → External I/O) (1/3)

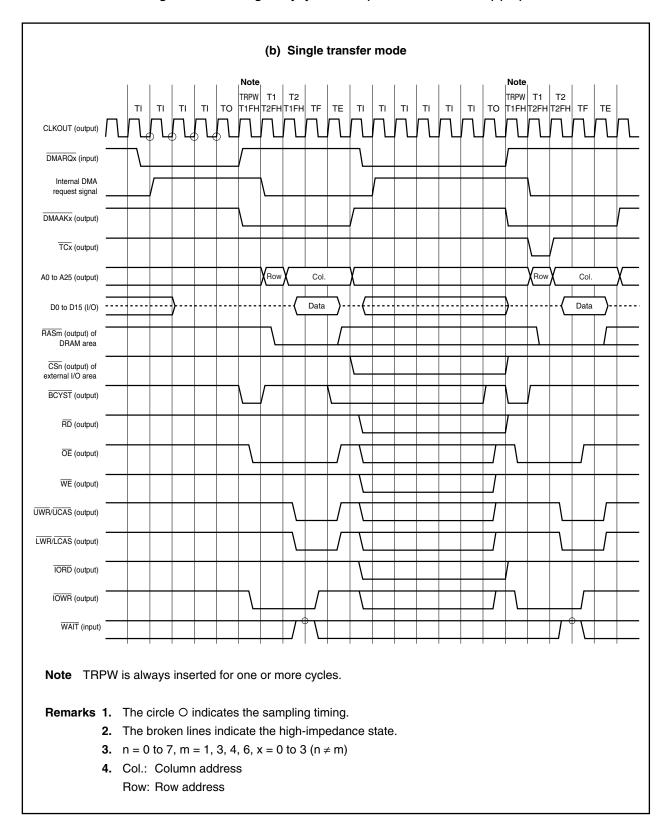


Figure 6-16. Timing of Flyby Transfer (DRAM → External I/O) (2/3)

(c) Single-step transfer mode Note TRPW T1 T2 TE TE ΤI ΤI ΤI ΤI TO T1FH T2FH T1FH TF ΤI ΤI ΤI TO T1FH TF ΤI CLKOUT (output) DMARQx (input) Internal DMA request signal DMAAKx (output) TCx (output) Col. Col. A0 to A25 (output) Row Data Data D0 to D15 (I/O) $\overline{\mbox{RASm}}$ (output) of DRAM area CSn (output) of external I/O area BCYST (output) RD (output) OE (output) $\overline{\text{WE}}$ (output) $\overline{\text{UWR}}/\overline{\text{UCAS}} \text{ (output)}$ TWR/LCAS (output) IORD (output) IOWR (output) $\overline{\text{WAIT}} \text{ (input)}$ Note TRPW is always inserted for one or more cycles. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. **3.** n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3 $(n \ne m)$ 4. Col.: Column address Row: Row address

Figure 6-16. Timing of Flyby Transfer (DRAM → External I/O) (3/3)

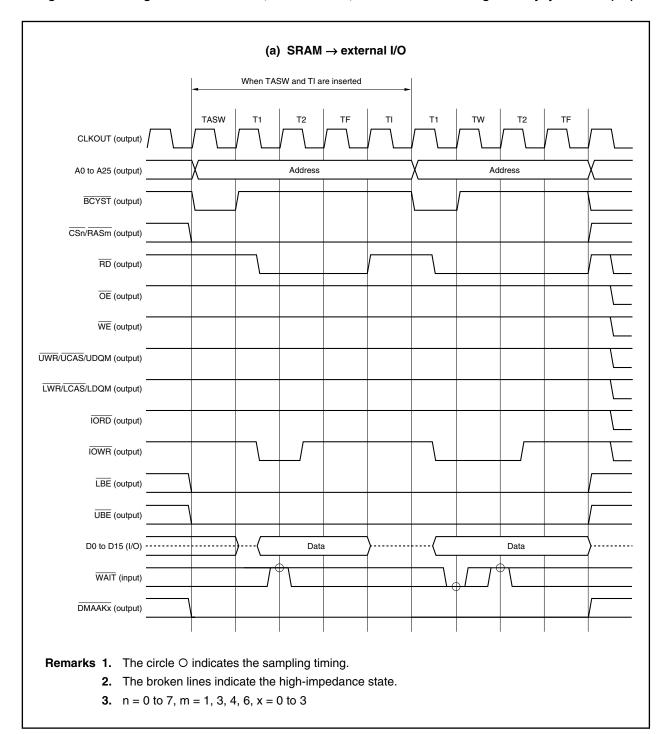


Figure 6-17. Timing of Access to SRAM, External ROM, and External I/O During DMA Flyby Transfer (1/2)

(b) External I/O → SRAM When TASW is inserted TASW Т1 T2 TF Т1 TF TW T2 CLKOUT (output) A0 to A25 (output) BCYST (output) $\overline{\text{CSn}}/\overline{\text{RASm}}$ (output) RD (output) OE (output) WE (output) UWR/UCAS/UDQM (output) TWR/LCAS/LDQM (output) IORD (output) Note IOWR (output) $\overline{\mathsf{LBE}}$ (output) UBE (output) D0 to D15 (I/O) Data $\overline{\text{WAIT}}$ (input) DMAAKx (output) Note During DMA flyby transfer, the rise timing of this read cycle is different from that of other transfer operations. Remarks 1. The circle O indicates the sampling timing. 2. The broken lines indicate the high-impedance state. 3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

Figure 6-17. Timing of Access to SRAM, External ROM, and External I/O During DMA Flyby Transfer (2/2)

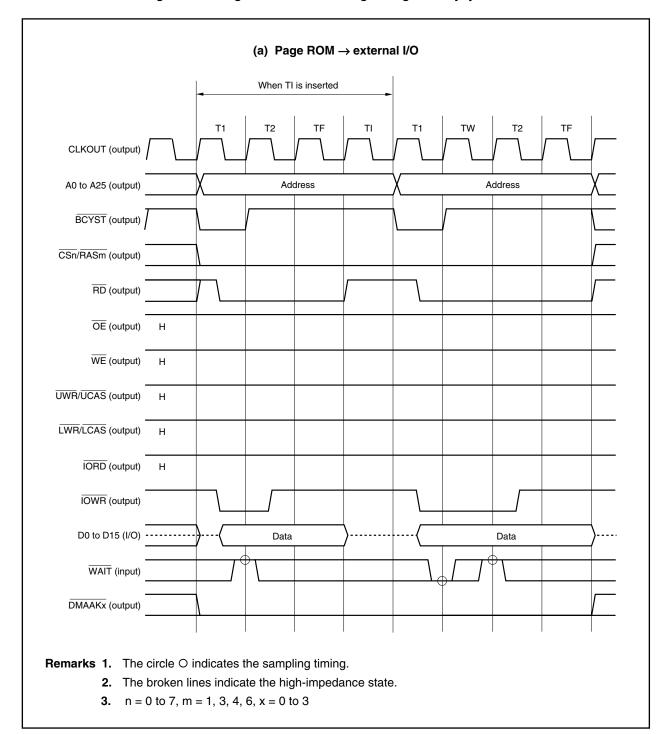


Figure 6-18. Page ROM Access Timing During DMA Flyby Transfer

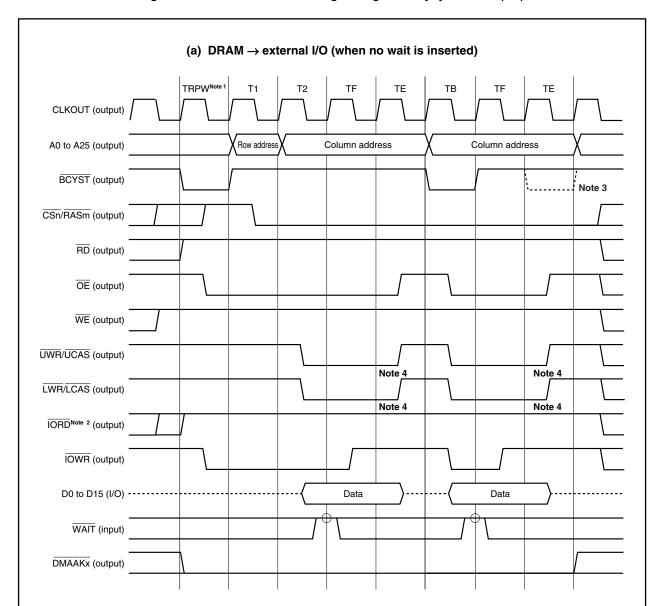


Figure 6-19. DRAM Access Timing During DMA Flyby Transfer (1/4)

- Notes 1. TRPW is always inserted for one or more cycles.
 - 2. During DMA flyby transfer, the rise timing of this read cycle is different from that of other transfer operations.
 - **3.** When a bus cycle accessing another CS space or a write cycle accessing the same CS space follows this cycle.
 - 4. The rise timing of this write cycle is different from that of a normal EDO DRAM write cycle.

- 2. The broken lines indicate the high-impedance state.
- **3.** n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

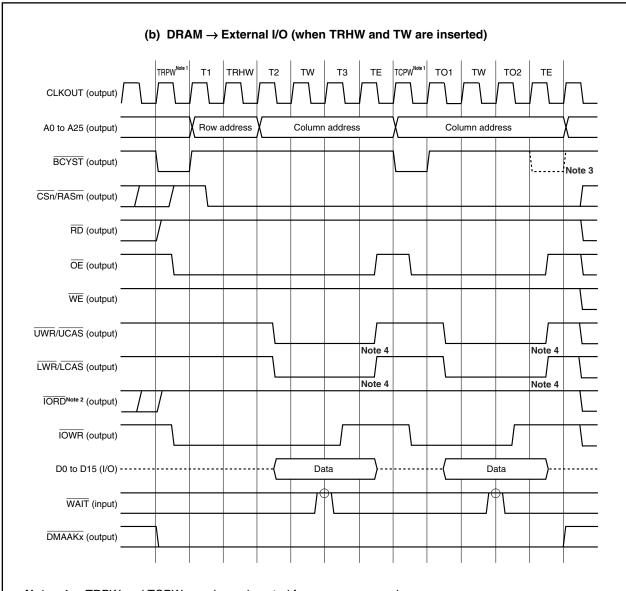


Figure 6-19. DRAM Access Timing During DMA Flyby Transfer (2/4)

- **Notes 1.** TRPW and TCPW are always inserted for one or more cycles.
 - **2.** During DMA flyby transfer, the rise timing of this read cycle is different from that of other transfer operations.
 - **3.** When a bus cycle accessing another CS space or a write cycle accessing the same CS space follows this cycle.
 - 4. The rise timing of this write cycle is different from that of a normal EDO DRAM write cycle.

- 2. The broken lines indicate the high-impedance state.
- **3.** n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

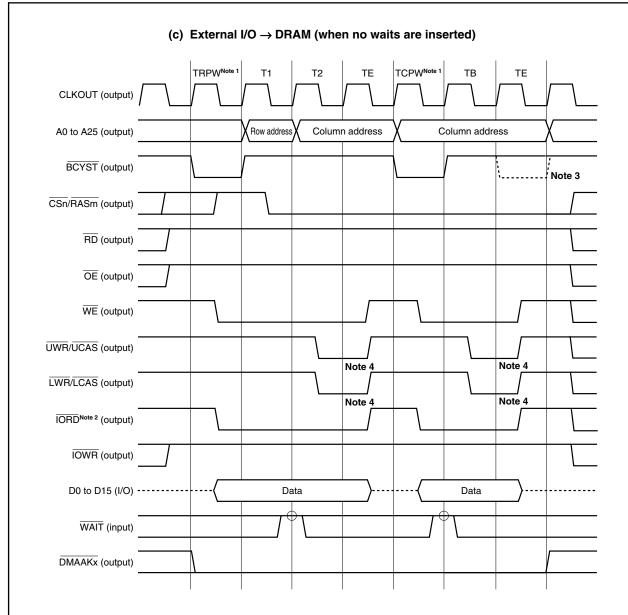


Figure 6-19. DRAM Access Timing During DMA Flyby Transfer (3/4)

- Notes 1. TRPW and TCPW are always inserted for one or more cycles.
 - **2.** During DMA flyby transfer, the rise timing of this read cycle is different from that of other transfer operations.
 - **3.** When a bus cycle accessing another CS space or a write cycle accessing the same CS space follows this cycle.
 - 4. The rise timing of this write cycle is different from that of a normal EDO DRAM write cycle.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - 3. n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

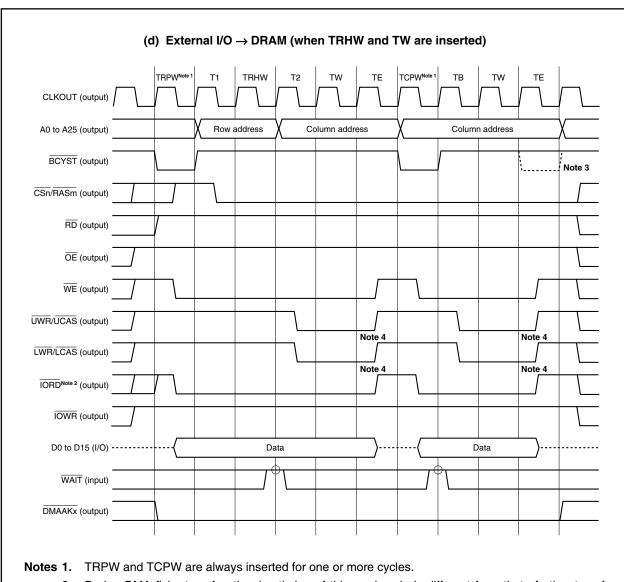


Figure 6-19. DRAM Access Timing During DMA Flyby Transfer (4/4)

- 2. During DMA flyby transfer, the rise timing of this read cycle is different from that of other transfer operations.
- **3.** When a bus cycle accessing another CS space or a write cycle accessing the same CS space follows this cycle.
- 4. The rise timing of this write cycle is different from that of a normal EDO DRAM write cycle.
- Remarks 1. The circle O indicates the sampling timing.
 - 2. The broken lines indicate the high-impedance state.
 - **3.** n = 0 to 7, m = 1, 3, 4, 6, x = 0 to 3

6.7 Transfer Targets

6.7.1 Transfer type and transfer targets

Table 6-1 lists the relationships between transfer type and transfer targets. The mark " $\sqrt{}$ " means "transfer possible", and the mark "-" means "transfer impossible".

Destination 2-Cycle Transfer Flyby Transfer External External Internal On-chip External Internal Internal On-chip Internal External ROM Peripheral I/O RAM Memory **ROM** Peripheral I/O RAM Memory I/O I/O $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ On-chip peripheral I/O External I/O Internal RAM $\sqrt{}$ $\sqrt{}$ External V memory Internal ROM

Table 6-1. Relationship Between Transfer Type and Transfer Targets

Note In the case of flyby transfer, data cannot be transferred to/from SDRAM.

- Cautions 1. The operation is not guaranteed for combinations of transfer destination and source marked with "-" in Table 6-1.
 - 2. In the case of flyby transfer, make the data bus width the same for the source and destination.
 - Addresses between 3FFF000H and 3FFFFFH cannot be specified for the source and destination address of DMA transfer. Be sure to specify an address between FFFF000H and FFFFFFH.
- **Remark 1.** During 2-cycle DMA transfer, if the data bus width of the transfer source and that of the transfer destination are different, the operation becomes as follows.

If the object of the DMA transfer is an on-chip peripheral I/O register (transfer source/transfer destination), be sure to specify the same transfer size as the register size. For example, in the case of DMA transfer to an 8-bit register, be sure to specify byte (8-bit) transfer.

- <16-bit transfer>
- Transfer from a 16-bit bus to an 8-bit bus
 A read cycle (16 bits) is generated and then a write cycle (8 bits) is generated twice consecutively.
- Transfer from an 8-bit bus to a 16-bit bus
 A read cycle (8 bits) is generated twice consecutively and then a write cycle (16 bits) is generated.
 Data is written in the order from lower bits to higher bits to the transfer destination in the case of little endian and in reverse order in the case of big endian.

<8-bit transfer>

• Transfer from 16-bit bus to 8-bit bus

A read cycle (the higher 8 bits go into a high-impedance state) is generated and then a write cycle (8 bits) is generated.

• Transfer from 8-bit bus to 16-bit bus

A read cycle (8 bits) is generated and then a write cycle is generated (the higher 8 bits go into a high-impedance state). Data is written in the order from lower bits to higher bits to the transfer destination in the case of little endian and in reverse order in the case of big endian.

Remark 2. Transfer between the little endian area and the big endian area is possible.

6.7.2 External bus cycles during DMA transfer

The external bus cycles during DMA transfer are shown below.

Transfer Type **Transfer Object** External Bus Cycle 2-cycle transfer On-chip peripheral I/O, internal RAM None External I/O Yes SRAM cycle External memory Yes Memory access cycle set by the BCT register Yes Flyby transfer Between external memory and DMA flyby transfer cycle accessing memory that is external I/O set as external memory by the BCT register

Table 6-2. External Bus Cycles During DMA Transfer

6.8 DMA Channel Priorities

The DMA channel priorities are fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

These priorities are valid in the TI state only. In the block transfer mode, the channel used for transfer is never switched.

In the single-step transfer mode, if a higher priority DMA transfer request is issued while the bus is released (in the TI state), the higher priority DMA transfer request is acknowledged.

Caution Do not start two or more DMA channels with the same factor. If two or more DMA channels are started with the same factor, the DMA channel with the lower priority may be accepted before the DMA channel with the higher priority.

★6.9 Next Address Setting Function

The DMA source address registers (DSAnH, DSAnL), DMA destination address registers (DDAnH, DDAnL), and DMA transfer count register (DBCn) are 2-stage FIFO buffer registers consisting of a master register and a slave register (n = 0 to 3).

When the terminal count is issued, these registers are automatically rewritten with the value that was set immediately before.

Therefore, during DMA transfer, transfer is automatically started when a new DMA transfer setting is made for these registers and the Enn bit of the DCHCn register, and MLEn bit is set to 1 (however, the DMA transfer end interrupt may be issued even if DMA transfer is automatically started).

Figure 6-20 shows the configuration of the buffer register.

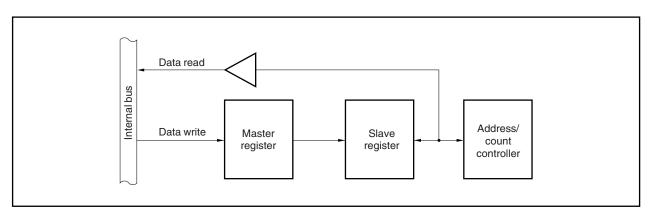


Figure 6-20. Buffer Register Configuration

The actual DMA transfer is executed in accordance with the contents of the slave register.

The set values that are reflected in the master register and slave register differ as follows, depending on the timing (period) of setting the registers.

(1) Period from system reset to the generation of the first DMA transfer request

The set value is reflected in both the master register and slave register.

(2) During DMA transfer (period from the generation to the end of DMA transfer request)

The set value is reflected only in the master register and not in the slave register (the slave register holds the set value for the next DMA transfer).

However, the contents of the master register are automatically overwritten to the slave register after completion of DMA transfer. If the value of each register is read during this period, the value of the slave register is read.

(3) Period from the end of DMA transfer to the beginning of the next DMA transfer

The set value is reflected in both the master register and slave register.

Remark "The end of DMA transfer" means either of the following.

- Completion of DMA transfer (terminal count)
- Forced termination of DMA transfer (setting the INITn bit of the DCHCn register to 1)

If the setting of a new DMA transfer is made using the DSAnH, DSAnL, DDAnL, and DBCn registers during DMA transfer, the values of the registers are automatically updated after completion of transfer^{Note}.

Note Before setting a new DMA transfer, confirm the start of the preceding DMA transfer.

If the setting of the new DMA transfer is made before the start of the preceding DMA transfer, the new set value is overwritten to both the master register and slave register, and DMA transfer according to the preceding set value cannot be executed.

6.10 DMA Transfer Start Factors

There are 3 types of DMA transfer start factors, as shown below.

- * Cautions 1. Do not use two or more start factors ((1) to (3)) in combination for the same channel (if two or more start factors are generated at the same time, only one of them is valid, but the valid start factor cannot be identified).
 - The operation is not guaranteed if two or more start factors are used in combination.
- 2. If DMA transfer is started via request from software and if the software does not correctly detect whether the expected DMA transfer operation has been completed through manipulation (setting to 1) of the STGn bit of the DCHCn register, it cannot be guaranteed whether the next (second) manipulation of the STGn bit corresponds to the start of "the next DMA transfer expected by software" (n = 0 to 3).

For example, suppose single transfer is started by manipulating the STGn bit. Even if the STGn bit is manipulated next (the second time) without checking by software whether the single transfer has actually been executed, the next (second) DMA transfer is not always executed. This is because the STGn bit may be manipulated the second time before the first DMA transfer is started or completed because, for example, DMA transfer with a higher priority had already been started when the STGn bit was manipulated for the first time.

It is therefore necessary to manipulate the STGn bit next time (the second time) after checking whether DMA transfer started by the first manipulation of the STGn bit has been completed.

Completion of DMA transfer can be checked in the following ways.

- Detecting the acknowledge signal (DMAAKn) or terminal count signal (TCn) by using a peripheral port or interrupt
- Checking the contents of the DBCn register

(1) Request from an external pin (DMARQn)

Requests from the \overline{DMARQn} pin are sampled each time the CLKOUT signal rises (n = 0 to 3).

Hold the request from DMARQn pin until the corresponding DMAAKn signal becomes active.

If a state whereby the Enn bit of the DCHCn register = 1 and the TCn bit = 0 is set, the \overline{DMARQn} signal in the TI state becomes valid. If the \overline{DMARQn} signal set by the DTFRn register becomes active in the TI state, it changes to the T0 state and DMA transfer is started.

(2) Request from software

If the STGn, Enn, and TCn bits of the DCHCn register are set as follows, DMA transfer starts (n = 0 to 3).

- STGn bit = 1
- Enn bit = 1
- TCn bit = 0

(3) Request from on-chip peripheral I/O

If, when the Enn and TCn bits of the DCHCn register are set as shown below, an interrupt request is issued from the on-chip peripheral I/O that is set in the DTFRn register, DMA transfer starts (n = 0 to 3).

- Enn bit = 1
- TCn bit = 0

Remark Since the \overline{DMARQn} signal is level-sampled and not edge-detected, to enable edge detection of a DMA request, set an external interrupt request for the DMA start trigger instead of using the \overline{DMARQn} signal (n = 0 to 3).

★6.11 Terminal Count Output upon DMA Transfer End

The terminal count signal (\overline{TCn}) becomes active for one clock during the last DMA transfer cycle (n = 3 to 0).

The $\overline{\text{TCn}}$ signal becomes active in the clock following the clock in which the $\overline{\text{BCYST}}$ signal becomes active during the last DMA transfer cycle.

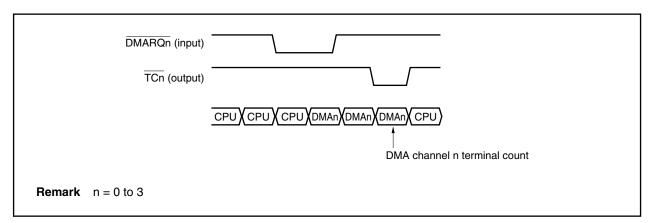


Figure 6-21. Terminal Count Signal (TCn) Timing Example (1)

The TCn signal becomes active for one clock at the beginning of the write cycle of the last DMA transfer when 2-cycle transfer is executed.

When flyby transfer is executed, the $\overline{\text{TCn}}$ signal becomes active for one clock at the beginning of the last DMA transfer cycle.

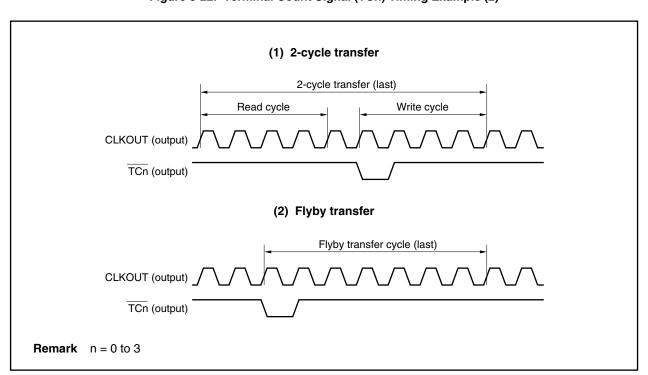
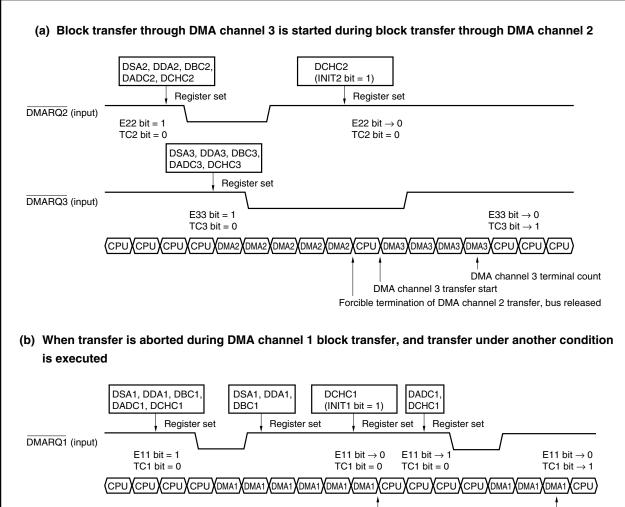


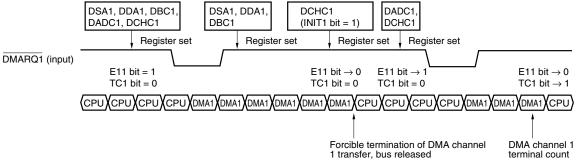
Figure 6-22. Terminal Count Signal (TCn) Timing Example (2)

★ 6.12 Forcible Suspension

DMA transfer can be forcibly suspended by NMI input during DMA transfer.

At such a time, the DMAC resets the Enn bit of the DCHCn register of all channels to 0 and the DMA transfer disabled state is entered. An NMI request can then be acknowledged after the DMA transfer that was being executed when the NMI was input is complete (n = 0 to 3).


Forcibly terminate and initialize DMA by using the INITn bit of the DCHCn register.


6.13 Forcible Termination

DMA transfer can be forcibly terminated by the INITn bit of the DCHCn register, in addition to the forcible suspension operation by means of NMI input (n = 0 to 3).

An example of forcible termination by the INITn bit of the DCHCn register is illustrated below (n = 0 to 3).

Figure 6-23. Example of Forcible Termination of DMA Transfer

The values of the DSAn, DDAn, and DBCn registers (n = 0 to 3) are retained even when DMA transfer is forcibly stopped, because these registers are FIFO-format buffer registers. The next transfer condition can be set to these registers even while DMA transfer is in progress. On the other hand, the setting of the DADCn and DCHCn registers is invalid during DMA transfer because these registers are not buffer registers (see 6.9 Next Address Setting Function, 6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3), and 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)).

★ 6.13.1 Restriction related to DMA transfer forcible termination

When terminating a DMA transfer by setting the INITn bit of the DCHCn register, the transfer may not be terminated, but just suspended, even though the INITn bit is set to 1. As a result, when the DMA transfer of a channel that should have been terminated is resumed, the DMA transfer will terminate after an unexpected number of transfers are completed and a DMA transfer completion interrupt may occur (n = 0 to 3).

[Preventive measures]

This problem can be avoided by implementing any of the following workarounds.

(1) Stop all transfers from DMA channels temporarily

The following measure is effective if the program does not assume that the TCn bit of the DCHCn register is 1 except for the following workaround processing. (Since the TCn bit of the DCHCn register is cleared to 0 when it is read, execution of procedure (ii) under step <5> clears this bit.)

- <1> Disable interrupts (DI state).
- <2> Read the DMA restart register (DRST) and transfer the ENn bit of each channel to a general-purpose register (value A).
- <3> Write 00H to the DMA restart register (DRST) twice^{Note}. By executing this twice, the DMA transfer is definitely stopped before proceeding to <4>.
- <4> Set the INITn bit of the DCHCn register of the channel to be forcibly terminated to 1.
- <5> Perform the following operations for value A read in step <2> (value B).
 - (i) Clear the bit of the channel to be forcibly terminated to 0
 - (ii) If the TCn of the DCHCn register and ENn bit of the DRST register of a channel that is not terminated forcibly are 1 (AND makes 1), clear the bits of the channel to 0.
- <6> Write value B in <5> to the DRST register.
- <7> Enable interrupts (El state).

Note Execute this three times if the transfer target (transfer source or transfer destination) is the internal RAM.

Caution Be sure to execute step <5> to prevent the ENn bit of the DRST register from being set illegally for channels that are terminated normally during the period of steps <2> and <3>.

Remark n = 0 to 3

(2) Repeat setting the INITn bit of the DCHCn register until forcible termination of DMA transfer is completed normally

The procedure is shown below.

- <1> Copy the initial transfer count of the channel to be forcibly terminated to a general-purpose register.
- <2> Set the INITn bit of the DCHCn register of the channel to be forcibly terminated to 1.
- <3> Read the value of DMA transfer count register n (DBCn) of the channel to be forcibly terminated, and compare that value with the value copied in step <1>. If the two values do not match, repeat steps <2> and <3>.
- Cautions 1. If the DBCn register is read in step <3>, and if DMA transfer is stopped due to trouble, the remaining number of transfers will be read. If DMA transfer has been forcibly terminated correctly, the initial number of transfers will be read.
 - With this procedure, it may take some time for the channel in question to be forcibly terminated in an application in which DMA transfer of a channel other than that to be forcibly terminated is frequently executed.

Remark n = 0 to 3

6.14 Times Related to DMA Transfer

The overhead before and after DMA transfer and minimum execution internal system clock for DMA transfer are shown below. In the case of external memory access, the time depends on the type of external memory connected.

Table 6-3. Number of Minimum Execution Internal System Clocks in DMA Cycle

	DMA Cycle	Number of Minimum Execution Internal System Clocks		
<1> Time to respond to	DMA request	4 internal system clocks ^{Note 1}		
<2> Memory access	External memory access	Differs depending on the memory connected		
	Internal RAM access	2 internal system clocks ^{Note 2}		
	Peripheral I/O register access	4 internal system clocks + Number of wait cycles specified by VSWC register		

- **Notes 1.** If an external interrupt (INTPn) is specified as a factor of starting DMA transfer, noise elimination time is added (n = 000, 001, 010, 011, 020, 021, 030, 031, 100 to 103, 110 to 113, 120 to 123, or 130 to 133).
 - 2. Two clocks are required for the DMA cycle.

The minimum execution internal system clock in the DMA cycle in each transfer mode is as follows.

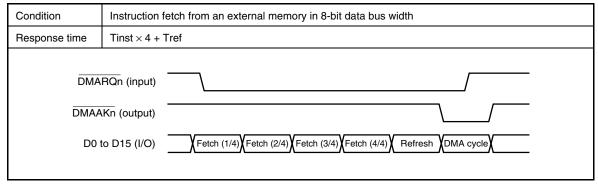
Single transfer: DMA response time (<1>) + Transfer source memory access (<2>) + 1^{Note} + Transfer

destination memory access (<2>)

Block transfer: DMA response time (<1>) + (Transfer source memory access (<2>) + 1^{Note} + Transfer

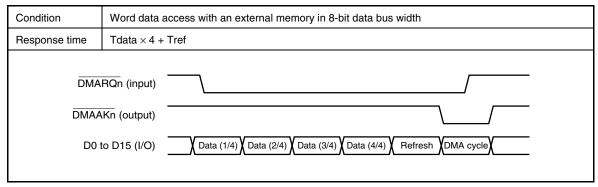
destination memory access (<2>)) × Number of transfers

Note One internal system clock is always inserted between the read cycle and write cycle of DMA transfer.

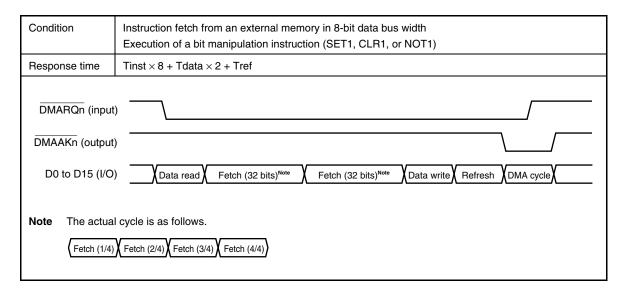

6.15 Response Time for DMA Transfer Request

6.15.1 Example of response time for DMA request

Caution The wait time under the following conditions is excluded.


- Occurrence of other DMA transfer with higher priority
- External bus hold

(1) Example 1


Remark n = 0 to 3

(2) Example 2

Remark n = 0 to 3

(3) Example 3

Remarks 1. Tinst: Number of clocks per bus cycle during instruction fetch

Tdata: Number of clocks per bus cycle during data access

Tref: Number of clocks per refresh cycle

2. n = 0 to 3

★ 6.15.2 Maximum response time for DMA transfer request

The response time for a DMA transfer request becomes the longest under the following conditions.

Caution The wait time under the following conditions is excluded.

- Occurrence of other DMA transfer with higher priority
- External bus hold

Condition	Instruction fetch from external memory with 8-bit data bus width Execution of bit manipulation instruction (SET1, CLR1, or NOT1) Instruction next to bit manipulation instruction is branch instruction (JR, JARL, Bcond, JMP) Either DMA transfer source or destination is internal RAM					
Response time	$Tinst \times 16 + Tdata \times 2 + Tref \times 4$					
Fetch (2. 8-bit but 16-bit but	Data read Fetch (32 bits) Note 1,2 Fetch (32 bits) Data write Fetch (32 bits) Fetch (32 bits) Fetch (32 bits) Fetch (32 bits) DMA cycle Lad cycle is as follows. 1/4) Fetch (2/4) Fetch (3/4) Fetch (4/4) s width: Eight bus cycles us width: Four bus cycles occurs as many times as the number of DRAMs connected (up to four).					

Remarks 1. Tinst: Number of clocks per bus cycle during instruction fetch

Tdata: Number of clocks per bus cycle during data access

Tref: Number of clocks per refresh cycle

2. n = 0 to 3

6.16 Cautions

(1) Memory boundary

The transfer operation is not guaranteed if the source or the destination address exceeds the area of DMA objects (external memory, internal RAM, or on-chip peripheral I/O) during DMA transfer.

(2) Transfer of misaligned data

DMA transfer of 16-bit bus width misaligned data is not supported. If the source or the destination address is set to an odd address, the LSB of the address is forcibly handled as "0".

(3) Bus arbitration for CPU

When an external device is targeted for DMA transfer, the CPU can access the internal ROM and internal RAM (if they are not subject to DMA transfer).

When DMA transfer is executed between the on-chip peripheral I/O and internal RAM, the CPU can access the internal ROM.

★ (4) Holding DMARQn signal

Be sure to keep the DMARQn signal active until the DMAAKn signal becomes active (n = 0 to 3).

(5) DMAAKn signal output

When the transfer object is internal RAM, the $\overline{\text{DMAAKn}}$ signal is not output during a DMA cycle for internal RAM (for example, if 2-cycle transfer is performed from internal RAM to an external memory, the $\overline{\text{DMAAKn}}$ signal is output only during a DMA write cycle for the external memory).

* If the transfer object is the on-chip peripheral I/O, the DMAAKn signal is output even in the DMA cycle executed on the on-chip peripheral I/O.

(6) DMA start factors

Do not start two or more DMA channels with the same factor. If two or more DMA channels are started with the same factor, the DMA channel with the lower priority may be accepted before the DMA channel with the higher priority.

★ (7) Program execution and DMA transfer with internal RAM

Do not execute DMA transfer to/from the internal RAM and an instruction in the internal RAM simultaneously.

★ (8) Restrictions related to automatic clearing of TCn bit of DCHCn register

The TCn bit of the DCHCn register is automatically cleared to 0 when it is read. When DMA transfer is executed to transfer data to or from the internal RAM when two or more DMA transfer channels are simultaneously used, the TCn bit may not be cleared even if it is read after completion of DMA transfer (n = 0 to 3).

Caution This restriction does not apply if one of the following conditions is satisfied.

- Only one channel of DMA transfer is used.
- DMA is not executed to transfer data to or from the internal RAM.

[Preventive measures]

To read the TCn bit of the DCHCn register of the DMA channel that is used to transfer data to or from the internal RAM, be sure to read the TCn bit three times in a row. This can accurately clear the TCn bit to 0.

★ (9) Read values of DSAn and DDAn registers

If the values of the DSAn and DDAn registers are read during DMA transfer, the values in the middle of being updated may be read (n = 0 to 3).

For example, if the DSAnH register and the DSAnL register are read in that order when the value of the DMA transfer source address (DSAn register) is "0000FFFFH" and the counting direction is incremental (when the SADn1 and SADn0 bits of the DADCn register = 00), the value of the DSAnL register differs as follows depending on whether DMA transfer is executed immediately after the DSAnH register has been read.

(a) If DMA transfer does not occur while the DSAn register is being read

<1> Reading DSAnH register: DSAnH = 0000H <2> Reading DSAnL register: DSAnL = FFFFH

(b) If DMA transfer occurs while the DSAn register is being read

<1> Reading DSAnH register: DSAnH = 0000H

<2> Occurrence of DMA transfer

<3> Incrementing DSAn register : DSAn = 00010000H

<4> Reading DSAnL register: DSAnL = 0000H

6.16.1 Suspension factors

DMA transfer is suspended if the following factors are issued.

- · Bus hold
- · Refresh cycle

If the factor that is suspending DMA transfer is no longer valid, DMA transfer promptly restarts.

6.17 DMA Transfer End

When DMA transfer ends and the TCn bit of the DCHCn register is set to 1, a DMA transfer end interrupt (INTDMAn) is issued to the interrupt controller (INTC) (n = 0 to 3).

CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V850E/MA1 has an on-chip interrupt controller (INTC) that can process a total of 50 interrupt request sources.

An interrupt is an event that occurs independently of program execution, and an exception is an event whose occurrence is dependent on program execution.

The V850E/MA1 can process interrupt requests from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (i.e. fetching of an illegal opcode) (exception trap).

7.1 Features

O Interrupts

• Non-maskable interrupts: 1 source

Caution P20 is fixed to NMI input. If the P20 bit of the P2 register is read, the level of the NMI pin is read, regardless of the values of the PM2 and PMC2 registers.

Set the valid edge of the NMI pin by using external interrupt mode register 0 (INTM0) (default value: rising edge detection).

- Maskable interrupts: 49 sources
- 8 levels of programmable priorities (maskable interrupts)
- · Multiple interrupt control according to priority
- Masks can be specified for each maskable interrupt request.
- Noise elimination, edge detection, and valid edge specification for external interrupt request signals.

O Exceptions

• Software exceptions: 32 sources

• Exception traps: 2 sources (illegal opcode exception and debug trap)

Interrupt/exception sources are listed in Table 7-1.

Table 7-1. Interrupt/Exception Source List (1/2)

Туре	rpe Classification Interrupt/Exception Source			Default	Exception	Handler	Restored PC		
,		Name	Controlling Register	Generating Source	Generating Unit	Priority	Code	Address	
Reset	Interrupt	RESET	_	Reset input –		_	0000H	00000000H	Undefined
	Interrupt	NMI0	_	NMI input	_	_	0010H	00000010H	nextPC
Software	Exception	TRAP0n ^{Note}	_	TRAP instruction	_	_	004nH ^{Note}	00000040H	nextPC
exception	Exception	TRAP1n ^{Note}	_	TRAP instruction	_	_	005nH ^{Note}	00000050H	nextPC
Exception trap	Exception	ILGOP/ DBG0	-	Illegal opcode/ DBTRAP instruction	-	-	0060H	00000060H	nextPC
Maskable	Interrupt	INTOV00	OVIC00	Timer 00 overflow	RPU	0	0080H	H08000000	nextPC
	Interrupt	INTOV01	OVIC01	Timer 01 overflow	RPU	1	0090H	00000090H	nextPC
	Interrupt	INTOV02	OVIC02	Timer 02 overflow	RPU	2	00A0H	000000A0H	nextPC
	Interrupt	INTOV03	OVIC03	Timer 03 overflow	RPU	3	00B0H	000000B0H	nextPC
	Interrupt	INTP000/ INTM000	P00IC0	Match of INTP000 pin/CCC00	Pin/RPU	4	00C0H	000000C0H	nextPC
	Interrupt	INTP001/ INTM001	P00IC1	Match of INTP001 pin/CCC01	Pin/RPU	5	00D0H	000000D0H	nextPC
	Interrupt	INTP010/ INTM010	P01IC0	Match of INTP010 pin/CCC10	Pin/RPU	6	00E0H	000000E0H	nextPC
	Interrupt	INTP011/ INTM011	P01IC1	Match of INTP011 pin/CCC11	Pin/RPU	7	00F0H	000000F0H	nextPC
	Interrupt	INTP020/ INTM020	P02IC0	Match of INTP020 pin/CCC20	Pin/RPU	8	0100H	00000100H	nextPC
	Interrupt	INTP021/ INTM021	P02IC1	Match of INTP021 pin/CCC21	Pin/RPU	9	0110H	00000110H	nextPC
	Interrupt	INTP030/ INTM030	P03IC0	Match of INTP030 pin/CCC30	Pin/RPU	10	0120H	00000120H	nextPC
	Interrupt	INTP031/ INTM031	P03IC1	Match of INTP031 pin/CCC31	Pin/RPU	11	0130H	00000130H	nextPC
	Interrupt	INTP100	P10IC0	INTP100 pin	Pin	12	0140H	00000140H	nextPC
	Interrupt	INTP101	P10IC1	INTP101 pin	Pin	13	0150H	00000150H	nextPC
	Interrupt	INTP102	P10IC2	INTP102 pin	Pin	14	0160H	00000160H	nextPC
	Interrupt	INTP103	P10IC3	INTP103 pin	Pin	15	0170H	00000170H	nextPC
	Interrupt	INTP110	P11IC0	INTP110 pin	Pin	16	0180H	00000180H	nextPC
	Interrupt	INTP111	P11IC1	INTP111 pin	Pin	17	0190H	00000190H	nextPC
	Interrupt	INTP112	P11IC2	INTP112 pin	Pin	18	01A0H	000001A0H	nextPC
	Interrupt	INTP113	P11IC3	INTP113 pin	Pin	19	01B0H	000001B0H	nextPC
	Interrupt	INTP120	P12IC0	INTP120 pin	Pin	20	01C0H	000001C0H	nextPC
	Interrupt	INTP121	P12IC1	INTP121 pin	Pin	21	01D0H	000001D0H	nextPC
	Interrupt	INTP122	P12IC2	INTP122 pin	Pin	22	01E0H	000001E0H	nextPC
	Interrupt	INTP123	P12IC3	INTP123 pin	Pin	23	01F0H	000001F0H	nextPC
	Interrupt	INTP130	P13IC0	INTP130 pin	Pin	24	0200H	00000200H	nextPC
	Interrupt	INTP131	P13IC1	INTP131 pin	Pin	25	0210H	00000210H	nextPC
	Interrupt	INTP132	P13IC2	INTP132 pin	Pin	26	0220H	00000220H	nextPC
	Interrupt	INTP133	P13IC3	INTP133 pin	Pin	27	0230H	00000230H	nextPC
	Interrupt	INTCMD0	CMICD0	CMD0 match signal	RPU	28	0240H	00000240H	nextPC
	Interrupt	INTCMD1	CMICD1	CMD1 match signal	RPU	29	0250H	00000250H	nextPC

Table 7-1. Interrupt/Exception Source List (2/2)

Туре	Classification		Interrup	t/Exception Source	Default	Exception	Handler	Restored PC	
		Name	Controlling Register	Generating Source	Generating Unit	Priority	Code	Address	
Maskable	Interrupt	INTCMD2	CMICD2	CMD2 match signal	RPU	30	0260H	00000260H	nextPC
	Interrupt	INTCMD3	CMICD3	CMD3 match signal	RPU	31	0270H	00000270H	nextPC
	Interrupt	INTDMA0	DMAIC0	End of DMA0 transfer	DMA	32	0280H	00000280H	nextPC
	Interrupt	INTDMA1	DMAIC1	End of DMA1 transfer	DMA	33	0290H	00000290H	nextPC
	Interrupt	INTDMA2	DMAIC2	End of DMA2 transfer	DMA	34	02A0H	000002A0H	nextPC
	Interrupt	INTDMA3	DMAIC3	End of DMA3 transfer	DMA	35	02B0H	000002B0H	nextPC
	Interrupt	INTCSI0	CSIIC0	CSI0 transmission/ reception completion	SIO	36	02C0H	000002C0H	nextPC
	Interrupt	INTSER0	SEIC0	UART0 reception error	SIO	37	02D0H	000002D0H	nextPC
	Interrupt	INTSR0	SRIC0	UART0 reception completion	SIO	38	02E0H	000002E0H	nextPC
	Interrupt	INTST0	STIC0	UART0 transmission completion	SIO	39	02F0H	000002F0H	nextPC
	Interrupt	INTCSI1	CSIIC1	CSI1 transmission/ reception completion	SIO	40	0300H	00000300H	nextPC
	Interrupt	INTSER1	SEIC1	UART1 reception error	SIO	41	0310H	00000310H	nextPC
	Interrupt	INTSR1	SRIC1	UART1 reception completion	SIO	42	0320H	00000320H	nextPC
	Interrupt	INTST1	STIC1	UART1 transmission completion	SIO	43	0330H	00000330H	nextPC
	Interrupt	INTCSI2	CSIIC2	CSI2 transmission/ reception completion	SIO	44	0340H	00000340H	nextPC
	Interrupt	INTSER2	SEIC2	UART2 reception error	SIO	45	0350H	00000350H	nextPC
	Interrupt	INTSR2	SRIC2	UART2 reception completion	SIO	46	0360H	00000360H	nextPC
	Interrupt	INTST2	STIC2	UART2 transmission completion	SIO	47	0370H	00000370H	nextPC
	Interrupt	INTAD	ADIC	End of A/D conversion	ADC	48	0380H	00000380H	nextPC

Note n = 0 to FH

Remarks 1. Default Priority: The priority order when two or more maskable interrupt requests occur at the

same time. The highest priority is 0.

Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing

is started. However, the value of the PC saved when an interrupt is acknowledged during divide instruction (DIV, DIVH, DIVH, DIVHU) execution is the value of the $\frac{1}{2}$

PC of the current instruction (DIV, DIVH, DIVU, DIVHU).

nextPC: The PC value that starts the processing following interrupt/exception processing.

2. The execution address of the illegal instruction when an illegal opcode exception occurs is calculated by (Restored PC - 4).

7.2 Non-Maskable Interrupts

A non-maskable interrupt request is acknowledged unconditionally, even when interrupts are in the interrupt disabled (DI) status. An NMI is not subject to priority control and takes precedence over all the other interrupts.

A non-maskable interrupt request is input from the NMI pin. When the valid edge specified by bit 0 (ESN0) of external interrupt mode register 0 (INTM0) is detected at the NMI pin, the interrupt occurs.

While the service program of the non-maskable interrupt is being executed, the acknowledgement of another non-maskable interrupt request is held pending. The pending NMI is acknowledged after the original service program of the non-maskable interrupt under execution has been terminated (by the RETI instruction). Note that if two or more NMI requests are input during the execution of the service program for an NMI, the number of NMIs that will be acknowledged after RETI instruction execution is only one.

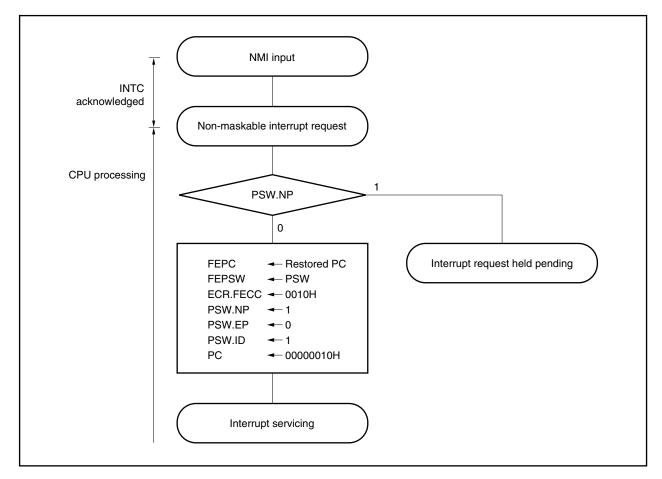
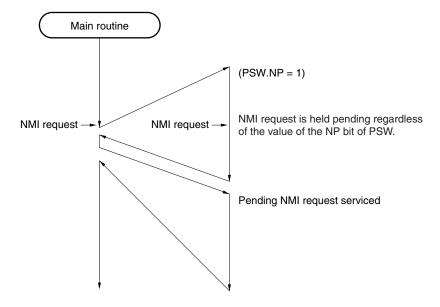
269

7.2.1 Operation

If a non-maskable interrupt is generated, the CPU performs the following processing, and transfers control to the handler routine:

- <1> Saves the restored PC to FEPC.
- <2> Saves the current PSW to FEPSW.
- <3> Writes exception code 0010H to the higher halfword (FECC) of ECR.
- <4> Sets the NP and ID bits of the PSW and clears the EP bit.
- <5> Sets the handler address (00000010H) corresponding to the non-maskable interrupt to the PC, and transfers control.

The servicing configuration of a non-maskable interrupt is shown in Figure 7-1.

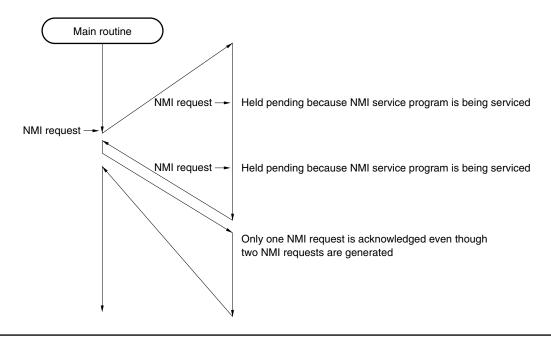

Figure 7-1. Servicing Configuration of Non-Maskable Interrupt

Figure 7-2. Acknowledging Non-Maskable Interrupt Request

(a) If a new NMI request is generated while an NMI service program is being executed

(b) If a new NMI request is generated twice while an NMI service program is being executed

7.2.2 Restore

Execution is restored from the non-maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- <1> Restores the values of the PC and the PSW from FEPC and FEPSW, respectively, because the EP bit of the PSW is 0 and the NP bit of the PSW is 1.
- <2> Transfers control back to the address of the restored PC and PSW.

Figure 7-3 illustrates how the RETI instruction is processed.

PSW.EP

O

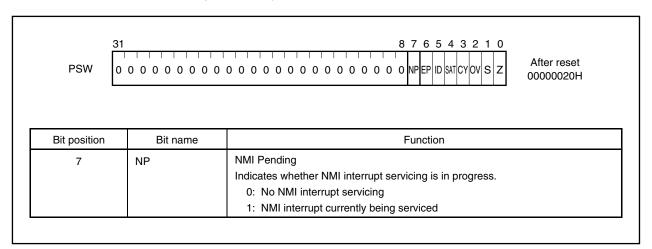
PSW.NP

1

PC +-EIPC
PSW +-EIPSW

Original processing restored

Figure 7-3. RETI Instruction Processing


Caution When the PSW.EP bit and PSW.NP bit are changed by the LDSR instruction during nonmaskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 1 using the LDSR instruction immediately before the RETI instruction.

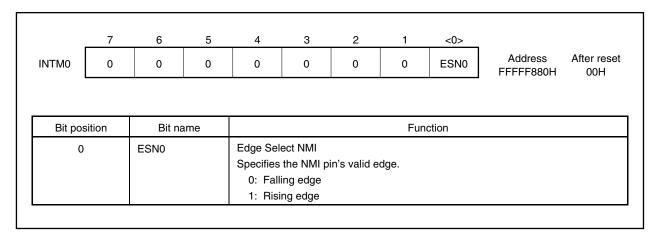
Remark The solid line shows the CPU processing flow.

7.2.3 Non-maskable interrupt status flag (NP)

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) servicing is under execution.

This flag is set when an NMI interrupt has been acknowledged, and masks all interrupt requests and exceptions to prohibit multiple interrupts from being acknowledged.

7.2.4 Noise elimination


NMI pin noise is eliminated with analog delay. The delay time is 60 to 300 ns. A signal input that changes within the delay time is not internally acknowledged.

7.2.5 Edge detection function

(1) External interrupt mode register 0 (INTM0)

External interrupt mode register 0 (INTM0) is a register that specifies the valid edge of a non-maskable interrupt (NMI). The NMI valid edge can be specified to be either the rising edge or the falling edge by the ESN0 bit.

This register can be read/written in 8-bit or 1-bit units.

7.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V850E/MA1 has 49 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers (programmable priority control).

When an interrupt request has been acknowledged, the acknowledgement of other maskable interrupt requests is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt service routine, the interrupt enabled (EI) status is set, which enables servicing of interrupts having a higher priority than the interrupt request in progress (specified by the interrupt control register). Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

However, if multiple interrupts are executed, the following processing is necessary.

- <1> Save EIPC and EIPSW in memory or a general-purpose register before executing the EI instruction.
- <2> Execute the DI instruction before executing the RETI instruction, then reset EIPC and EIPSW with the values saved in <1>.

7.3.1 Operation

If a maskable interrupt occurs by INT input, the CPU performs the following processing, and transfers control to a handler routine:

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower halfword of ECR (EICC).
- <4> Sets the ID bit of the PSW and clears the EP bit.
- <5> Sets the handler address corresponding to each interrupt to the PC, and transfers control.

The servicing configuration of a maskable interrupt is shown in Figure 7-4.

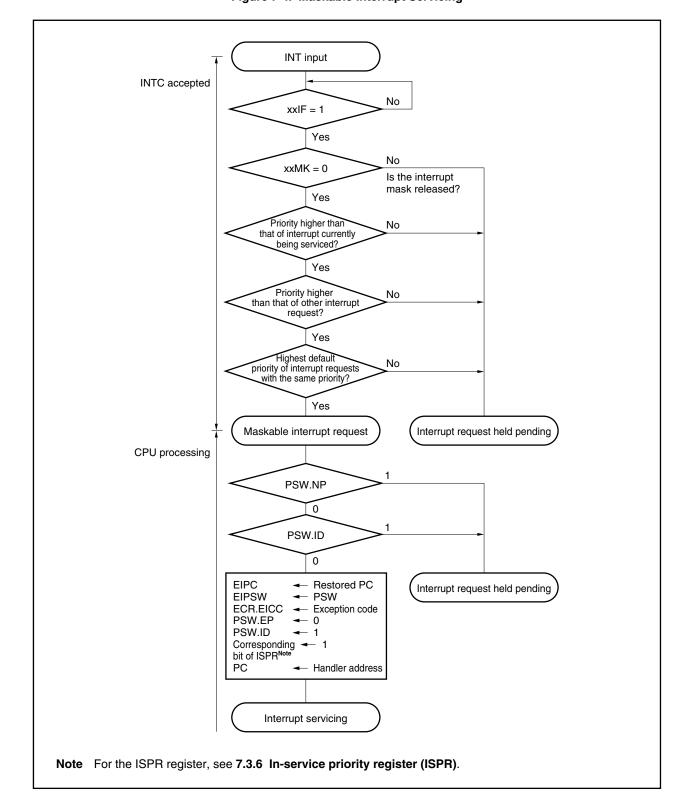
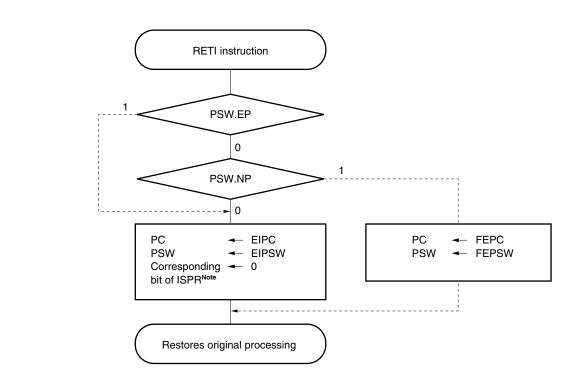


Figure 7-4. Maskable Interrupt Servicing

The INT input masked by the interrupt controllers and the INT input that occurs while another interrupt is being serviced (when PSW.NP = 1 or PSW.ID = 1) are held pending internally by the interrupt controller. In such case, if the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 as set by the RETI and LDSR instructions, input of the pending INT starts the new maskable interrupt servicing.

7.3.2 Restore


Recovery from maskable interrupt servicing is carried out by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- <1> Restores the values of the PC and the PSW from EIPC and EIPSW because the EP bit of the PSW is 0 and the NP bit of the PSW is 0.
- <2> Transfers control to the address of the restored PC and PSW.

Figure 7-5 illustrates the processing of the RETI instruction.

Figure 7-5. RETI Instruction Processing

Note For the ISPR register, see 7.3.6 In-service priority register (ISPR).

Caution When the PSW.EP bit and the PSW.NP bit are changed by the LDSR instruction during maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set PSW.EP back to 0 and PSW.NP back to 0 using the LDSR instruction immediately before the RETI instruction.

Remark The solid line shows the CPU processing flow.

7.3.3 Priorities of maskable interrupts

The V850E/MA1 provides multiple interrupt servicing in which an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels that are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxlCn). When two or more interrupts having the same priority level specified by the xxPRn bit are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, refer to **Table 7-1 Interrupt/Exception Source List**. The programmable priority control customizes interrupt requests into eight levels by setting the priority level specification flag.

Note that when an interrupt request is acknowledged, the ID flag of PSW is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction in the interrupt service program) to set the interrupt enable mode.

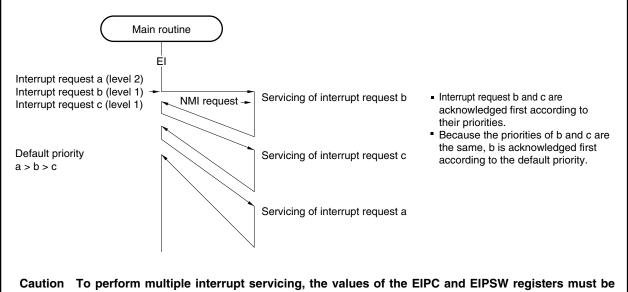
Remark xx: Identification name of each peripheral unit (refer to **Table 7-2**)

n: Peripheral unit number (refer to Table 7-2).

Main routine Servicing of a Servicing of b ĖΙ Interrupt Interrupt request a request b (level 3) Interrupt request b is acknowledged because the (level 2) priority of b is higher than that of a and interrupts are enabled. Servicing of c Interrupt request c Interrupt request d Although the priority of interrupt request d is higher (level 3) (level 2)than that of c, d is held pending because interrupts are disabled. Servicing of d Servicing of e ĖΙ Interrupt request e Interrupt request f Interrupt request f is held pending even if interrupts are (level 2) (level 3) enabled because its priority is lower than that of e. Servicing of f Servicing of g Εİ Interrupt request h Interrupt request g (level 1) -Interrupt request h is held pending even if interrupts are (level 1) enabled because its priority is the same as that of g. Servicing of h

Figure 7-6. Example of Processing in Which Another Interrupt Request Is Issued While an Interrupt Is Being Serviced (1/2)

Caution To perform multiple interrupt servicing, the values of the EIPC and EIPSW registers must be saved before executing the EI instruction. When returning from multiple interrupt servicing, restore the values of EIPC and EIPSW after executing the DI instruction.


Remarks 1. a to u in the figure are the temporary names of interrupt requests shown for the sake of explanation.

2. The default priority in the figure indicates the relative priority between two interrupt requests.

Main routine Servicing of i ĖΙ Servicing of k ΕI Interrupt request Interrupt request i (level 3) (level 2) Interrupt request j is held pending because its Interrupt request l priority is lower than that of i. (level 1) k that occurs after j is acknowledged because it has the higher priority. Servicing of j Servicing of I Interrupt requests m and n are held pending Ínterrupt because servicing of I is performed in the interrupt request m (level 3) disabled status. Interrupt request I Ínterrupt request n (level 2) (level 1) _ Pending interrupt requests are acknowledged after Servicing of n servicing of interrupt request I. At this time, interrupt request n is acknowledged first even though m has occurred first because the priority of n is higher than that of m. Servicing of m Servicing of o Servicing of p ĖΙ Servicing of q Interrupt request o Ínterrupt Servicing of r (level 3) Interrupt request p request q Interrupt (level 1) request r (level 0) If levels 3 to 0 are acknowledged Servicing of s Pending interrupt requests t and u are acknowledged after servicing of s. Because the priorities of t and u are the same, u is Interrupt acknowledged first because it has the higher request t default priority, regardless of the order in which the Interrupt request s Interrupt request u interrupt requests have been generated. (level 1) (level 2)→ Servicing of u Servicing of t Notes 1. Lower default priority Higher default priority Caution To perform multiple interrupt servicing, the values of the EIPC and EIPSW registers must be saved before executing the El instruction. When returning from multiple interrupt servicing, restore the values of EIPC and EIPSW after executing the DI instruction.

Figure 7-6. Example of Processing in Which Another Interrupt Request Is Issued While an Interrupt Is Being Serviced (2/2)

Figure 7-7. Example of Servicing Interrupt Requests Simultaneously Generated

Caution To perform multiple interrupt servicing, the values of the EIPC and EIPSW registers must be saved before executing the EI instruction. When returning from multiple interrupt servicing, restore the values of EIPC and EIPSW after executing the DI instruction.

Remark a to c in the figure are the temporary names of interrupt requests shown for the sake of explanation.

7.3.4 Interrupt control register (xxlCn)

An interrupt control register is assigned to each interrupt request (maskable interrupt) and sets the control conditions for each maskable interrupt request.

This register can be read/written in 8-bit or 1-bit units.

* Caution Read the xxIFn bit of the xxICn register in the interrupt disabled (DI) state. Otherwise if the timing of interrupt acknowledgement and bit reading conflict, normal values may not be read.

Bit position	Bit name	Function								
7	xxIFn	Interrupt Request Flag This is an interrupt request flag. 0: Interrupt request not issued 1: Interrupt request issued The flag xxIFn is reset automatically by the hardware if an interrupt request is acknowledged.								
6	xxMKn	Mask Flag This is an interrupt mask flag. 0: Interrupt servicing enabled 1: Interrupt servicing disabled (pending)								
2 to 0	xxPRn2 to xxPRn0	Priority 8 levels of pr	iority order	are specified	d for each interrupt.					
		xxPRn2	xxPRn1	xxPRn0	Interrupt priority specification bit					
		0	0	0	Specifies level 0 (highest).					
		0	0	1	Specifies level 1.					
		0	1	0	Specifies level 2.					
		0	1	1	Specifies level 3.					
		1	0	0	Specifies level 4.					
		1	0	1	Specifies level 5.					
		1	1	0	Specifies level 6.					
		1	1	1	Specifies level 7 (lowest).					

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to Table 7-2).

The addresses and bits of the interrupt control registers are as follows:

Table 7-2. Address and Bits of Interrupt Control Register (1/2)

Address	Register				В	it			
		<7>	<6>	5	4	3	2	1	0
FFFFF110H	OVIC00	OVIF00	OVMK00	0	0	0	OVPR002	OVPR001	OVPR000
FFFFF112H	OVIC01	OVIF01	OVMK01	0	0	0	OVPR012	OVPR011	OVPR010
FFFFF114H	OVIC02	OVIF02	OVMK02	0	0	0	OVPR022	OVPR021	OVPR020
FFFFF116H	OVIC03	OVIF03	OVMK03	0	0	0	OVPR032	OVPR031	OVPR030
FFFFF118H	P00IC0	P00IF0	P00MK0	0	0	0	P00PR02	P00PR01	P00PR00
FFFFF11AH	P00IC1	P00IF1	P00MK1	0	0	0	P00PR12	P00PR11	P00PR10
FFFFF11CH	P01IC0	P01IF0	P01MK0	0	0	0	P01PR02	P01PR01	P01PR00
FFFFF11EH	P01IC1	P01IF1	P01MK1	0	0	0	P01PR12	P01PR11	P01PR10
FFFFF120H	P02IC0	P02IF0	P02MK0	0	0	0	P02PR02	P02PR01	P02PR00
FFFFF122H	P02IC1	P02IF1	P02MK1	0	0	0	P02PR12	P02PR11	P02PR10
FFFFF124H	P03IC0	P03IF0	P03MK0	0	0	0	P03PR02	P03PR01	P03PR00
FFFFF126H	P03IC1	P03IF1	P03MK1	0	0	0	P03PR12	P03PR11	P03PR10
FFFFF128H	P10IC0	P10IF0	P10MK0	0	0	0	P10PR02	P10PR01	P10PR00
FFFFF12AH	P10IC1	P10IF1	P10MK1	0	0	0	P10PR12	P10PR11	P10PR10
FFFFF12CH	P10IC2	P10IF2	P10MK2	0	0	0	P10PR22	P10PR21	P10PR20
FFFFF12EH	P10IC3	P10IF3	P10MK3	0	0	0	P10PR32	P10PR31	P10PR30
FFFFF130H	P11IC0	P11IF0	P11MK0	0	0	0	P11PR02	P11PR01	P11PR00
FFFFF132H	P11IC1	P11IF1	P11MK1	0	0	0	P11PR12	P11PR11	P11PR10
FFFFF134H	P11IC2	P11IF2	P11MK2	0	0	0	P11PR22	P11PR21	P11PR20
FFFFF136H	P11IC3	P11IF3	P11MK3	0	0	0	P11PR32	P11PR31	P11PR30
FFFFF138H	P12IC0	P12IF0	P12MK0	0	0	0	P12PR02	P12PR01	P12PR00
FFFFF13AH	P12IC1	P12IF1	P12MK1	0	0	0	P12PR12	P12PR11	P12PR10
FFFFF13CH	P12IC2	P12IF2	P12MK2	0	0	0	P12PR22	P12PR21	P12PR20
FFFFF13EH	P12IC3	P12IF3	P12MK3	0	0	0	P12PR32	P12PR31	P12PR30
FFFFF140H	P13IC0	P13IF0	P13MK0	0	0	0	P13PR02	P13PR01	P13PR00
FFFFF142H	P13IC1	P13IF1	P13MK1	0	0	0	P13PR12	P13PR11	P13PR10
FFFFF144H	P13IC2	P13IF2	P13MK2	0	0	0	P13PR22	P13PR21	P13PR20
FFFFF146H	P13IC3	P13IF3	P13MK3	0	0	0	P13PR32	P13PR31	P13PR30
FFFFF148H	CMICD0	CMIF0	CMMK0	0	0	0	CMPR02	CMPR01	CMPR00
FFFFF14AH	CMICD1	CMIF1	CMMK1	0	0	0	CMPR12	CMPR11	CMPR10
FFFFF14CH	CMICD2	CMIF2	CMMK2	0	0	0	CMPR22	CMPR21	CMPR20
FFFFF14EH	CMICD3	CMIF3	СММКЗ	0	0	0	CMPR32	CMPR31	CMPR30
FFFFF150H	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00
FFFFF152H	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10
FFFFF154H	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20
FFFFF156H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30
FFFFF158H	CSIIC0	CSIIF0	CSIMK0	0	0	0	CSIPR02	CSIPR01	CSIPR00

Table 7-2. Address and Bits of Interrupt Control Register (2/2)

Address	Register		Bit							
		<7>	<6>	5	4	3	2	1	0	
FFFFF15AH	SEIC0	SEIF0	SEMK0	0	0	0	SEPR02	SEPR01	SEPR00	
FFFFF15CH	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00	
FFFFF15EH	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00	
FFFFF160H	CSIIC1	CSIIF1	CSIMK1	0	0	0	CSIPR12	CSIPR11	CSIPR10	
FFFFF162H	SEIC1	SEIF1	SEMK1	0	0	0	SEPR12	SEPR11	SEPR10	
FFFFF164H	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10	
FFFFF166H	STIC1	STIF1	STMK1	0	0	0	STPR12	STPR11	STPR10	
FFFFF168H	CSIIC2	CSIIF2	CSIMK2	0	0	0	CSIPR22	CSIPR21	CSIPR20	
FFFFF16AH	SEIC2	SEIF2	SEMK2	0	0	0	SEPR22	SEPR21	SEPR20	
FFFFF16CH	SRIC2	SRIF2	SRMK2	0	0	0	SRPR22	SRPR21	SRPR20	
FFFFF16EH	STIC2	STIF2	STMK2	0	0	0	STPR22	STPR21	STPR20	
FFFFF170H	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0	

7.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)

These registers set the interrupt mask state for the maskable interrupts. The xxMKn bit of the IMR0 to IMR3 registers is equivalent to the xxMKn bit of the xxICn register.

The IMRm register (m = 0 to 3) can be read/written in 16-bit units.

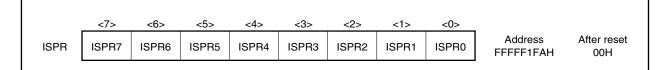
If the higher 8 bits of the IMRm register are used as an IMRmH register and the lower 8 bits as an IMRmL register, these registers can be read/written in 8-bit or 1-bit units.

Bits 15 to 1 of the IMR3 register (bits 7 to 0 of the IMR3H register and bits 7 to 1 of the IMR3L register) are fixed to 1. If these bits are not 1, the operation cannot be guaranteed.

Caution The device file defines the xxMKn bit of the xxICn register as a reserved word. If a bit is manipulated using the name of xxMKn, the contents of the xxICn register, instead of the IMRm register, are rewritten (as a result, the contents of the IMRm register are also rewritten).

	15	14	13	12	11	10	9	8		
IMR0	P10MK3	P10MK2	P10MK1	P10MK0	P03MK1	P03MK0	P02MK1	P02MK0	Address FFFFF100H	After rese FFFFH
	7	6	5	4	3	2	1	0		
	P01MK1	P01MK0	P00MK1	P00MK0	ОУМКЗ	OVMK2	OVMK1	OVMK0		
	15	14	13	12	11	10	9	8		
IMR1	СММКЗ	CMMK2	CMMK1	СММКО	P13MK3	P13MK2	P13MK1	P13MK0	Address FFFFF102H	After rese
	7	6	5	4	3	2	1	0		
	P12MK3	P12MK2	P12MK1	P12MK0	P11MK3	P11MK2	P11MK1	P11MK0		
	15	14	13	12	11	10	9	8		
IMR2	STMK2	SRMK2	SEMK2	CSIMK2	STMK1	SRMK1	SEMK1	CSIMK1	Address FFFFF104H	After reset FFFFH
	7	6	5	4	3	2	1	0		
	STMK0	SRMK0	SEMK0	CSIMK0	DMAMK3	DMAMK2	DMAMK1	DMAMK0		
	15	14	13	12	11	10	9	8		
IMR3	1	1	1	1	1	1	1	1	Address FFFFF106H	After rese FFFFH
	7	6	5	4	3	2	1	0		
	1	1	1	1	1	1	1	ADMK		
Bit po	sition	Bit na	ame				Fun	ction		
15 to 0 xxMKn (IMR0 to 2), 0 (IMR3)			Mask Flag Interrupt mask flag 0: Interrupt servicing enabled 1: Interrupt servicing disabled (pending)							

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

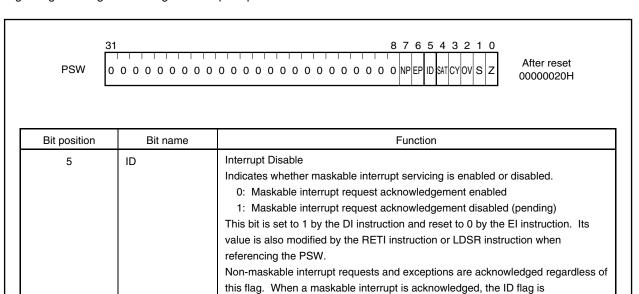

7.3.6 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request is acknowledged, the bit of this register corresponding to the priority level of that interrupt request is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically reset to 0 by hardware. However, it is not reset to 0 when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only in 8-bit or 1-bit units.

Caution In the interrupt enabled (EI) state, if an interrupt is acknowledged during the reading of the ISPR register may be read after the bit is set (1) by this interrupt acknowledgement. To read the value of the ISPR register properly before interrupt acknowledgement, read it in the interrupt disabled (DI) state.



Bit position	Bit name	Function
7 to 0	ISPR7 to ISPR0	In-Service Priority Flag Indicates priority of interrupt currently acknowledged 0: Interrupt request with priority n not acknowledged 1: Interrupt request with priority n acknowledged

Remark n = 0 to 7 (priority level)

7.3.7 Maskable interrupt status flag (ID)

The ID flag is bit 5 of the PSW and controls the maskable interrupt's operating state, and stores control information regarding enabling or disabling of interrupt requests.

automatically set to 1 by hardware.

reset to 0.

The interrupt request generated during the acknowledgement disabled period (ID = 1) is acknowledged when the xxIFn bit of xxICn is set to 1, and the ID flag is

7.3.8 Noise elimination

The noise of the INTPn, $\overline{\text{INTPm}}$, and TI000 to TI030 pins is eliminated with analog delay (n = 000, 001, 010, 011, 020, 021, 030, 031, m = 103 to 100, 113 to 110, 123 to 120, and 133 to 130). The delay time is about 60 to 220 ns. A signal input that changes within the delay time is not internally acknowledged.

7.3.9 Interrupt trigger mode selection

The valid edge of pins INTP0n0, INTP0n1, $\overline{\text{INTP1nm}}$, ADTRG, and Tl0n0 can be selected by program. Moreover, a level trigger can be selected for the $\overline{\text{INTP1nm}}$ pin (n = 0 to 3, m = 0 to 3). The edge that can be selected as the valid edge is one of the following.

- · Rising edge
- · Falling edge
- · Both the rising and falling edges

When the INTP0n0, INTP0n1, INTP1nm, ADTRG, and TI0n0 pins are edge-detected, they become interrupt sources and capture trigger, A/D trigger, and timer external count inputs (n = 0 to 3, m = 0 to 3).

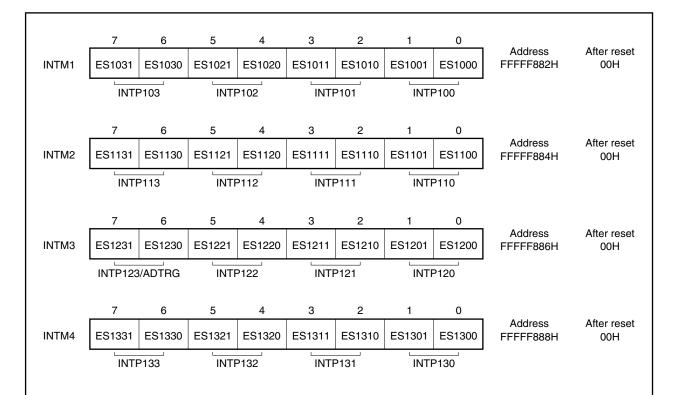
The valid edge is specified by external interrupt mode registers 1 to 4 (INTM1 to INTM4) and valid edge select registers (SESC0 to SESC3). The level trigger is specified by external interrupt mode registers 1 to 4 (INTM1 to INTM4).

(1) External interrupt mode registers 1 to 4 (INTM1 to INTM4)

These registers specify the trigger mode for external interrupt requests (INTP100 to INTP103, INTP110 to INTP113, INTP120 to INTP122, INTP123/ADTRG, INTP130 to INTP133), input via external pins. The correspondence between each register and the external interrupt requests that register controls is shown below.

INTM1: INTP100 to INTP103
 INTM2: INTP110 to INTP113

• INTM3: INTP120 to INTP122, INTP123/ADTRG


• INTM4: INTP130 to INTP133

INTP123 is the alternate function pin of the A/D converter external trigger input (ADTRG). Therefore, when INTP123/ADTRG is set to the external trigger mode by the TRG0 to TRG2 bits of the A/D converter mode register (ADM), the ES1231 and ES1230 bits specify the valid edge of the external trigger input (ADTRG).

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

These registers can be read/written in 8-bit units.

Caution Before setting the $\overline{\text{INTP1nm}}$ or ADTRG pin in the trigger mode, set the PMCn register. If the PMCx register is set after the INTM1 to INTM4 registers have been set, an illegal interrupt may occur depending on the timing of setting the PMCn register (n = 0 to 3, m = 0 to 3, x = 0, 2, or 3).

Bit position	Bit name		Function							
7 to 0	ES1nm1, ES1nm0 (n = 0 to 3,	Edge Select Specifies the v	/alid edge of t	he INTP1nm and ADTRG pins.						
	m = 0 to 3)	ES1nm1	ES1nm0	Operation						
		0	0	Falling edge						
				0	1	Rising edge				
							İ			
		1	1 1 Both rising and falling edges							

- Notes 1. The level of the INTP1nm pin is sampled at the interval of the system clock divided by two, and the P1nIFm bit is latched as an interrupt request when a low level is detected. Therefore, even if the P1nIFm bit of the interrupt control register (P1nICm) is automatically cleared to 0 when the CPU acknowledges an interrupt, the P1nIFm bit is immediately set to 1, and an interrupt is generated continuously. To avoid this, forcibly clear the P1nIFm bit to 0 after making the INTP1nm pin inactive for an external device in the interrupt service routine (n = 0 to 3, m = 0 to 3).
 - 2. When a lower priority level-detection interrupt request (INTP1nm) occurs while another interrupt is being serviced and this newly generated level-detection interrupt request becomes inactive before the current interrupt service is complete, this new interrupt request (INTP1nm) is held pending. To avoid acknowledging this INTP1nm interrupt request, clear the P1nIFm bit of the interrupt control register (n = 0 to 3, m = 0 to 3).
 - 3. When this pin is used as the ADTRG pin, do not select this setting (level detection).

(2) Valid edge select registers C0 to C3 (SESC0 to SESC3)

These registers specify the valid edge for external interrupt requests (INTP000, INTP001, INTP010, INTP011, INTP020, INTP021, INTP030, INTP031, Tl000 to Tl030), input via external pins. The correspondence between each register and the external interrupt requests that register controls is shown below.

- SESC0: TI000, INTP000, INTP001
- SESC1: TI010, INTP010, INTP011
- SESC2: TI020, INTP020, INTP021
- SESC3: TI030, INTP030, INTP031

The valid edge can be specified independently for each pin (rising edge, falling edge, or both rising and falling edges).

These registers can be read/written in 8-bit units.

- Cautions 1. When using the INTP0n0/Tl0n0 or INTP0n1 pin as INTP0n0, INTP0n1, be sure to preset the TMCCAEn bit of timer mode control register Cn0 (TMCCn0) to 1 (n = 0 to 3).
 - 2. Before setting the Tl0n0, INTP0n1, or INTP0n0 pin in the trigger mode, set the PMCx register.

If the PMCx register is set after the SESC0 to SESC3 registers have been set, an illegal interrupt may occur depending on the timing of setting the PMCx register (n = 0 to 3, x = 0, 1, 2, or 5).

	7	6	5	4	3	2	1	0	Address	After rese	
SESC0	TES01	TES00	0	0	IES0011	IES0010	ES0001	IES0000	FFFFF609H	00H	
	TI	000			INT	P001	INT	P000			
	7	6	5	4	3	2	1	0	Address	After reset	
SESC1	TES11	TES10	0	0	IES0111	IES0110	IES0101	IES0100	FFFFF619H	00H	
	TI	010			INT	P011	INT	P010			
	7	0	_	4	0	0		0			
05000	7	6	5	4	3	2	1	0	Address	After rese	
SESC2	TES21	TES20	0	0	IES0211			IES0200	FFFFF629H	00H	
	TI	020			INT	TP021	INT	P020			
	7	6	5	4	3	2	1	0			
SESC3	TES31	TES30	0	0	IES0311	IES0310	IES0301	IES0300	Address FFFFF639H	After rese	
	TI	030			INT	P031	INT	P030			
Bit pos	ition	Bit name		Function							
7, 6	6 TE	ESn1,	Edge	Edge Select							
		ESn0 = 0 to 3)	Spec	ifies the va	alid edge d	of the INTPr	and TI00	0 to TI030 p	ins.		
3, 2		Sn1, IESn0		Sn1	xESn0			Operation	n		
		= 001, 011, 21, 031)		0	0	Falling edg	ge				
	02	.1,001)		0	1	Rising edg	e				
1, (Sn1, IESn0		1	0	RFU (rese	rved)				
	l (n	(n = 000, 010, 020, 030)		1	1	Both rising and falling edges					
				1	ı	DOUT HSITIY	anu iaiiin	y euges			

7.4 Software Exception

A software exception is generated when the CPU executes the TRAP instruction, and can always be acknowledged.

7.4.1 Operation

If a software exception occurs, the CPU performs the following processing, and transfers control to the handler routine:

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- <4> Sets the EP and ID bits of the PSW.
- <5> Sets the handler address (00000040H or 00000050H) corresponding to the software exception to the PC, and transfers control.

Figure 7-8 illustrates the processing of a software exception.

TRAP instructionNote

EIPC — Restored PC
EIPSW — PSW
ECR.EICC — Exception code
PSW.EP — 1
PSW.ID — 1
PC — Handler address

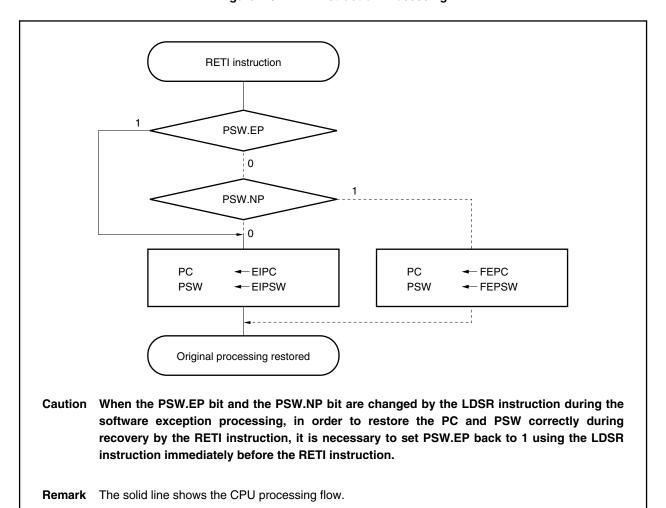
Exception processing

Note TRAP instruction format: TRAP vector (the vector is a value from 00H to 1FH)

Figure 7-8. Software Exception Processing

The handler address is determined by the TRAP instruction's operand (vector). If the vector is 00H to 0FH, it becomes 00000040H, and if the vector is 10H to 1FH, it becomes 00000050H.

7.4.2 Restore


Recovery from software exception processing is carried out by the RETI instruction.

By executing the RETI instruction, the CPU carries out the following processing and shifts control to the restored PC's address.

- <1> Loads the restored PC and PSW from EIPC and EIPSW because the EP bit of the PSW is 1.
- <2> Transfers control to the address of the restored PC and PSW.

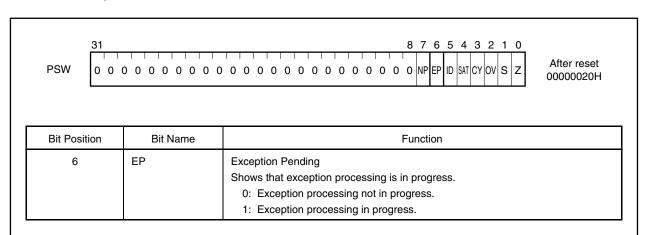
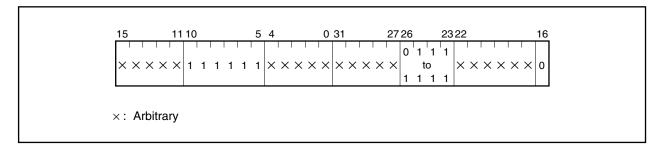

Figure 7-9 illustrates the processing of the RETI instruction.

Figure 7-9. RETI Instruction Processing

7.4.3 Exception status flag (EP)

The EP flag is bit 6 of the PSW, and is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.



7.5 Exception Trap

An exception trap is an interrupt that is requested when the illegal execution of an instruction takes place. In the V850E/MA1, an illegal opcode exception (ILGOP: Illegal Opcode Trap) is considered as an exception trap.

7.5.1 Illegal opcode definition

The illegal instruction has an opcode (bits 10 to 5) of 111111B, a sub-opcode (bits 26 to 23) of 0111B to 1111B, and a sub-opcode (bit 16) of 0B. An exception trap is generated when an instruction applicable to this illegal instruction is executed.

Caution Since it is possible to assign this instruction to an illegal opcode in the future, it is recommended that it not be used.

(1) Operation

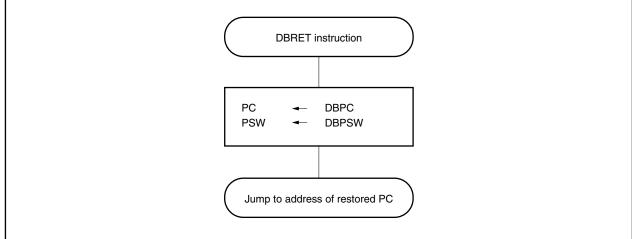
If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine:

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the NP, EP, and ID bits of the PSW.
- <4> Sets the handler address (00000060H) corresponding to the exception trap to the PC, and transfers control.

Figure 7-10 illustrates the processing of the exception trap.

Exception trap (ILGOP) occurs CPU processing DBPC - Restored PC DBPSW ← PSW PSW.NP **←** 1 PSW.EP **→** 1 PSW.ID **←** 1 **←** 00000060H **Exception processing**

Figure 7-10. Exception Trap Processing


(2) Restore

Recovery from an exception trap is carried out by the DBRET instruction. By executing the DBRET instruction, the CPU carries out the following processing and controls the address of the restored PC.

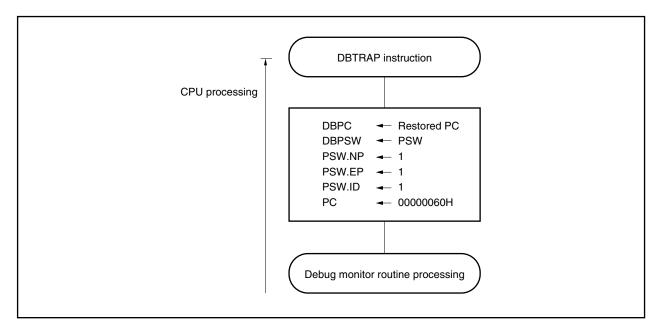
- <1> Loads the restored PC and PSW from DBPC and DBPSW.
- <2> Transfers control to the address indicated by the restored PC and PSW.

Figure 7-11 illustrates the restore processing from an exception trap.

Figure 7-11. Restore Processing from Exception Trap

7.5.2 Debug trap

The debug trap is an exception that can be acknowledged every time and is generated by execution of the DBTRAP instruction.

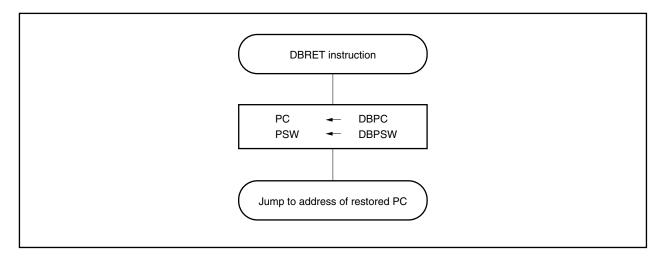

When the debug trap is generated, the CPU performs the following processing.

(1) Operation

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the NP, EP and ID bits of the PSW.
- <4> Sets the handler address (0000060H) corresponding to the debug trap to the PC and transfers control.

Figure 7-12 illustrates the processing of the debug trap.

Figure 7-12. Debug Trap Processing


(2) Restore

Recovery from a debug trap is carried out by the DBRET instruction. By executing the DBRET instruction, the CPU carries out the following processing and controls the address of the restored PC.

- <1> Loads the restored PC and PSW from DBPC and DBPSW.
- <2> Transfers control to the address indicated by the restored PC and PSW.

Figure 7-13 illustrates the restore processing from a debug trap.

Figure 7-13. Restore Processing from Debug Trap

7.6 Multiple Interrupt Servicing Control

Multiple interrupt servicing control is a process by which an interrupt request that is currently being serviced can be interrupted during servicing if there is an interrupt request with a higher priority level, and the higher priority interrupt request is acknowledged and serviced first.

If there is an interrupt request with a lower priority level than the interrupt request currently being serviced, that interrupt request is held pending.

Multiple interrupt servicing control of maskable interrupts is executed when interrupts are enabled (ID = 0). Thus, to execute multiple interrupts, it is necessary to set the interrupt enabled state (ID = 0) even for an interrupt service routine.

If maskable interrupts are enabled or a software exception is generated in a maskable interrupt or software exception service program, it is necessary to save EIPC and EIPSW.

This is accomplished by the following procedure.

(1) Acknowledgement of maskable interrupts in service program

Service program of maskable interrupt or exception

... ...

- · EIPC saved to memory or register
- EIPSW saved to memory or register
- El instruction (interrupt acknowledgement enabled)

...

• DI instruction (interrupt acknowledgement disabled)

- · Saved value restored to EIPSW
- Saved value restored to EIPC
- RETI instruction

Maskable interrupt acknowledgement

(2) Generation of exception in service program

Service program of maskable interrupt or exception

•••

- EIPC saved to memory or register
- · EIPSW saved to memory or register

...

• TRAP instruction

- · Saved value restored to EIPSW
- Saved value restored to EIPC
- RETI instruction

 \leftarrow Exception such as TRAP instruction acknowledged.

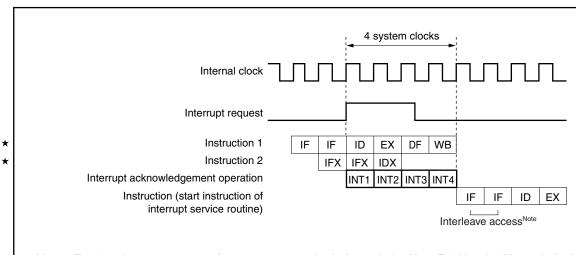
The priority order for multiple interrupt servicing control has 8 levels, from 0 to 7 for each maskable interrupt request (0 is the highest priority), but it can be set as desired via software. The priority order is set using the xxPRn0 to xxPRn2 bits of the interrupt control request register (xxlCn), provided for each maskable interrupt request. After system reset, an interrupt request is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.

```
(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)
```

Interrupt servicing that has been suspended as a result of multiple servicing control is resumed after the servicing of the higher priority interrupt has been completed and the RETI instruction has been executed. A pending interrupt request is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

Caution In a non-maskable interrupt service routine (time until the RETI instruction is executed), maskable interrupts are suspended and not acknowledged.


Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to **Table 7-2**)

7.7 Interrupt Latency Time

The V850E/MA1 interrupt latency time (from interrupt request generation to start of interrupt servicing) is described below.

Figure 7-14. Pipeline Operation at Interrupt Request Acknowledgement (Outline)

Note For interleave access, refer to 8.1.2 2-clock branch in V850E1 User's Manual Architecture (U14559E).

Remark INT1 to INT4: Interrupt acknowledgement processing

IFX: Invalid instruction fetch
IDX: Invalid instruction decode

lı lı	nterrupt late	ncy time (internal syste	Condition	
	Internal	External	interrupt	
	interrupt	INTP0nm INTP1nm		
Minimum	4	7 + Analog delay time	4 + Analog delay time	The following cases are exceptions. In IDLE/software STOP mode External bus access
Maximum	7 ^{Note}	10 + Analog delay time	7 + Analog delay time	 Two or more interrupt request non-sample instructions are executed in succession Access to on-chip peripheral I/O register

Note When LD instruction is executed to the internal ROM (during align access)

Remark n = 0 to 3, m = 0, 1

7.8 Periods in Which Interrupts Are Not Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt request non-sample instruction and the next instruction (interrupt is held pending).

The interrupt request non-sample instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (for PSW)
- The store instruction for the command register (PRCMD)
- The load, store, or bit manipulation instructions for the following registers.
 - Interrupt-related registers:

Interrupt control register (xxICn), interrupt mask registers 0 to 3 (IMR0 to IMR3), in-service priority register (ISPR), power-save control register (PSC)

• CSI-related registers:

Clocked serial interface clock selection registers 0 to 2 (CSIC0 to CSIC2), clocked serial interface mode registers 0 to 2 (CSIM0 to CSIM2), serial I/O shift registers 0 to 2 (SIO0 to SIO2), receive-only serial I/O shift registers 0 to 2 (SIOE0 to SIOE2), clocked serial interface transmit buffer registers 0 to 2 (SOTB0 to SOTB2)

Remark xx: Identification name of each peripheral unit (refer to Table 7-2)

n: Peripheral unit number (refer to Table 7-2)

4

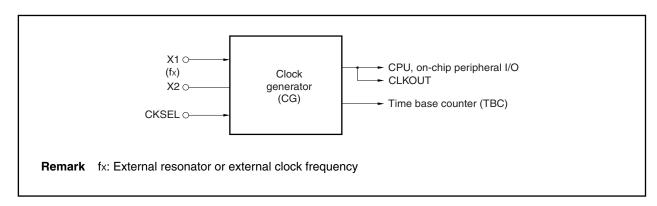
CHAPTER 8 PRESCALER UNIT (PRS)

The prescaler divides the internal system clock and supplies the divided clock to internal peripheral units. The divided clock differs depending on the unit.

For the timer units and A/D converter, a 2-division clock is input.

For other units, the input clock is selected using that unit's control register.

The CPU operates with the internal system clock.


CHAPTER 9 CLOCK GENERATION FUNCTION

The clock generator (CG) generates and controls the internal system clock (fxx) that is supplied to each internal unit, such as the CPU.

9.1 Features

- Multiplication function using phase locked loop (PLL) synthesizer
- · Clock sources
 - · Oscillation by connecting a resonator
 - External clock
- · Power-save control
 - HALT mode
 - IDLE mode
 - Software STOP mode
- Internal system clock output function

9.2 Configuration

9.3 Input Clock Selection

The clock generator consists of an oscillator and a PLL synthesizer. For example, connecting a 5.0 MHz crystal resonator or ceramic resonator to pins X1 and X2 enables a 50 MHz internal system clock (fxx) to be generated when multiplied by 10.

Also, an external clock can be input directly to the oscillator. In this case, the clock signal should be input only to the X1 pin (the X2 pin should be left open).

Two basic operation modes are provided for the clock generator. These are PLL mode and direct mode. The operation mode is selected by the CKSEL pin. The input to this pin is latched on reset.

CKSEL	Operating Mode
0	PLL mode
1	Direct mode

Caution The input level for the CKSEL pin must be fixed. If it is switched during operation, malfunction may occur.

9.3.1 Direct mode

In direct mode, an external clock with twice the frequency of the internal system clock is input. The maximum frequency that can be input in direct mode is 50 MHz. The V850E/MA1 is mainly used in application systems in which it is operated at relatively low frequencies.

Caution In direct mode, an external clock must be input (an external resonator should not be connected).

9.3.2 PLL mode

In PLL mode, an external resonator is connected or an external clock is input and multiplied by the PLL synthesizer. The multiplied PLL output is divided by the division ratio specified by the clock control register (CKC) to generate a system clock that is 10, 5, 2.5, or 1 times the frequency of the external resonator or external clock (fx).

After reset, an internal system clock (fxx) that is the same frequency as the internal clock frequency (fx) (1 \times fx) is generated.

When a frequency that is 10 times the input clock frequency (fx) $(10 \times fx)$ is generated, a system with low noise and low power consumption can be realized because a frequency of up to 50 MHz is obtained based on a 5 MHz external resonator or external clock.

In PLL mode, if the clock supply from an external resonator or external clock source stops, operation of the internal system clock (fxx) based on the free-running frequency of the clock generator's internal voltage controlled oscillator (VCO) continues. However, do not devise an application method expecting to use this free-running frequency.

Example: Clock when PLL mode ($fxx = 10 \times fx$) is used

System Clock Frequency (fxx)	External Resonator or External Clock Frequency (fx)
50.000 MHz	5.0000 MHz
40.000 MHz	4.0000 MHz

Caution When in PLL mode, only an fx (4 to 5 MHz) value for which 10 × fx does not exceed the system clock maximum frequency (50 MHz) can be used for the oscillation frequency or external clock frequency.

However, if any of $5 \times fx$, $2.5 \times fx$, or $1 \times fx$ is used, a frequency of 4 to 6.6 MHz can be used.

Remark If the V850E/MA1 does not need to be operated at high frequency, when PLL mode is selected a power consumption can be reduced by lowering the system clock frequency using software (fxx = $5 \times fx$, fxx = $2.5 \times fx$, or fxx = $1 \times fx$).

9.3.3 Peripheral command register (PHCMD)

This is an 8-bit register that is used to set protection for writing to registers that can significantly affect the system so that the application system is not halted unexpectedly due to an inadvertent program loop. This register is write-only in 8-bit units (when it is read, undefined data is read out).

Writing to the first specific register (CKC or FLPMC register) is only valid after first writing to the PHCMD register. Because of this, the register value can be overwritten only with the specified sequence, preventing an illegal write operation from being performed.

	7	6	5	4	3	2	1	0	Address	After reset
PHCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0	FFFFF800H	Undefined
E	Bit position	Bit n	Bit name Function							
	7 to 0	REG7 t	REG7 to Registration Code (arbitrary 8-bit data) The specific registers targeted are as follows. • Clock control register (CKC) • Flash programming mode control register (FLPMC)							

The generation of an illegal store operation can be checked with the PRERR bit of the peripheral status register (PHS).

9.3.4 Clock control register (CKC)

The clock control register is an 8-bit register that controls the internal system clock (fxx) in PLL mode. It can be written to only by a specific sequence combination so that it cannot easily be overwritten by mistake due to an inadvertent program loop.

This register can be read or written in 8-bit units.

Caution Do not change bits CKDIV2 to CKDIV0 in direct mode.

	7	6	5	4	3	2	1	0	Address	After reset				
CKC	0	0	TBCS	CESEL	0	CKDIV	/2 CKDIV1	CKDIV0	FFFFF822H	00H				
	Bit position	Bit n	ame		Function									
	5	Time Base Count Select Selects the time base counter clock. 0: fx/2 ⁸ 1: fx/2 ⁹ For details, see 9.6.2 Time base counter (TBC) .												
	4	CESEL		Crystal/External Select Specifies the functions of the X1 and X2 pins. 0: A resonator is connected to the X1 and X2 pins 1: An external clock is connected to the X1 pin When CESEL = 1, the oscillator feedback loop is disconnected to prevent current leak in software STOP mode.										
	2 to 0	CKDIV		Clock Divide Sets the inte		em clock	(fxx) when PLI	. mode is u	ised.					
				CKDIV2	CKDIV1	CKDIV0	In	ternal syst	em clock (fxx)					
				0	0	0	fx							
				0	0	1	2.5 × fx							
				0	1	1	$5 \times fx$							
				1	1	1	$10 \times fx$							
				Other th	an above	١	Setting prohi	oited						
To change the internal system clock frequency in the middle of an operation sure to set it to fx first, and then change the frequency as desired.								eration, be						

Example Clock generator settings

Operation	CKSEL Pin		CKC Register	•	Input Clock (fx)	Internal System Clock (fxx)	
Mode		CKDIV2	CKDIV0	CKDIV0	1		
Direct mode	High-level input	0	0	0	16 MHz	8 MHz	
PLL mode	Low-level input	0	0	0	5 MHz	5 MHz	
		0	0	1	5 MHz	12.5 MHz	
		0	1	1	5 MHz	25 MHz	
		1	1	1	5 MHz	50 MHz	
Other than above	/e				Setting prohibited	Setting prohibited	

Set data in the clock control register (CKC) in the following sequence.

- <1> Disable interrupts (set the NP bit of PSW to 1)
- <2> Prepare data in any one of the general-purpose registers to set in the specific register.
- <3> Write data to the peripheral command register (PHCMD)
- <4> Set the clock control register (CKC) (with the following instruction).
 - Store instruction (ST/SST instruction)
- <5> Assert the NOP instructions (5 instructions (<5> to <9>))
- <10> Release the interrupt disabled state (set the NP bit of PSW to 0).

```
[Sample coding] <1> LDSR rX, 5 

<2> MOV 0x07, r10 

<3> ST.B r10, PHCMD [r0] 

<4> ST.B r10, CKC [r0] 

<5> NOP 

<6> NOP 

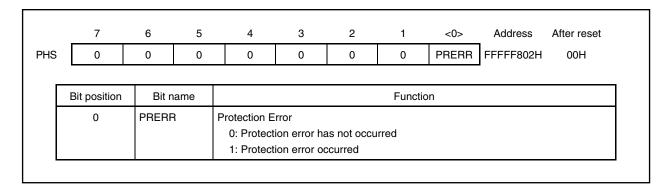
<7> NOP 

<8> NOP 

<9> NOP 

<10> LDSR rY, 5
```

Remark rX: Value written to PSW rY: Value returned to PSW


No special sequence is required to read the specific register.

- Cautions 1. If an interrupt is acknowledged between the issuance of data to the PHCMD (<3>) and writing to the specific register immediately after (<4>), the write operation to the specific register is not performed and a protection error (the PRERR bit of the PHS register = 1) may occur. Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgement. Also disable interrupt acknowledgement when selecting a bit manipulation instruction for the specific register setting.
 - Although the data written to the PHCMD register is dummy data, use the same register as
 the general-purpose register used in specific register setting (<4>) for writing to the PHCMD
 register (<3>). The same method should be applied when using a general-purpose register
 for addressing.
 - 3. Be sure to terminate all DMA transfers prior to the execution of the above sequence.

9.3.5 Peripheral status register (PHS)

If a write operation to the protection-targeted internal registers is not performed in the correct sequence, including access to the command register, writing is not performed and a protection error is generated, setting the status flag (PRERR) to 1. This flag is a cumulative flag. After checking the PRERR flag, it is cleared to 0 by an instruction.

This register can be read or written in 8-bit or 1-bit units.

The operating conditions of the PRERR flag are as follows.

Set conditions:

- <1> If the operation of the relevant store instruction for the on-chip peripheral I/O is not a write operation for the PHCMD register, but the peripheral specific register is written to.
- <2> If the first store instruction operation after the write operation to the PHCMD register is for memory other than the specific registers and on-chip peripheral I/O.

Reset conditions: <1> If the PRERR flag of the PHS register is set to 0.

<2> If the system is reset

9.4 PLL Lockup

The lockup time (frequency stabilization time) is the time from when the power is turned on or software STOP mode is released until the phase locks at the prescribed frequency. The state until this stabilization occurs is called the unlocked state, and the stabilized state is called the locked state.

(1) Lock register (LOCKR)

The lock register (LOCKR) has a lock flag that reflects the stabilized state of the PLL frequency. This register is read-only in 8-bit or 1-bit units.

Caution If the phase is locked, the LOCK flag is cleared to 0. If it is unlocked later because of a standby status, the LOCK flag is set to 1. If the phase is unlocked by a cause other than the standby status, however, the LOCK flag is not affected (LOCK = 0).

	7	6	5	4	3	2	1	<0>	Address	After reset
LOCKR	0	0	0	0	0	0	0	LOCK	FFFFF824H	0000000xB
	Bit position	Bit n	ame	Function						
	0	LOCK	7	Lock Status Flag This is a read-only flag that indicates the PLL lock state. This flag holds the value as long as a lockup state is maintained and is not initialized by a system reset. 0: Indicates that the PLL is locked.						
				1: Indicates that the PLL is not locked (unlock state).						

If the clock stops, the power fails, or some other factor operates to cause an unlock state to occur, for control processing that depends on software execution speed, such as real-time processing, be sure to judge the LOCK flag by software immediately after operation begins so that processing does not begin until after the clock stabilizes.

On the other hand, static processing such as the setting of internal hardware or the initialization of register data or memory data can be executed without waiting for the LOCK flag to be reset.

The relationship between the oscillation stabilization time (the time from when the resonator starts to oscillate until the input waveform stabilizes) when a resonator is used, and the PLL lockup time (the time until frequency stabilizes) is shown below.

Oscillation stabilization time < PLL lockup time.

9.5 Power-Save Control

9.5.1 Overview

The power-save function has the following three modes.

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Since the supply of clocks to on-chip peripheral functions other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by intermittent operation using a combination of the HALT mode and the normal operation mode.

The system is switched to HALT mode by a specific instruction (the HALT instruction).

(2) IDLE mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the supply of internal system clocks is stopped, which causes the overall system to stop.

When the system is released from IDLE mode, it can be switched to normal operation mode quickly because the oscillator's oscillation stabilization time does not need to be secured.

The system is switched to IDLE mode by a PSMR register setting.

IDLE mode is located midway between software STOP mode and HALT mode in relation to the clock stabilization time and power consumption. It is used for situations in which a low-power-consumption mode is to be used and the clock stabilization time is to be eliminated after the mode is released.

(3) Software STOP mode

In this mode, the overall system is stopped by stopping the clock generator (oscillator and PLL synthesizer). The system enters an ultra-low-power-consumption state in which only leakage current is lost.

The system is switched to software STOP mode by a PSMR register setting.

(a) PLL mode

The system is switched to software STOP mode by setting the register using software. The PLL synthesizer's clock output is stopped at the same time the oscillator is stopped. After software STOP mode is released, the oscillator's oscillation stabilization time must be secured until the system clock stabilizes. Also, PLL lockup time may be required depending on the program. When a resonator or external clock is connected, following the release of the software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

(b) Direct mode

To stop the clock, set the X1 pin to low level. After the release of software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

Figure 9-1 shows the operation of the clock generator in normal operation mode, HALT mode, IDLE mode, and software STOP mode.

An effective low power consumption system can be realized by combining these modes and switching modes according to the required use.

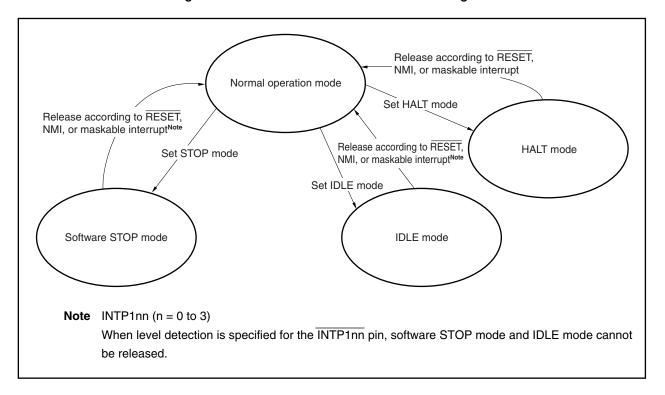


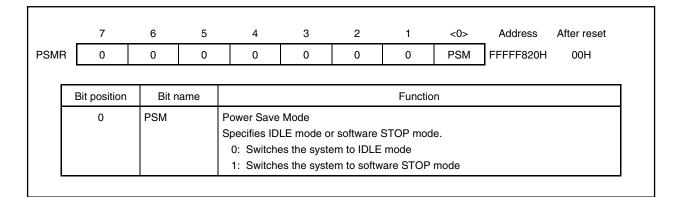
Figure 9-1. Power-Save Mode State Transition Diagram

Table 9-1. Clock Generator Operation Using Power-Save Control

Clock Source		Power-Save Mode	Oscillator	PLL Synthesizer	Clock Supply to Peripheral I/O	Clock Supply to CPU
PLL mode	Oscillation with	Normal operation	$\sqrt{}$	√	√	V
	resonator	HALT mode	$\sqrt{}$	√	√	-
		IDLE mode	$\sqrt{}$	√	-	-
		Software STOP mode	-	-	-	-
External clock		Normal operation	_	√	√	V
		HALT mode	-	√	√	-
		IDLE mode	-	√	-	-
		Software STOP mode	_	-	-	_
Direct mode	External clock	Normal operation	_	-	√	V
		HALT mode	_	-	√	-
		IDLE mode	-	-	-	_
		Software STOP mode	=	-	-	_

Remark √: Operating

-: Stopped

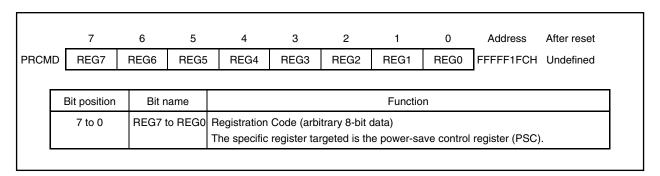

9.5.2 Control registers

(1) Power-save mode register (PSMR)

This is an 8-bit register that controls power-save mode. It is effective only when the STB bit of the PSC register is set to 1.

Writing to the PSMR register is executed by the store instruction (ST/SST instruction) and a bit manipulation instruction (SET1/CLR1/NOT1 instruction).

This register can be read or written in 8-bit or 1-bit units.



(2) Command register (PRCMD)

This is an 8-bit register that is used to set protection for write operations to registers that can significantly affect the system so that the application system is not halted unexpectedly due to an inadvertent program loop.

Writing to the first specific register (power-save control register (PSC)) is only valid after first writing to the PRCMD register. Because of this, the register value can be overwritten only by the specified sequence, preventing an illegal write operation from being performed.

This register is write-only in 8-bit units. When it is read, undefined data is read out.

(3) Power-save control register (PSC)

This is an 8-bit register that controls the power-save function. This register, which is one of the specific registers, is valid only when accessed in a specific sequence during a write operation.

This register can be read or written in 8-bit or 1-bit units. If bit 7 or 6 is set to 1, operation cannot be guaranteed.

Caution It is impossible to set the STB bit and the NMIM or INTM bit at the same time. Be sure to set the STB bit after setting the NMIM or INTM bit.

	7	6	<5>	<4>	3	2	<1>	0	Address	After reset
PSC	0	0	NMIM	INTM	0	0	STB	0	FFFFF1FEH	00H

Bit position	Bit name	Function
5	NMIM	NMI Mode This is the enable/disable setting bit for standby mode release using the valid edge input of NMI. 0: Release by NMI enabled 1: Release by NMI disabled
4	INTM	INT Mode This is the enable/disable setting for standby mode release using an unmasked maskable interrupt (INTP1nn) (n = 0 to 3). 0: Release by maskable interrupt enabled 1: Release by maskable interrupt disabled
1	STB	Standby Mode Indicates the standby mode status. If 1 is written to this bit, the system enters IDLE or software STOP mode (set by the PSM bit of the PSMR register). When standby mode is released, this bit is automatically reset to 0. 0: Standby mode is released 1: Standby mode is in effect

Set data in the power-save control register (PSC) in the following sequence.

- <1> Set the power-save mode register (PSMR) (with the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <2> Prepare data in any one of the general-purpose registers to set to the specific register.
- <3> Write data to the command register (PRCMD).
- <4> Set the power-save control register (PSC) (with the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <5> Assert the NOP instructions (5 instructions (<5> to <9>).

Sample coding

```
<1>ST.B r11, PSMR [r0]
                              ; Set PSMR register
<2> MOV
          0x02, r10
<3> ST.B r10, PRCMD [r0] ; Write PRCMD register
<4> ST.B r10, PSC [r0]
                               ; Set PSC register
<5> NOP
                               ; Dummy instruction
<6> NOP
                               ; Dummy instruction
<7> NOP
                               ; Dummy instruction
<8> NOP
                               ; Dummy instruction
<9> NOP
                               ; Dummy instruction
                               ; Execution routine after software STOP mode and IDLE mode release
(next instruction)
```

No special sequence is required to read the specific register.

- Cautions 1. A store instruction for the command register does not acknowledge interrupts. This coding is made on assumption that <3> and <4> above are executed by the program with consecutive store instructions. If another instruction is set between <3> and <4>, the above sequence may become ineffective when the interrupt is acknowledged by that instruction, and a malfunction of the program may result.
 - Although the data written to the PRCMD register is dummy data, use the same register as
 the general-purpose register used in specific register setting (<4>) for writing to the PRCMD
 register (<3>). The same method should be applied when using a general-purpose register
 for addressing.
 - 3. At least 5 NOP instructions must be inserted after executing a store instruction to the PSC register to set software STOP or IDLE mode.
 - 4. Be sure to terminate all DMA transfers prior to the execution of the above sequence.

9.5.3 HALT mode

(1) Setting and operation status

In HALT mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the operation clock of the CPU is stopped. Since the supply of clocks to on-chip peripheral I/O units other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by setting the system to HALT mode while the CPU is idle.

The system is switched to HALT mode by the HALT instruction.

Although program execution stops in HALT mode, the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before HALT mode began. Also, operation continues for all on-chip peripheral I/O units (other than ports) that do not depend on CPU instruction processing. Table 9-2 shows the status of each hardware unit in HALT mode.

Caution If the HALT instruction is executed while an interrupt is being held pending, the HALT mode is set once but it is immediately released by the pending interrupt request.

Table 9-2. Operation Status in HALT Mode

Function	Operation Status
Clock generator	Operating
Internal system clock	Operating
CPU	Stopped
Ports	Maintained
On-chip peripheral I/O (excluding ports)	Operating
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are maintained in the state they were in immediately before HALT mode began.
D0 to D15	Operating
A0 to A25	
RD, WE, OE, BCYST	
UWR, LWR, IORD, IOWR	
LDQM, UDQM	
CS0 to CS7	
ICAS, UCAS	
RAS1, RAS3, RAS4, RAS6	
SDRAS	
SDCAS	
REFRQ	
HLDAK	
HLDRQ	
WAIT	
SELFREF	
SDCKE	
SDCLK	Clock output
CLKOUT	

(2) Release of HALT mode

HALT mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request, or RESET pin input.

(a) Release according to a non-maskable interrupt request or an unmasked maskable interrupt request

HALT mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request regardless of the priority. However, if the system is set to HALT mode during an interrupt servicing routine, operation will differ as follows.

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being serviced, HALT mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, HALT mode is released and the newly generated interrupt request is acknowledged.

Table 9-3. Operation After HALT Mode Is Released by Interrupt Request

Release Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

(b) Release according to RESET pin input

This is the same as a normal reset operation.

9.5.4 IDLE mode

(1) Setting and operation status

In IDLE mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the supply of internal system clocks is stopped which causes the overall system to stop.

When IDLE mode is released, the system can be switched to normal operation mode quickly because the oscillator's oscillation stabilization time or the PLL lockup time does not need to be secured.

The system is switched to IDLE mode by setting the PSC or PSMR register using a store instruction (ST or SST instruction) or a bit manipulation instruction (SET1, CLR1, or NOT1 instruction) (see **9.5.2 Control registers**).

In IDLE mode, program execution is stopped, and the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before execution stopped. The operation of on-chip peripheral I/O units (excluding ports) also is stopped.

Table 9-4 shows the status of each hardware unit in IDLE mode.

Table 9-4. Operation Status in IDLE Mode

Function	Operation Status	
Clock generator	Operating	
Internal system clock	Stopped	
CPU	Stopped	
Ports	Maintained	
On-chip peripheral I/O (excluding ports)	Stopped	
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are maintained in the state they were in immediately before IDLE mode began.	
D0 to D15	High impedance	
A0 to A25		
RD, WE, OE, BCYST	High-level output	
UWR, LWR, IORD, IOWR		
LDQM, UDQM		
CS0 to CS7		
LCAS, UCAS	Operating	
RAS1, RAS3, RAS4, RAS6		
SDRAS		
SDCAS		
REFRQ		
HLDAK	High-level output	
HLDRQ	Input (no sampling)	
WAIT		
SELFREF		
SDCKE	Low-level output	
SDCLK		
CLKOUT		

(2) Release of IDLE mode

IDLE mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request (INTP1nm), or $\overline{\text{RESET}}$ pin input (n = 0 to 3, m = 0 to 3).

(a) Release according to a non-maskable interrupt request or an unmasked maskable interrupt request

IDLE mode can be released by an interrupt request only when it has been set with the INTM and NMIM bits of the PSC register cleared to 0. The IDLE mode cannot be released if it is specified that the level of the INTP1nm pin is detected.

IDLE mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request (INTP1nn) regardless of the priority. However, if the system is set to IDLE mode during a maskable interrupt servicing routine, operation will differ as follows (n = 0 to 3).

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being serviced, IDLE mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, IDLE mode is released and the newly generated interrupt request is acknowledged.

Table 9-5. Operation After IDLE Mode Is Released by Interrupt Request

Release Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

If the system is set to IDLE mode during an NMI servicing routine, IDLE mode is released, but the interrupt is not acknowledged (interrupt is held pending).

Interrupt servicing that is started when IDLE mode is released by NMI pin input is handled in the same way as normal NMI interrupt servicing that occurs during an emergency (because the NMI interrupt handler address is unique). Therefore, when a program must be able to distinguish between these two situations, a software status must be prepared in advance and that status must be set before setting the PSMR register using a store instruction or a bit manipulation instruction. By checking for this status during NMI interrupt servicing, an ordinary NMI can be distinguished from the processing that is started when IDLE mode is released by NMI pin input.

(b) Release according to RESET pin input

This is the same as a normal reset operation.

9.5.5 Software STOP mode

(1) Setting and operation status

In software STOP mode, the clock generator (oscillator and PLL synthesizer) is stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leakage current is lost.

The system is switched to software STOP mode by using a store instruction (ST or SST instruction) or bit manipulation instruction (SET1, CLR1, or NOT1 instruction) to set the PSC and PSMR registers (see **9.5.2 Control registers**).

When PLL mode and resonator connection mode (CESEL bit of CKC register = 0) are used, the oscillator's oscillation stabilization time must be secured after software STOP mode is released.

In both PLL and direct mode, following the release of software STOP mode, execution of the program is started after the count time of the time base counter has elapsed.

Although program execution stops in software STOP mode, the contents of all registers, internal RAM, and ports are maintained in the state they were in immediately before software STOP mode began. The operation of all on-chip peripheral I/O units (excluding ports) is also stopped.

Table 9-6 shows the status of each hardware unit in software STOP mode.

Table 9-6. Operation Status in Software STOP Mode

Function	Operation Status	
Clock generator	Stopped	
Internal system clock	Stopped	
CPU	Stopped	
Ports	Maintained ^{Note}	
On-chip peripheral I/O (excluding ports)	Stopped	
Internal data	All internal data such as CPU registers, statuses, data, and the contents of internal RAM are maintained in the state they were in immediately before software STOP mode began.	
D0 to D15	High impedance	
A0 to A25		
RD, WE, OE, BCYST	High-level output	
UWR, LWR, IORD, IOWR		
LDQM, UDQM		
CS0 to CS7		
ICAS, UCAS	Operating	
RAS1, RAS3, RAS4, RAS6		
SDRAS		
SDCAS		
REFRQ		
HLDAK	High-level output	
HLDRQ	Input (no sampling)	
WAIT		
SELFREF		
SDCKE	Low-level output	
SDCLK		
CLKOUT		

Note When the VDD value is within the operable range. However, even if it drops below the minimum operable voltage, as long as the data retention voltage VDDDR is maintained, the contents of only the internal RAM will be maintained.

(2) Release of software STOP mode

Software STOP mode is released by a non-maskable interrupt request, an unmasked maskable interrupt request (INTP1nm), or $\overline{\text{RESET}}$ pin input. Also, to release software STOP mode when PLL mode (CKSEL pin = low level) and resonator connection mode (CESEL bit of CKC register = 0) are used, the oscillator's oscillation stabilization time must be secured (n = 0 to 3, m = 0 to 3).

Moreover, the oscillation stabilization time must be secured even when an external clock is connected (CESEL bit = 1). See **9.4 PLL Lockup** for details.

(a) Release according to a non-maskable interrupt request or an unmasked maskable interrupt request

The software STOP mode can be released by an interrupt request only when it has been set with the INTM and NMIM bits of the PCS register cleared to 0. The IDLE mode cannot be released if it is specified that the level of the INTP1nm pin is detected.

Software STOP mode is released by a non-maskable interrupt request or by an unmasked maskable interrupt request (INTP1nn) regardless of the priority. However, if the system is set to software STOP mode during an interrupt servicing routine, operation will differ as follows (n = 0 to 3).

- (i) If an interrupt request is generated with a lower priority than that of the interrupt request that is currently being servicing, software STOP mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request is held pending.
- (ii) If an interrupt request (including non-maskable interrupt requests) is generated with a higher priority than that of the interrupt request that is currently being serviced, software STOP mode is released and the newly generated interrupt request is acknowledged.

Table 9-7. Operation After Software STOP Mode Is Released by Interrupt Request

Cancellation Source	Enable Interrupt (EI) Status	Disable Interrupt (DI) Status
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execute next instruction	Execute next instruction

If the system is set to software STOP mode during an NMI servicing routine, software STOP mode is released, but the interrupt is not acknowledged (interrupt is held pending).

Interrupt servicing that is started when software STOP mode is released by NMI pin input is handled in the same way as normal NMI interrupt servicing that occurs during an emergency (because the NMI interrupt handler address is unique). Therefore, when a program must be able to distinguish between these two situations, a software status must be prepared in advance and that status must be set before setting the PSMR register using a store instruction or a bit manipulation instruction.

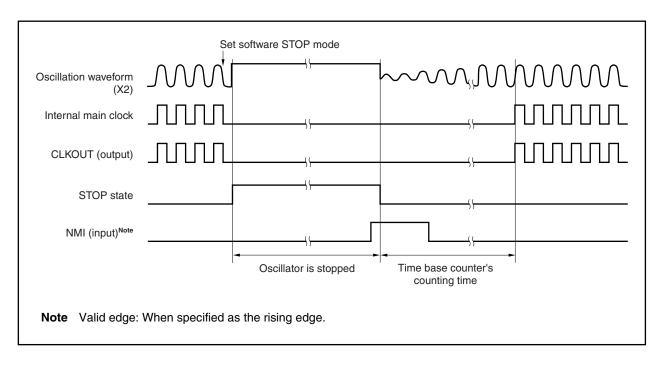
By checking for this status during NMI interrupt servicing, an ordinary NMI can be distinguished from the servicing that is started when software STOP mode is released by NMI pin input.

(b) Release according to $\overline{\text{RESET}}$ pin input

This is the same as a normal reset operation.

9.6 Securing Oscillation Stabilization Time

9.6.1 Oscillation stabilization time security specification


Two specification methods can be used to secure the time from when software STOP mode is released until the stopped oscillator stabilizes.

(1) Securing the time using an on-chip time base counter

Software STOP mode is released when a valid edge is input to the NMI pin or a maskable interrupt request is input (INTP1nm). If oscillation is started by inputting an active edge to the pin, the time base counter (TBC) starts counting, and the time required for the clock output from the oscillation circuit to be stabilized is secured within that count time (n = 0 to 3, m = 0 to 3).

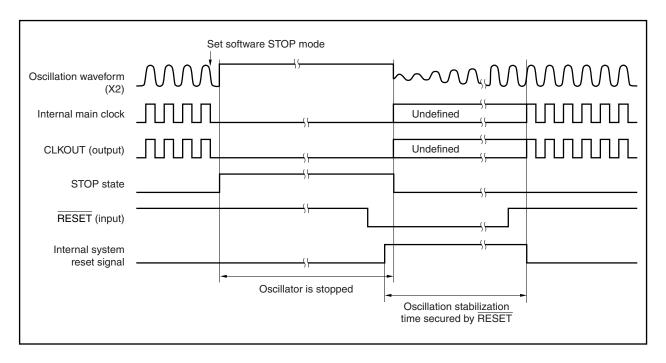
Oscillation stabilization time = TBC counting time

After a fixed time, internal system clock output begins, and processing branches to the NMI interrupt or maskable interrupt (INTP1nn) handler address.

The NMI pin should usually be set to an inactive level (for example, high level when the valid edge is specified as the falling edge) in advance.

Software STOP mode is immediately released if software STOP mode is set by NMI valid edge input or maskable interrupt request input (INTP1nm) before the CPU acknowledges the interrupt.

If direct mode or external clock connection mode (CESEL bit of CKC register = 1) is used, program execution begins after the count time of the time base counter has elapsed.


Also, even if PLL mode and resonator connection mode (CESEL bit of CKC register = 0) are used, program execution begins after the oscillation stabilization time is secured according to the time base counter.

(2) Securing the time according to the signal level width ($\overline{\text{RESET}}$ pin input)

Software STOP mode is released due to falling edge input to the RESET pin.

The time until the clock output from the oscillator stabilizes is secured according to the low-level width of the signal that is input to the pin.

The supply of internal system clocks begins after a rising edge is input to the $\overline{\text{RESET}}$ pin, and processing branches to the handler address used for a system reset.

9.6.2 Time base counter (TBC)

The time base counter (TBC) is used to secure the oscillator's oscillation stabilization time when software STOP mode is released.

When an external clock is connected (CESEL bit of CKC register = 1) or a resonator is connected (PLL mode and CESEL bit of CKC register = 0), the TBC counts the oscillation stabilization time after software STOP mode is released, and program execution begins after the count is completed.

The TBC count clock is selected according to the TBCS bit of the CKC register, and the next counting time can be set (reference).

Table 9-8. Counting Time Examples ($fxx = 10 \times fx$)

TBCS Bit	Count Clock	Counting Time			
		fx = 4.0000 MHz	fx = 5.0000 MHz		
		fxx = 40.000 MHz	fxx = 50.000 MHz		
0	fx/2 ⁸	16.3 ms	13.1 ms		
1	fx/2 ⁹	32.6 ms	26.2 ms		

fx: External oscillation frequency

fxx: Internal system clock

CHAPTER 10 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

10.1 Timer C

10.1.1 Features (timer C)

Timer C is a 16-bit timer/counter that can perform the following operations.

- · Interval timer function
- PWM output
- External signal cycle measurement

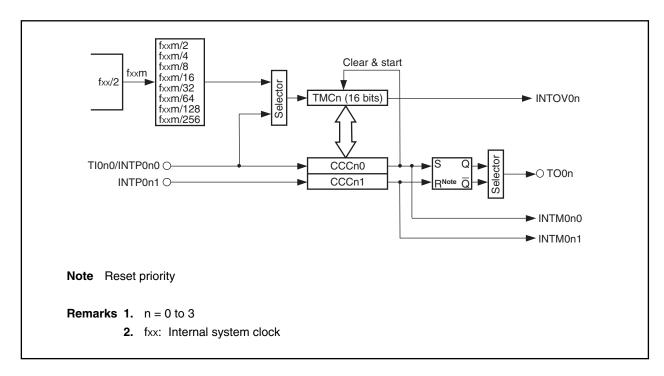
10.1.2 Function overview (timer C)

- 16-bit timer/counter
- Capture/compare common registers: 8
- Interrupt request sources
 - Capture/match interrupt requests: 8
 - Overflow interrupt requests: 4
- Timer/counter count clock sources: 2

(Selection of external pulse input or internal system clock division)

- Either free-running mode or overflow stop mode can be selected as the operation mode when the timer/counter overflows
- Timer/counter can be cleared by a match of the timer/counter and a compare register
- External pulse outputs: 4

10.1.3 Basic configuration of timer C

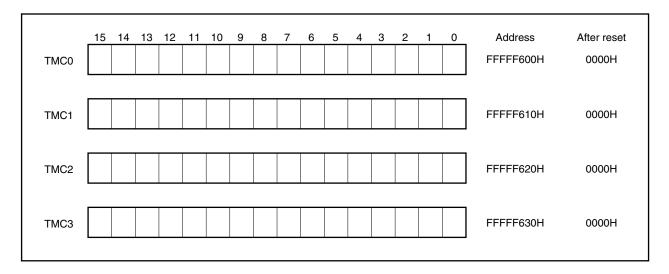

Table 10-1. Timer C Configuration

Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output S/R	Other Functions
Timer C	fxx/4, fxx/8,	TMC0	Read	INTOV00	_	-	-
	fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, fxx/512	CCC00	Read/write	INTM000	INTP000	TO00 (S)	A/D conversion start trigger
	fxx/256, fxx/512	CCC01	Read/write	INTM001	INTP001	TO00 (R)	A/D conversion start trigger
		TMC1	Read	INTOV01	_	_	-
		CCC10	Read/write	INTM010	INTP010	TO01 (S)	A/D conversion start trigger
		CCC11	Read/write	INTM011	INTP011	TO01 (R)	A/D conversion start trigger
		TMC2	Read	INTOV02	-	-	-
		CCC20	Read/write	INTM020	INTP020	TO02 (S)	-
		CCC21	Read/write	INTM021	INTP021	TO02 (R)	-
		TMC3	Read	INTOV03		_	-
		CCC30	Read/write	INTM030	INTP030	TO03 (S)	_
		CCC31	Read/write	INTM031	INTP031	TO03 (R)	

Remarks fxx: Internal system clock

S/R: Set/reset

(1) Timer C (16-bit timer/counter)


10.1.4 Timer C

(1) Timers C0 to C3 (TMC0 to TMC3)

TMCn functions as a 16-bit free-running timer or as an event counter for an external signal. Besides being mainly used for cycle measurement, TMCn can be used as pulse output (n = 0 to 3).

TMCn is read-only in 16-bit units.

- Cautions 1. The TMCn register can only be read. If the TMCn register is written, the subsequent operation is undefined.
 - 2. If the TMCCAEn bit of the TMCCn0 register is cleared (0), a reset is performed asynchronously.

TMCn performs the count-up operations of an internal count clock or external count clock. Timer start and stop are controlled by the TMCCEn bit of timer mode control register Cn0 (TMCCn0) (n = 0 to 3).

The internal or external count clock is selected by the ETIn bit of timer mode control register Cn1 (TMCCn1) (n = 0 to 3).

(a) Selection of the external count clock

TMCn operates as an event counter.

When the ETIn bit of timer mode control register Cn1 (TMCCn1) is set (1), TMCn counts the valid edges of the external clock input (Tl0n0), synchronized with the internal count clock. The valid edge is specified by valid edge select register Cn (SESCn) (n = 0 to 3).

Caution When the INTP0n0/Tl0n0 pin is used as Tl0n0 (external clock input pin), disable the INTP0n0 interrupt or set CCCn0 to compare mode (n = 0 to 3).

(b) Selection of the internal count clock

TMCn operates as a free-running timer.

When an internal clock is specified as the count clock by timer mode control register Cn1 (TMCCn1), TMCn is counted up for each input clock cycle specified by the CSn0 to CSn2 bits of the TMCCn0 register (n = 0 to 3).

Division by the prescaler can be selected for the count clock from among fxx/4, fxx/8, fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, and fxx/512 by the TMCCn0 register (fxx: internal system clock).

An overflow interrupt can be generated if the timer overflows. Also, the timer can be stopped following an overflow by setting the OSTn bit of the TMCCn1 register to 1.

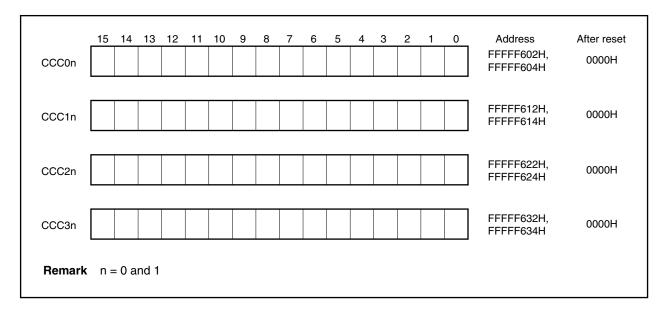
Caution The count clock cannot be changed while the timer is operating.

The conditions when the TMCn register becomes 0000H are shown below.

(a) Asynchronous reset

- TMCCAEn bit of TMCCn0 register = 0
- · Reset input

(b) Synchronous reset


- TMCCEn bit of TMCCn0 register = 0
- The CCCn0 register is used as a compare register, and the TMCn and CCCn0 registers match when clearing the TMCn register is enabled (CCLRn bit of the TMCCn1 register = 1)

(2) Capture/compare registers Cn0 and Cn1 (CCCn0 and CCCn1) (n = 0 to 3)

These capture/compare registers (Cn0 and Cn1) are 16-bit registers.

They can be used as capture registers or compare registers according to the CMSn0 and CMSn1 bit specifications of timer mode control register Cn1 (TMCCn1) (n = 0 to 3).

These registers can be read or written in 16-bit units. (However, write operations can only be performed in compare mode.)

(a) Setting these registers as capture registers (CMSn0 and CMSn1 of TMCCn1 = 0)

When these registers are set as capture registers, the valid edges of the corresponding external interrupt signals INTP0n0 and INTP0n1 are detected as capture triggers. The timer TMCn is synchronized with the capture trigger, and the value of TMCn is latched in the CCCn0 and CCCn1 registers (capture operation).

The valid edge of the INTP0n0 pin is specified (rising, falling, or both rising and falling edges) according to the IES0n01 and IES0n00 bits of the SESCn register, and the valid edge of the INTP0n1 pin is specified according to the IES0n11 and IES0n10 bits of the SESCn register.

The capture operation is performed asynchronously to the count clock. The latched value is held in the capture register until another capture operation is performed.

When the TMCCAEn bit of timer mode control register Cn0 (TMCCn0) is 0, 0000H is read (n = 0 to 3).

If these registers are specified as capture registers, an interrupt is generated by detecting the valid edge of signals INTP0n0 and INTP0n1 (n = 0 to 3).

Caution If the capture operation contends with the timing of disabling the TMCn register from counting (when the TMCCEn bit of the TMCCn0 register = 0), the captured data becomes undefined. In addition, the INTM0n0 and INTM0n1 interrupts do not occur (n = 0 to 3).

(b) Setting these registers as compare registers (CMSn0 and CMSn1 of TMCCn1 = 1)

When these registers are set as compare registers, the TMCn and register values are compared for each count clock, and an interrupt is generated by a match. If the CCLRn bit of timer mode control register Cn1 (TMCCn1) is set (1), the TMCn value is cleared (0) at the same time as a match with the CCCn0 register (it is not cleared (0) by a match with the CCCn1 register) (n = 0 to 3).

A compare register is equipped with a set/reset function. The corresponding timer output (TO0n) is set or reset, in synchronization with the generation of a match signal (n = 0 to 3).

The interrupt selection source differs according to the function of the selected register.

- Cautions 1. To write to capture/compare registers Cn0 and Cn1, always set the TMCCAEn bit to 1 first. If the TMCCAEn bit is 0, the data that is written will be invalid.
 - 2. Write to capture/compare registers Cn0 and Cn1 after setting them as compare registers via TMCCn0 and TMCCn1 register settings. If they are set as capture registers (CMSn0 and CMSn1 bits of TMCCn1 register = 0), no data is written even if a write operation is performed to CCCn0 and CCCn1.
 - 3. When these registers are set as compare registers, INTP0n0 and INTP0n1 cannot be used (n = 0 to 3).

10.1.5 Timer C control registers

(1) Timer mode control registers C00 to C30 (TMCC00 to TMCC30)

The TMCCn0 registers control the operation of TMCn (n = 0 to 3). These registers can be read or written in 8-bit or 1-bit units.

Be sure to set bits 3 and 2 to 0. If they are set to 1, the operation is not guaranteed.

- Cautions 1. The TMCCAEn and other bits cannot be set at the same time. The other bits and the registers of the other TMCn unit should always be set after the TMCCAEn bit has been set. Also, to use external pins related to the timer function when timer C is used, be sure to set (1) the TMCCAEn bit after setting the external pins to control mode.
 - 2. When conflict occurs between an overflow and a TMCCn0 register write, the OVFn bit value becomes the value written during the TMCCn0 register write (n = 0 to 3).

(1/2)

	<7>	6	5	4	3	2	<1>	<0>	Address	After reset
TMCC00	OVF0	CS02	CS01	CS00	0	0	TMCCE0	TMCCAE0	FFFFF606H	00H
TMCC10	OVF1	CS12	CS11	CS10	0	0	TMCCE1	TMCCAE1	FFFFF616H	00H
TMCC20	OVF2	CS22	CS21	CS20	0	0	TMCCE2	TMCCAE2	FFFFF626H	00H
тмссзо	OVF3	CS32	CS31	CS30	0	0	TMCCE3	TMCCAE3	FFFFF636H	00H
1							ı			

Bit position	Bit name	Function
7	OVFn (n = 0 to 3)	Overflow This is a flag that indicates TMCn overflow (n = 0 to 3). 0: No overflow occurs 1: Overflow occurs When TMCn has counted up from FFFFH to 0000H, the OVFn bit becomes 1 and an overflow interrupt request (INTOV0n) is generated at the same time. However, if TMCn is cleared to 0000H after a match at FFFFH when the CCCn0 register is set to compare mode (CMSn0 bit of TMCCn1 register = 1) and clearing is enabled for a match when TMCn and CCCn0 are compared (CCLRn bit of TMCCn1 register = 1), then TMCn is considered to be cleared and the OVFn bit does not become 1. Also, no INTOV0n interrupt is generated. The OVFn bit retains the value 1 until 0 is written directly or until an asynchronous reset is performed because the TMCCAEn bit is 0. An interrupt operation due to an overflow is independent of the OVFn bit, and the interrupt request flag (OVIFn) for INTOV0n is not affected even if the OVFn bit is manipulated. If an overflow occurs while the OVFn bit is being read, the flag value changes, and the change is reflected when the next read operation occurs.

(2/2)

Bit position	Bit name					Function				
6 to 4	CSn2 to CSn0	Со	Count Enable Select							
	(n = 0 to 3)	Sel	Selects the TMCn internal count clock (n = 0 to 3).							
			CSn2	CSn1	CSn0	Count cycle				
			0	0	0	fxx/4				
			0	0	1	fxx/8				
			0	1	0	fxx/16				
			0	1	1	fxx/32				
			1	0	0	fxx/64				
			1	0	1	fxx/128				
			1	1	0	fxx/256				
			1	1	1	fxx/512				
	T1400F	-			system c	IOCK				
1	TMCCEn (n = 0 to 3)	Co Co	unt Enablentrols the	e operation	of TMCn	(n = 0 to 3). 000H and does not operate)				
1		Co Co 0	unt Enable ntrols the : Count of : Countinu ution W in	e operation disabled (s g operation	of TMCn tops at 00 on is perfo CEn = 0, the active I	(n = 0 to 3). DOOH and does not operate) ormed the external pulse output (TO0n) becomes level of TO0n output is set by the ACTLVn bit				
0	(n = 0 to 3)	Co Co 0 1 Ca	unt Enable ntrols the Count of Countin ution W in th	e operation disabled (s operation disabled (s operation disable disable disable disable Enable	of TMCn tops at 00 on is perfo CEn = 0, the e active I 1 register	(n = 0 to 3). 000H and does not operate) ormed the external pulse output (TO0n) becomes evel of TO0n output is set by the ACTLVn bit r).				
	(n = 0 to 3)	Co Co 1 Ca Clc	unt Enable ntrols the Count of Countin ution W in th ock Action ntrols the	e operation disabled (s operation disabled (s operation defined TMC active (th e TMCCn Enable internal co	of TMCn tops at 00 on is perfo CEn = 0,1 e active I 1 register	(n = 0 to 3). DOOH and does not operate) ormed the external pulse output (TO0n) becomes level of TO0n output is set by the ACTLVn bit				
	(n = 0 to 3)	Co Co 1 Ca Clc	unt Enable ntrols the Countin ution W in th ock Action ntrols the The ent	e operation disabled (s operation disabled (s operation defined TMC active (th e TMCCn Enable internal co	of TMCn tops at 00 on is perfo CEn = 0, 1 e active I 1 register ount clock unit is asy	(n = 0 to 3). 200H and does not operate) crmed the external pulse output (TO0n) becomes evel of TO0n output is set by the ACTLVn bit r).				
	(n = 0 to 3)	Co Co 0 1 Ca	unt Enable ntrols the Countin ution W in th ock Action ntrols the The ent the TM0	e operation disabled (so go operation of the operation of	of TMCn tops at 00 on is perfo CEn = 0, 1 e active I 1 register ount clock unit is asy ops.	(n = 0 to 3). 200H and does not operate) crmed the external pulse output (TO0n) becomes evel of TO0n output is set by the ACTLVn bit r).				
	(n = 0 to 3)	Co Co 0 1 Ca Clc Co 0	unt Enable ntrols the Counting ution W in the ck Action ntrols the The ent the TMC	e operation disabled (so go operation dependent of the operation dependent	of TMCn tops at 00 on is perfo CEn = 0, 1 e active I 1 register Dunt clock unit is asy ops. ed to the	(n = 0 to 3). 200H and does not operate) The external pulse output (TO0n) becomes sevel of TO0n output is set by the ACTLVn bit r). (n = 0 to 3). Synchronously reset. The supply of clocks to TMCn unit AEn bit is set to 0, the TMCn unit can be				
	(n = 0 to 3)	Co Co 0 1 Ca Clc Co 0	unt Enable ntrols the Countin ution W in th ock Action ntrols the The ent the TMC Clocks utions 1.	e operation disabled (so go operation dependent of the operation of the op	of TMCn tops at 00 on is perform e active I 1 register ount clock unit is asy ops. ed to the e TMCCA onously i	(n = 0 to 3). DOOH and does not operate) ormed the external pulse output (TO0n) becomes evel of TO0n output is set by the ACTLVn bit r). (n = 0 to 3). cynchronously reset. The supply of clocks to TMCn unit AEn bit is set to 0, the TMCn unit can be reset. = 0, the TMCn unit is in a reset state.				
	(n = 0 to 3)	Co Co 0 1 Ca Clc Co 0	unt Enable ntrols the Countin ution W in th ock Action ntrols the The ent the TM0 Clocks utions 1.	e operation disabled (stag operation) then TMC active (the TMCCn) Enable internal colorer TMCn Cn unit stoare supplicate when the asynchr When TI Therefore	of TMCn ttops at 00 on is perform ce active I register ount clock unit is asy ops. ed to the onously in MCCAEn re, to ope	(n = 0 to 3). DOOH and does not operate) ormed the external pulse output (TO0n) becomes level of TO0n output is set by the ACTLVn bit r). (n = 0 to 3). ynchronously reset. The supply of clocks to TMCn unit AEn bit is set to 0, the TMCn unit can be reset. = 0, the TMCn unit is in a reset state. erate TMCn, the TMCCAEn bit must be set to				
	(n = 0 to 3)	Co Co 0 1 Ca Clc Co 0	unt Enable ntrols the Countin ution W in th ock Action ntrols the The ent the TM0 Clocks utions 1.	e operation disabled (stag operation) when TMC active (the TMCC active (the TMCC active TMC active TMC are supplicated when TMC asynchr When TMC Therefore When the operation of the theory of the theory of the theory of the operation	of TMCn tops at 00 on is perfo CEn = 0, 1 e active I 1 register ount clock unit is asy ops. ed to the onously i MCCAEn re, to ope e TMCCA	(n = 0 to 3). DOOH and does not operate) ormed the external pulse output (TO0n) becomes evel of TO0n output is set by the ACTLVn bit r). (n = 0 to 3). cynchronously reset. The supply of clocks to TMCn unit AEn bit is set to 0, the TMCn unit can be reset. = 0, the TMCn unit is in a reset state.				

(2) Timer mode control registers C01 to C31 (TMCC01 to TMCC31)

The TMCCn1 registers control the operation of TMCn (n = 0 to 3).

These registers can be read or written in 8-bit units.

Be sure to set bit 2 to 0. If it is set to 1, the operation is not guaranteed.

- Cautions 1. The various bits of the TMCCn1 register must not be changed during timer operation. If they are to be changed, they must be changed after setting the TMCCEn bit of the TMCCn0 register to 0. If these bits are overwritten during timer operation, operation cannot be guaranteed (n = 0 to 3).
 - 2. If the ENTn1 and ACTLVn bits are changed at the same time, a glitch (spike shaped noise) may be generated in the TO0n pin output. Either create a circuit configuration that will not malfunction even if a glitch is generated or make sure that the ENTn1 and ACTLVn bits do not change at the same time (n = 0 to 3).
 - TO0n output is not changed by an external interrupt signal (INTP0n0 or INTP0n1). To
 use the TO0n signal, specify that the capture/compare registers are compare registers
 (CMSn0 and CMSn1 bits of TMCCn1 register = 1) (n = 0 to 3).

(1/2)

_	7	6	5	4	3	2	1	0	Address	After reset
TMCC01	OST0	ENT01	ACTLV0	ETI0	CCLR0	0	CMS01	CMS00	FFFFF608H	20H
									_	
TMCC11	OST1	ENT11	ACTLV1	ETI1	CCLR1	0	CMS11	CMS10	FFFFF618H	20H
									_	
TMCC21	OST2	ENT21	ACTLV2	ETI2	CCLR2	0	CMS21	CMS20	FFFFF628H	20H
									_	
TMCC31	OST3	ENT31	ACTLV3	ETI3	CCLR3	0	CMS31	CMS30	FFFFF638H	20H

Bit position	Bit name	Function
7	OSTn (n = 0 to 3)	Overflow Stop Sets the operation when TMCn has overflowed (n = 0 to 3). 0: After the overflow, counting continues (free-running mode) 1: After the overflow, the timer maintains the value 0000H, and counting stops (overflow stop mode). At this time, the TMCCEn bit of TMCCn0 remains at 1.
6	ENTn1 (n = 0 to 3)	Counting is restarted by writing 1 to the TMCCEn bit. Enable To Pin External pulse output is enabled/disabled (TO0n) (n = 0 to 3). 0: External pulse output is disabled. Output of the ACTLVn bit inactive level to the TO0n pin is fixed. The TO0n pin level is not changed even if a match signal from the corresponding compare register is generated. 1: External pulse output is enabled. A compare register match causes TO0n output to change. However, if capture mode is set, TO0n output does not change. The ACTLVn bit inactive level is output from the time when timer output is enabled until a match signal is first generated. Caution If either CCCn0 or CCCn1 is specified as a capture register, the ENTn1 bit must be set to 0.

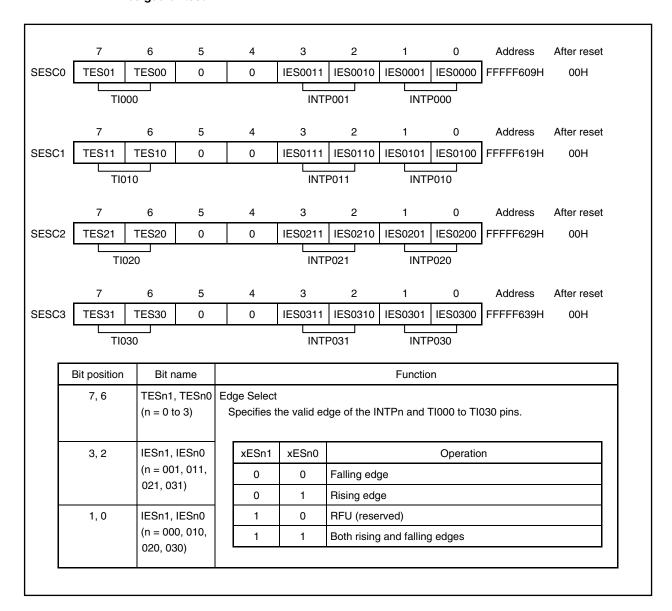
(2/2)

Bit position	Bit name	Function
5	ACTLVn (n = 0 to 3)	Active Level Specifies the active level for external pulse output (TO0n) (n = 0 to 3). 0: Active level is low level 1: Active level is high level
		Caution The initial value of the ACTLVn bit is 1.
4	ETIn (n = 0 to 3)	External Input Specifies a switch between the external and internal count clock. 0: Specifies the input clock (internal). The count clock can be selected according to the CSn2 to CSn0 bits of TMCCn0 (n = 0 to 3). 1: Specifies the external clock (Tl0n0). The valid edge can be selected according to the TESn1 and TESn0 bit specifications of SESCn (n = 0 to 3)
3	CCLRn (n = 0 to 3)	Compare Clear Enable Sets whether the clearing of TMCn is enabled or disabled during a compare operation (n = 0 to 3). 0: Clearing is disabled 1: Clearing is enabled (if CCCn0 and TMCn match during a compare operation TMCn is cleared)
1	CMSn1 (n = 0 to 3)	Capture/Compare Mode Select Selects the operation mode of the capture/compare register (CCCn1) (n = 0 to 3 0: The register operates as a capture register 1: The register operates as a compare register
0	CMSn0 (n = 0 to 3)	Capture/Compare Mode Select Selects the operation mode of the capture/compare register (CCCn0) (n = 0 to 3 0: The register operates as a capture register 1: The register operates as a compare register

Remarks 1. A reset takes precedence for the flip-flop of the TO0n output (n = 0 to 3).

2. When the A/D converter is set to timer trigger mode, the match interrupt of the compare registers becomes a start trigger for A/D conversion, and the conversion operation begins. At this time, the compare register match interrupt also functions as a compare register match interrupt for the CPU. To prevent the generation of a compare register match interrupt for the CPU, disable interrupts using the interrupt mask bits (P00MK0, P00MK1, P01MK0, and P01MK1) of the interrupt control registers (P00IC0, P00IC1, P01IC0, and P01IC1).

(3) Valid edge select registers C0 to C3 (SESC0 to SESC3)


These registers specify the valid edge of an external interrupt request (INTP000, INTP001, INTP010, INTP011, INTP020, INTP021, INTP030, INTP031, and TI000 to TI030) from an external pin.

The rising edge, the falling edge, or both rising and falling edges can be specified as the valid edge independently for each pin.

Each of these registers can be read or written in 8-bit units.

Be sure to set bits 5 and 4 to 0. If they are set to 1, the operation is not guaranteed.

Caution The various bits of the SESCn register must not be changed during timer operation. If they are to be changed, they must be changed after setting the TMCCEn bit of the TMCCn0 register to 0. If the SESCn register is overwritten during timer operation, operation cannot be guaranteed.

10.1.6 Timer C operation

(1) Count operation

Timer C can function as a 16-bit free-running timer or as an external signal event counter. The setting for the type of operation is specified by timer mode control registers Cn0 and Cn1 (TMCCn0 and TMCCn1) (n = 0 to 3).

When it operates as a free-running timer, if the CCCn0 or CCCn1 register and the TMCn count value match, an interrupt signal is generated and the timer output signal (TO0n) can be set or reset. Also, a capture operation that holds the TMCn count value in the CCCn0 or CCCn1 register is performed, in synchronization with the valid edge that was detected from the external interrupt request input pin as an external trigger. The capture value is held until the next capture trigger is generated.

Caution When using the INTP0n0/Tl0n0 pin as an external clock input pin (Tl0n0), be sure to disable the INTP0n0 interrupt or set CCCn0 register to compare mode (n = 0 to 3).

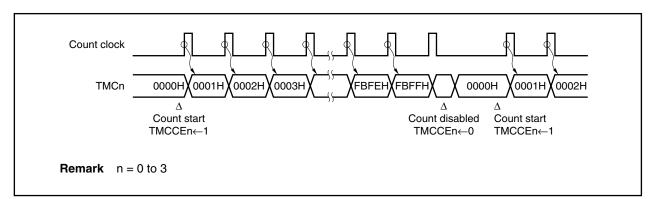
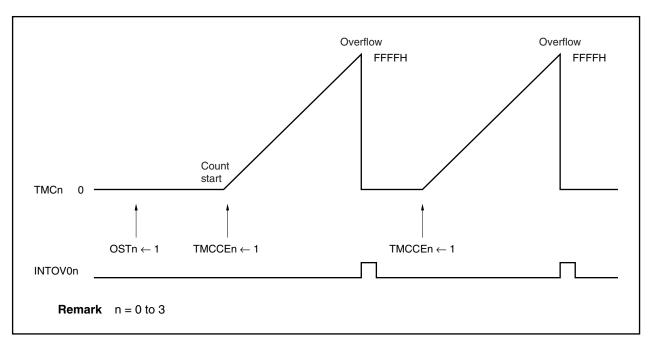


Figure 10-1. Basic Operation of Timer C

(2) Overflow

When the TMCn register has counted the count clock from FFFFH to 0000H, the OVFn bit of the TMCCn0 register is set (1), and an overflow interrupt (INTOV0n) is generated at the same time (n=0 to 3). However, if the CCCn0 register is set to compare mode (CMSn0 bit = 1) and to the value FFFFH when match clearing is enabled (CCLRn bit = 1), then the TMCn register is considered to be cleared and the OVFn bit is not set (1) when the TMCn register changes from FFFFH to 0000H. Also, the overflow interrupt (INTOV0n) is not generated.


When the TMCn register is changed from FFFFH to 0000H because the TMCCEn bit changes from 1 to 0, the TMCn register is considered to be cleared, but the OVFn bit is not set (1) and no INTOV0n interrupt is generated.

Also, timer operation can be stopped after an overflow by setting the OSTn bit of the TMCCn1 register to 1. When the timer is stopped due to an overflow, the count operation is not restarted until the TMCCEn bit of the TMCCn0 register is set (1).

Operation is not affected even if the TMCCEn bit is set (1) during a count operation.

Remark n = 0 to 3

Figure 10-2. Operation After Overflow (When OSTn = 1)

(3) Capture operation

The TMCn register has two capture/compare registers. These are the CCCn0 register and the CCCn1 register. A capture operation or a compare operation is performed according to the settings of both the CMSn1 and CMSn0 bits of the TMCCn1 register. If the CMSn1 and CMSn0 bits of the TMCCn1 register are set to 0, the register operates as a capture register.

A capture operation that captures and holds the TMCn count value asynchronously relative to the count clock is performed in synchronization with an external trigger. The valid edge that is detected from an external interrupt request input pin (INTP0n0 or INTP0n1) is used as an external trigger (capture trigger). The TMCn count value during counting is captured and held in the capture register, in synchronization with that capture trigger signal. The capture register value is held until the next capture trigger is generated.

Also, an interrupt request (INTM0n0 or INTM0n1) is generated by INTP0n0 or INTP0n1 signal input.

The valid edge of the capture trigger is set by valid edge select register Cn (SESCn).

If both the rising and falling edges are set as capture triggers, the input pulse width from an external source can be measured. Also, if only one of the edges is set as the capture trigger, the input pulse cycle can be measured.

Remark n = 0 to 3

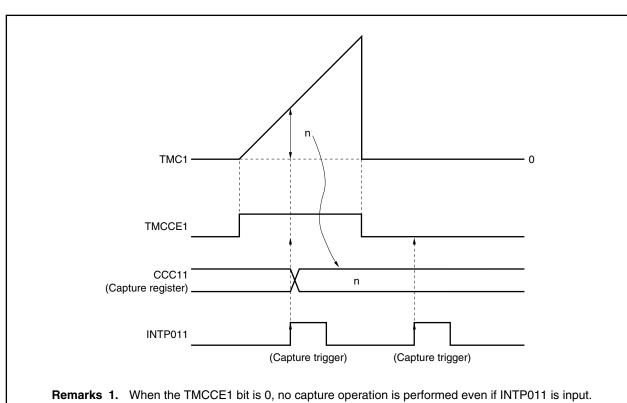


Figure 10-3. Capture Operation Example

2. Valid edge of INTP011: Rising edge

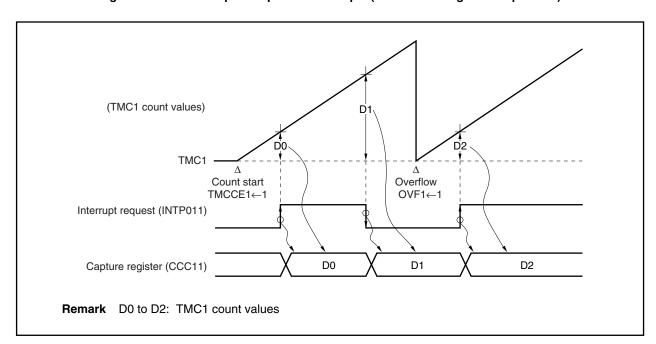
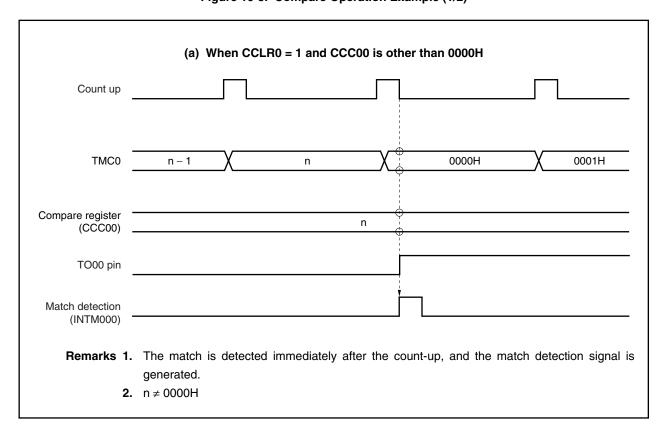


Figure 10-4. TMC1 Capture Operation Example (When Both Edges Are Specified)

(4) Compare operation

The TMCn register has two capture/compare registers. These are the CCCn0 register and the CCCn1 register. A capture operation or a compare operation is performed according to the settings of both the CMSn1 and CMSn0 bits of the TMCCn1 register. If the CMSn1 and CMSn0 bits of the TMCCn1 register are set to 1, the register operates as a compare register.

A compare operation that compares the value that was set in the compare register and the TMCn count value is performed.


If the TMCn count value matches the value of the compare register, which had been set in advance, a match signal is sent to the output controller. The match signal causes the timer output pin (TO0n) to change and an interrupt request signal (INTM0n0 or INTM0n1) to be generated at the same time.

If the CCCn0 or CCCn1 registers are set to 0000H, the 0000H after the TMCn register counts up from FFFFH to 0000H is judged as a match. In this case, the TMCn register value is cleared (0) at the next count timing, however, this 0000H is not judged as a match. Also, the 0000H when the TMCn register begins counting is not judged as a match.

If match clearing is enabled (CCLRn bit = 1) for the CCCn0 register, the TMCn register is cleared when a match with the TMCn register occurs during a compare operation.

Remark n = 0 to 3

Figure 10-5. Compare Operation Example (1/2)

*

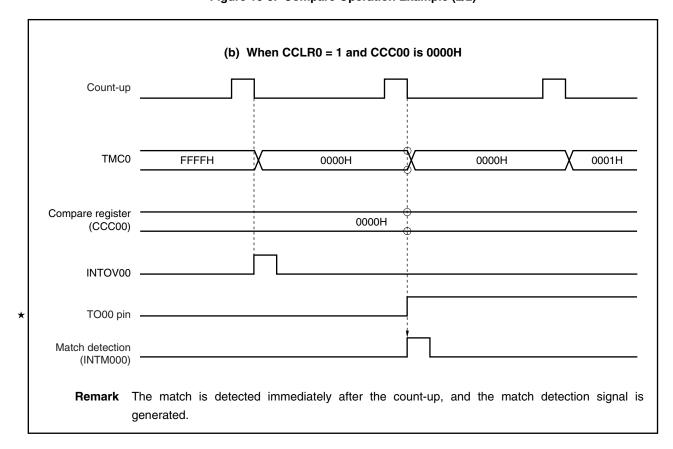


Figure 10-5. Compare Operation Example (2/2)

(5) External pulse output

Timer C has four timer output pins (TO0n).

An external pulse output (TO0n) is generated when a match of the two compare registers (CCCn0 and CCCn1) and the TMCn register is detected.

If a match is detected when the TMCn count value and the CCCn0 value are compared, the output level of the TO0n pin is set. Also, if a match is detected when the TMCn count value and the CCCn1 value are compared, the output level of the TO0n pin is reset.

The output level of the TO0n pin can be specified by the TMCCn1 register.

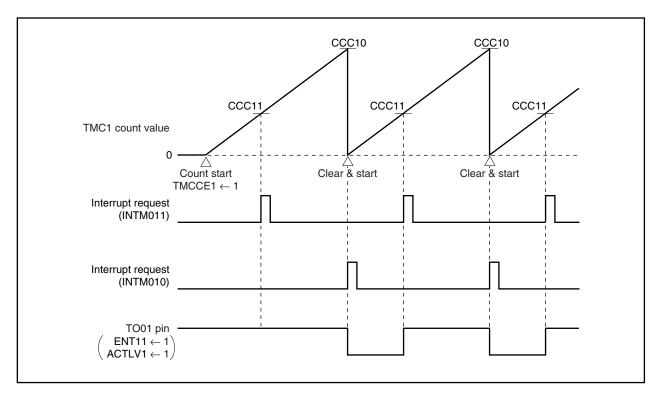

Remark n = 0 to 3

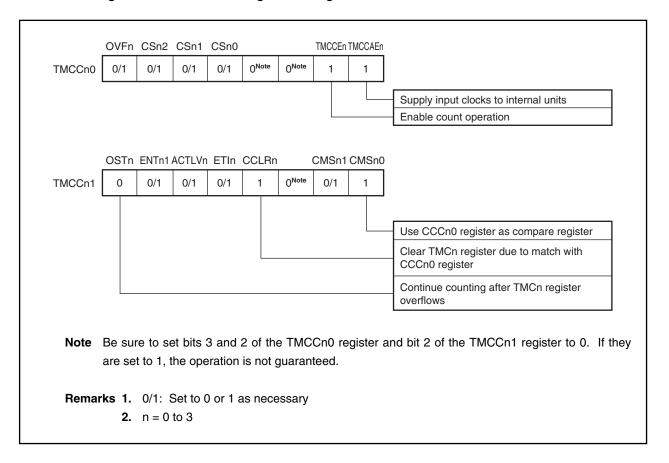
Table 10-2. TO0n Output Control

ENTn1	ACTLVn	TO0n Output					
		External Pulse Output	Output Level				
0	0	Disable	High level				
0	1	Disable	Low level				
1	0	Enable	When the CCCn0 register is matched: low level When the CCCn1 register is matched: high level				
1	1	Enable	When the CCCn0 register is matched: high level When the CCCn1 register is matched: low level				

Remark n = 0 to 3

Figure 10-6. TMC1 Compare Operation Example (Set/Reset Output Mode)

10.1.7 Application examples (timer C)


(1) Interval timer

By setting the TMCCn0 and TMCCn1 registers as shown in Figure 10-7, timer C operates as an interval timer that repeatedly generates interrupt requests with the value that was preset in the CCCn0 register as the interval.

When the counter value of the TMCn register matches the setting value of the CCCn0 register, the TMCn register is cleared (0000H) and an interrupt request signal (INTM0n0) is generated at the same time that the count operation resumes.

Remark n = 0 to 3

Figure 10-7. Contents of Register Settings When Timer C Is Used as Interval Timer

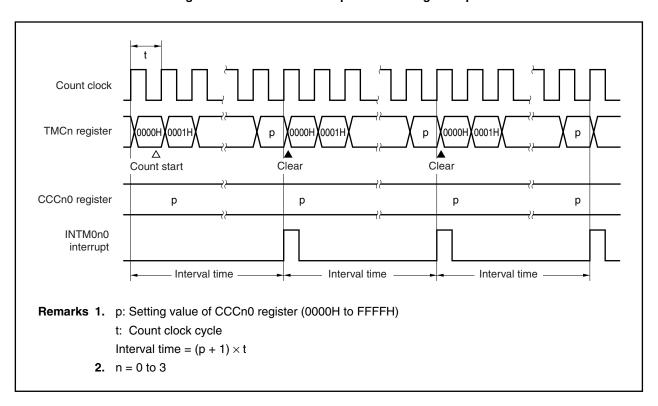
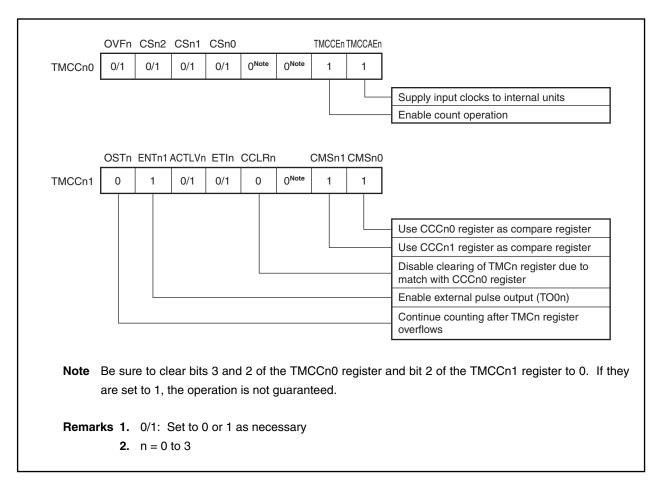
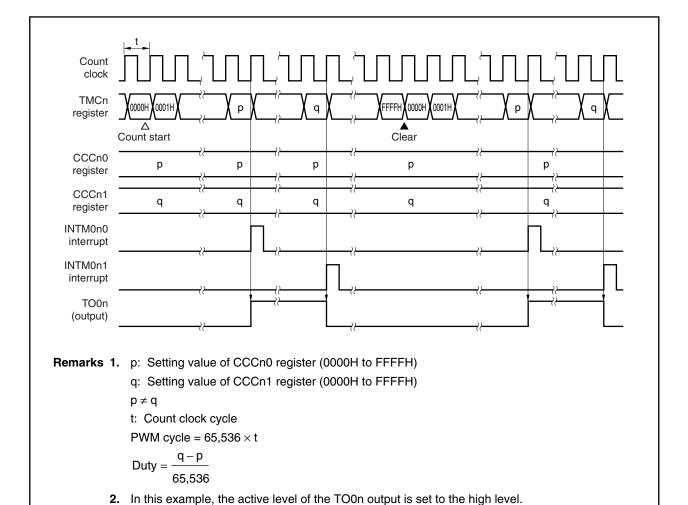


Figure 10-8. Interval Timer Operation Timing Example

(2) PWM output


By setting the TMCCn0 and TMCCn1 registers as shown in Figure 10-9, timer C can output a PWM signal, whose frequency is determined according to the setting of the CSn2 to CSn0 bits of the TMCCn0 register, with the values that were preset in the CCCn0 and CCCn1 registers determining the intervals.


When the counter value of the TMCn register matches the setting value of the CCCn0 register, the TO0n output becomes active. Then, when the counter value of the TMCn register matches the setting value of the CCCn1 register, the TO0n output becomes inactive. The TMCn register continues counting. When it overflows, its count value is cleared to 0000H, and the register continues counting. In this way, a PWM signal whose frequency is determined according to the setting of the CSn2 to CSn0 bits of the TMCCn0 register can be output. When the setting value of the CCCn0 register and the setting value of the CCCn1 register are the same, the TO0n output remains inactive and does not change.

The active level of the TO0n output can be set by the ACTLVn bit of the TMCCn1 register.

Remark n = 0 to 3

Figure 10-9. Contents of Register Settings When Timer C Is Used for PWM Output

3. n = 0 to 3

Figure 10-10. PWM Output Timing Example

347

(3) Cycle measurement

By setting the TMCCn0 and TMCCn1 registers as shown in Figure 10-11, timer C can measure the cycle of signals input to the INTP0n0 or INTP0n1 pin.

The valid edge of the INTP0n0 pin is selected according to the IES0n01 and IES0n00 bits of the SESCn register, and the valid edge of the INTP0n1 pin is selected according to the IES0n11 and IES0n10 bits of the SESCn register. Either the rising edge, the falling edge, or both edges can be selected as the valid edges of both pins.

If the CCCn0 register is set as a capture register, the valid edge input of the INTP0n0 pin is set as the trigger for capturing the TMCn register value in the CCCn0 register. When this value is captured, an INTM0n0 interrupt is generated.

Similarly, if the CCCn1 register is set as a capture register, the valid edge input of the INTP0n1 pin is set as the trigger for capturing the TMCn register value in the CCCn1 register. When this value is captured, an INTM0n1 interrupt is generated.

The cycle of signals input to the INTP0n0 pin is calculated by obtaining the difference between the TMCn register's count value (Dx) that was captured in the CCCn0 register according to the x-th valid edge input of the INTP0n0 pin and the TMCn register's count value (D(x+1)) that was captured in the CCCn0 register according to the (x+1)-th valid edge input of the INTP0n0 pin and multiplying the value of this difference by the cycle of the clock control signal.

The cycle of signals input to the INTP0n1 pin is calculated by obtaining the difference between the TMCn register's count value (Dx) that was captured in the CCCn1 register according to the x-th valid edge input of the INTP0n1 pin and the TMCn register's count value (D(x+1)) that was captured in the CCCn1 register according to the (x+1)-th valid edge input of the INTP0n1 pin and multiplying the value of this difference by the cycle of the clock control signal.

Remark n = 0 to 3

OVFn CSn2 CSn1 CSn0 TMCCEn TMCCAEn O^{Note} O^{Note} 0/1 TMCCn0 0/1 0/1 0/1 Supply input clocks to internal units Enable count operation OSTn ENTn1 ACTLVn ETIn CCLRn CMSn1 CMSn0 O^{Note} TMCCn1 0/1 Use CCCn0 register as capture register (when measuring the cycle of INTP0n0 input) Use CCCn1 register as capture register (when measuring the cycle of INTP0n1 input) Continue counting after TMCn register overflows Note Be sure to clear bits 3 and 2 of the TMCCn0 register and bit 2 of the TMCCn1 register to 0. If they are set to 1, the operation is not guaranteed. Remarks 1. 0/1: Set to 0 or 1 as necessary **2.** n = 0 to 3

Figure 10-11. Contents of Register Settings When Timer C Is Used for Cycle Measurement

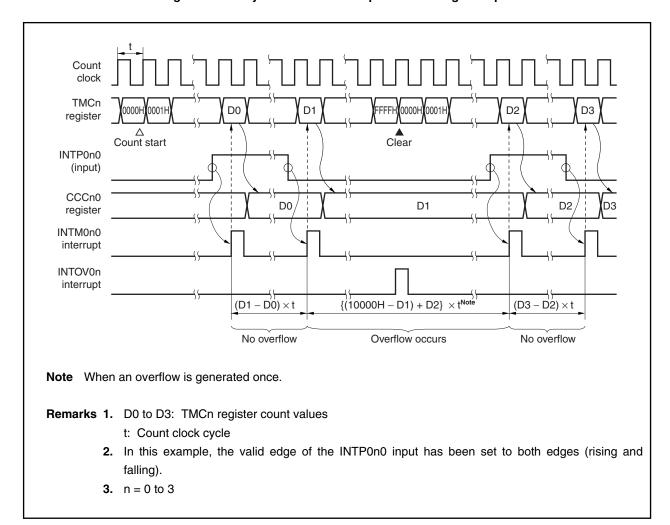


Figure 10-12. Cycle Measurement Operation Timing Example

10.1.8 Cautions (timer C)

Various cautions concerning timer C are shown below.

- (1) If a conflict occurs between the reading of the CCCn0 register and a capture operation when the CCCn0 register is used in capture mode, an external trigger (INTP0n0) valid edge is detected and an external interrupt request signal (INTM0n0) is generated, however, the timer value is not stored in the CCCn0 register.
- (2) If a conflict occurs between the reading of the CCCn1 register and a capture operation when the CCCn1 register is used in capture mode, an external trigger (INTP0n1) valid edge is detected and an external interrupt request signal (INTM0n1) is generated, however, the timer value is not stored in the CCCn1 register.
- (3) The following bits and registers must not be rewritten during operation (TMCCEn = 1).
 - CSn2 to CSn0 bits of TMCCn0 register
 - TMCCn1 register
 - · SESCn register
- (4) The TMCCAEn bit of the TMCCn0 register is a TMCn reset signal. To use TMCn, first set (1) the TMCCAEn bit.
- (5) The analog noise elimination time + two cycles of the count clock are required to detect the valid edge of the external interrupt request signal (INTP0n0 or INTP0n1) or the external clock input (TI0n0). Therefore, edge detection will not be performed normally for changes that are less than the analog noise elimination time + two cycles of the count clock. For details of analog noise elimination, refer to 7.3.8 Noise elimination.
- (6) The operation of an external interrupt request signal (INTM0n0 or INTM0n1) is automatically determined according to the operating state of the capture/compare register. When the capture/compare register is used for a capture operation, the external interrupt request signal is used for valid edge detection. When the capture/compare register is used for a compare operation, the external interrupt request signal is used for an interrupt indicating a match with the TMCn register.
- (7) If the ENTn1 and ACTLVn bits are changed at the same time, a glitch (spike shaped noise) may be generated in the TO0n pin output. Either create a circuit configuration that will not malfunction even if a glitch is generated or make sure that the ENTn1 and ACTLVn bits are not changed at the same time.

Remark n = 0 to 3

10.2 Timer D

10.2.1 Features (timer D)

Timer D functions as a 16-bit interval timer.

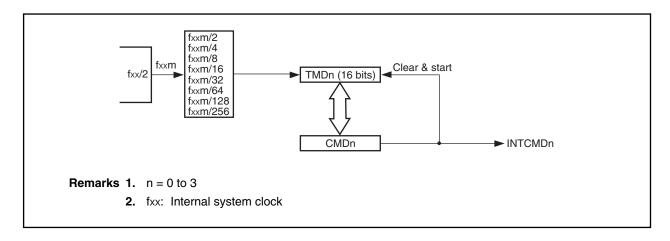
10.2.2 Function overview (timer D)

16-bit interval timerCompare registers: 4

• Interrupt request sources: 4 sources

• Count clock selected from divisions of internal system clock

10.2.3 Basic configuration of timer D

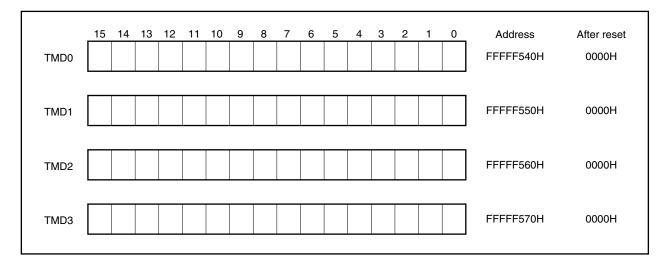

Table 10-3. Timer D Configuration

Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output S/R	Other Functions
Timer D	fxx/4, fxx/8,	TMD0	Read	-	_	-	-
	fxx/16, fxx/32, fxx/64, fxx/128,	CMD0	Read/write	INTCMD0	-	-	-
	fxx/256, fxx/512	TMD1	Read	_	_	-	_
		CMD1	Read/write	INTCMD1	_	-	_
		TMD2	Read	-	-	ı	-
		CMD2	Read/write	INTCMD2	-	ı	-
		TMD3	Read	-	-	ı	-
		CMD3	Read/write	INTCMD3	-	ı	_

Remark fxx: Internal system clock

S/R: Set/reset

(1) Timer D (16-bit timer/counter)


10.2.4 Timer D

(1) Timers D0 to D3 (TMD0 to TMD3)

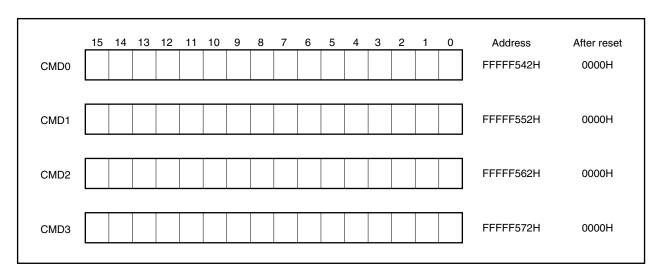
TMDn is a 16-bit timer. It is mainly used as an interval timer for software (n = 0 to 3).

Starting and stopping TMDn is controlled by the TMDCEn bit of the timer mode control register Dn (TMCDn) (n = 0 to 3).

Division by the prescaler can be selected for the count clock from among fxx/4, fxx/8, fxx/16, fxx/32, fxx/64, fxx/128, fxx/256, and fxx/512 by the CSn0 to CSn2 bits of the TMCDn register (fxx: internal system clock). TMDn is read-only in 16-bit units.

The conditions for which the TMDn register becomes 0000H are shown below (n = 0 to 3).

- · Reset input
- TMDCAEn bit = 0
- TMDCEn bit = 0
- · Match of TMDn register and CMDn register
- Overflow
 - Cautions 1. If the TMDCAEn bit of the TMCDn register is cleared (0), a reset is performed asynchronously.
 - 2. If the TMDCEn bit of the TMCDn register is cleared (0), a reset is performed, in synchronization with the internal clock. Similarly, a synchronized reset is performed after a match with the CMDn register and after an overflow.
 - 3. The count clock must not be changed during a timer operation. If it is to be overwritten, it should be overwritten after the TMDCEn bit is cleared (0).
 - 4. Up to 4 internal system clocks are required after a value is set in the TMDCEn bit until the set value is transferred to internal units. When a count operation begins, the count cycle from 0000H to 0001H differs from subsequent cycles.
 - 5. After a compare match is generated, the timer is cleared at the next count clock. Therefore, if the division ratio is large, the timer value may not be zero even if the timer value is read immediately after a match interrupt is generated.


(2) Compare registers D0 to D3 (CMD0 to CMD3)

CMDn and the TMDn register count value are compared, and an interrupt request signal (INTCMDn) is generated when a match occurs. TMDn is cleared, in synchronization with this match. If the TMDCAEn bit of the TMCDn register is set to 0, a reset is performed asynchronously, and the registers are initialized (n = 0 to 3).

The CMDn registers are configured with a master/slave configuration. When a CMDn register is written, data is first written to the master register and then the master register data is transferred to the slave register. In a compare operation, the slave register value is compared with the count value of the TMDn register. When a CMDn register is read, data in the master side is read out.

CMDn can be read or written in 16-bit units.

- Cautions 1. A write operation to a CMDn register requires 4 internal system clocks until the value that was set in the CMDn register is transferred to internal units. When writing continuously to the CMDn register, be sure to reserve a time interval of at least 4 internal system clocks.
 - 2. The CMDn register can be overwritten only once in a single TMDn register cycle (from 0000H until an INTCMDn interrupt is generated due to a match of the TMDn register and CMDn register). If this cannot be secured by the application, make sure that the CMDn register is not overwritten during timer operation.
 - 3. Note that a match signal will be generated after an overflow if a value less than the counter value is written in the CMDn register during TMDn register operation (Figure 10-13).

(a) When TMDn < CMDn TMDn — TMDCAEn ____ TMDCEn [CMDn INTCMDn **Remark** M = TMDn value when overwritten N = CMDn value when overwritten M < N(b) When TMDn > CMDn TMDn — TMDCAEn ____ TMDCEn ____ χN CMDn ___ INTCMDn **Remark** M = TMDn value when overwritten N = CMDn value when overwritten M > N

Figure 10-13. Example of Timing During TMDn Operation

10.2.5 Timer D control registers

(1) Timer mode control registers D0 to D3 (TMCD0 to TMCD3)

The TMCDn registers control the operation of timer Dn (n = 0 to 3).

These registers can be read or written in 8-bit or 1-bit units.

Caution The TMDCAEn and other bits cannot be set at the same time. The other bits and the registers of the other TMDn units should always be set after the TMDCAEn bit has been set.

(1/2)7 6 5 4 3 2 <0> Address After reset <1> FFFFF544H TMCD0 **CS02** CS01 CS00 0 0 TMDCE0 TMDCAE0 00H TMCD1 0 CS12 CS11 CS10 0 0 TMDCE1 TMDCAE1 FFFFF554H 00H TMCD2 **CS22** CS21 CS20 0 0 TMDCE2 TMDCAE2 FFFFF564H 00H TMCD3 TMDCE3 TMDCAE3 FFFFF574H 0 **CS32** CS31 **CS30** 0 00H 0 Bit position Bit name Function 6 to 4 CSn2 to CSn0 Count Enable Select (n = 0 to 3)Selects the TMDn internal count clock cycle (n = 0 to 3). CSn2 CSn1 CSn0 Count cycle 0 0 0 fxx/4 fxx/8 0 0 1 0 fxx/16 O 1 0 1 1 fxx/32 fxx/64 0 0 1 0 fxx/128 1 1 1 fxx/256 0 fxx/512 Caution The CSn2 to CSn0 bits must not be changed during timer operation. If they are to be changed, they must be changed after setting the TMDCEn bit to 0. If these bits are overwritten during timer operation, operation cannot be guaranteed. Remark fxx: Internal system clock Count Enable 1 **TMDCEn** (n = 0 to 3)Controls the operation of TMDn (n = 0 to 3). 0: Count disabled (stops at 0000H and does not operate) 1: Counting operation is performed Caution The TMDCEn bit is not cleared even if a match is detected by the compare operation. To stop the count operation, clear the TMDCEn bit.

(2/2)

Bit position	Bit name	Function
0	TMDCAEn	Clock Action Enable
	(n = 0 to 3)	Controls the internal count clock (n = 0 to 3).
		0: The entire TMDn unit is reset asynchronously. The supply of input clocks to
		the TMDn unit stops.
		1: Input clocks are supplied to the TMDn unit
		Cautions 1. When the TMDCAEn bit is set to 0, the TMDn unit can be
		asynchronously reset.
		2. When TMDCAEn = 0, the TMDn unit is in a reset state.
		Therefore, to operate TMDn, the TMDCAEn bit must be set to
		3. If the TMDCAEn bit is cleared to 0, all the registers of the TMD
		unit are initialized. If TMDCAEn is set to 1 again, be sure all the
		registers of the TMDn unit have been set again.

10.2.6 Timer D operation

(1) Compare operation

TMDn can be used for a compare operation in which the value that was set in a compare register (CMDn) is compared with the TMDn count value (n = 0 to 3).

If a match is detected by the compare operation, an interrupt (INTCMDn) is generated. The generation of the interrupt causes TMDn to be cleared (0) at the next count timing. This function enables timer D to be used as an interval timer.

CMDn can also be set to 0. In this case, when an overflow occurs and TMDn becomes 0, a match is detected and INTCMDn is generated. Although the TMDn value is cleared (0) at the next count timing, INTCMDn is not generated by this match.

Figure 10-14. TMD0 Compare Operation Example (1/2)

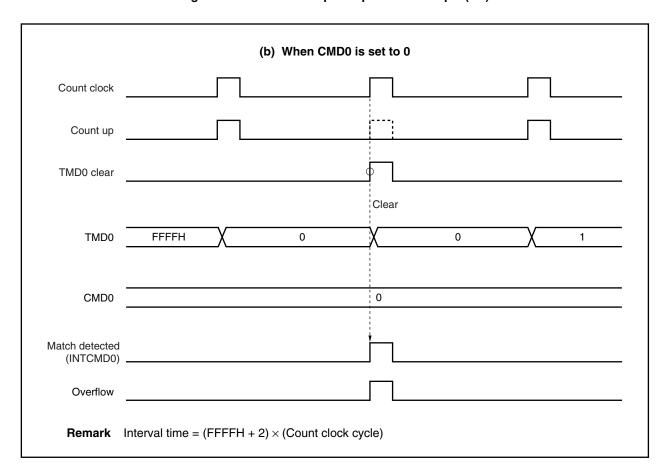


Figure 10-14. TMD0 Compare Operation Example (2/2)

10.2.7 Application examples (timer D)

(1) Interval timer

This section explains an example in which timer D is used as an interval timer with 16-bit precision. Interrupt requests (INTCMDn) are output at equal intervals (see **Figure 10-14 TMD0 Compare Operation Example**). The setup procedure is shown below (n = 0 to 3).

- <1> Set (1) the TMDCAEn bit.
- <2> Set each register.
 - Select the count clock using the CSn0 to CSn2 bits of the TMCDn register.
 - Set the compare value in the CMDn register.
- <3> Start counting by setting (1) the TMDCEn bit.
- <4> If the TMDn register and CMDn register values match, an INTCMDn interrupt is generated.
- <5> INTCMDn interrupts are generated thereafter at equal intervals.

Remark n = 0 to 3

10.2.8 Cautions (timer D)

Various cautions concerning timer D are shown below.

- (1) To operate TMDn, first set (1) the TMDCAEn bit.
- (2) Up to 4 internal system clocks are required after a value is set in the TMDCEn bit until the set value is transferred to internal units. When a count operation begins, the count cycle from 0000H to 0001H differs from subsequent cycles.
- (3) To initialize the TMDn register status and start counting again, clear (0) the TMDCEn bit and then set (1) the TMDCEn bit after an interval of 4 internal system clocks has elapsed.
- (4) Up to 4 internal system clocks are required until the value that was set in the CMDn register is transferred to internal units. When writing continuously to the CMDn register, be sure to secure a time interval of at least 4 internal system clocks.
- (5) The CMDn register can be overwritten only once during a timer/counter operation (from 0000H until an INTCMDn interrupt is generated due to a match of the TMDn register and CMDn register). If this cannot be secured, make sure that the CMDn register is not overwritten during a timer/counter operation.
- (6) The count clock must not be changed during a timer operation. If it is to be overwritten, it should be overwritten after the TMDCEn bit is cleared (0). If the count clock is overwritten during a timer operation, operation cannot be guaranteed.
- (7) A match signal will be generated after an overflow if a value less than the counter value is written in the CMDn register during TMDn register operation.

Remark n = 0 to 3

CHAPTER 11 SERIAL INTERFACE FUNCTION

11.1 Features

The serial interface function provides two types of serial interfaces equipped with six transmit/receive channels of which four channels can be used simultaneously.

The following two interface formats are available.

- (1) Asynchronous serial interface (UART0 to UART2): 3 channels
- (2) Clocked serial interface (CSI0 to CSI2): 3 channels

UART0 to UART2, which use the method of transmitting/receiving one byte of serial data following a start bit, enable full-duplex communication to be performed.

CSI0 to CSI2 transfer data according to three types of signals (3-wire serial I/O). These signals are the serial clock (SCK0 to SCK2), serial input (SI0 to SI2), and serial output (SO0 to SO2) signals.

11.1.1 Switching between UART and CSI modes

In the V850E/MA1, since UART0 and CSI0 pin and the UART1 and CSI1 pin are alternate function pins, they cannot be used at the same time. The PMC4 and PFC4 registers must be set in advance (see **14.3.5 Port 4**).

Also, since UART2 and CSI2 have alternate functions as external interrupt request input pins (INTP120 and INTP130 to INTP133), the PMC3 and PFC3 registers must be set in advance (see **14.3.4 Port 3**).

If the mode is switched during a transmit or receive operation in UARTn or CSIn, operation cannot be guaranteed.

11.2 Asynchronous Serial Interfaces 0 to 2 (UART0 to UART2)

11.2.1 Features

- Transfer rate: 300 bps to 1,562.5 Kbps (using a dedicated baud rate generator and an internal system clock of 50 MHz)
- Full-duplex communications

On-chip receive buffer (RXBn)

On-chip transmit buffer (TXBn)

· Two-pin configuration

TXDn: Transmit data output pin RXDn: Receive data input pin

- Reception error detection function
 - Parity error
 - · Framing error
 - Overrun error
- Interrupt sources: 3 types

Reception error interrupt (INTSERn): Interrupt is generated according to the logical OR of the

three types of reception errors

• Reception completion interrupt (INTSRn): Interrupt is generated when receive data is transferred from

the shift register to the receive buffer after serial transfer is

completed during a reception enabled state

• Transmission completion interrupt (INTSTn): Interrupt is generated when the serial transmission of

transmit data (8 or 7 bits) from the shift register is completed

- The character length of transmit/receive data is specified according to the ASIM0 to ASIM2 registers
- Character length: 7 or 8 bits
- Parity functions: Odd, even, 0, or none
- Transmission stop bits: 1 or 2 bits
- · On-chip dedicated baud rate generator

Remark n = 0 to 2

11.2.2 Configuration

UARTn is controlled by the asynchronous serial interface mode register (ASIMn), asynchronous serial interface status register (ASISn), and asynchronous serial interface transmission status register (ASIFn) (n = 0 to 2). Receive data is held in the receive buffer (RXBn), and transmit data is written to the transmit buffer (TXBn).

Figure 11-1 shows the configuration of the asynchronous serial interface.

(1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)

The ASIMn register is an 8-bit register for specifying the operation of the asynchronous serial interface.

(2) Asynchronous serial interface status registers 0 to 2 (ASIS0 to ASIS2)

The ASISn register consists of a set of flags that indicate the error contents when a reception error occurs. The various reception error flags are set (1) when a reception error occurs and are reset (0) when the ASISn register is read.

(3) Asynchronous serial interface transmission status registers 0 to 2 (ASIF0 to ASIF2)

The ASIFn register is an 8-bit register that indicates the status when a transmit operation is performed.

This register consists of a transmit buffer data flag, which indicates the hold status of TXBn data, and the transmit shift register data flag, which indicates whether transmission is in progress.

(4) Reception control parity check

Receive operations are controlled according to the contents set in the ASIMn register. A check for parity errors is also performed during a receive operation, and if an error is detected, the value corresponding to the error contents is set in the ASISn register.

(5) Receive shift register

This is a shift register that converts the serial data that was input to the RXDn pin to parallel data. One byte of data is received, and if a stop bit is detected, the receive data is transferred to the receive buffer.

This register cannot be directly manipulated.

(6) Receive buffer (RXBn)

RXBn is an 8-bit buffer register for holding receive data. When 7 characters are received, 0 is stored in the MSB.

During a reception enabled state, receive data is transferred from the receive shift register to the receive buffer, in synchronization with the end of the shift-in processing of one frame.

Also, the reception completion interrupt request (INTSRn) is generated by the transfer of data to the receive buffer.

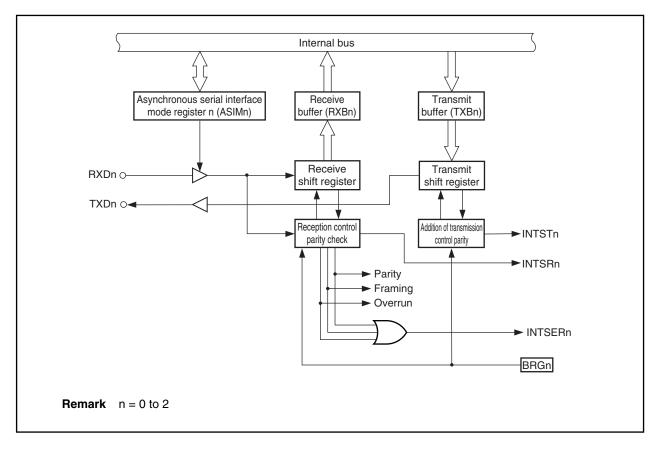
(7) Transmit shift register

This is a shift register that converts the parallel data that was transferred from the transmit buffer to serial data.

When one byte of data is transferred from the transmit buffer, the shift register data is output from the TXDn pin.

The transmission completion interrupt request (INTSTn) is generated in synchronization with the completion of transmission of one frame.

This register cannot be directly manipulated.


(8) Transmit buffer (TXBn)

TXBn is an 8-bit buffer for transmit data. A transmit operation is started by writing transmit data to TXBn.

(9) Addition of transmission control parity

Transmit operations are controlled by adding a start bit, parity bit, or stop bit to the data that is written to the TXBn register, according to the contents that were set in the ASIMn register.

Figure 11-1. Asynchronous Serial Interface Block Diagram

11.2.3 Control registers

(1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)

These are 8-bit registers for controlling the transfer operations of UART0 to UART2.

These registers can be read or written in 8-bit or 1-bit units.

- Cautions 1. When using UARTn, set the external pins related to the UARTn function in the control mode, set clock select register n (CKSRn) and baud rate generator control register n (BRGCn). Then set the UARTCAEn bit to 1 before setting the other bits.
 - Be sure to set UARTCAEn bit = 1 and RXEn bit = 1 while the RXDn pin is high level.
 If UARTCAEn bit = 1 and RXEn bit = 1 is set while the RXDn pin is low level, reception will inadvertently start.

365

(1/3)

	<7>	<6>	<5>	4	3	2	1	0	Address	After reset
ASIM0	UARTCAE0	TXE0	RXE0	PS01	PS00	CL0	SL0	ISRM0	FFFFFA00H	01H
									_	
ASIM1	UARTCAE1	TXE1	RXE1	PS11	PS10	CL1	SL1	ISRM1	FFFFFA10H	01H
									_ _	
ASIM2	UARTCAE2	TXE2	RXE2	PS21	PS20	CL2	SL2	ISRM2	FFFFFA20H	01H

Bit position	Bit name	Function
7	UARTCAEn (n = 0 to 2)	Clock Enable Controls the operation clock (n = 0 to 2). 0: Stops supply of clocks to UARTn unit 1: Supplies clocks to UARTn unit
		Cautions 1. When the UARTCAEn bit is set to 0, the UARTn unit can be asynchronously reset ^{Note} . 2. When UARTCAEn = 0, the UARTn unit is in a reset state. Therefore, to operate UARTn, the UARTCAEn bit must be set to 1. 3. When the UARTCAEn bit is changed from 1 to 0, all registers of the UARTn unit are initialized. When the UARTCAEn is set to 1 again, the UARTn unit registers must be set again.
		The TXDn pin output is always high level in the transmission disable state, irrespective of the setting of the UARTCAEn bit.
6	TXEn (n = 0 to 2)	Transmit Enable Specifies whether transmission is enabled or disabled. 0: Transmission is disabled 1: Transmission is enabled
		Cautions 1. On startup, set UARTCAEn to 1 and then set TXEn to 1. To stop transmission, clear TXEn to 0 and then UARTCAEn to 0. 2. When the transmission unit status is to be initialized, the transmission status may not be able to be initialized unless the TXEn bit is set (1) again after an interval of two cycles of the basic clock has elapsed since the TXEn bit was cleared (0) (For the basic clock, see 11.2.6 (1) (a) Basic clock (Clock)).

Note The ASISn, ASIFn, and RXBn registers are reset.

(2/3)

Bit position	Bit name			Function					
5	RXEn	Receive En	able						
	(n = 0 to 2)	Specifies whether reception is enabled or disabled. 0: Reception is disabled Note 1: Reception is enabled							
		2	stop tra . When the status reset (1) a has ela clock, s	ne reception unit status is t may not be able to be initial again after an interval of two	and then UARTCAEn to 0. o be initialized, the reception ized unless the RXEn bit is o cycles of the basic clock s cleared (0) (For the basic				
4, 3	PSn1, PSn0	Parity Select							
	(n = 0 to 2)	Controls the	PSn0	Transmit operation	Receive operation				
		0	0	Do not output a parity bit	Receive with no parity				
		0	1	Output 0 parity	Receive as 0 parity				
		1	0	Output odd parity	Judge as odd parity				
		1	1	Output even parity	Judge as even parity				
			and RX . If "0 pa made.	rity" is selected for reception	on, no parity judgement is ot is generated because the				
		bit is set bit is cle in the tra During re data and generate Odd par In contra "1" conta During re	nsmit data (1). If it cared (0). Insmit data eception, the parity ed. sity ast to ever ained in the eception, the	ontains an even number of bithis controls the number of bath and the parity bit so that it is the number of bits with the vary bit is counted, and if the number of bits with the parity, odd parity controls the etransmit data and the parity	lue "1" contained in the receive nber is odd, a parity error is e number of bits with the value bit so that it is an odd number. lue "1" contained in the receive				

Note When reception is disabled, the receive shift register does not detect a start bit. No shift-in processing or transfer processing to the receive buffer is performed, and the contents of the receive buffer are retained.

When reception is enabled, the receive shift operation starts, in synchronization with the detection of the start bit, and when the reception of one frame is completed, the contents of the receive shift register are transferred to the receive buffer. A reception completion interrupt (INTSRn) is also generated, in synchronization with the transfer to the receive buffer.

(3/3)

Bit position	Bit name	Function
4, 3	PSn1, PSn0	0 parity
	(n = 0 to 2)	During transmission, the parity bit is cleared (0) regardless of the transmit
		data.
		During reception, no parity error is generated because no parity bit is checked
		No parity
		No parity bit is added to transmit data.
		During reception, the receive data is considered to have no parity bit. No
		parityerror is generated because there is no parity bit.
2	CLn	Character Length
	(n = 0 to 2)	Specifies the character length of the transmit/receive data. 0: 7 bits
		1: 8 bits
		1. 0 bits
		Caution To overwrite the CLn bit, first clear (0) the TXEn and RXEn bits.
1	SLn	Stop Bit Length
	(n = 0 to 2)	Specifies the stop bit length of the transmit data.
		0: 1 bit
		1: 2 bits
		Cautions 1. To overwrite the SLn bit, first clear (0) the TXEn bit.
		2. Since reception always operates by using a single stop bit
		length, the SLn bit setting does not affect receive operations.
0	ISRMn	Interrupt Serial Receive Mode
	(n = 0 to 2)	Specifies whether the generation of reception completion interrupt requests wher
		an error occurs is enable or disabled.
		0: A reception error interrupt request (INTSERn) is generated when an error
		occurs.
		In this case, no reception completion interrupt request (INTSRn) is
		generated.
		A reception completion interrupt request (INTSRn) is generated when an error occurs.
		In this case, no reception error interrupt request (INTSERn) is generated.
		and dadd, no recognish of a microaph request (in rectifin) to generated.
		Caution To overwrite the ISRMn bit, first clear (0) the RXEn bit.

(2) Asynchronous serial interface status registers 0 to 2 (ASIS0 to ASIS2)

These registers, which consist of 3-bit error flags (PEn, FEn, and OVEn), indicate the error status when UARTn reception is completed (n = 0 to 2).

The status flag, which indicates a reception error, always indicates the status of the error that occurred most recently. That is, if the same error occurred several times before the receive data was read, this flag would hold only the status of the error that occurred last.

The ASISn register is cleared to 00H by a read operation. When a reception error occurs, the receive buffer (RXBn) should be read after the ASISn register is read.

These registers are read-only in 8-bit units.

Caution When the UARTCAEn bit or RXEn bit of the ASIMn register is set to 0, or when the ASISn register is read, the PEn, FEn, and OVEn bits of the ASISn register are cleared (0).

	7	6	5	4	3	2	1	0	Address	After reset
SIS0	0	0	0	0	0	PE0	FE0	OVE0	FFFFFA03H	00H
SIS1	0	0	0	0	0	PE1	FE1	OVE1	FFFFFA13H	00H
SIS2	0	0	0	0	0	PE2	FE2	OVE2	FFFFFA23H	00H
	Bit position	Bit r	name				Function	า		
	2	PEn (n = 0	to 2)	or whe	atus flag th the UARTO en the ASIS	CAEn and F Sn register i	RXEn bits of	of the ASIN	/In register are parity did not r	
				t	Γhe operat he PSn1 a	tion of the			rding to the so	ettings of
	1	FEn (n = 0	to 2)	Framing Er This is a str 0: When or whe 1: When Caution	ror receive	at indicates CAEn and F Sn register i was comple	its of the A s a framing RXEn bits of is read sted, no sto bits, only	error. of the ASIM	Jister. In register are	cleared to 0
	0	· =··		Framing Er This is a sta 0: When or whe 1: When Caution I Overrun Er This is a sta 0: When or whe 1: UART	ror atus flag th the UARTO en the ASIS reception v For receive of the stop ror atus flag th the UARTO the Harro en the ASIS	at indicates CAEn and F Sn register i was comple e data stop bit length at indicates CAEn and F Sn register i	its of the A s a framing RXEn bits of its read sted, no sto bits, only . s an overrui RXEn bits of its read	error. of the ASIM p bit was of the first be n error. of the ASIM	Jister. In register are detected	cleared to 0 regardless

(3) Asynchronous serial interface transmission status registers 0 to 2 (ASIF0 to ASIF2)

These registers, which consist of 2-bit status flags, indicate the status during transmission.

By writing the next data to the TXBn register after data is transferred from the TXBn register to transmit shift register, transmit operations can be performed continuously without suspension even during an interrupt interval. When transmission is performed continuously, data should be written after referencing the TXBFn bit of the ASIFn register to prevent writing to the TXBn register by mistake.

These registers are read-only in 8-bit or 1-bit units.

Remark n = 0 to 2

	7	6	5	4	3	2	<1>	<0>	Address	After reset
ASIF0	0	0	0	0	0	0	TXBF0	TXSF0	FFFFFA05H	00H
				<u> </u>	T	1	T		1	
ASIF1	0	0	0	0	0	0	TXBF1	TXSF1	FFFFFA15H	00H
ASIF2	0	0	0	0	0	0	TXBF2	TXSF2	FFFFFA25H	00H
									-	
	Bit position	Bit r	name				Function	n		
		(n = 0	,	0: No da UART has b 1: Data t writter	ansmit buffer that to be trained to be transfer to be transfer to the TXE. To success then write a register who guaranteed	nsferred not XEn bit of the rred to the erred next Bn register sively trandata to the tile this fla	ext exists in the ASIMn transmit sh exists in the). exmit data, e TXBn reg	register is ift register e TXBn req make sur ister. If d	register (when cleared to 0 or) gister (when da e that this flag ata is written to data cannot be	when data ta has been is 0, and to the TXBn
	0	TXSF (n = 0		UARTn. 0: Initial the AS TXBn 1: Under	ansmit shift status or was simple or was status or was simple or was status or was simple or was sim	aiting for treating for treating the complete on (if data calizing the crence of t	ansmission ad to 0 or if ion of trans is transferre e transmit he transmi	(when the no next da fer). ed from the unit, make ssion cor	e UARTCAEn of tall is transferred e TXBn register e sure that this inpletion interres 1, the transm	or TXEn bit of d from the r) s flag is 0 upt. If

not guaranteed.

(4) Receive buffer registers 0 to 2 (RXB0 to RXB2)

These are 8-bit buffer registers for storing parallel data that had been converted by the receive shift register. When reception is enabled (RXEn = 1 in the ASIMn register), receive data is transferred from the receive shift register to the receive buffer, in synchronization with the completion of the shift-in processing of one frame. Also, a reception completion interrupt request (INTSRn) is generated by the transfer to the receive buffer. For information about the timing for generating these interrupt requests, see 11.2.5 (4) Receive operation. If reception is disabled (RXEn = 0 in the ASIMn register), the contents of the receive buffer are retained, and no processing is performed for transferring data to the receive buffer even when the shift-in processing of one frame is completed. Also, no reception completion interrupt is generated.

When 7 bits is specified for the data length, bits 6 to 0 of the RXBn register are transferred for the receive data and the MSB (bit 7) is always 0. However, if an overrun error occurs, the receive data at that time is not transferred to the RXBn register.

Except when a reset is input, the RXBn register becomes FFH even when UARTCAEn = 0 in the ASIMn register.

These registers are read-only in 8-bit units.

Remark n = 0 to 2

	7	6	5	4	3	2	1	0	Address	After reset
RXB0	RXB07	RXB06	RXB05	RXB04	RXB03	RXB02	RXB01	RXB00	FFFFFA02H	FFH
									_	
RXB1	RXB17	RXB16	RXB15	RXB14	RXB13	RXB12	RXB11	RXB10	FFFFFA12H	FFH
									_	
RXB2	RXB27	RXB26	RXB25	RXB24	RXB23	RXB22	RXB21	RXB20	FFFFFA22H	FFH
	Bit position	Bit r	name				Functio	n		
	7 to 0	RXBn ⁻	7 to	Receive Buffer						
		RXBn)	Stores receive data.						
		(n = 0	to 2)	0 can be read for RXBn7 when 7-bit character data is received.						

(5) Transmit buffer registers 0 to 2 (TXB0 to TXB2)

These are 8-bit buffer registers for setting transmit data.

When transmission is enabled (TXEn = 1 in the ASIMn register), the transmit operation is started by writing data to TXBn.

When transmission is disabled (TXEn = 0 in the ASIMn register), even if data is written to TXBn, the value is ignored.

The TXBn data is transferred to the transmit shift register, and a transmission completion interrupt request (INTSTn) is generated, in synchronization with the completion of the transmission of one frame from the transmit shift register. For information about the timing for generating these interrupt requests, see **11.2.5** (2) **Transmit operation**.

When TXBFn = 1 in the ASIFn register, writing must not be performed to TXBn.

These registers can be read or written in 8-bit units.

Remark n = 0 to 2

	7	6	5	4	3	2	1	0	Address	After reset
TXB0	TXB07	TXB06	TXB05	TXB04	TXB03	TXB02	TXB01	TXB00	FFFFFA04H	FFH
									_	
TXB1	TXB17	TXB16	TXB15	TXB14	TXB13	TXB12	TXB11	TXB10	FFFFFA14H	FFH
									_	
TXB2	TXB27	TXB26	TXB25	TXB24	TXB23	TXB22	TXB21	TXB20	FFFFFA24H	FFH
	Bit position Bit name					Functio	n			
	7 to 0 TXBn7 to		7 to	Transmit Bu	uffer					
	TXBn0)	Writes trans	smit data.					
		(n = 0	to 2)							

11.2.4 Interrupt requests

The following three types of interrupt requests are generated from UARTn (n = 0 to 2).

- Reception error interrupt (INTSERn)
- Reception completion interrupt (INTSRn)
- Transmission completion interrupt (INTSTn)

The default priorities among these three types of interrupt requests is, from high to low, reception error interrupt, reception completion interrupt, and transmission completion interrupt.

Table 11-1. Generated Interrupts and Default Priorities

Interrupt	Priority
Reception error	1
Reception completion	2
Transmission completion	3

(1) Reception error interrupt (INTSERn)

When reception is enabled, a reception error interrupt is generated according to the logical OR of the three types of reception errors explained for the ASISn register. Whether a reception error interrupt (INTSERn) or a reception completion interrupt (INTSRn) is generated when an error occurs can be specified using the ISRMn bit of the ASIMn register.

When reception is disabled, no reception error interrupt is generated.

(2) Reception completion interrupt (INTSRn)

When reception is enabled, a reception completion interrupt is generated when data is shifted in to the receive shift register and transferred to the receive buffer.

A reception completion interrupt request can be generated in place of a reception error interrupt according to the ISRMn bit of the ASIMn register even when a reception error has occurred.

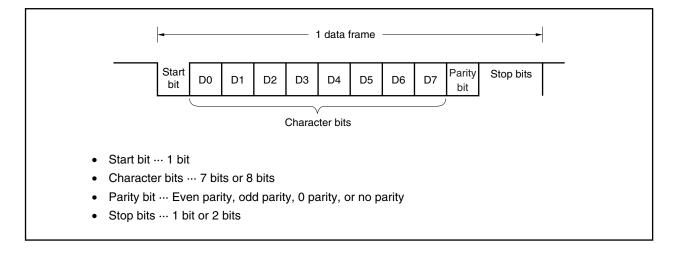
When reception is disabled, no reception completion interrupt is generated.

(3) Transmission completion interrupt (INTSTn)

A transmission completion interrupt is generated when one frame of transmit data containing 7-bit or 8-bit characters is shifted out from the transmit shift register.

11.2.5 Operation

(1) Data format


Full-duplex serial data transmission and reception can be performed.

The transmit/receive data format consists of one data frame containing a start bit, character bits, a parity bit, and stop bits as shown in Figure 11-2.

The character bit length within one data frame, the type of parity, and the stop bit length are specified by the asynchronous serial interface mode register n (ASIMn) (n = 0 to 2).

Also, data is transferred with the least significant bit (LSB) first.

Figure 11-2. Asynchronous Serial Interface Transmit/Receive Data Format

(2) Transmit operation

When UARTCAEn is set to 1 in the ASIMn register, a high level is output to the TXDn pin.

Then, when TXEn is set to 1 in the ASIMn register, transmission is enabled, and the transmit operation is started by writing transmit data to transmit buffer register n (TXBn) (n = 0 to 2).

(a) Transmission enabled state

This state is set by the TXEn bit in the ASIMn register (n = 0 to 2).

- TXEn = 1: Transmission enabled state
- TXEn = 0: Transmission disabled state

However, when the transmission enabled state is set, to use UART0 and UART1, which share pins with clocked serial interfaces 0 and 1 (CSI0 and CSI1), the CSICAEn bit of clocked serial interface mode registers 0 and 1 (CSIM0 and CSIM1) should be set to 0.

Since UARTn does not have a CTS (transmission enabled signal) input pin, a port should be used to confirm whether the destination is in a reception enabled state.

(b) Starting a transmit operation

In the transmission enabled state, a transmit operation is started by writing transmit data to transmit buffer register n (TXBn). When a transmit operation is started, the data in TXBn is transferred to transmit shift register n. Then, transmit shift register n outputs data to the TXDn pin sequentially beginning with the LSB (the transmit data is transferred sequentially starting with the start bit). The start bit, parity bit, and stop bits are added automatically (n = 0 to 2).

(c) Transmission interrupt request

When the transmit shift register becomes empty, a transmission completion interrupt request (INTSTn) is generated. The timing for generating the INTSTn interrupt differs according to the specification of the stop bit length. The INTSTn interrupt is generated at the same time that the last stop bit is output (n = 0 to 2).

If the data to be transmitted next has not been written to the TXBn register, the transmit operation is suspended.

Caution Normally, when transmit shift register n becomes empty, a transmission completion interrupt (INTSTn) is generated. However, no transmission completion interrupt (INTSTn) is generated if transmit shift register n becomes empty due to the input of a RESET.

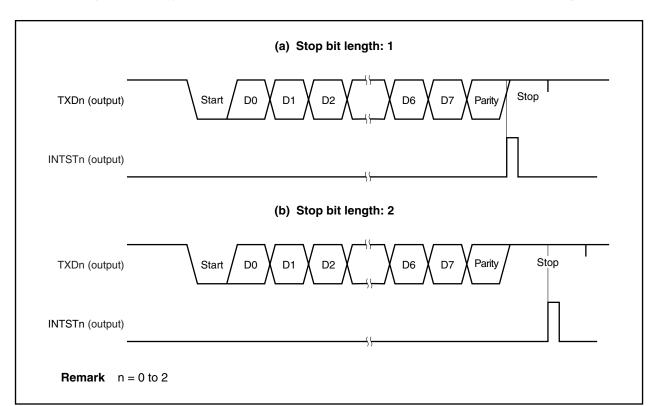


Figure 11-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(3) Continuous transmission operation

UARTn can write the next data to the TXBn register at the time that the transmit shift register starts the shift operation. This enables an efficient transmission rate to be realized by continuously transmitting data even during interrupt servicing after the transmission of one data frame (n = 0 to 2). By reading the TXSFn bit of the ASIFn register after the transmission completion interrupt has occurred, data can be efficiently written to the TXBn register two times (2 bytes) without having to wait for the transmission time of 1 data frame.

When continuous transmission is performed, data should be written after referencing the ASIFn register to confirm the transmission status and whether or not data can be written to the TXBn register (n = 0 to 2).

Caution The TXBFn and TXSFn bits of the ASIFn register change from "10" to "11", and to "01" during continuous transmission. To check the status, therefore, do not use a combination of the TXBFn and TXSFn bits for judgment. Use only the TXBFn bit for judgment when executing continuous transmission.

	TXBFn	Enables/Disables Writing to the TXBn Register
Ī	0	Enables writing.
Ī	1	Disables writing.

Caution To successively transmit data, make sure that the TXBFn bit is 0 after the first transmit data (first byte) has been written to the TXBn register, before writing the next transmit data (second byte) to the TXBn register. If data is written to the TXBn register while the TXBFn bit is 1, the transmit data is not guaranteed.

While successive transmission is under execution, whether data has been written to the TXBn register can be checked by checking the TXSFn bit after occurrence of the transmission completion interrupt.

TXSFn	Transmission Status
0	Transmission has been completed.
1	Transmission is under execution.

- Cautions 1. Before initializing the transmit unit after completion of successive transmission, make sure that the TXSFn bit is 0 after the transmission completion interrupt has occurred. If initialization is executed while the TXSFn bit is 1, the transmit data cannot be guaranteed.
 - 2. While data is successively transmitted, an overrun error may occur because the next transmission may be completed before the INTSTn interrupt servicing is executed after transmission of 1 data frame. The overrun error can be detected by incorporating a program that can count the number of transmit data and by referencing the TXSFn bit.

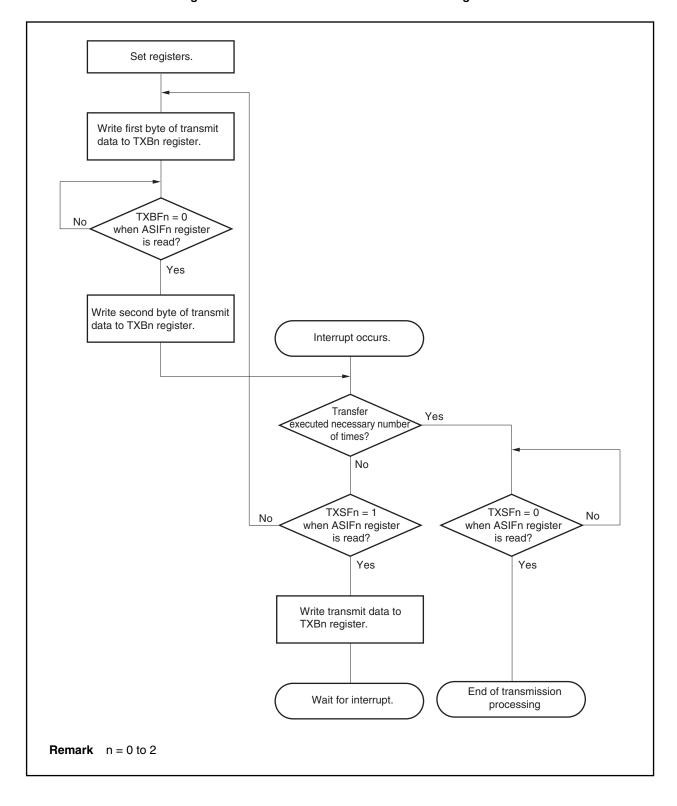
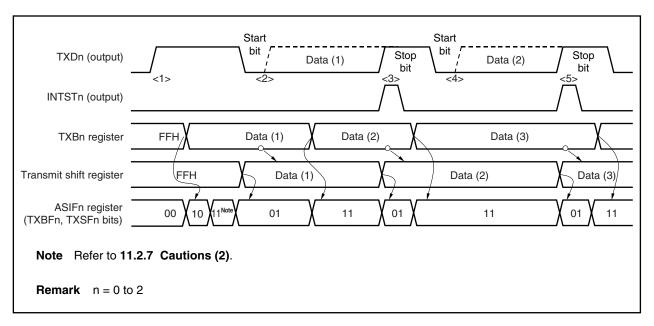
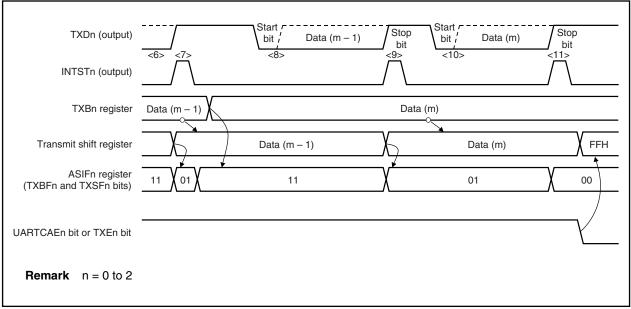



Figure 11-4. Continuous Transmission Processing Flow

(a) Starting procedure

The procedure for starting continuous transmission is shown below.

Figure 11-5. Continuous Transmission Starting Procedure


Transmission starting procedure	Internal operation	ASIFn	register
		TXBFn	TXSFn
Set transmission mode	<1> Start transmission unit	0	0
Write data (1)	-	1	0
	<2> Generate start bit	1	1 Note
		0	1
	Start data (1) transmission ———	0	1
• Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
Write data (2)	-	1	1
	< <transmission in="" progress="">></transmission>		
	<3> Generate INTSTn interrupt —	0	1
• Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
Write data (3)	•	1	1
	<4> Generate start bit		
	Start data (2) transmission		
	< <transmission in="" progress="">></transmission>		
	<5> Generate INTSTn interrupt	0	1
• Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
Write data (4)	•	1	1

Note Refer to 11.2.7 Cautions (2).

(b) Ending procedure

The procedure for ending continuous transmission is shown below.

Figure 11-6. Continuous Transmission Ending Procedure

Transmission ending procedure	Internal operation	ASIFn	register
		TXBFn	TXSFn
	<6> Transmission of data (m – 2) is in progress	1	1
	<7> Generate INTST interrupt	0	1
Read ASIFn register (confirm that the TXBFn bit = 0) ←-		<u>0</u>	1
Write data (n)	-	1	1
	<8> Generate start bit		
	Start data (m - 1) transmission		
	< <transmission in="" progress="">></transmission>		
	<9> Generate INTSTn interrupt	0	1
• Read ASIFn register (confirm that the TXSFn bit = 1) -		0	<u>1</u>
There is no write data			
	<10> Generate start bit		
	Start data (m) transmission		
	< <transmission in="" progress="">></transmission>		
	<11> Generate INTSTn interrupt	0	0
Read ASIFn register (confirm that the TXSFn bit = 0)		0	<u>0</u>
Clear (0) the UARTCAEn bit or TXEn bit	Initialize internal circuits		

(4) Receive operation

The awaiting reception state is set by setting UARTCAEn to 1 in the ASIMn register and then setting RXEn to 1 in the ASIMn register. To start the receive operation, start sampling at the falling edge when the falling of the RXDn pin is detected. If the RXDn pin is low level at a start bit sampling point, the start bit is recognized. When the receive operation begins, serial data is stored sequentially in the receive shift register according to the baud rate that was set. A reception completion interrupt (INTSRn) is generated each time the receive one frame of data is completed. Normally, the receive data is transferred from the receive buffer (RXBn) to memory by this interrupt servicing (n = 0 to 2).

(a) Reception enabled state

The receive operation is set to the reception enabled state by setting the RXEn bit in the ASIMn register to 1 (n = 0 to 2).

• RXEn = 1: Reception enabled state

RXEn = 0: Reception disabled state

However, when the reception enabled state is set, to use UART0 and UART1, which share pins with clocked serial interfaces 0 and 1 (CSI0 and CSI1), the operation of CSIn must be disabled by setting the CSICAEn bit of clocked serial interface mode registers 0 and 1 (CSIM0 and CSIM1) to 0 (n = 0 to 2).

In the reception disabled state, the reception hardware stands by in the initial state. At this time, the contents of the receive buffer are retained, and no reception completion interrupt or reception error interrupt is generated.

(b) Starting a receive operation

A receive operation is started by the detection of a start bit.

The RXDn pin is sampled using the serial clock from the baud rate generator (BRGn) (n = 0 to 2).

(c) Reception completion interrupt

When RXEn = 1 in the ASIMn register and the reception of one frame of data is completed (the stop bit is detected), a reception completion interrupt (INTSRn) is generated and the receive data within the receive shift register is transferred to RXBn at the same time (n = 0 to 2).

Also, if an overrun error occurs, the receive data at that time is not transferred to the receive buffer (RXBn), and either a reception completion interrupt (INTSRn) or a reception error interrupt (INTSERn) is generated according to the setting of ISRMn bit of the ASIMn register.

If a parity error or framing error occurs during reception operation, the reception operation continues up to the position at which the stop bit is received. After completion of reception, a reception completion interrupt (INTSRn) or reception error interrupt (INTSRn) occurs, according to the setting of the ISRMn bit of the ASIMn register (the receive data in the receive shift register is transferred to RXBn).

If the RXEn bit is reset (0) during a receive operation, the receive operation is immediately stopped. The contents of the receive buffer (RXBn) and of the asynchronous serial interface status register (ASISn) at this time do not change, and no reception completion interrupt (INTSRn) or reception error interrupt (INTSERn) is generated.

No reception completion interrupt is generated when RXEn = 0 (reception is disabled).

RXDn (input) INTSRn (output) RXBn register Cautions 1. Be sure to read the receive buffer (RXBn) when a reception error occurs. Unless RXBn is read, an overrun error occurs when the next data is received, causing

Figure 11-7. Asynchronous Serial Interface Reception Completion Interrupt Timing

the reception error status to persist.

2. Data is received always with a stop bit. The second stop bit is ignored.

Remark n = 0 to 2

(5) Reception error

The three types of errors that can occur during a receive operation are a parity error, framing error, and overrun error. The data reception result is that the various flags of the ASISn register are set (1), and a reception error interrupt (INTSERn) or a reception completion interrupt (INTSRn) is generated at the same time. The ISRMn bit of the ASIMn register specifies whether INTSERn or INTSRn is generated.

The type of error that occurred during reception can be ascertained by reading the contents of the ASISn register during the INTSERn or INTSRn interrupt servicing.

The contents of the ASISn register are reset (0) by reading the ASISn register (if the next reception data contains an error, the corresponding error flag is set (1)).

Table 11-2. Reception Error Causes

Error Flag	Reception Error	Cause
PEn	Parity error	The parity specification during transmission did not match the parity of the reception data
FEn	Framing error	No stop bit was detected
OVEn	Overrun error	The reception of the next data was completed before data was read from the receive buffer

Remark n = 0 to 2

(a) Separation of reception error interrupt

A reception error interrupt can be separated from the INTSRn interrupt and generated as an INTSERn interrupt by clearing the ISRMn bit of the ASIMn register (n = 0 to 2) to 0.

Figure 11-8. When Reception Error Interrupt Is Separated from INTSRn Interrupt (ISRMn Bit = 0)

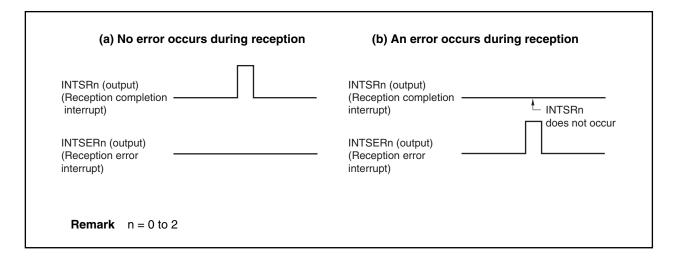
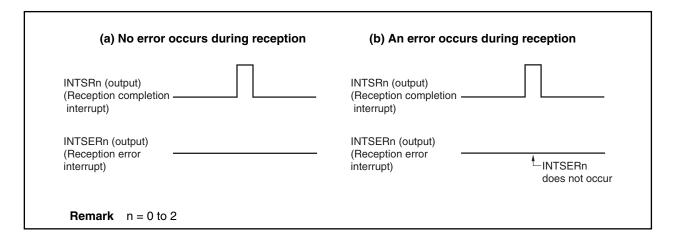



Figure 11-9. When Reception Error Interrupt Is Included in INTSRn Interrupt (ISRMn Bit = 1)

(6) Parity types and corresponding operation

A parity bit is used to detect a bit error in communication data. Normally, the same type of parity bit is used at the transmission and reception sides.

(a) Even parity

(i) During transmission

The parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is even. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 1
- If the number of bits with the value "1" within the transmit data is even: 0

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is odd.

(b) Odd parity

(i) During transmission

In contrast to even parity, the parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is odd. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 0
- If the number of bits with the value "1" within the transmit data is even: 1

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is even.

(c) 0 parity

During transmission the parity bit is set to "0" regardless of the transmit data.

During reception, no parity bit check is performed. Therefore, no parity error is generated regardless of whether the parity bit is "0" or "1".

(d) No parity

No parity bit is added to the transmit data.

During reception, the receive operation is performed as if there were no parity bit. Since there is no parity bit, no parity error is generated.

(7) Receive data noise filter

The RXDn signal is sampled at the rising edge of the prescaler output clock. If the same sampling value is obtained twice, the match detector output changes, and this output is sampled as input data. Therefore, data not exceeding one clock width is judged to be noise and is not delivered to the internal circuit (see **Figure 11-11**). See **11.2.6 (1) (a) Basic clock (Clock)** regarding the basic clock.

Also, since the circuit is configured as shown in Figure 11-10, internal processing during a receive operation is delayed by up to 2 clocks according to the external signal status.

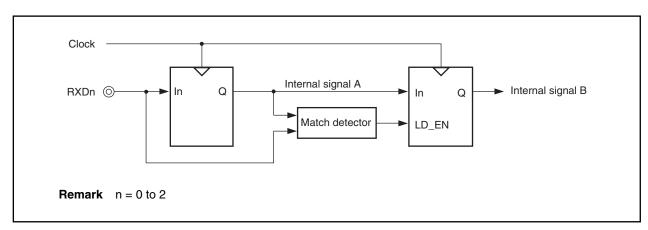
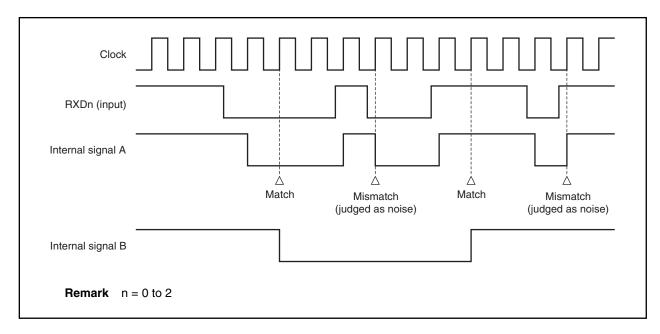
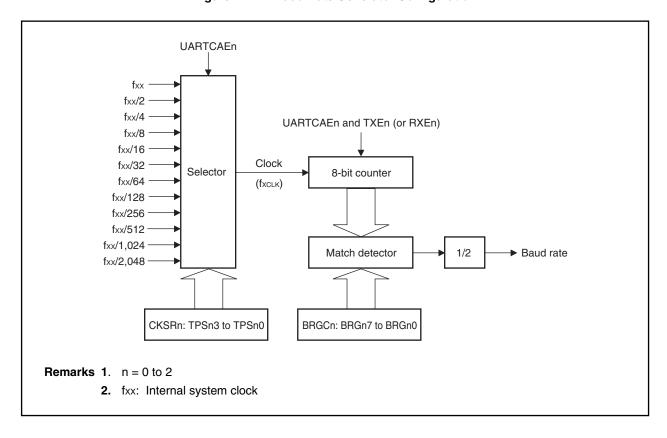



Figure 11-10. Noise Filter Circuit


11.2.6 Dedicated baud rate generators 0 to 2 (BRG0 to BRG2)

A dedicated baud rate generator, which consists of a source clock selector and an 8-bit programmable counter, generates serial clocks during transmission/reception in UARTn. The dedicated baud rate generator output can be selected as the serial clock for each channel.

Separate 8-bit counters exist for transmission and for reception.

(1) Baud rate generator configuration

Figure 11-12. Baud Rate Generator Configuration

(a) Basic clock (Clock)

When UARTCAEn = 1 in the ASIMn register, the clock selected according to the TPSn3 to TPSn0 bits of the CKSRn register is supplied to the transmission/reception unit. This clock is called the basic clock, and its frequency is referred to as fxclk. When UARTCAEn = 0, the clock signal is fixed at low level.

(2) Serial clock generation

A serial clock can be generated according to the settings of the CKSRn and BRGCn registers (n = 0 to 2).

The basic clock input to the 8-bit counter is selected according to the TPSn3 to TPSn0 bits of the CKSRn register.

The 8-bit counter divisor value can be selected according to the BRGn7 to BRGn0 bits of the BRGCn register.

(a) Clock select registers 0 to 2 (CKSR0 to CKSR2)

The CKSRn register is an 8-bit register for selecting the basic block according to the TPSn3 to TPSn0 bits. The clock selected by the TPSn3 to TPSn0 bits becomes the basic clock of the transmission/reception module. Its frequency is referred to as fxclk.

These registers can be read or written in 8-bit units.

Cautions 1. The maximum allowable frequency of the basic clock (fxclk) is 25 MHz. Therefore, when the system clock's frequency is 50 MHz, bits TPSn3 to TPSn0 cannot be set to 0000B (n = 0 to 2).

If the system clock frequency is 50 MHz, set the TPSn3 to TPSn0 bits to a value other than 0000B and set the UARTCAEn bit of the ASIMn register to 1.

2. If the TPSn3 to TPSn0 bits are to be overwritten, the UARTCAEn bit of the ASIMn register should be set to 0 first.

	7	6	5	4	3	2	1	0	Address	After reset
CKSR0	0	0	0	0	TPS03	TPS02	TPS01	TPS00	FFFFFA06H	00H
									- -	
CKSR1	0	0	0	0	TPS13	TPS12	TPS11	TPS10	FFFFFA16H	00H
			-						- -	
CKSR2	0	0	0	0	TPS23	TPS22	TPS21	TPS20	FFFFFA26H	00H

Bit position	Bit name	Function								
3 to 0	TPSn3 to TPSn0	Specifies the basic clock.								
	(n = 0 to 2)	TPSn3	TPSn2	TPSn1	TPSn0	Basic clock (fxclk)				
		0	0	0	0	fxx				
		0	0	0	1	fxx/2				
		0	0	1	0	fxx/4				
		0	0	1	1	fxx/8				
		0	1	0	0	fxx/16				
		0	1	0	1	fxx/32				
		0	1	1	0	fxx/64				
		0	1	1	1	fxx/128				
		1	0	0	0	fxx/256				
		1	0	0	1	fxx/512				
		1	0	1	0	fxx/1,024				
		1	0	1	1	fxx/2,048				
		1	1	Arbitrary	Arbitrary	Setting prohibited				

Remark fxx: Internal system clock

(b) Baud rate generator control registers 0 to 2 (BRGC0 to BRGC2)

The BRGCn register is an 8-bit register that controls the baud rate (serial transfer speed) of UARTn. These registers can be read or written in 8-bit units.

Caution If the BRGn7 to BRGn0 bits are to be overwritten, TXEn and RXEn should be set to 0 in the ASIMn register first (n = 0 to 2).

7 6 5 4 3 2 1 0 Address After reset BRGC0 MDL07 MDL06 MDL05 MDL04 MDL03 MDL02 MDL01 MDL00 FFFFFA07H FFH MDL17 MDL16 BRGC1 MDL15 MDL14 MDL13 MDL12 MDL11 MDL10 FFFFFA17H FFH BRGC2 MDL27 MDL26 MDL25 MDL24 MDL23 MDL22 MDL21 MDL20 FFFFFA27H FFH

Bit position	Bit name	Function																							
7 to 0	BRGn7 to S		Specifies the 8-bit counter's divisor value.																						
	(n = 0 to 2)	(n = 0 to 2)		BRGn7	BRGn6	BRGn5	BRGn4	BRGn3	BRGn2	BRGn1	BRGn0	Divisor value (k)	Serial clock												
			0	0	0	0	0	х	х	х	-	Setting prohibited													
			0	0	0	0	1	0	0	0	8	fxclk/8													
							0	0	0	0	1	0	0	1	9	fxclk/9									
												0	0	0	0	1	0	1	0	10	fxclk/10				
			:	:	:	:	:	:	:	:	:	:													
			1	1	1	1	1	0	1	0	250	fxclk/250													
			1	1	1	1	1	0	1	1	251	fxclk/251													
			1	1	1	1	1	1	0	0	252	fxclk/252													
							1									1	1	1	1	1	1	0	1	253	fxclk/253
			1	1	1	1	1	1	1	0	254	fxclk/254													
			1	1	1	1	1	1	1	1	255	fxclk/255													
												· · · · · · · · · · · · · · · · · · ·													

Remarks 1. fxclk: Frequency of basic clock (Clock) selected according to TPSn3 to TPSn0 bits of CKSRn register.

- 2. k: Value set according to BRGn7 to BRGn0 bits (k = 8, 9, 10, ..., 255)
- 3. The baud rate is the output clock for the 8-bit counter divided by 2
- 4. x: don't care

(c) Baud rate

The baud rate is the value obtained according to the following formula.

Baud rate =
$$\frac{f_{XCLK}}{2 \times k}$$
 [bps]

 f_{XCLK} = Frequency of basic clock (Clock) selected according to TPSn3 to TPSn0 bits of CKSRn register. k = Value set according to BRGn7 to BRGn0 bits of BRGCn register (k = 8, 9, 10, ..., 255)

(d) Baud rate error

The baud rate error is obtained according to the following formula.

Error (%) =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (normal baud rate)}} - 1\right) \times 100 [\%]$$

- Cautions 1. Make sure that the baud rate error during transmission does not exceed the allowable error of the reception destination.
 - 2. Make sure that the baud rate error during reception is within the allowable baud rate range during reception, which is described in paragraph (4).

Example: Basic clock (Clock) frequency = 20 MHz = 20,000,000 Hz

Settings of BRGn7 to BRGn0 bits in BRGCn register = 01000001B (k = 65)

Target baud rate = 153,600 bps

Baud rate =
$$20 \text{ M/}(2 \times 65)$$

= $20,000,000/(2 \times 65) = 153,846 \text{ [bps]}$

Error =
$$(153,846/153,600 - 1) \times 100$$

= 0.160 [%]

(3) Baud rate setting example

Table 11-3. Baud Rate Generator Setting Data

Baud Rate	Baud Rate fxx = 50 MHz		Нz	fxx = 40 MHz			fx	x = 33 MH	Нz	fxx = 10 MHz		
(bps)	fxclk	k	ERR	fxclk	k	ERR	fxclk	k	ERR	fxclk	k	ERR
300	fxx/2 ⁹	163	-0.15	fxx/2 ¹⁰	65	0.16	fxx/2 ⁸	215	-0.07	fxx/2 ⁷	130	0.16
600	fxx/2 ⁸	163	-0.15	fxx/2 ⁹	65	0.16	fxx/2 ⁷	215	-0.07	fxx/2 ⁶	130	0.16
1,200	fxx/2 ⁷	163	-0.15	fxx/2 ⁸	65	0.16	fxx/2 ⁶	215	-0.07	fxx/2 ⁵	130	0.16
2,400	fxx/2 ⁶	163	-0.15	fxx/2 ⁷	65	0.16	fxx/2 ⁵	215	-0.07	fxx/2 ⁴	130	0.16
4,800	fxx/2 ⁵	163	-0.15	fxx/2 ⁶	65	0.16	fxx/2 ⁴	215	-0.07	fxx/2 ³	130	0.16
9,600	fxx/2 ⁴	163	-0.15	fxx/2 ⁵	65	0.16	fxx/2 ³	215	-0.07	fxx/2 ²	130	0.16
19,200	fxx/2 ³	163	-0.15	fxx/2 ⁴	80	0.16	fxx/2 ²	215	-0.07	fxx/2 ¹	130	0.16
31,250	fxx/2 ³	100	0	fxx/2 ³	65	0	fxx/2 ²	132	0	fxx/2 ¹	80	0
38,400	fxx/2 ²	163	-0.15	fxx/2 ³	65	0.16	fxx/2 ¹	215	-0.07	fxx/2°	130	0.16
76,800	fxx/2 ²	81	0.47	fxx/2 ²	65	0.16	fxx/2 ¹	107	0.39	fxx/2°	65	0.16
153,600	fxx/2 ¹	81	0.47	fxx/2 ¹	65	0.16	fxx/2 ¹	54	-0.54	fxx/2°	33	-1.36
312,500	fxx/2 ¹	40	0	fxx/2 ¹	32	0	fxx/2 ¹	26	1.54	fxx/2°	16	0

Caution The maximum allowable frequency of the basic clock (fxclk) is 25 MHz.

Remark fxx: Internal system clock

fxclk: Basic clock

k: Settings of BRGn7 to BRGn0 bits in BRGCn register (n = 0 to 2)

ERR: Baud rate error [%]

(4) Allowable baud rate range during reception

The degree to which a discrepancy from the transmission destination's baud rate is allowed during reception is shown below.

Caution The equations described below should be used to set the baud rate error during reception so that it always is within the allowable error range.

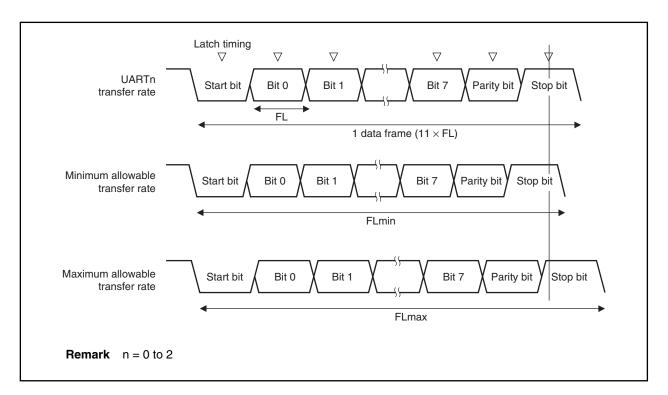


Figure 11-13. Allowable Baud Rate Range During Reception

As shown in Figure 11-13, after the start bit is detected, the receive data latch timing is determined according to the counter that was set by the BRGCn register. If all data up to the final data (stop bit) is in time for this latch timing, the data can be received normally.

Applying this to 11-bit reception is, theoretically, as follows.

$$FL = (Brate)^{-1}$$

Brate: UARTn baud rate (n = 0 to 2) k: BRGCn setting value (n = 0 to 2)

FL: 1-bit data length Latch timing margin: 2 clocks

Minimum allowable transfer rate:
$$FLmin = 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$$

Therefore, the maximum baud rate that can be received at the transfer destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum allowable transfer rate can be obtained as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

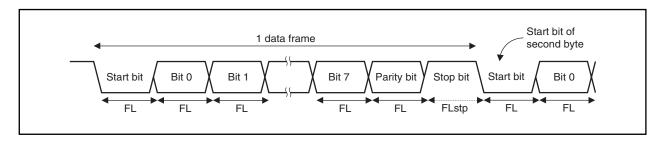
$$FLmax = \frac{21k-2}{20k} FL \times 11$$

Therefore, the minimum baud rate that can be received at the transfer destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k-2}$$
 Brate

The allowable baud rate error of UARTn and the transfer destination can be obtained as follows from the expressions described above for computing the minimum and maximum baud rate values.

Table 11-4. Maximum and Minimum Allowable Baud Rate Error


Division Ratio (k)	Maximum Allowable Baud Rate Error	Minimum Allowable Baud Rate Error
8	+3.53%	-3.61%
20	+4.26%	-4.31%
50	+4.56%	-4.58%
100	+4.66%	-4.67%
255	+4.72%	-4.73%

- **Remarks 1.** The reception precision depends on the number of bits in one frame, the basic clock frequency, and the division ratio (k). The higher the basic clock frequency and the larger the division ratio (k), the higher the precision.
 - 2. k: BRGCn setting value (n = 0 to 2)

(5) Transfer rate during continuous transmission

During continuous transmission, the transfer rate from a stop bit to the next start bit is extended two clocks of the basic clock longer than normal. However, on the reception side, the transfer result is not affected since the timing is initialized by the detection of the start bit.

Figure 11-14. Transfer Rate During Continuous Transmission

Representing the 1-bit data length by FL, the stop bit length by FLstp, and the basic clock frequency by fxclk yields the following equation.

$$FLstp = FL + 2/fxclk$$

Therefore, the transfer rate during continuous transmission is as follows.

Transfer rate = $11 \times FL + 2/fxc \times R$

11.2.7 Cautions

The points to be noted when using UARTn are described below (n = 0 to 2).

- (1) When the supply of clocks to UARTn is stopped (for example, IDLE or software STOP mode), operation stops with each register retaining the value it had immediately before the supply of clocks was stopped. The TXDn pin output also holds and outputs the value it had immediately before the supply of clocks was stopped. However, operation is not guaranteed after the supply of clocks is restarted. Therefore, after the supply of clocks is restarted, the circuits should be initialized by setting UARTCAEn = 0, RXEn = 0, and TXEn = 0.
- (2) UARTn is of two-buffer configuration, consisting of transmit buffers (TXBn) and transmit shift registers, and has status flags (TXBFn and TXSFn bits of the ASIFn register) that indicate the status of the respective buffers. If the TXBFn and TXSFn bits are read at the same time during successive transmission, the value changes as follows: 10 → 11 → 01. To successively transmit data, therefore, judge the status using only the TXBFn bit.

11.3 Clocked Serial Interfaces 0 to 2 (CSI0 to CSI2)

11.3.1 Features

Transfer rate: Master mode: Maximum 3.125 Mbps (when internal system clock operates at 50 MHz)

Slave mode: Maximum 5 Mbps

- Half-duplex communications
- · Master mode and slave mode can be selected
- Transmission data length: 8 bits
- · Transfer data direction can be switched between MSB first and LSB first
- Eight clock signals can be selected (7 master clocks and 1 slave clock)
- 3-wire method

SOn: Serial data output
SIn: Serial data input
SCKn: Serial clock I/O

- Interrupt sources: 1 type
 - Transmission/reception completion interrupt (INTCSIn)
- Transmission/reception mode or reception-only mode can be specified
- On-chip transmit buffer (SOTBn)

Remark n = 0 to 2

11.3.2 Configuration

CSIn is controlled by the clocked serial interface mode register (CSIMn) (n = 0 to 2). Transmit/receive data can be written to or read from the SIOn register.

(1) Clocked serial interface mode registers 0 to 2 (CSIM0 to CSIM2)

The CSIMn register is an 8-bit register for specifying the operation of CSIn.

(2) Clocked serial interface clock selection registers 0 to 2 (CSIC0 to CSIC2)

The CSICn register is an 8-bit register for controlling the transmit operation of CSIn.

(3) Serial I/O shift registers 0 to 2 (SIO0 to SIO2)

The SIOn register is an 8-bit register for converting between serial data and parallel data. SIOn is used for both transmission and reception.

Data is shifted in (reception) or shifted out (transmission) beginning at either the MSB side or the LSB side. Actual transmit/receive operations are controlled by reading or writing SIOn.

(4) Clocked serial interface transmit buffer registers 0 to 2 (SOTB0 to SOTB2)

The SOTBn register is an 8-bit buffer register for storing transmit data.

(5) Selector

The selector selects the serial clock to be used.

(6) Serial clock controller

The serial clock controller controls the supply of serial clocks to the shift register. When an internal clock is used, it also controls the clocks that are output to the SCKn pin.

(7) Serial clock counter

The serial clock counter counts serial clocks that are output or input during transmit and receive operations and checks that 8-bit data has been transmitted or received.

(8) Interrupt controller

The interrupt controller controls whether or not an interrupt request is generated when the serial clock counter has counted eight serial clocks.

fxx/215 Serial clock controller fxx/214 $f_{XX}/2^{12}$ ▶⊚ SCKn Clock start/stop control fxx/2¹⁰ -Selector Interrupt $fxx/2^8$ ► INTCSIn clock phase control controller $fxx/2^6$ fxx/24 SCKn ⊚ Transmission control Transmit data control Control signal Transmit data buffer SO selection >⊙ SOn register n (SOTBn) Shift register n SIn ① SO latch (SIOn) **Remarks 1.** n = 0 to 2 2. fxx: Internal system clock

Figure 11-15. Clocked Serial Interface Block Diagram

11.3.3 Control registers

(1) Clocked serial interface mode registers 0 to 2 (CSIM0 to CSIM2)

The CSIMn register controls the operation of CSIn (n = 0 to 2).

These registers can be read or written in 8-bit or 1-bit units.

Be sure to set bits 5 and 3 to 1 to 0. If they are set to 1, the operation is not guaranteed.

Caution To use CSIn, be sure to set the external pins related to the CSIn function to control mode and set the CSICn register. Then set the CSICAEn bit to 1 before setting the other bits.

	<7>	<6>	5	<4>	3	2	1	<0>	Address	After reset
CSIM0	CSICAE0	TRMD0	0	DIR0	0	0	0	CSOT0	FFFFF900H	00H
									_	
CSIM1	CSICAE1	TRMD1	0	DIR1	0	0	0	CSOT1	FFFFF910H	00H
									_	
CSIM2	CSICAE2	TRMD2	0	DIR2	0	0	0	CSOT2	FFFFF920H	00H

Bit position	Bit name	Function
7	CSICAEn (n = 0 to 2)	CSI Operation Permission/Prohibition Specifies whether CSIn operation is enabled or disabled (n = 0 to 2). 0: CSIn operation is disabled (SOn = low level, SCKn = high level) 1: CSIn operation is enabled
		Cautions 1. If CSICAEn is set to 0, the CSIn unit can be reset asynchronously. 2. If CSICAEn = 0, the CSIn unit is in a reset state. Therefore, to operate CSIn, CSICAEn must be set to 1. 3. If the CSICAEn bit is changed from 1 to 0, all registers of the CSIn unit are initialized. To set CSICAEn to 1 again, the registers of the CSIn unit must be set again.
6	TRMDn (n = 0 to 2)	Transmission/Reception Mode Control Specifies the transmission/reception mode. 0: Reception-only mode 1: Transmission/reception mode If TRMDn = 0, reception-only transfers are performed. In addition, the SOn pin output is fixed at low level. Data reception is started by reading the SIOn register. If TRMDn = 1, transmission/reception is started by writing data to the SOTBn register.
		Caution The TRMDn bit can be overwritten only when CSOTn = 0.
4	DIRn (n = 0 to 2)	Transmit Direction Mode Control Specifies the transfer direction mode (MSB or LSB). 0: The transfer data's start bit is MSB 1: The transfer data's start bit is LSB
		Caution The DIRn bit can be overwritten only when CSOTn = 0.
0	CSOTn (n = 0 to 2)	CSI Status of Transmission This is a transfer status display flag. 0: Idle status 1: Transfer execution status This flag is used to judge whether writing to the shift register (SIOn) is enabled or not when starting serial data transmission in transmission/reception mode (TRMDn = 1)
		Caution The CSOTn bit is reset when the CSICAEn bit is cleared (0).

(2) Clocked serial interface clock selection registers 0 to 2 (CSIC0 to CSIC2)

The CSICn register is an 8-bit register that controls the transmit operation of CSIn.

These registers can be read or written in 8-bit units.

Caution The CSIC2 to CSIC0 registers can be overwritten when CSICAEn = 0 in the CSIMn register.

											(1/
	7	6	5	4	3	2	1	0	Address	After reset	
CSIC0	0	0	0	CKP0	DAP0	CKS02	CKS01	CKS00	FFFFF901H	00H	
CSIC1	0	0	0	CKP1	DAP1	CKS12	CKS11	CKS10	FFFFF911H	00H	
CSIC2	0	0	0	CKP2	DAP2	CKS22	CKS21	CKS20	FFFFF921H	00H	
Γ	Bit position	Bit ı	name				Functio	n			7
_	4, 3	CKPn, (n = 0				Bit, Data P smission/re			Kn.		
				CKPn	DAPn		(Operation r	node		
				0	X D1 X D0 ↑ ↑						
				0 1 SCKn (I/O) X D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 SIn capture ↑ ↑ ↑ ↑ ↑ ↑ ↑							
				1	0	SCK (I/C SOn (outpu SIn captur	(t) D7	↑ ↑	X D4 X D3 X D2 X	X D1 X D0 ↑ ↑	
				1	1	SCK (I/C SOn (outpu SIn captur	(t) D7 X	D6 (D5 (C	D4 X D3 X D2 X D	01 X D0	
_											

(2/2)

Bit position	Bit name				Function	
2 to 0	CKSn2 to CKSn0	Input Clock Specifies th				
	(n = 0 to 2)	opcomed ti	io iriput oic	JOIN.		
		CKSn2	CKSn1	CKSn0	Input clock	Mode
		0	0	0	fxx/2 ¹⁵	Master mode
		0	0	1	fxx/2 ¹⁴	Master mode
		0	1	0	fxx/2 ¹²	Master mode
		0	1	1	fxx/2 ¹⁰	Master mode
		1	0	0	fxx/2 ⁸	Master mode
		1	0	1	fxx/2 ⁶	Master mode
		1	1	0	fxx/2 ⁴	Master mode
		1	1	1	External clock (SCKn)	Slave mode
		Remark	fxx: Inter	nal systen	n clock	

(a) Baud rate

CKSn2	CKSn1	CKSn0			Baud Rate (bps)		
			50 MHz Operation	40 MHz Operation	33 MHz Operation	25 MHz Operation	20 MHz Operation
0	0	0	1,526	1,221	1,007	763	610
0	0	1	3,052	2,441	2,014	1,526	1,221
0	1	0	12,207	9,766	8,057	6,104	4,883
0	1	1	48,828	39,063	32,227	24,414	19,531
1	0	0	195,313	156,250	128,906	97,656	78,125
1	0	1	781,250	625,000	515,625	390,625	312,500
1	1	0	3,125,000	2,500,000	2,062,500	1,562,500	1,250,000

(3) Serial I/O shift registers 0 to 2 (SIO0 to SIO2)

The SIOn register is an 8-bit shift register that converts parallel data to serial data. If TRMDn = 0 in the CSIMn register, the transfer is started by reading SIOn.

Except when a reset is input, the SIOn register becomes 00H even when the CSICAEn bit of the CSIMn register is cleared (0).

These registers are read-only in 8-bit units.

Caution SIOn can be accessed only when the system is in an idle state (CSOTn = 0 in the CSIMn register).

	7	6	5	4	3	2	1	0	Address	After reset		
SIO0	SIO07	SIO06	SIO05	SIO04	SIO03	SIO02	SIO01	SIO00	FFFFF902H	00H		
									_			
SIO1	SIO17	SIO16	SIO15	SIO14	SIO13	SIO12	SIO11	SIO10	FFFFF912H	00H		
									_			
SIO2	SIO27	SIO26	SIO25	SIO24	SIO23	SIO22	SIO21	SIO20	FFFFF922H	00H		
_												
	Bit position	Bit r	name	Function								
	7 to 0	SIOn7	' to	Serial I/O								
	SIOn0			Shifts data	in (receptio	n) or shifts	data out (t	ransmissio	on) beginning a	t the MSB or		
	(n = 0 to 2)			the LSB sid	the LSB side.							

(4) Receive-only serial I/O shift registers 0 to 2 (SIOE0 to SIOE2)

The SIOEn register is an 8-bit shift register that converts parallel data into serial data. A receive operation does not start even if the SIOEn register is read while the TRMD bit of the CSIMn register is 0. Therefore this register is used to read the value of the SIOn register (receive data) without starting a receive operation.

Except when a reset is input, the SIOEn register becomes 00H even when the CSICAEn bit of the CSIMn register is cleared (0).

These registers are read-only in 8-bit units.

Caution SIOEn can be accessed only when the system is in an idle state (CSOTn = 0 in the CSIMn register).

	7	6	5	4	3	2	1	0	Address	After reset
SIOE0	SIOE07	SIOE06	SIOE05	SIOE04	SIOE03	SIOE02	SIOE01	SIOE00	FFFFF903H	00H
				_						
SIOE1	SIOE17	SIOE16	SIOE15	SIOE14	SIOE13	SIOE12	SIOE11	SIOE10	FFFFF913H	00H
									_	
SIOE2	SIOE27	SIOE26	SIOE25	SIOE24	SIOE23	SIOE22	SIOE21	SIOE20	FFFFF923H	00H
_										
	Bit position	Bit n	ame				Functio	n		
	7 to 0 SIOEn7 to Serial I/O									
	SIOEn0 Shifts data in (reception) beginning at the MSB or the LSB side.									
	(n = 0 to 2)									

(5) Clocked serial interface transmit buffer registers 0 to 2 (SOTB0 to SOTB2)

The SOTBn register is an 8-bit buffer register for storing transmit data.

If transmission/reception mode is set (TRMDn = 1 in the CSIMn register), a transmit operation is started by writing data to the SOTBn register.

RESET input sets the SOTBn register to 00H.

These registers can be read or written in 8-bit units.

Caution SOTBn can be accessed only when the system is in an idle state (CSOTn = 0 in the CSIMn register).

	7	6	5	4	3	2	1	0	Address	After reset
SOTB	SOTB07	SOTB06	SOTB05	SOTB04	SOTB03	SOTB02	SOTB01	SOTB00	FFFFF904H	00H
			ı	1	Т	Т	T	ı	1	
SOTB.	SOTB17	SOTB16	SOTB15	SOTB14	SOTB13	SOTB12	SOTB11	SOTB10	FFFFF914H	00H
			1	ı	T	T		T	1	
SOTB	SOTB27	SOTB26	SOTB25	SOTB24	SOTB23	SOTB22	SOTB21	SOTB20	FFFFF924H	00H
_										
	Bit position Bit name Function									
	7 to 0 SOTBn7 to Serial I/O									
	SOTBn0 Writes transmit data.									
	(n = 0 to 2)									

11.3.4 Operation

(1) Transfer mode

CSIn transmits and receives data in three lines: 1 clock line and 2 data lines.

In reception-only mode (TRMDn = 0 in the CSIMn register), the transfer is started by reading the SIOn register (n = 0 to 2).

In transmission/reception mode (TRMDn = 1 in the CSIMn register), the transfer is started by writing data to the SOTBn register.

When an 8-bit transfer of CSIn ends, the CSOTn bit of the CSIMn register becomes 0, and transfer stops automatically. Also, when the transfer ends, a transmission/reception completion interrupt (INTCSIn) is generated.

- Cautions 1. When CSOTn = 1 in the CSIMn register, the control registers and data registers should not be accessed.
 - 2. If transmit data is written to the SOTBn register and the TRMDn bit of the CSIMn register is changed from 0 to 1, serial transfer is not performed.

(2) Serial clock

(a) When internal clock is selected as the serial clock

If reception or transmission is started, a serial clock is output from the \overline{SCKn} pin, and the data of the SIn pin is taken into the SIOn register sequentially or data is output to the SOn pin sequentially from the SIOn register at the timing when the data has been synchronized with the serial clock in accordance with the setting of the CKPn and DAPn bits of the CSICn register (n = 0 to 2).

(b) When external clock is selected as the serial clock

If reception or transmission is started, the data of the SIn pin is taken into the SIOn register sequentially or output to the SOn pin sequentially in synchronization with the serial clock that has been input to the \overline{SCKn} pin following transmission/reception startup in accordance with the setting of the CKPn and DAPn bits of the CSICn register (n = 0 to 2).

If serial clock is input to the SCKn pin when neither reception nor transmission is started, a shift operation will not be executed.

Figure 11-16. Transfer Timing

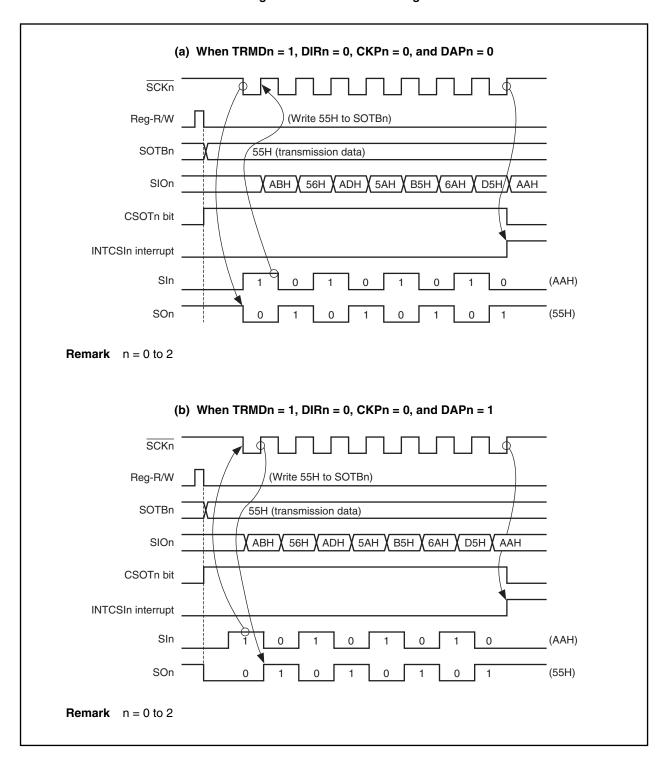
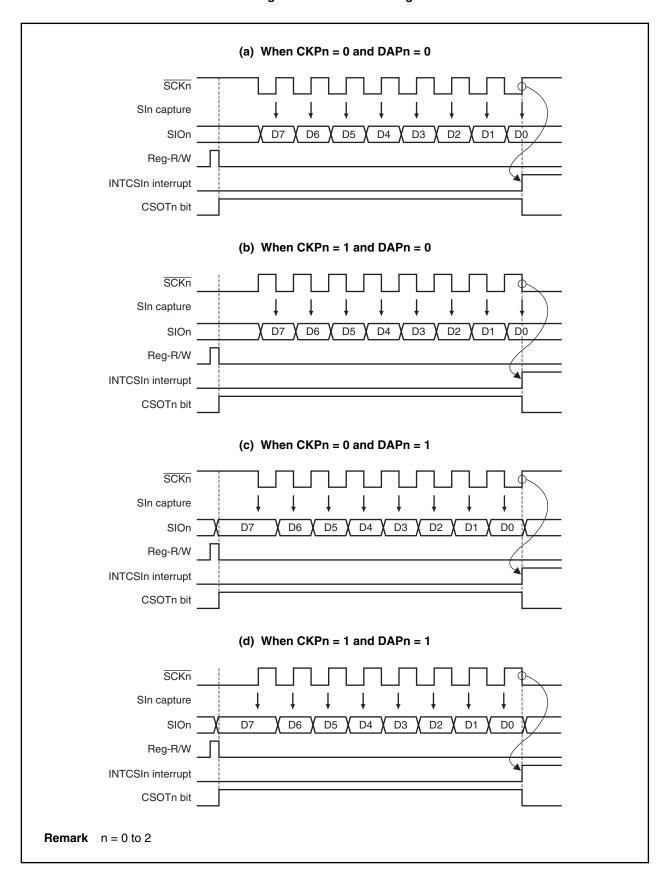



Figure 11-17. Clock Timing

11.3.5 Output pins

(1) SCKn pin

When CSIn operation is disabled (CSICAEn = 0), the \overline{SCKn} pin output state is as follows.

CKPn	SCKn Pin Output
0	Fixed at high level
1	Fixed at low level

Remarks 1. When the CKPn bit is overwritten, the \overline{SCKn} pin output changes.

2. n = 0 to 2

(2) SOn pin

When CSIn operation is disabled (CSICAEn = 0), the SOn pin output state is as follows.

TRMDn	DAPn	DIRn	SOn Pin Output				
0	х	х	Fixed at low level				
1	0	х	SOn latch value (low level)				
	1	0	SOTBn7 value				
		1	SOTBn0 value				

Remarks 1. If any of the TRMDn, DAPn, and DIRn bits is overwritten, the SOn pin output changes.

2. n = 0 to 2

3. x: don't care

11.3.6 System configuration example

CSIn performs 8-bit length data transfer using three signal lines: a serial clock (SCKn), serial input (SIn), and serial output (SOn). This is effective when connecting peripheral I/O that incorporate a conventional clocked serial interface, or a display controller to the V850E/MA1 (n = 2 to 0).

When connecting the V850E/MA1 to several devices, lines for handshake are required.

Since the first communication bit can be selected as an MSB or LSB, communication with various devices can be achieved.

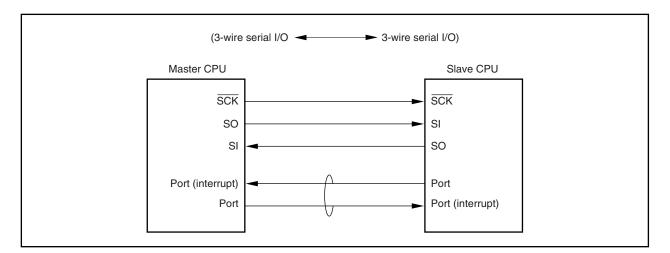


Figure 11-18. System Configuration Example of CSI

CHAPTER 12 A/D CONVERTER

12.1 Features

- · Analog input: 8 channels
- 10-bit A/D converter
- On-chip A/D conversion result register (ADCR0 to ADCR7)

10 bits \times 8

• A/D conversion trigger mode

A/D trigger mode

Timer trigger mode

External trigger mode

· Successive approximation method

12.2 Configuration

The A/D converter of the V850E/MA1 adopts the successive approximation method, and uses A/D converter mode registers 0, 1, 2 (ADM0, ADM1, ADM2), and the A/D conversion result register (ADCR0 to ADCR7) to perform A/D conversion operations.

(1) Input circuit

The input circuit selects the analog input (ANI0 to ANI7) according to the mode set by the ADM0 and ADM1 registers and sends the input to the sample & hold circuit.

(2) Sample & hold circuit

The sample & hold circuit samples each of the analog input signals sequentially sent from the input circuit, and sends them to the voltage comparator. This circuit also holds the sampled analog input signal during A/D conversion.

(3) Voltage comparator

The voltage comparator compares the analog input signal with the output voltage of the series resistor string voltage tap.

(4) Series resistor string

The series resistor string is used to generate voltages to match analog inputs.

The series resistor string is connected between the reference voltage pin (AVREF) for the A/D converter and the GND pin (AVss) for the A/D converter. To make 1,024 equal voltage steps between these 2 pins, it is configured from 1,023 equal resistors and 2 resistors with 1/2 of the resistance value.

The voltage tap of the series resistor string is selected by a tap selector controlled by the successive approximation register (SAR).

(5) Successive approximation register (SAR)

The SAR is a 10-bit register that sets series resistor string voltage tap data, whose values match analog input voltage values, 1 bit at a time starting from the most significant bit (MSB).

If data is set in the SAR all the way to the least significant bit (LSB) (A/D conversion completed), the contents of the SAR (conversion results) are held in the A/D conversion result register (ADCRn). When all the specified A/D conversion operations have been completed, an A/D conversion end interrupt (INTAD) occurs.

(6) A/D conversion result register (ADCRn)

ADCRn is a 10-bit register that holds A/D conversion results. Each time A/D conversion is completed, the conversion results are loaded from the successive approximation register (SAR).

RESET input sets this register to 0000H.

(7) Controller

The controller selects the analog input, generates the sample & hold circuit operation timing, and controls the conversion trigger according to the mode set by the ADM0 and ADM1 registers.

(8) ANIO to ANI7 pins

These are 8-channel analog input pins for the A/D converter. They input the analog signals to be A/D converted.

Caution Make sure that the voltages input to ANI0 to ANI7 do not exceed the rated values. If a voltage higher than AV_{DD} or lower than AVss (even within the range of the absolute maximum ratings) is input to a channel, the conversion value of the channel is undefined, and the conversion values of the other channels may also be affected.

(9) AVREF pin

This is the pin for inputting the reference voltage of the A/D converter. It converts signals input to the ANIn pin to digital signals based on the voltage applied between AVREF and AVSS.

In the V850E/MA1, the AVREF pin functions alternately as the AVDD pin. It is therefore impossible to set voltage separately for the AVREF pin and the AVDD pin.

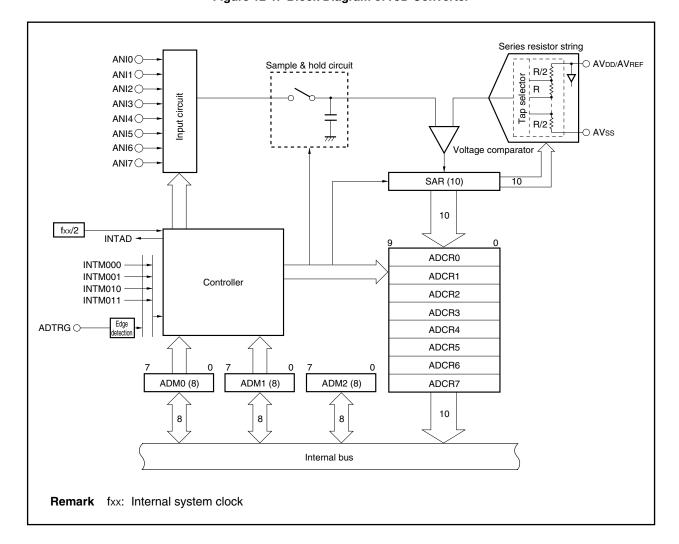


Figure 12-1. Block Diagram of A/D Converter

Cautions 1. If there is noise at the analog input pins (ANI0 to ANI7) or at the reference voltage input pin (AVREF), that noise may generate an illegal conversion result.

Software processing will be needed to avoid a negative effect on the system from this illegal conversion result.

An example of this software processing is shown below.

- Take the average result of a number of A/D conversions and use that as the A/D conversion result.
- Execute a number of A/D conversions consecutively and use those results, omitting any exceptional results that may have been obtained.
- If an A/D conversion result that is judged to have generated a system malfunction is obtained, be sure to recheck the system malfunction before performing malfunction processing.
- 2. Do not apply a voltage outside the AVss to AVREF range to the pins that are used as A/D converter input pins.

12.3 Control Registers

(1) A/D converter mode register 0 (ADM0)

The ADM0 register is an 8-bit register that selects the analog input pin, specifies the operation mode, and executes conversion operations.

This register can be read/written in 8-bit or 1-bit units. However, when data is written to the ADM0 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning. Bit 6 cannot be written to and writing executed is ignored.

- Cautions 1. When the ADCE bit is 1 in the timer trigger mode and external trigger mode, the trigger signal standby state is set. To clear the ADCE bit, write "0" or reset.

 In the A/D trigger mode, the conversion trigger is set by writing 1 to the ADCE bit. After the operation, when the mode is changed to the timer trigger mode or external trigger mode without clearing the ADCE bit, the trigger input standby state is set immediately after the register value is changed.
 - 2. It takes 7 to 9 clocks until the ADCS bit is set to 1 from when the ADCE bit was set to 1 in the A/D trigger mode.

-4-

<7> <6> 5 2 1 0 Address After reset ANIS2 ANIS1 ADM0 ADCE **ADCS** BS MS 0 ANIS0 FFFFF200H 00H

Bit position	Bit name					Function							
7	ADCE	Enables 0: Dis	Convert Enable Enables or disables A/D conversion operation. 0: Disabled 1: Enabled										
6	ADCS	Indicates 0: Sto	onverter Status dicates the status of A/D converter. This bit is read only. 0: Stopped 1: Operating										
5	BS	Specifies 0: 1-b	uffer Select pecifies buffer mode in the select mode. 0: 1-buffer mode 1: 4-buffer mode										
4	MS	Specifies 0: Sca	ode Select pecifies operation mode of A/D converter. 0: Scan mode 1: Select mode										
2 to 0	ANIS2 to ANIS0	-	Analog Input Select Specifies the analog input pin to be A/D converted.										
		ANIS2	ANIS1	ANIS0	Selec	t mode	Scan	mode					
					A/D trigger mode	Timer trigger mode, external trigger mode	A/D trigger mode	Timer trigger mode ^{Notes 1, 2} , external trigger mode ^{Note 2}					
		0	0	0	ANI0	ANI0	ANI0	1					
		0	0	1	ANI1	ANI1	ANIO, ANI1	2					
		0	1	0	ANI2	ANI2	ANI0 to ANI2	3					
		0	1	1	ANI3	ANI3	ANI0 to ANI3	4					
		1	0	0	ANI4	Setting prohibited	ANI0 to ANI4	4 + ANI4					
		1	0	1	ANI5	Setting prohibited	ANI0 to ANI5	4 + ANI4, ANI5					
		1	1	0	ANI6	Setting prohibited	ANI0 to ANI6	4 + ANI4 to ANI6					
		1	1	1	ANI7	Setting prohibited	ANI0 to ANI7	4 + ANI4 to ANI7					

- **Notes 1.** In the timer trigger mode (4-trigger mode) in the scan mode, because the scanning sequence of the ANI0 to ANI3 pins is specified by the sequence in which the match signals are generated from the compare register, the number of trigger inputs should be specified instead of specifying a certain analog input pin.
 - 2. If ANIS2 = 1, conversion is executed up to ANIn, starting from ANI3, after the trigger is counted four times (n = 4 to 7).

*

(2) A/D converter mode register 1 (ADM1)

The ADM1 register is an 8-bit register that specifies the conversion operation time and trigger mode. This register can be read/written in 8-bit units. However, when data is written to the ADM1 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning.

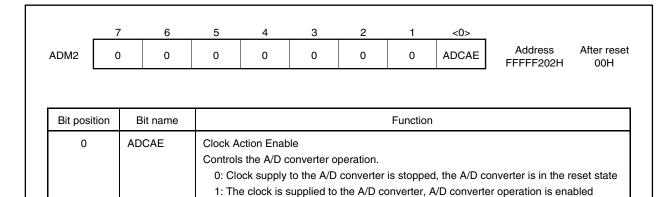
Cautions 1. It takes the following number of clocks from trigger input to completion of A/D conversion, in addition to the clocks specified using the FR2 to FR0 bits. (Refer to 12.8.6 Supplementary information on A/D conversion time.)

In A/D trigger mode: 11 to 13 clocks (9 to 11 clocks + 2 clocks)
In timer trigger mode or external trigger mode: 7 to 9 clocks (5 to 7 clocks + 2 clocks)

2. In the timer trigger mode or external trigger mode, be sure to input the trigger at an interval longer than the number of clocks specified using the FR2 to FR0 bits. (Refer to 12.8.2 Timer trigger/external trigger interval.)

413

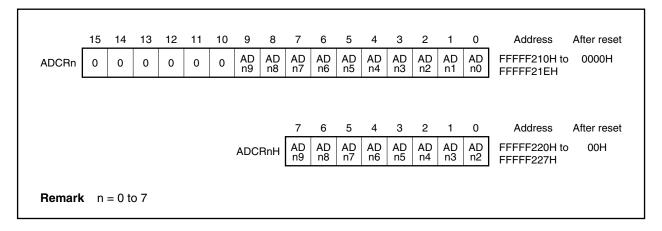
	7	6	5	4	3	2	1	0		
ADM1	0	TRG2	TRG1	TRG0	0	FR2	FR1	FR0	Address FFFFF201H	After reset 07H


Bit position	Bit name	Function							
6 to 4	TRG2 to TRG0	Trigger Specifie		gger mo	de.				
		TRG2	TRG2 TRG1 TRG0 Trigger mode						
		0	0		0/1	A/D trigger r	node		
		0	1		0	Timer trigge	r mode (1-trigg	er mode)	
		0	1		1	Timer trigge	r mode (4-trigg	er mode)	
		1	1		1	External trig	ger mode		
		Other	than ab	ove		Setting proh	ibited		
		Remark	Remark The valid edge of the external input signal in the external trigger mode specified by bits 7 and 6 (ES1231, ES1230) of the external interrupt mode register (INTM3). For details, refer to 7.3.9 (1) External interrupt mode registers 1 to 4 (INTM1 to INTM4).						interrupt mode
2 to 0	FR2 to FR0	Frequency Specifies the conversion operation time. These bits control the conversion time s is the same value irrespective of the oscillation frequency.							
		FR2	FNI	conversion clocks			rsion operation fxx = 40 MHz	l	
		0	0	0		96		Setting prohibited	
		0	0	1		144		Setting prohibited	
		0	1	0		192		Setting prohibited	5.82 <i>μ</i> s
		0	1	1		240	4.80 μs	6.00 μs	7.27 μs
		1	0	0		336	6.72 <i>μ</i> s	8.40 <i>μ</i> s	10.18 <i>μ</i> s
		1	0	1		384	7.68 <i>µ</i> s	9.60 <i>μ</i> s	Setting prohibited
		1	1	0		480	9.60 <i>μ</i> s	Setting prohibited	Setting prohibited
		1	1	1		672	Setting prohibited	Setting prohibited	Setting prohibited
		Note Remark		convers	·		the range of 5	to 10 μs.	

(3) A/D converter mode register 2 (ADM2)

The ADM2 register is an 8-bit register that controls the reset and clock of the A/D converter.

This register can be read/written in 8-bit or 1-bit units.


Caution Because ADCAE = 0 after reset release, the A/D converter enters the reset state. When operating the A/D converter, be sure to write to the ADM0 and ADM1 registers after setting the ADCAE bit of the ADM2 register to 1 (it is impossible to write to the ADM0 and ADM1 registers when ADCAE = 0). Moreover, when the ADCAE bit is set to 0, all registers related to the A/D converter are initialized.

(4) A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)

The ADCRn register is a 10-bit register holding the A/D conversion results. There are eight 10-bit registers. These registers are read-only in 16-bit or 8-bit units. During 16-bit access, the ADCRn register is specified, and during higher 8-bit access, the ADCRnH register is specified (n = 0 to 7).

When reading the 10-bit data of the A/D conversion results from the ADCRn register during 16-bit access, only the lower 10 bits are valid and the higher 6 bits are always read as 0.

The correspondence between each analog input pin and the ADCRn register (except the 4-buffer mode) is shown below.

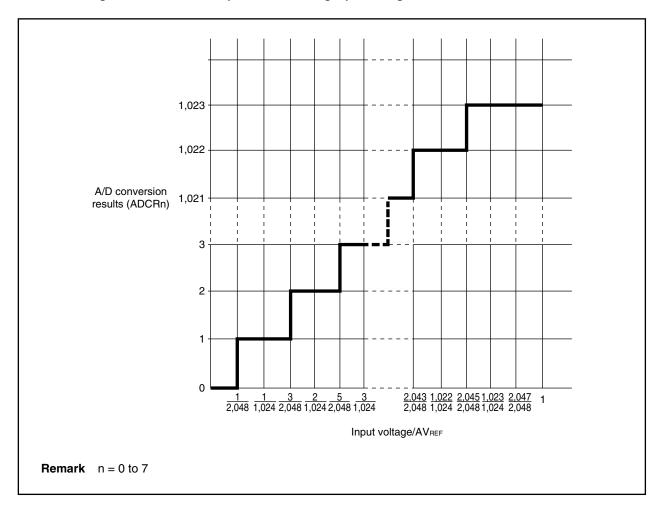
Analog Input Pin	ADCRn Register	
ANI0	ADCR0, ADCR0H	
ANI1	ADCR1, ADCR1H	
ANI2	ADCR2, ADCR2H	
ANI3	ADCR3, ADCR3H	
ANI4	ADCR4, ADCR4H	
ANI5	ADCR5, ADCR5H	
ANI6	ADCR6, ADCR6H	
ANI7	ADCR7, ADCR7H	

The relationship between the analog voltage input to the analog input pins (ANI0 to ANI7) and the A/D conversion result (of the A/D conversion result register n (ADCRn)) is as follows:

$$ADCR = INT \left(\frac{V_{IN}}{AV_{REF}} \times 1,024 + 0.5 \right)$$

or,

$$(\mathsf{ADCR} - 0.5) \times \frac{\mathsf{AV}_{\mathsf{REF}}}{1,024} \leq \mathsf{VIN} < (\mathsf{ADCR} + 0.5) \times \frac{\mathsf{AV}_{\mathsf{REF}}}{1,024}$$


INT(): Function that returns the integer of the value in ()

VIN: Analog input voltage AVREF: AVREF pin voltage

ADCR: Value of A/D conversion result register n (ADCRn)

Figure 12-2 shows the relationship between the analog input voltage and the A/D conversion results.

Figure 12-2. Relationship Between Analog Input Voltage and A/D Conversion Results

12.4 A/D Converter Operation

12.4.1 Basic operation of A/D converter

A/D conversion is executed by the following procedure.

- (1) The ADCAE bit of the ADM2 register is set (1).
- (2) The selection of the analog input and specification of the operation mode, trigger mode, etc. should be specified using the ADM0 and ADM1 registers^{Note 1}.
 - When the ADCE bit of the ADM0 register is set (1), A/D conversion starts in the A/D trigger mode. In the timer trigger mode and external trigger mode, the trigger standby state^{Note 2} is set.
- (3) The voltage generated from the voltage tap of the series resistor string and analog input are compared by the comparator.
- (4) When the comparison of the 10 bits ends, the conversion results are stored in the ADCRn register. When A/D conversion has been performed the specified number of times, the A/D conversion end interrupt (INTAD) is generated (n = 0 to 7).
 - **Notes 1.** When the ADM0 to ADM2 registers are changed during the A/D conversion operation, the A/D conversion operation before the change is stopped and the conversion results are not stored in the ADCRn register.
 - 2. During the timer trigger mode and external trigger mode, if the ADCE bit of the ADM0 register is set to 1, the mode changes to the trigger standby state. The A/D conversion operation is started by the trigger signal, and the trigger standby state is returned when the A/D conversion operation ends.

12.4.2 Operation mode and trigger mode

Various conversion operations can be specified for the A/D converter by specifying the operation mode and trigger mode. The operation mode and trigger mode are set by the ADM0 and ADM1 registers.

The following shows the relationship between the operation mode and trigger mode.

Trigger Mode		Operation Mode		Setting Value		Analog Input
					ADM1	
A/D trigger		Select	1 buffer	xx010xxxB	000x0xxxB	ANI0 to ANI7
			4 buffers	xx110xxxB	000x0xxxB	
			Scan		000x0xxxB	
Timer trigger	1 trigger	Select	1 buffer	xx010xxxB	00100xxxB	ANI0 to ANI3
			4 buffers	xx110xxxB	00100xxxB	
		Scan		xxx00xxxB	00100xxxB	ANI0 to ANI7 ^{Note}
	4 trigger	Select	1 buffer	xx010xxxB	00110xxxB	ANI0 to ANI3
			4 buffers	xx110xxxB	00110xxxB	
				xxx00xxxB	00110xxxB	ANI0 to ANI7 ^{Note}
External trigger		Select	1 buffer	xx010xxxB	01100xxxB	ANI0 to ANI3
			4 buffers	xx110xxxB	01100xxxB	
		Scan		xxx00xxxB	01100xxxB	ANI0 to ANI7 ^{Note}

Note The ANI4 to ANI7 pins are converted serially.

(1) Trigger mode

There are three types of trigger modes that serve as the start timing of A/D conversion processing: A/D trigger mode, timer trigger mode, and external trigger mode. The ANI0 to ANI3 pins are able to specify all of these modes, but the ANI4 to ANI7 pins can only specify the A/D trigger mode. The timer trigger mode consists of the 1-trigger mode and 4-trigger mode as the sub-trigger modes. These trigger modes are set by the ADM1 register.

(a) A/D trigger mode

This mode starts the conversion timing of the analog input set to the ANI0 to ANI7 pins, and by setting the ADCE bit of the ADM0 register to 1, starts A/D conversion. The ANI4 to ANI7 pins are always set in this mode.

(b) Timer trigger mode

Specifies the conversion timing of the analog input set for the ANI0 to ANI3 pins using the values set to the timer C compare register. This mode can only be specified by pins ANI0 to ANI3 (in select mode). This register creates the analog input conversion timing by generating the match interrupts (INTM000, INTM011, INTM010, INTM011) of the four capture/compare registers (CCC00, CCC01, CCC11, CCC11) connected to 16-bit timer C (TMC0, TMC1). Moreover, because the match interrupts (INTM000, INTM001, INTM010, INTM011) are also used as external pin interrupts (INTP000, INTP011, INTP011), the analog input conversion timing is generated even when external pin interrupts are input. There are two sub-trigger modes: 1-trigger mode and 4-trigger mode.

*

· 1-trigger mode

A mode that uses one match interrupt from timer C as the A/D conversion start timing.

• 4-trigger mode

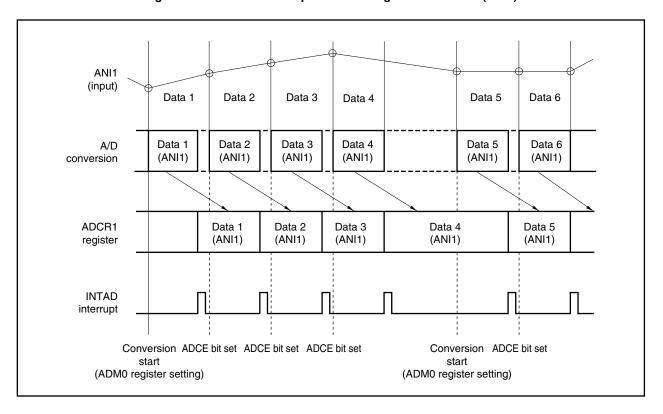
A mode that uses four match interrupts from timer C as the A/D conversion start timing.

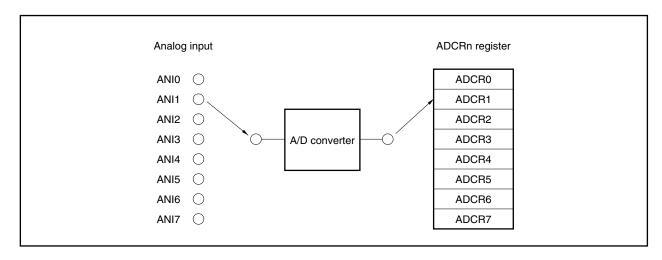
(c) External trigger mode

A mode that specifies the conversion timing of the analog input to the ANI0 to ANI3 pins using the ADTRG pin. This mode can be specified only with the ANI0 to ANI3 pins.

(2) Operation mode

There are two operation modes that set the ANI0 to ANI7 pins: select mode and scan mode. The select mode has sub-modes that consist of 1-buffer mode and 4-buffer mode. These modes are set by the ADM0 register.

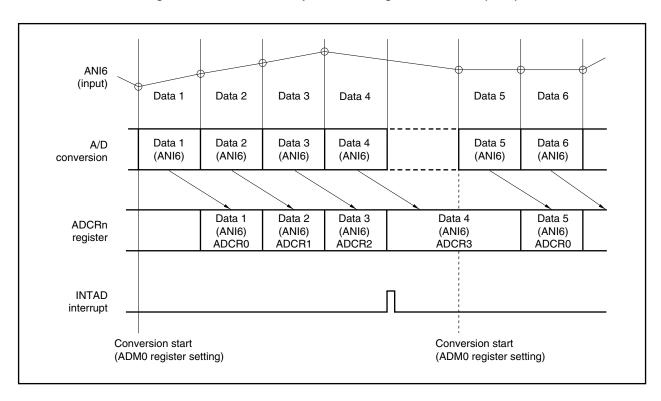

(a) Select mode

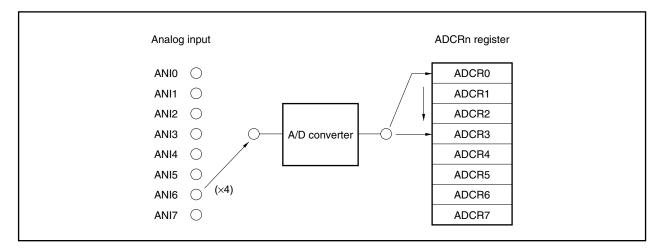

In this mode, one analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). For this mode, the 1-buffer mode and 4-buffer mode are provided for storing the A/D conversion results (n = 0 to 7).

• 1-buffer mode

In this mode, one analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). The ANIn and ADCRn register correspond one to one, and an A/D conversion end interrupt (INTAD) is generated each time one A/D conversion ends.

Figure 12-3. Select Mode Operation Timing: 1-Buffer Mode (ANI1)

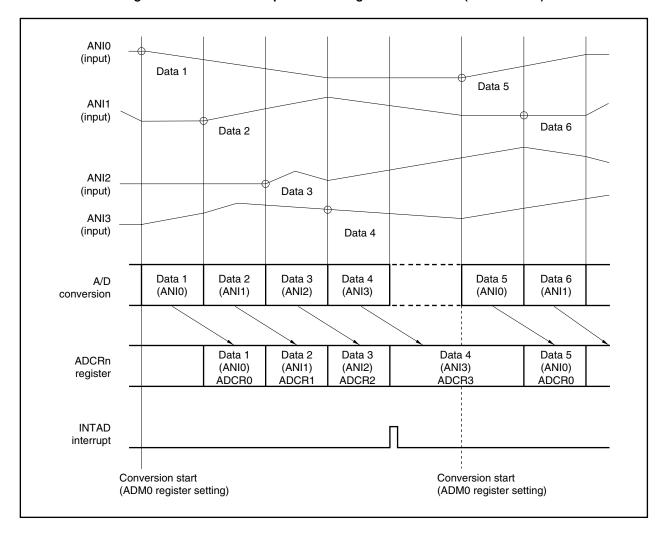


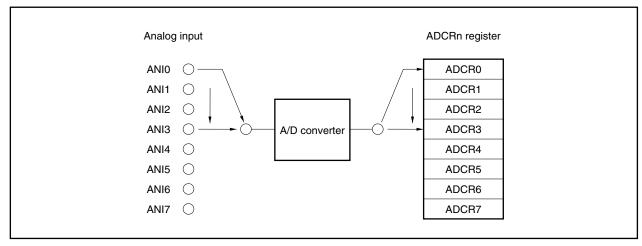


• 4-buffer mode

In this mode, one analog input is A/D converted four times and the results are stored in the ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated when the four A/D conversions end.

Figure 12-4. Select Mode Operation Timing: 4-Buffer Mode (ANI6)





(b) Scan mode

In this mode, the analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7). When the conversion of the specified analog input ends, the A/D conversion end interrupt (INTAD) is generated.

Figure 12-5. Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)

12.5 Operation in A/D Trigger Mode

When the ADCE bit of the ADM0 register is set to 1, A/D conversion is started.

12.5.1 Select mode operation

In this mode, the analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. In the select mode, the 1-buffer mode and 4-buffer mode are supported according to the storing method of the A/D conversion results (n = 0 to 7).

(1) 1-buffer mode (A/D trigger select: 1 buffer)

(3) The conversion result is stored in ADCR2

(4) The INTAD interrupt is generated

In this mode, one analog input is A/D converted once. The conversion results are stored in one ADCRn register. The analog input and ADCRn register correspond one to one.

Each time an A/D conversion is executed, an A/D conversion end interrupt (INTAD) is generated and A/D conversion ends.

Analog Input	A/D Conversion Result Register
ANIn	ADCRn

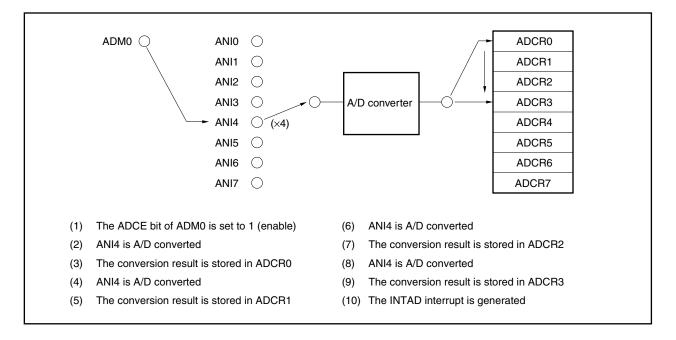
If 1 is written in the ADCE bit of the ADM0 register, A/D conversion can be restarted.

This mode is most appropriate for applications in which the results of each first-time A/D conversion are read.

ADM0 🔾 ANIO 🔘 ADCR0 ADCR1 ANI1 ANI2 ADCR2 ANI3 ADCR3 A/D converter ANI4 ADCR4 ANI5 ADCR5 ANI6 ADCR6 ADCR7 ANI7 (1) The ADCE bit of ADM0 is set to 1 (enable) (2) ANI2 is A/D converted

Figure 12-6. Example of 1-Buffer Mode Operation (A/D Trigger Select: 1 Buffer)

(2) 4-buffer mode (A/D trigger select: 4 buffers)


In this mode, one analog input is A/D converted four times and the results are stored in the ADCR0 to ADCR3 registers. When the 4th A/D conversion ends, an A/D conversion end interrupt (INTAD) is generated and the A/D conversion is stopped.

Analog Input	A/D Conversion Result Register
ANIn	ADCR0
ANIn	ADCR1
ANIn	ADCR2
ANIn	ADCR3

If 1 is written in the ADCE bit of the ADM0 register, A/D conversion can be restarted.

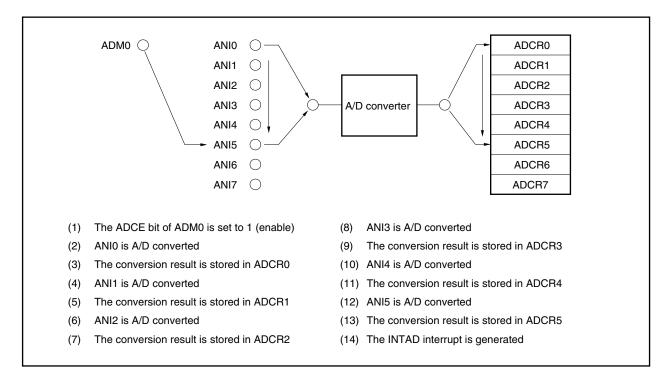
This mode is suitable for applications in which the average of the A/D conversion results is calculated.

Figure 12-7. Example of 4-Buffer Mode Operation (A/D Trigger Select: 4 Buffers)

12.5.2 Scan mode operations

In this mode, the analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

When conversion of all the specified analog input ends, the A/D conversion end interrupt (INTAD) is generated, and A/D conversion is stopped.


Analog Input	A/D Conversion Result Register
ANI0	ADCR0
:	
ANIn ^{Note}	ADCRn

Note Set by the ANI0 to ANI2 bits of the ADM0 register.

If 1 is written in the ADCE bit of the ADM0 register, A/D conversion can be restarted.

This mode is most appropriate for applications in which multiple analog inputs are constantly monitored.

Figure 12-8. Example of Scan Mode Operation (A/D Trigger Scan)

12.6 Operation in Timer Trigger Mode

Conversion timings for up to four-channel analog inputs (ANI0 to ANI3) can be set for the A/D converter using the interrupt signal output from the TMC compare register.

Two 16-bit timers (TMC0, TMC1) and four capture/compare registers (CCC00, CCC01, CCC10, CC11) are used for the timer to specify the analog conversion trigger.

The following two modes are provided according to the value set in the TMCC01 or TMCC11 register.

(1) 1-shot mode

To use the 1-shot mode, set the OSTn bit of the TMCCn1 register (overflow stop mode) to 1 (n = 0, 1). When TMC overflows, 0000H is held, and counter operation stops. Thereafter, TMCn does not output the match interrupt signal (A/D conversion trigger) of the compare register, and the A/D converter enters the A/D conversion standby state. The TMCn count operation restarts when the TMCCEn bit of the TMCCn0 register is set to 1. The 1-shot mode is used when the A/D conversion cycle is longer than the TMC cycle. (n = 0, 1).

(2) Loop mode

To use the loop mode, set the OST bit (free-running mode) of the TMCCn1 register to 0 (n = 0, 1). When TMCn overflows, it starts counting from 0000H again, and the match interrupt signal (A/D conversion trigger) of the compare register is repeatedly output. A/D conversion is also repeated.

12.6.1 Select mode operation

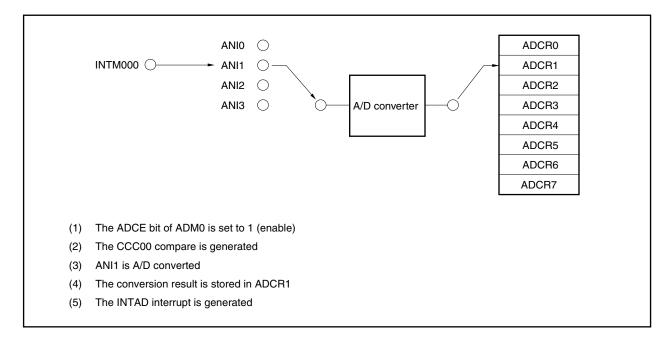
In this mode, an analog input (ANI0 to ANI3) specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register. In the select mode, the 1-buffer mode and 4-buffer mode are provided according to the storing method of the A/D conversion results (n = 0 to 3).

(1) 1-buffer mode operation (timer trigger select: 1 buffer)

In this mode, one analog input is A/D converted once and the conversion results are stored in one ADCRn register.

There are two modes in the 1-buffer mode: 1-trigger mode and 4-trigger mode, according to the number of triggers.

(a) 1-trigger mode (timer trigger select: 1 buffer, 1 trigger)


In this mode, one analog input is A/D converted once using the trigger of the match interrupt signal (INTM000) and the results are stored in one ADCRn register. An A/D conversion end interrupt (INTAD) is generated for each A/D conversion and A/D conversion is stopped (n = 0 to 3).

Trigger	Analog Input	A/D Conversion Result Register
INTM000 interrupt	ANIn	ADCRn

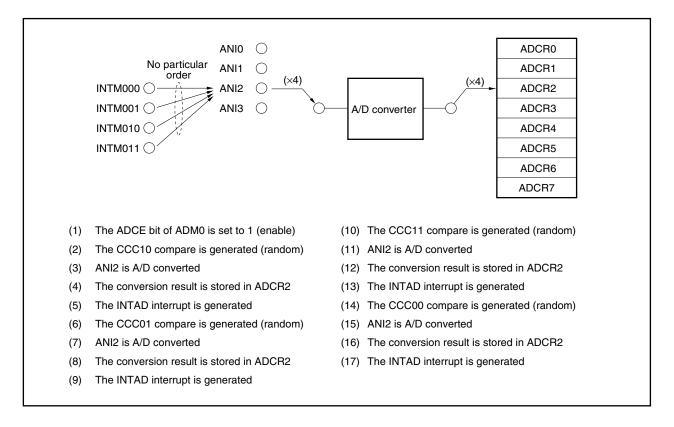
In 1-shot mode, A/D conversion stops after one conversion. To restart A/D conversion, set the TMCCE0 bit of the TMCC00 register to 1.

When set to the loop mode, unless the ADCE bit of the ADM0 register is set to 0, A/D conversion is repeated each time a match interrupt is generated.

Figure 12-9. Example of 1-Trigger Mode Operation (Timer Trigger Select: 1 Buffer 1 Trigger)

(b) 4-trigger mode (timer trigger select: 1 buffer, 4 triggers)

In this mode, one analog input is A/D converted using four match interrupt signals (INTM000, INTM001, INTM010, INTM011) as triggers and the results are stored in one ADCRn register. The A/D conversion end interrupt (INTAD) is generated with each A/D conversion, and the ADCS bit of the ADM0 register is reset (0). The results of one A/D conversion are held in the ADCRn register until the next A/D conversion ends. Perform transmission of the conversion results to the memory and other operations using the INTAD interrupt after each A/D conversion ends (n = 0 to 3).


Trigger	Analog Input	A/D Conversion Result Register
INTM000 interrupt	ANIn	ADCRn
INTM001 interrupt	ANIn	ADCRn
INTM010 interrupt	ANIn	ADCRn
INTM011 interrupt	ANIn	ADCRn

In one-shot mode, A/D conversion stops after four conversions. To restart A/D conversion, set the TMCCEn bit of the TMCCn0 register to 1 to restart the TMCn. When the first match interrupt after TMCn is restarted is generated, the ADCS bit is set (1) and A/D conversion is started (n = 0, 1).

When set to the loop mode, unless the ADCE bit of the ADM0 register is set to 0, A/D conversion is repeated each time a match interrupt is generated.

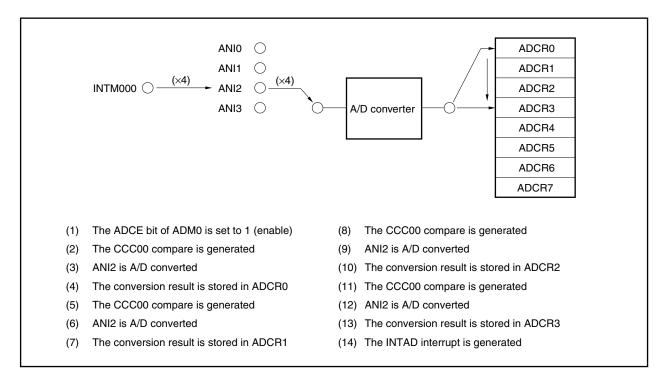
The match interrupts (INTM000, INTM001, INTM010, INTM011) can be generated in any order. Also, even in cases where the same trigger is input continuously, it is received as a trigger.

Figure 12-10. Example of 4-Trigger Mode Operation (Timer Trigger Select: 1 Buffer 4 Triggers)

(2) 4-buffer mode operation (timer trigger select: 4 buffers)

In this mode, A/D conversion of one analog input is executed four times, and the results are stored in the ADCR0 to ADCR3 registers. There are two 4-buffer modes: 1-trigger mode and 4-trigger mode, according to the number of triggers.

This mode is suitable for applications in which the average of the A/D conversion results is calculated.


(a) 1-trigger mode

In this mode, one analog input is A/D converted four times using the match interrupt signal (INTM000) as a trigger, and the results are stored in ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated when the four A/D conversions end and A/D conversion is stopped.

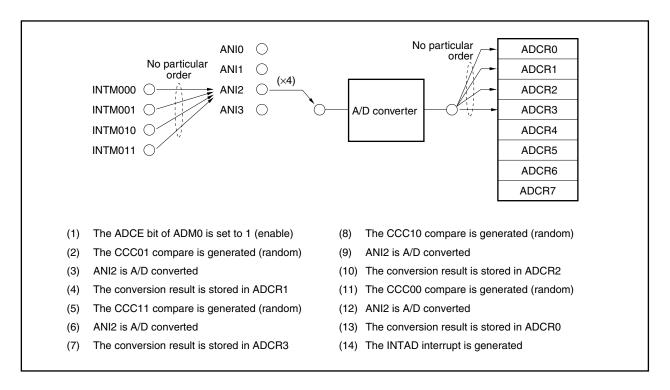
Trigger	Analog Input	A/D Conversion Result Register
INTM000 interrupt	ANIn	ADCR0
INTM000 interrupt	ANIn	ADCR1
INTM000 interrupt	ANIn	ADCR2
INTM000 interrupt	ANIn	ADCR3

If the one-shot mode is set and the TMCCE0 bit of the TMCC00 register is set to 1, and if the match interrupt occurs less than four times, the INTAD interrupt does not occur and the standby state is set.

Figure 12-11. Example of 1-Trigger Mode Operation (Timer Trigger Select: 4 Buffers 1 Trigger)

(b) 4-trigger mode

In this mode, one analog input is A/D converted using four match interrupt signals (INTM000, INTM001, INTM010, INTM011) as triggers and the results are stored in four ADCRn registers. The A/D conversion end interrupt (INTAD) is generated when the A/D conversions end, the ADCS bit is reset (0), and A/D conversion is stopped.


Trigger	Analog Input	A/D Conversion Result Register
INTM000 interrupt	ANIn	ADCR0
INTM001 interrupt	ANIn	ADCR1
INTM010 interrupt	ANIn	ADCR2
INTM011 interrupt	ANIn	ADCR3

In 1-shot mode, A/D conversion stops after four conversions. To restart the A/D conversion, set the TMCCEn bit of the TMCCn0 register to 1 to restart TMCn. When the first match interrupt after TMCn is restarted is generated, the ADCS bit is set (1) and A/D conversion is started (n = 0, 1).

When set to the loop mode, unless the ADCE bit of the ADM0 register is set to 0, A/D conversion is repeated each time a match interrupt is generated.

The match interrupts (INTM000, INTM001, INTM010, INTM011) can be generated in any order, and the conversion results are stored in the ADCRn register corresponding to the input trigger. Also, even in cases where the same trigger is input continuously, it is received as a trigger.

Figure 12-12. Example of 4-Trigger Mode Operation (Timer Trigger Select: 4 Buffers 4 Triggers)

12.6.2 Scan mode operation

In this mode, the analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin and are A/D converted the specified number of times using the match interrupt signal as a trigger.

In the conversion operation, first the analog input lower channels (ANI0 to ANI3) are A/D converted the specified number of times. If the lower channels (ANI0 to ANI3) of the analog input are set by the ADM0 register so that they are scanned, and when the set number of A/D conversions ends, the A/D conversion end interrupt (INTAD) is generated and A/D conversion is stopped.

When the higher channels (ANI4 to ANI7) of the analog input are set by the ADM0 register so that they are scanned, after the conversion of the lower channel is ended, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed.

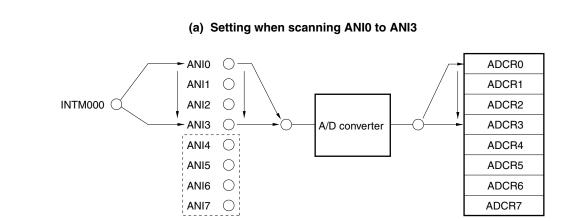
The conversion results are stored in the ADCRn register corresponding to the analog input. When conversion of all the specified analog inputs has ended, the A/D conversion end interrupt (INTAD) is generated and A/D conversion is stopped (n = 0 to 7).

There are two scan modes: 1-trigger mode and 4-trigger mode, according to the number of triggers.

This mode is most appropriate for applications in which multiple analog inputs are constantly monitored.

(1) 1-trigger mode (timer trigger scan: 1 trigger)

In this mode, analog inputs are A/D converted the specified number of times using the match interrupt signal (INTM000) as a trigger. The analog input and ADCRn register correspond one to one.

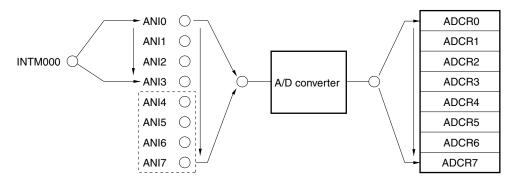

When all the specified A/D conversions have ended, the A/D conversion end interrupt (INTAD) is generated and A/D conversion is stopped.

Trigger	Analog Input	A/D Conversion Result Register
INTM000 interrupt	ANI0	ADCR0
INTM000 interrupt	ANI1	ADCR1
INTM000 interrupt	ANI2	ADCR2
INTM000 interrupt	ANI3	ADCR3
(A/D trigger mode)	ANI4	ADCR4
	ANI5	ADCR5
	ANI6	ADCR6
	ANI7	ADCR7

When the match interrupt is generated after all the specified A/D conversions have ended, A/D conversion is restarted.

In 1-shot mode, and when less than a specified number of match interrupts are generated, the INTAD interrupt is not generated and the standby state is set.

Figure 12-13. Example of 1-Trigger Mode Operation (Timer Trigger Scan: 1 Trigger)



- (1) The ADCE bit of ADM0 is set to 1 (enable)
- (2) The CCC00 compare is generated
- (3) ANI0 is A/D converted
- (4) The conversion result is stored in ADCR0
- (5) The CCC00 compare is generated
- (6) ANI1 is A/D converted
- (7) The conversion result is stored in ADCR1

- (8) The CCC00 compare is generated
- (9) ANI2 is A/D converted
- (10) The conversion result is stored in ADCR2
- (11) The CCC00 compare is generated
- (12) ANI3 is A/D converted
- (13) The conversion result is stored in ADCR3
- (14) The INTAD interrupt is generated

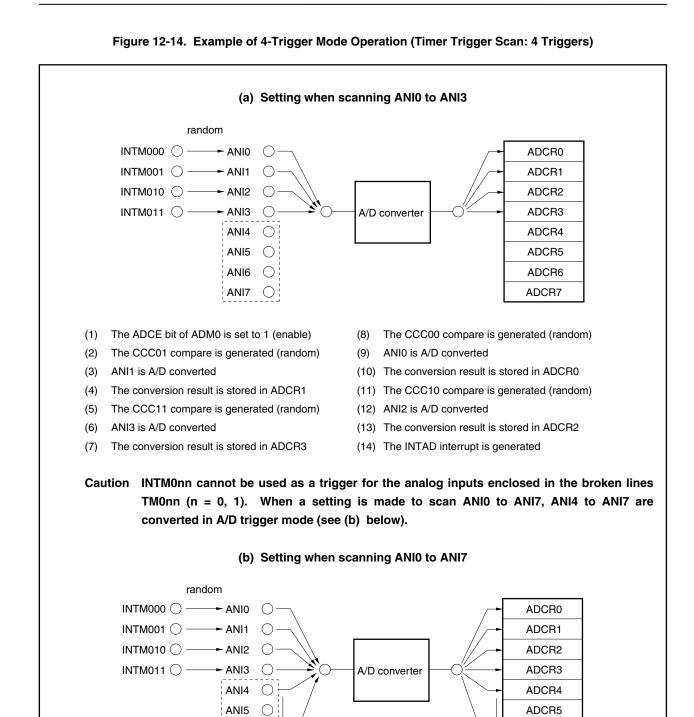
Caution INTM000 cannot be used as a trigger for the analog inputs enclosed in the broken lines. When a setting is made to scan ANI0 to ANI7, ANI4 to ANI7 are converted in A/D trigger mode (see (b) below).

(b) Setting when scanning ANI0 to ANI7

- (1) to (13) Same as (a)
- (14) ANI4 is A/D converted
- (15) The conversion result is stored in ADCR4
- (16) ANI5 is A/D converted
- (17) The conversion result is stored in ADCR5
- (18) ANI6 is A/D converted
- (19) The conversion result is stored in ADCR6
- (20) ANI7 is A/D converted
- (21) The conversion result is stored in ADCR7
- (22) The INTAD interrupt is generated

(2) 4-trigger mode

In this mode, analog inputs are A/D converted for the number of times specified using the match interrupt signal (INTM000, INTM001, INTM010, INTM011) as a trigger.


The analog input and ADCRn register correspond one to one.

When all the specified A/D conversions have ended, the A/D conversion end interrupt (INTAD) is generated and A/D conversion is stopped.

Trigger	Analog Input	A/D Conversion Result Register			
INTM000 interrupt	ANI0	ADCR0			
INTM001 interrupt	ANI1	ADCR1			
INTM010 interrupt	ANI2	ADCR2			
INTM011 interrupt	ANI3	ADCR3			
(A/D trigger mode)	ANI4	ADCR4			
	ANI5	ADCR5			
	ANI6	ADCR6			
	ANI7	ADCR7			

To restart A/D conversion in 1-shot mode, restart TMCn. If set to the loop mode and the ADCE bit of the ADM0 register is 1, A/D conversion is restarted when a match interrupt is generated after conversion has ended.

The match interrupt can be generated in any order. However, because the trigger signal and the analog input correspond one to one, the scanning sequence is determined according to the order in which the match signals of the compare register are generated.

ANI6

ANI7

(17) The conversion result is stored in ADCR5

(22) The INTAD interrupt is generated

ADCR6

ADCR7

12.7 Operation in External Trigger Mode

In the external trigger mode, the analog inputs (ANI0 to ANI3) are A/D converted by the ADTRG pin input timing.

The ADTRG pin has an alternate function as the P37 and INTP123 pins. To set the external trigger mode, set the PMC37 bit of the PMC3 register to 1 and bits TRG2 to TRG0 of the ADM1 register to 110.

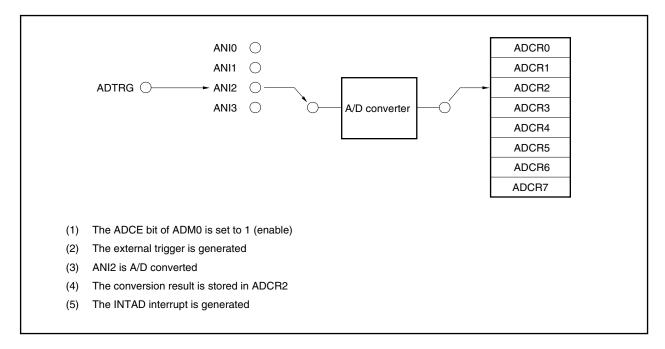
For the valid edge of the external input signal during the external trigger mode, the rising edge, falling edge, or both rising and falling edges can be specified using bits ES1231 and ES1230 of the INTM3 register. For details, see **7.3.9**

(1) External interrupt mode registers 1 to 4 (INTM1 to INTM4).

12.7.1 Select mode operations (external trigger select)

In this mode, one analog input (ANI0 to ANI3) specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. There are two select modes: 1-buffer mode and 4-buffer mode, according to the storing method of the A/D conversion results (n = 0 to 3).

(1) 1-buffer mode (external trigger select: 1-buffer)


In this mode, one analog input is A/D converted using the ADTRG signal as a trigger. The conversion results are stored in one ADCRn register. The analog input and the A/D conversion results register correspond one to one. The A/D conversion end interrupt (INTAD) is generated for each A/D conversion, and A/D conversion is stopped.

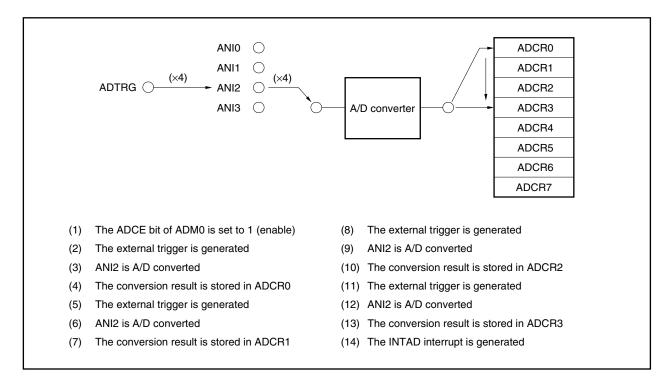
Trigger	Analog Input	A/D Conversion Result Register				
ADTRG signal	ANIn	ADCRn				

While the ADCE bit of the ADM0 register is 1, A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This mode is most appropriate for applications in which the results are read after each A/D conversion.

Figure 12-15. Example of 1-Buffer Mode Operation (External Trigger Select: 1 Buffer)

(2) 4-buffer mode (external trigger select: 4 buffers)


In this mode, one analog input is A/D converted four times using the ADTRG signal as a trigger and the results are stored in the ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated and A/D conversion is stopped after the 4th A/D conversion.

Trigger	Analog Input	A/D Conversion Result Register
ADTRG signal	ANIn	ADCR0
ADTRG signal	ANIn	ADCR1
ADTRG signal	ANIn	ADCR2
ADTRG signal	ANIn	ADCR3

While the ADCE bit of the ADM0 register is 1, A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This mode is suitable for applications in which calculate the average of A/D conversion result is calculated.

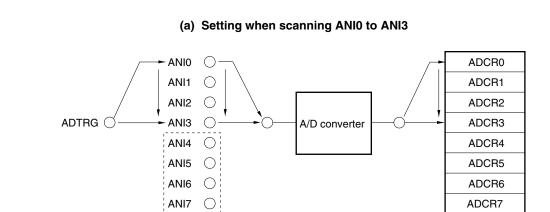
Figure 12-16. Example of 4-Buffer Mode Operation (External Trigger Select: 4 Buffers)

12.7.2 Scan mode operation (external trigger scan)

In this mode, the analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin using the ADTRG signal as a trigger, and A/D converted. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

When the lower 4 channels (ANI0 to ANI3) of the analog input are set by the ADM0 register so that they are scanned, the A/D conversion end interrupt (INTAD) is generated when the number of A/D conversions specified have ended, and A/D conversion is stopped.

When the higher 4 channels (ANI4 to ANI7) of the analog input are set by the ADM0 register so that they are scanned, after the conversion of the lower 4 channels is ended, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed. The conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

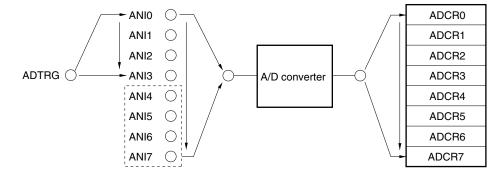

Trigger	Analog Input	A/D Conversion Result Register				
ADTRG signal	ANI0	ADCR0				
ADTRG signal	ANI1	ADCR1				
ADTRG signal	ANI2	ADCR2				
ADTRG signal	ANI3	ADCR3				
(A/D trigger mode)	ANI4	ADCR4				
	ANI5	ADCR5				
	ANI6	ADCR6				
	ANI7	ADCR7				

When the conversion of all the specified analog inputs has ended, the INTAD interrupt is generated and A/D conversion is stopped.

When a trigger is input to the ADTRG pin while the ADCE bit of the ADM0 register is 1, A/D conversion is started again.

This is most appropriate for applications in which multiple analog inputs are constantly monitored.

Figure 12-17. Example of Scan Mode Operation (External Trigger Scan)



- (1) The ADCE bit of ADM0 is set to 1 (enable)
- (2) The external trigger is generated
- (3) ANI0 is A/D converted
- (4) The conversion result is stored in ADCR0
- (5) The external trigger is generated
- (6) ANI1 is A/D converted
- (7) The conversion result is stored in ADCR1

- (8) The external trigger is generated
- (9) ANI2 is A/D converted
- (10) The conversion result is stored in ADCR2
- (11) The external trigger is generated
- (12) ANI3 is A/D converted
- (13) The conversion result is stored in ADCR3
- (14) The INTAD interrupt is generated

Caution ADTRG cannot be used as a trigger for the analog inputs enclosed in the broken lines. When a setting is made to scan ANI0 to ANI7, ANI4 to ANI7 are converted in A/D trigger mode (see (b) below).

(b) Setting when scanning ANI0 to ANI7

- (1) to (13) Same as (a)
- (14) ANI4 is A/D converted
- (15) The conversion result is stored in ADCR4
- (16) ANI5 is A/D converted
- (17) The conversion result is stored in ADCR5
- (18) ANI6 is A/D converted
- (19) The conversion result is stored in ADCR6
- (20) ANI7 is A/D converted
- (21) The conversion result is stored in ADCR7
- (22) The INTAD interrupt is generated

12.8 Notes on Operation

12.8.1 Stopping conversion operation

When the ADCE bit of the ADM0 register is set to 0 during a conversion operation, the conversion operation stops and the conversion results are not stored in the ADCRn register (n = 0 to 7).

12.8.2 Timer trigger/external trigger interval

Set the interval (input time interval) of the trigger in the external or timer trigger mode longer than the conversion time specified by the FR2 to FR0 bits of the ADM1 register.

(1) When interval = 0

When several triggers are input simultaneously, the analog input with the smaller ANIn pin number is converted. The other trigger signals input simultaneously are ignored, and the number of trigger input is not counted. Note, therefore, that the saving of the result to the ADCRn register upon the generation of an interrupt is an abnormality (n = 0 to 7).

(2) When 0 < interval < conversion operation time

When the timer trigger is input during a conversion operation, the conversion operation is aborted and the conversion starts according to the last timer trigger input.

When conversion operations are aborted, the conversion results are not stored in the ADCRn register, and the number of trigger input are not counted. Note, therefore, that the saving of the result to the ADCRn register upon the generation of an interrupt is an abnormality (n = 0 to 7).

(3) When interval = conversion operation time

When a trigger is input concurrently with the end of conversion (the end of conversion signal and the trigger are in contention), although the number of triggers input are counted, an interrupt is generated, and the value at the end of conversion is correctly saved in the ADCRn register, design should be performed so that the interval is greater than the conversion operation time.

12.8.3 Operation in standby mode

(1) HALT mode

In this mode, A/D conversion continues. When this mode is released by NMI input, the ADM0 and ADM1 registers and ADCRn register hold the value (n = 0 to 7).

(2) IDLE mode, STOP mode

As clock supply to the A/D converter is stopped, no conversion operations are performed.

When these modes are released by NMI input or maskable interrupt input (INTP1xx), the ADM0 and ADM1 registers and the ADCRn register hold the value. However, when the IDLE or software STOP mode is set during a conversion operation, the conversion operation is stopped. At this time, if the mode released by NMI input or maskable interrupt input (INTP1xx), the conversion operation resumes, but the conversion result written to the ADCRn register will become undefined (x = 0 to 3, x = 0 to 7).

12.8.4 Compare match interrupt in timer trigger mode

The compare register's match interrupt becomes an A/D conversion start trigger and starts the conversion operation. When this happens, the compare register's match interrupt also functions as a compare register match interrupt for the CPU. In order to prevent match interrupts from the compare register for the CPU, disable interrupts using the mask bits (P00MK0, P00MK1, P01MK0, P01MK1) of the interrupt control register (P00IC0, P00IC1, P01IC0, P01IC1).

★ 12.8.5 Reconversion operation in timer 1 trigger mode

In the timer 1 trigger mode, A/D conversion is started with the match interrupt signal (INTM000) as the trigger. In the external trigger mode, A/D conversion is started with the ADTRG pin input timing as the trigger. However, when interrupt sources which are non-triggers (INTM001, INTM010, INTM011, INTP001^{Note}, INTP010^{Note}, INTP011^{Note}) are generated during A/D conversion, after this A/D conversion ends normally, the same A/D conversion may start again (reconversion operation). However, the reconversion operation will not be performed unless non-trigger interrupt sources are generated under these conditions.

Note External interrupt signals also used as external capture trigger inputs of timer C (TMC0, TMC1) also trigger reconversion.

(1) Reconversion operation in the timer trigger select 1 buffer 1 trigger mode, external trigger select 1 buffer mode

When non-trigger interrupt sources are generated during A/D conversion, the first A/D conversion ends normally, and the A/D conversion end interrupt (INTAD) is generated. The A/D conversion results are stored in the ADCRn register. A restarted A/D conversion is carried out normally, and the A/D conversion results are overwritten in the ADCRn register. During reconversion, the ADCRn register can be read. After A/D conversion ends, the INTAD interrupt is generated, and A/D conversion stops.

(2) Reconversion operation in timer trigger select 4 buffer 1 trigger mode, timer trigger scan 1 trigger mode, external trigger select 4 buffer mode, external trigger scan mode

A/D conversion is performed smoothly until non-trigger interrupt sources are generated during conversion. When non-trigger interrupt sources are generated during A/D conversion, the current A/D conversion ends normally, and the A/D conversion results are stored in the ADCRn register. After this, the same A/D conversion is performed, and the A/D conversion results are overwritten in the ADCRn register. During reconversion, the ADCRn register can be read. After this, the remaining A/D conversion operations are performed normally, the A/D conversion end interrupt (INTAD) is generated, and A/D conversion stops.

Caution When non-trigger interrupt sources are generated during the last A/D conversion, the last A/D conversion ends normally, and the A/D conversion end interrupt (INTAD) is generated. After this, the same conversion as the last A/D conversion is performed, the INTAD interrupt is generated, and A/D conversion stops.

When reconversion operations occur, as conversion results are normal values, the effect on conversion will be minimized when using a methods in which the latest conversion values are acquired. However, if reconversion operations become abnormal, be sure to use the A/D trigger mode and start A/D conversion by setting the ADCE bit of the ADM0 register in the interrupt servicing routine of the compare match interrupt of the timer or external pin interrupt.

★ 12.8.6 Supplementary information on A/D conversion time

The time taken from trigger input to the end of A/D conversion (t) is as follows.

In A/D trigger mode (refer to Figures 12-18 and 12-21):

t = 9 to 11 clocks + Number of clocks specified by the FR2 to FR0 bits of ADM1 + 2 clocks In timer trigger mode (refer to **Figures 12-19** and **12-21**):

t = 5 to 7 clocks + Number of clocks specified by the FR2 to FR0 bits of ADM1 + 2 clocks In external trigger mode (refer to **Figures 12-20** and **12-21**):

t = 5 to 7 clocks + Number of clocks specified by the FR2 to FR0 bits of ADM1 + 2 clocks

Figure 12-18. A/D Trigger Mode A/D Conversion Time (When ADM1 = 00H)

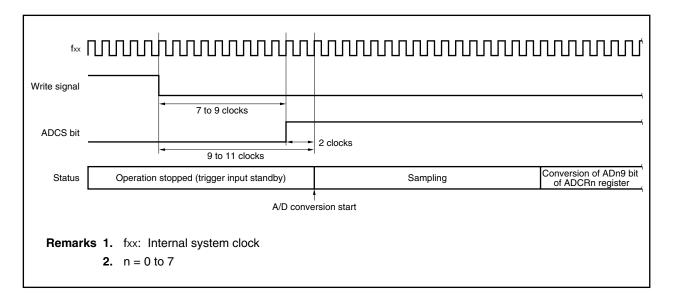


Figure 12-19. Timer Trigger Mode A/D Conversion Time (When ADM1 = 20H or 30H)

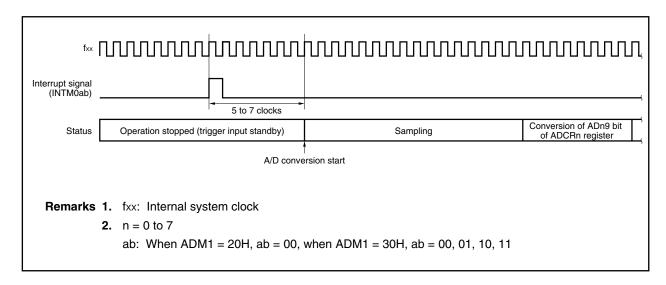


Figure 12-20. External Trigger Mode A/D Conversion Time (When ADM1 = 60H)

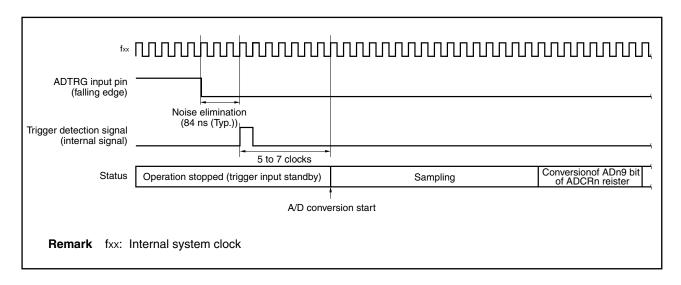
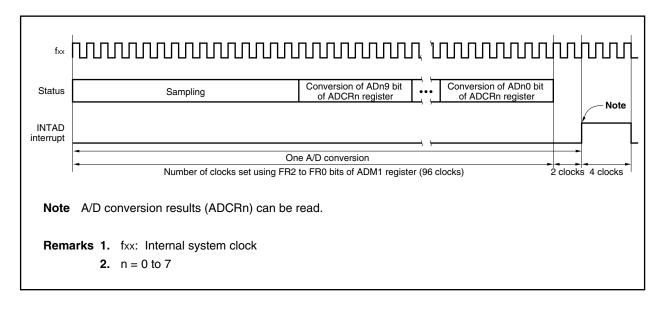



Figure 12-21. A/D Conversion Outline (One A/D Conversion, FR0 to FR2
Bits of ADM1 Register = 000 (96 Clocks)

12.9 How to Read A/D Converter's Characteristic Table

This section describes the terms related to the A/D converter.

(1) Resolution

The minimum analog input voltage that can be recognized, i.e., the ratio of an analog input voltage to 1 bit of digital output is called 1 LSB (least significant bit). The ratio of 1 LSB to the full scale is expressed as %FSR (full-scale range). %FSR is the ratio of a range of convertible analog input voltages expressed in percentage, and can be expressed as follows, independently of the resolution.

1%FSR = (Maximum value of convertible analog input voltage - Minimum value of convertible analog input voltage)/100
= (AV_{REF} - 0)/100
= AV_{REF}/100

Where the resolution is 10 bits, 1 LSB is as follows:

1 LSB =
$$1/2^{10}$$
 = $1/1,024$
= 0.098% FSR

The accuracy is determined by the total error, independently of the resolution.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.

Zero-scale error, full-scale error, linearity error and errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

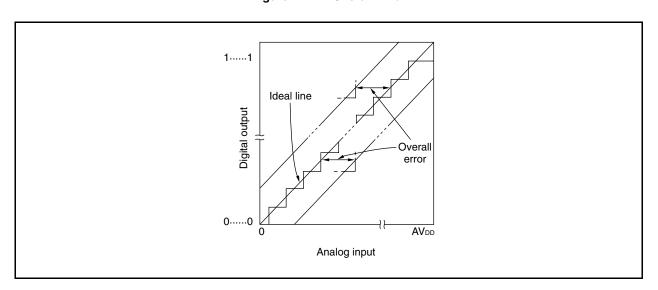


Figure 12-22. Overall Error

(3) Quantization error

This is an error of $\pm 1/2$ LSB that inevitably occurs when an analog value is converted into a digital value. Because the A/D converter converts analog input voltages in a range of $\pm 1/2$ LSB into the same digital codes, quantization error is unavoidable.

This error is not included in the total error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristic table.

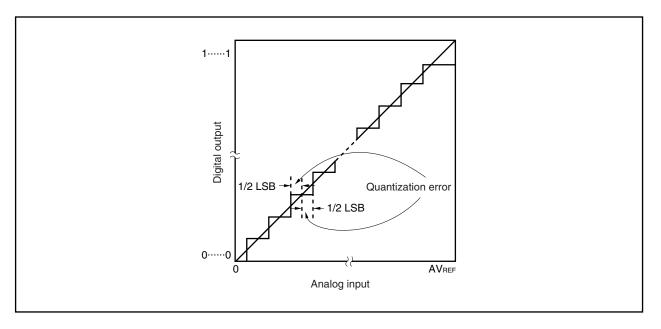


Figure 12-23. Quantization Error

(4) Zero-scale error

This is a difference between the actually measured analog input voltage and its theoretical value when digital output changes from 0...000 to 0...001 (1/2 LSB).



Figure 12-24. Zero-Scale Error

(5) Full-scale error

This is a difference between the actually measured analog input voltage and its theoretical value when digital output changes from 1...110 to 0...111 (full scale -3/2 LSB).

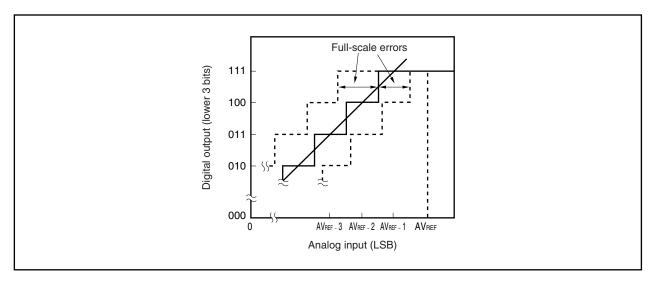


Figure 12-25. Full-Scale Error

(6) Differential linearity error

Ideally, the width to output a specific code is 1 LSB. This error indicates the difference between the actually measured value and its theoretical value when a specific code is output.

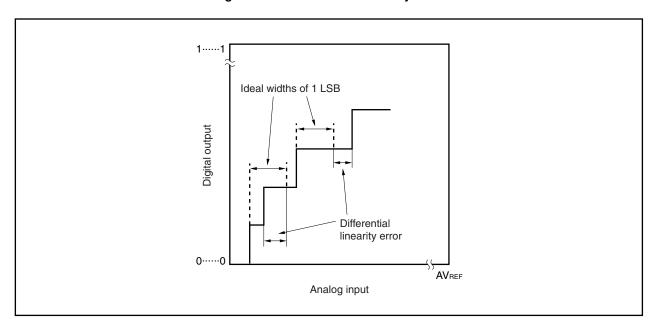


Figure 12-26. Differential Linearity Error

(7) Integral linearity error

This error indicates the extent to which the conversion characteristics differ from the ideal linear relations. It indicates the maximum value of difference between the actually measured value and its theoretical value where the zero-scale error and full-scale error are 0.

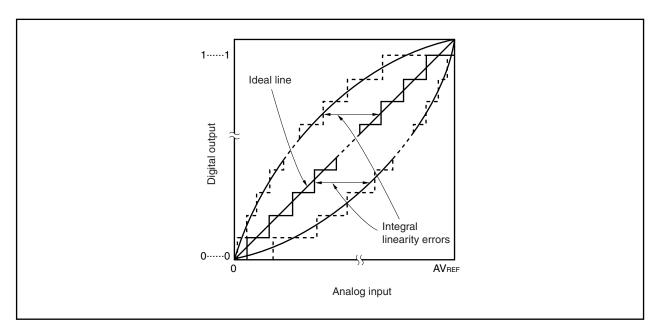
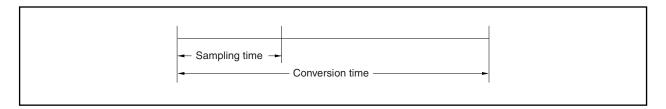


Figure 12-27. Integral Linearity Error

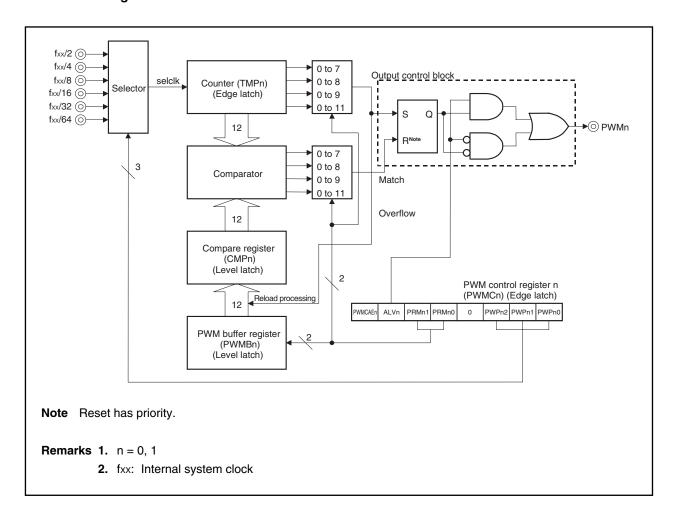

(8) Conversion time

This is the time required to obtain digital output after each trigger has been generated.

The conversion time in the characteristic table includes sampling time.

(9) Sampling time

This is the time for which the analog switch is ON to load an analog voltage to the sample & hold circuit.


CHAPTER 13 PWM UNIT

13.1 Features

- PWMn: 2 channels
- PWMn: Output pulse active level can be selected
- Operation clock can be selected from among fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxx/64 (fxx is the internal system clock)
- PWMn output resolution can be selected from among 8, 9, 10, 12 bits

Remark n = 0, 1

13.2 Block Diagram

13.3 Control Register

(1) PWM control registers 0, 1 (PWMC0, PWMC1)

The PWMCn register is used to control the PWMn's operations (n = 0, 1).

The PWMCn register can be read/written in 8-bit or 1-bit units.

Caution When PWMn is used, be sure to set external pins related to PWMn to control mode. Following that, set the operation clock, etc. using the PWMCn register and set the PWMEn bit to 1 after the PWMBn register setting is made.

	<7:	>	<6>		5	4	3	3	2	1	0	Address	After Reset			
PWMCr	PWM	1En	ALVn	Р	PRMn1	PRMn0	O)	PWPn2	PWPn1	PWPn0	FFFFFC00H, FFFFFC10H	40H			
Bit p	osition	Bi	t name	Description												
	7		VMEn ^{Note} = 0, 1)	Th	0: PWM	sed to ena	to enable or disable PWMn operation. eration disabled eration enabled									
	6	AL'	Vn = 0, 1)	Th	Active Level This bit is used to specify the active level for PWMn output. 0: Active level is low level 1: Active level is high level The PWMn outputs inactive level (low level) of the ALVn bit after reset.											
5	i, 4	PR	RMn1, RMn0		escaler N nis bit is u		ect the	bit lei	ngth for th	e counter (⁻	TMPn) and	compare register	(CMPn).			
		(n :	= 0, 1)		PRMn1	PRMn1 PRMn0 Bit length for TMPn an					and CMPn					
					0 0 8 bits											
					0		1	9	bits							
					1		0	10	0 bits							
					1		1	12	2 bits							
2	to 0	PV	VPn2 to			caler Clock			In's opera	ting clock.						
		(n :	= 0, 1)		PWPn2	PWPr	11	PWP	n0		Operati	ng clock				
					0	0		0	fxx/	2						
					0	0		1	fxx/	4						
					0	1		0	fxx/	8						
					0	1		1	fxx/	16						
					1	0		0	fxx/	32						
					1	0		1	fxx/	fxx/64						
				(Other tha	an above			Set	ting prohibi	ted					

Note If PWMEn is changed from 0 to 1, the counter (TMPn) is reset to start counting from 000H (in 12 bits). The first overflow permits the PWMn signal activation. If the bit length and operating clock of PWM0 and PWM1 are the same, the activation timing of these two PWMn signals can be adjusted. If PWMEn was already 1, the counter is not reset upon an additional write of 1. When setting PWMEn to 1, set it to 0 beforehand.

Remarks 1. n = 0, 1

2. fxx: Internal system clock

(2) PWM buffer registers 0, 1 (PWMB0, PWMB1)

The PWMBn register is a 12-bit buffer register that is used to set control data for the active signal width of PWMn output. Bits 15 to 12 are fixed to zero. Even if 1 is written in these bits, it is ignored. It is possible to directly read the values of bits 11 to 8 as written irrespective of the bit length setting made by the PWMCn register.

The contents in PWMBn registers are transferred to compare registers (CMPn) at the timing of the generation of an overflow from the PWMn output control counter (TMPn).

The PWM buffer registers can be read or written in 16-bit units.

Remark n = 0, 1

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	After reset
PWMB0	0	0	0	0	PWM B11	PWM B10	PWM B9	PWM B8	PWM B7	PWM B6	PWM B5	PWM B4	PWM B3	PWM B2	PWM B1	PWM B0	FFFFC02H	0000H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	After reset
PWMB1	0	0	0	0	PWM B11	PWM B10	PWM B9	PWM B8	PWM B7	PWM B6	PWM B5	PWM B4	PWM B3	PWM B2	PWM B1	PWM B0	FFFFC12H	0000H
													ı	ı				

13.4 Operation

13.4.1 Basic operations

When a PWMn pulse is output, the required data is first set to the PWMCn and PWMBn registers, then the PWMCn register's PWMEn bit is set (1). This clears (0) the counter (TMPn) and, when the first overflow occurs, the active level is set for PWMn output and the data is transferred from the PWMBn register to the compare register (CMPn). Afterward, PWMn output goes inactive when a match occurs between the TMPn and CMPn register values. When this is repeated, a PWMn signal whose active level is specified by the ALVn bit in the PWMCn register is output from the PWMn pin.

When the PWMCn register's PWMEn bit is cleared (0), PWMn output is stopped immediately and is set to the inactive level for the ALVn level specified by the PWMCn register.

If, during PWMn signal output, the values of the PWPn2 to PWPn0 bits, PRMn1 and PRMn0 bits, or ALVn bit are changed, the cycle width and pulse width of the PWMn signal are not guaranteed within the cycle where the changes were made.

Remark n = 0, 1

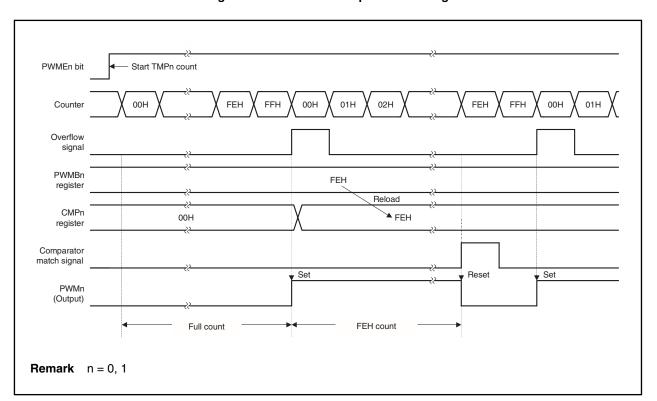
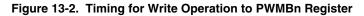



Figure 13-1. PWM Basic Operation Timing

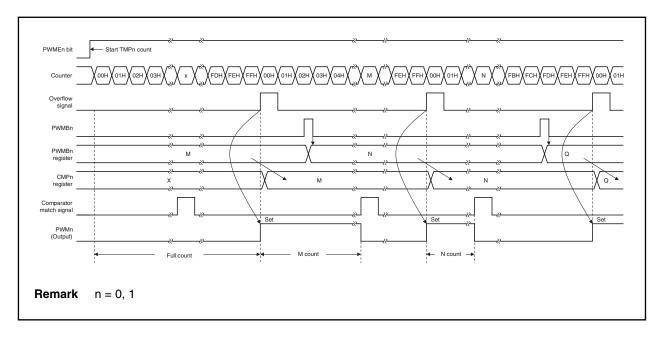


Figure 13-3. Timing When PWMBn Register Is Set to 00H

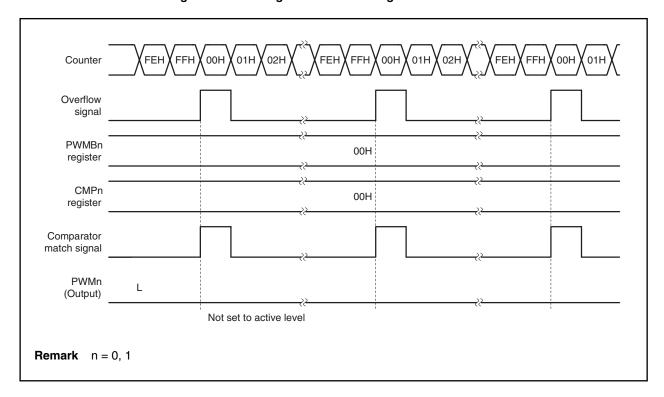
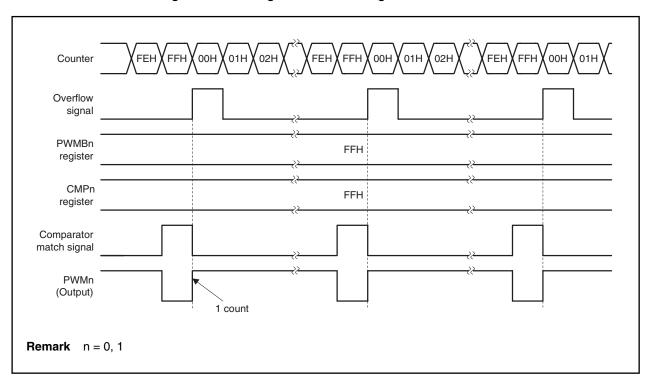



Figure 13-4. Timing When PWMBn Register Is Set to FFH

13.4.2 Repetition frequency

The repetition frequencies of PWMn are shown below (n = 0, 1).

PWMn Operating Frequency	Resolution	Repetition Frequency
fxx/2	8 bits 9 bits 10 bits 12 bits	fxx/2° fxx/2¹0 fxx/2¹1 fxx/2¹3
fxx/4	8 bits 9 bits 10 bits 12 bits	fxx/2 ¹⁰ fxx/2 ¹¹ fxx/2 ¹² fxx/2 ¹⁴
fxx/8	8 bits 9 bits 10 bits 12 bits	fxx/2 ¹¹ fxx/2 ¹² fxx/2 ¹³ fxx/2 ¹⁵
fxx/16	8 bits 9 bits 10 bits 12 bits	fxx/2 ¹² fxx/2 ¹³ fxx/2 ¹⁴ fxx/2 ¹⁶
fxx/32	8 bits 9 bits 10 bits 12 bits	fxx/2 ¹³ fxx/2 ¹⁴ fxx/2 ¹⁵ fxx/2 ¹⁷
fxx/64	8 bits 9 bits 10 bits 12 bits	fxx/2 ¹⁴ fxx/2 ¹⁵ fxx/2 ¹⁶ fxx/2 ¹⁸

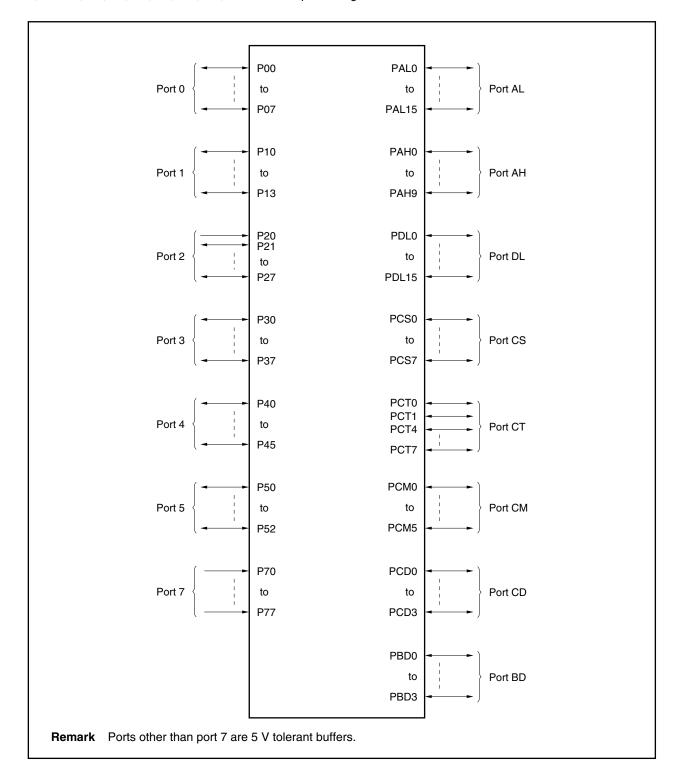
Remark fxx: Internal system clock

13.5 Cautions

The PWM0 pin has an alternate function as the P00 pin (Port 0) and the PWM1 pin has an alternate function as the P10 pin (Port 1). When using these pins for PWMn output, set the bits corresponding to the PMC0 and PMC1 registers to 1.

If the bit settings corresponding to the PMC0 and PMC1 registers are changed during PWMn pulse output, the PWMn pulse output is not guaranteed.

CHAPTER 14 PORT FUNCTIONS


14.1 Features

• Input-only ports: 9
Input/output ports: 106

- Function alternately as other peripheral I/O pins.
- It is possible to specify input and output in 1-bit units.

14.2 Port Configuration

The V850E/MA1 incorporates a total of 115 input/output ports (including 9 input-only ports) labeled ports 0 through 5, and AL, AH, DL, CS, CT, CM, CD, and BD. The port configuration is shown below.

457

(1) Function of each port

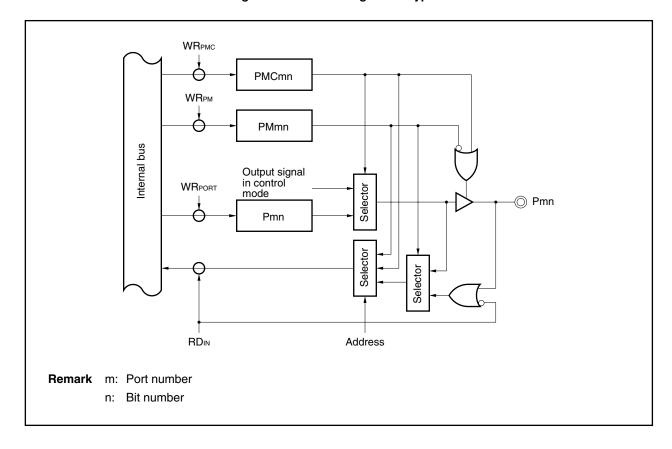
The port functions of this product are shown below.

8-bit and 1-bit operations are possible on all ports, allowing various kinds of control to be performed. In addition to their port functions, these pins also function as on-chip peripheral I/O input/output pins in the control mode. For the block types of each port, see (3) Block diagram of port.

Port Name	Pin Name	Port Function	Function in Control Mode	Block Type
Port 0 P00 to P07		8-bit I/O	Real-time pulse unit (RPU) I/O External interrupt input PWM output DMA controller input	A, B, H
Port 1	P10 to P13	4-bit I/O	Real-time pulse unit (RPU) I/O External interrupt input PWM output	А, В
Port 2	P20 to P27	1-bit input, 7-bit I/O	NMI input Real-time pulse unit (RPU) I/O External interrupt input DMA controller output	A, B, F, N
Port 3	P30 to P37	8-bit I/O	Serial interface I/O (CSI2, UART2) External interrupt input A/D converter external trigger input	B, H, I, L
Port 4	P40 to P45	6-bit I/O	Serial interface I/O (UART0/CSI0, UART1/CSI1)	H, G, M
Port 5	P50 to P52	3-bit I/O	Real-time pulse unit (RPU) I/O External interrupt input	A, B
Port 7	P70 to P77	8-bit input	A/D converter input	С
Port AL	PAL0 to PAL15	8-/16-bit I/O	External address bus (A0 to A15)	J
Port AH	PAH0 to PAH9	8-/10-bit I/O	External address bus (A16 to A25)	J
Port DL	PDL0 to PDL15	8-/16-bit I/O	External data bus (D0 to D15)	0
Port CS	PCS0 to PCS7	8-bit I/O	External bus interface control signal output	J, K
Port CT	PCT0, PCT1, PCT4 to PCT7	6-bit I/O	External bus interface control signal output	J
Port CM	PCM0 to PCM5	6-bit I/O	Wait insertion signal input Internal system clock output/Bus clock output External bus interface control signal I/O Self-refresh request signal input	D, E, J, K
Port CD	PCD0 to PCD3	4-bit I/O	External bus interface control signal output	J, K
Port BD	PBD0 to PBD3	4-bit I/O	DMA controller output	J

(2) Function when each port's pins are reset and registers that set the port/control mode

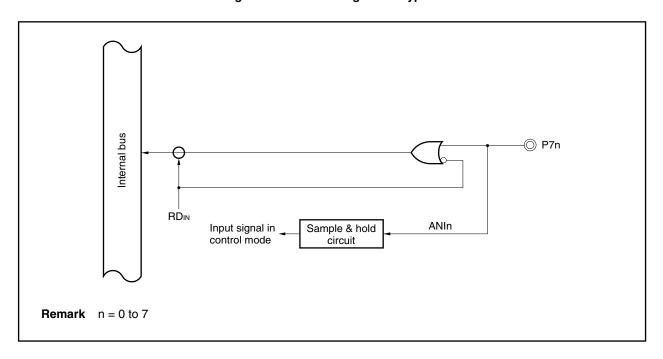
(1/2)


Port Name	Pin Name		Register That									
		Single-Chip Mode 0	Single-Chip Mode 1	ROMless Mode 0	ROMless Mode 1	Sets the Mode						
Port 0	P00/PWM0	P00 (input mode)	PMC0									
	P01/INTP000/TI000	P01 (input mode)										
	P02/INTP001 P02 (input mode)											
	P03/TO00											
	P04/DMARQ0/INTP100	PMC0, PFC0										
	P05/DMARQ1/INTP101	P05 (input mode)										
	P06/DMARQ2/INTP102	P06 (input mode)										
	P07/DMARQ3/INTP103											
Port 1	P10/PWM1	P10 (input mode)				PMC1						
	P11/INTP010/TI010	P11 (input mode)				7						
	P12/INTP011	P12 (input mode)										
	P13/T001		7									
Port 2	P20/NMI	NMI										
	P21/INTP020/TI020	P21/INTP020/TI020 P21 (input mode)										
	P22/INTP021	P22 (input mode)										
	P23/TO02	P23 (input mode)										
	P24/TC0/INTP110	PMC2, PFC2										
	P25/TC1/INTP111	P25 (input mode)										
	P26/TC2/INTP112	P26 (input mode)										
	P27/TC3/INTP113 P27 (input mode)											
Port 3	P30/SO2/INTP130	P30 (input mode)										
	P31/SI2/INTP131	P31 (input mode)	PMC3, PFC3									
	P32/SCK2/INTP132	P32 (input mode)										
	P33/TXD2/INTP133	P33 (input mode)	7									
	P34/RXD2/INTP120	7										
	P35/INTP121		РМС3									
	P36/INTP122	P36 (input mode)	7									
	P37/ADTRG/INTP123	1										
Port 4	P40/TXD0/SO0	PMC4, PFC4										
	P41/RXD0/SI0	P41 (input mode)	7									
	P42/SCK0	P42 (input mode)				PMC4						
	P43/TXD1/SO1	P43 (input mode)	PMC4, PFC4									
	P44/RXD1/SI1	P44 (input mode)										
	P45/SCK1	P45 (input mode)				PMC4						

(2/2)

Port Name	Pin Name		Register That										
		Single-Chip Mode 0	Single-Chip Mode 1	ROMless Mode 0	ROMless Mode 1	Sets the Mode							
Port 5	P50/INTP030/TI030	P50 (input mode)	PMC5										
	P51/INTP031	P51 (input mode)											
	P52/TO03	P52 (input mode)	P52 (input mode)										
Port 7	P70/ANI0 to P77/ANI7	P70 to P77 (input mo	P70 to P77 (input mode)										
Port BD	PBD0/DMAAK0 to PBD3/DMAAK3	PBD0 to PBD3 (input	PBD0 to PBD3 (input mode)										
Port CM	PCM0/WAIT	PCM0 (input mode)	WAIT			РМССМ							
	PCM1/CLKOUT/BUSCLK	PCM1 (input mode)	CLKOUT/BUSC	LK		PMCCM, PFCCM							
	PCM2/HLDAK	PCM2 (input mode)	HLDAK			РМССМ							
	PCM3/HLDRQ	PCM3 (input mode)	HLDRQ										
	PCM4/REFRQ	PCM4 (input mode)	REFRQ										
	PCM5/SELFREF	PCM5 (input mode)	SELFREF										
Port CT	PCT0/LCAS/LWR/LDQM	PCT0 (input mode)	TCAS/LWR/LDG	MC		PMCCT							
	PCT1/UCAS/UWR/UDQM	PCT1 (input mode)	-										
	PCT4/RD	PCT4 (input mode)											
	PCT5/WE	PCT5 (input mode)											
	PCT6/OE	PCT6 (input mode)											
	PCT7/BCYST	PCT7 (input mode)	BCYST										
Port CS	PCS0/CS0	PCS0 (input mode)	CS0			PMCCS							
	PCS1/CS1/RAS1	PCS1 (input mode)	CS1/RAS1										
	PCS2/CS2/IOWR	PCS2 (input mode)	CS2/IOWR		PMCCS, PFCCS								
	PCS3/CS3/RAS3	PCS3 (input mode)	PCS3 (input mode) CS3/RAS3										
	PCS4/CS4/RAS4	PCS4 (input mode)											
	PCS5/CS5/IORD	PCS5 (input mode)	CS5/IORD			PMCCS, PFCCS							
	PCS6/CS6/RAS6	PCS6 (input mode)	PMCCS										
	PCS7/CS7	PCS7 (input mode)											
Port CD	PCD0/SDCKE	PCD0 (input mode)	SDCKE		PMCCD								
	PCD1/SDCLK	PCD1 (input mode)	SDCLK		1								
	PCD2/LBE/SDCAS	PCD2 (input mode)	LBE/SDCAS			PMCCD, PFCCD							
	PCD3/UBE/SDRAS	PCD3 (input mode)	UBE/SDRAS										
Port AH	PAH0/A16 to PAH9/A25	PAH0 to PAH9 (input mode)	A16 to A25		PMCAH								
Port AL	PAL0/A0 to PAL15/A15	PAL0 to PAL15 (input mode)	A0 to A15	PMCAL									
Port DL	PDL0/D0 to PDL15/D15	PDL0 to PDL15 (input mode)	D0 to D15			PMCDL							

(3) Block diagram of port


Figure 14-1. Block Diagram of Type A

 WR_{PMC} PMCmn WR_{PM} PMmn Internal bus WRPORT O Pmn Pmn Selector Selector Address **RD**_{IN} Noise elimination Input signal in control mode Edge detection Remark m: Port number Bit number

Figure 14-2. Block Diagram of Type B

Figure 14-3. Block Diagram of Type C

MODE0 to MODE2

WRPM

PMCMn

WRPORT

PCMn

Input signal in control mode

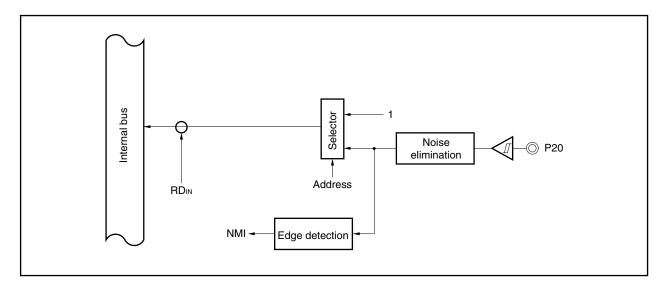
Remark n = 0, 3

Figure 14-4. Block Diagram of Type D

MODE0 to MODE2

WRPM

PMCM5


PMCM5

WRPORT

PCM5

Figure 14-5. Block Diagram of Type E

Figure 14-6. Block Diagram of Type F

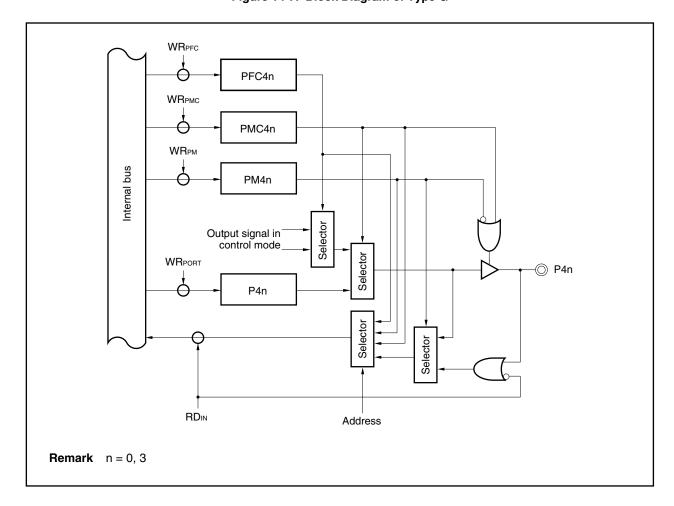


Figure 14-7. Block Diagram of Type G

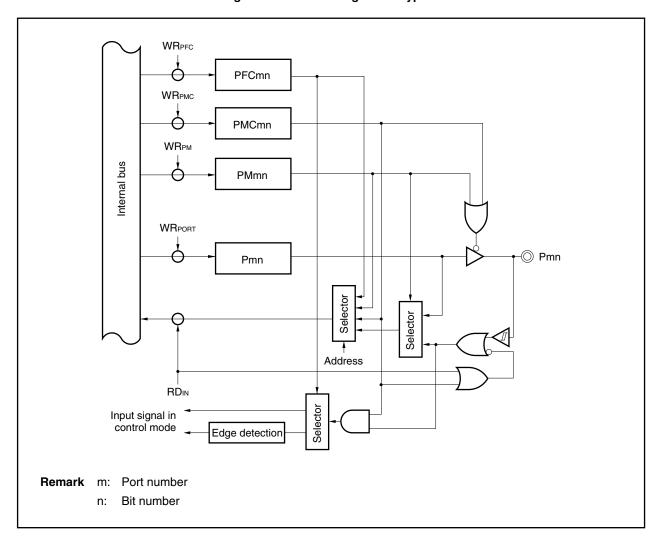


Figure 14-8. Block Diagram of Type H

 WR_{PFC} Ó PFC32 WR_PMC SCK2 output enable signal Ó PMC32 WR_{PM} Internal bus PM32 Output signal in control mode Selector WRPORT → P32 P32 Selector Selector Address RDIN Selector Input signal in control mode

Figure 14-9. Block Diagram of Type I

MODE0 to MODE2 WR_{PMC} PMCmn **WR**PM PMmn Internal bus Output signal in control mode WRPORT Selector - Pmn Pmn Selector Selector Address RDIN Remark m: Port number n: Bit number

Figure 14-10. Block Diagram of Type J

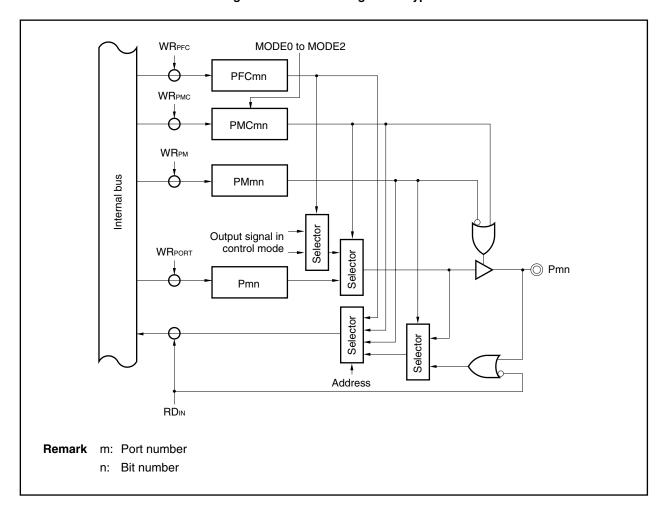


Figure 14-11. Block Diagram of Type K

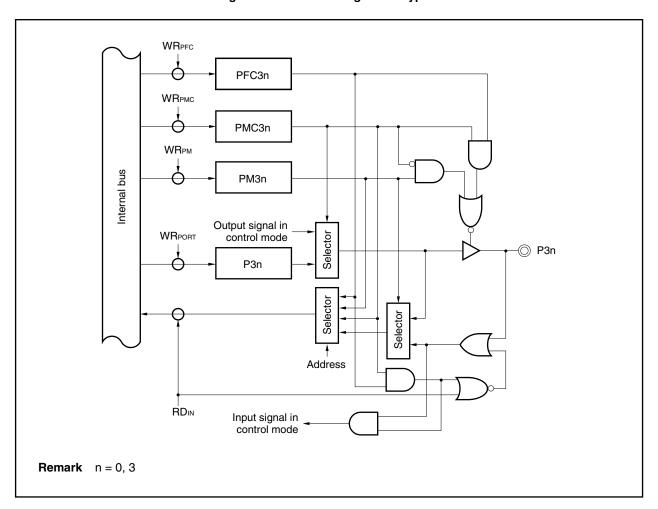


Figure 14-12. Block Diagram of Type L

SCKx output enable signal WRPMC PMC4n WR_{PM} PM4n Internal bus Output signal in control mode WRPORT Selector - ○ P4n P4n Selector Selector Address RDIN Input signal in control mode **Remark** n = 2, 5x: 0 (when n = 2) 1 (when n = 5)

Figure 14-13. Block Diagram of Type M

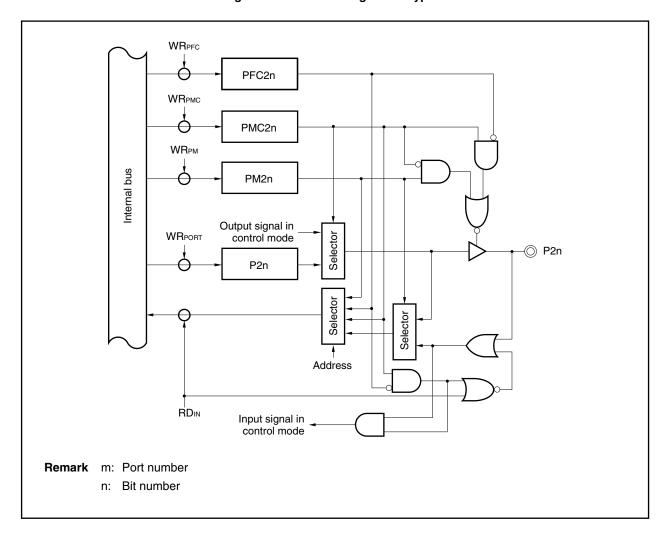


Figure 14-14. Block Diagram of Type N

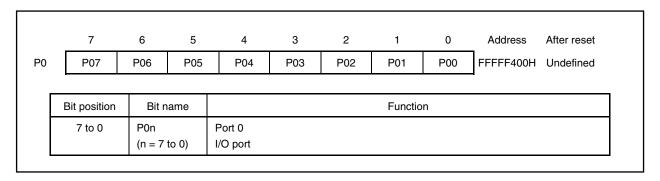

MODE0 to MODE2 WRPMC I/O control PMCDLn WR_{PM} PMDLn Internal bus Output signal in control mode WRPORT Selector O PDLn PDLn Selector Selector Address RDIN Input signal in control mode I/O control **Remark** n = 0 to 15

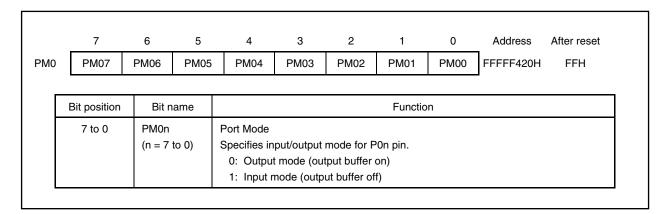
Figure 14-15. Block Diagram of Type O

14.3 Port Pin Functions

14.3.1 Port 0

Port 0 is an 8-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, the port 0 pins can also operate as real-time pulse unit (RPU) I/O, external interrupt request inputs, PWM output, and DMA request inputs in the control mode.


(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type
Port 0	P00	PWM0	PWM output	A
	P01	INTP000/TI000	External interrupt request input/ Real-time pulse unit (RPU) input	В
	P02	INTP001	External interrupt request input	
	P03	TO00	Real-time pulse unit (RPU) output	A
	P04 to P07	DMARQ0/INTP100 to DMARQ3/INTP103	DMA request input/ external interrupt request input	Н

(2) I/O mode/control mode setting

The port 0 I/O mode setting is performed by the port 0 mode register (PM0), and the control mode setting is performed by the port 0 mode control register (PMC0) and the port 0 function control register (PFC0).

(a) Port 0 mode register (PM0)

(b) Port 0 mode control register (PMC0)

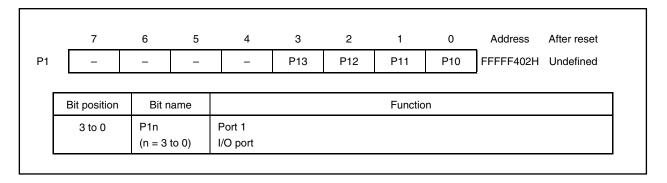
This register can be read/written in 8-bit or 1-bit units.

7 2 6 5 4 3 1 0 Address After reset PMC0 PMC07 PMC06 PMC05 PMC04 PMC03 PMC02 PMC01 PMC00 FFFFF440H 00H

Bit position	Bit name	Function
7 to 4	PMC0n (n = 7 to 4)	Port Mode Control Specifies operation mode of P0n pin in combination with the PFC0 register. 0: I/O port mode 1: External interrupt request (INTP103 to INTP100) input mode/DMA request (DMARQ3 to DMARQ0) input mode
3	PMC03	Port Mode Control Specifies operation mode of P03 pin. 0: I/O port mode 1: T000 output mode
2	PMC02	Port Mode Control Specifies operation mode of P02 pin. 0: I/O port mode 1: External interrupt request (INTP001) input mode
1	PMC01	Port Mode Control Specifies operation mode of P01 pin. 0: I/O port mode 1: External interrupt request (INTP000) input mode/TI000 input mode There is no register that switches between the external interrupt request (INTP000) input mode and TI000 input mode • When TI000 input mode is selected: Mask the external interrupt request (INTP000) or specify the CCC00 register as compare register. • When external interrupt request (INTP000) input mode (including timer capture input) is selected: Set the ETI0 bit of the TMCC01 register to 0.
0	PMC00	Port Mode Control Specifies operation mode of P00 pin. 0: I/O port mode 1: PWM0 output mode

(c) Port 0 function control register (PFC0)

This register can be read/written in 8-bit or 1-bit units. Bits 3 to 0, however, are fixed to 0, so writing 1 to these bits is ignored.


Caution When the port mode is specified by the port 0 mode control register (PMC0), the PFC0 setting becomes invalid.

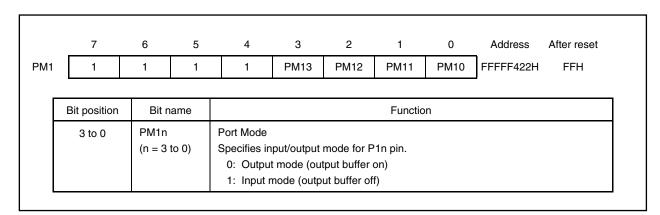
	7	6	5	4	3	2	1	0	Address	After reset
PFC0	PFC07	PFC06	PFC05	PFC04	0	0	0	0	FFFFF460H	00H

Bit position	Bit name	Function
7 to 4	PFC0n (n = 7 to 4)	Port Function Control Specifies operation mode of P0n pin in control mode. 0: External interrupt request (INTP103 to INTP100) input mode 1: DMA (DMARQ3 to DMARQ0) request input mode

14.3.2 Port 1

Port 1 is a 4-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, the port 1 pins can also operate as real-time pulse unit (RPU) I/O, external interrupt request inputs, and PWM output in the control mode.


(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type
Port 1	P10	PWM1	PWM output	А
	P11	TI010/INTP010	External interrupt request input/ Real-time pulse unit (RPU) input	В
	P12	INTP011	External interrupt request input	
	P13	TO01	Real-time pulse unit (RPU) output	А

(2) I/O mode/control mode setting

The port 1 I/O mode setting is performed by the port 1 mode register (PM1), and the control mode setting is performed by the port 1 mode control register (PMC1).

(a) Port 1 mode register (PM1)

(b) Port 1 mode control register (PMC1)

This register can be read/written in 8-bit or 1-bit units.

2 6 5 3 0 Address After reset PMC1 0 0 0 0 PMC13 PMC12 PMC11 PMC10 FFFFF442H 00H

Bit position	Bit name	Function
3	PMC13	Port Mode Control Specifies operation mode of P13 pin. 0: I/O port mode 1: TO01 output mode
2	PMC12	Port Mode Control Specifies operation mode of P12 pin. 0: I/O port mode 1: External interrupt request (INTP011) input mode
1	PMC11	Port Mode Control Specifies operation mode of P11 pin. 0: I/O port mode 1: External interrupt request (INTP010) input mode/Tl010 input mode There is no register that switches between the external interrupt request (INTP010) input mode and Tl010 input mode. • When the Tl010 input mode is selected: Mask the external interrupt (INTP010) or specify the CCC10 register as compare register. • When external interrupt request (INTP010) input mode (including timer capture input) is selected: Set the ETI1 bit of the TMCC11 register to 0.
0	PMC10	Port Mode Control Specifies operation mode of P10 pin. 0: I/O port mode 1: PWM1 output mode

14.3.3 Port 2

Port 2 is an I/O port that can be set to the input or output mode in 1-bit units except for P20, which is an input-only pin.

Caution P20 is fixed to NMI input. The level of the NMI input can be read regardless of the PM2 and PMC2 registers' values.

In addition to their function as port pins, the port 2 pins can also operate as the real-time pulse unit (RPU) I/O, external interrupt request inputs, and the DMA end (terminal count) signal outputs in the control mode.

(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type
Port 2	Port 2 P20 NMI		Non-maskable interrupt request input	F
	P21	INTP020/TI020	External interrupt request input/ Real-time pulse unit (RPU) input	В
	P22	INTP021	External interrupt request input	
	P23	TO02	Real-time pulse unit (RPU) output	A
	P24 to 27	TC0/INTP110 to TC3/INTP113	DMA end signal outputs/External interrupt request inputs	N

(2) I/O mode/control mode setting

The port 2 I/O mode setting is performed by the port 2 mode register (PM2), and the control mode setting is performed by the port 2 mode control register (PMC2) and the port 2 function control register (PFC2).

(a) Port 2 mode register (PM2)

	7	6	5	4	3	2	1	0	Address	After reset
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	1	FFFFF424H	FFH
									_	
	Bit position	Bit n	Bit name Function							
	7 to 1	PM2n (n = 7	to 1)	Port Mode Specifies input/output mode for P2n pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)						

(b) Port 2 mode control register (PMC2)

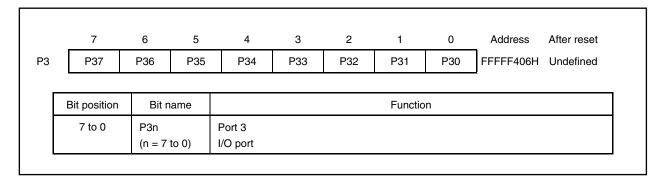
This register can be read/written in 8-bit or 1-bit units.

7 6 5 3 2 0 Address After reset 4 1 PMC2 PMC27 PMC26 PMC25 PMC24 PMC23 PMC22 PMC21 FFFFF444H 1 01H

Bit position	Bit name	Function
7 to 4	PMC2n (n = 7 to 4)	Port Mode Control Specifies operation mode of P2n pin in combination with the PFC2 register. 0: I/O port mode 1: External input request (INTP113 to INTP110) input mode/ DMA end signal (TC3 to TC0) output mode
3	PMC23	Port Mode Control Specifies operation mode of P23 pin. 0: I/O port mode 1: TO02 output mode
2	PMC22	Port Mode Control Specifies operation mode of P22 pin. 0: I/O port mode 1: External interrupt request (INTP021) input mode
1	PMC21	Port Mode Control Specifies operation mode of P21 pin. 0: I/O port mode 1: External interrupt request (INTP020) input mode/ Tl020 input mode There is no register that switches between the external interrupt request (INTP020) input mode and Tl020 input mode. • When the Tl020 input mode is selected: Mask the external interrupt request (INTP020) or specify the CCC20 register as a compare register. • When the external interrupt request (INTP020) input mode (including timer capture input) is selected: Set the ETI2 bit of the TMCC21 register to 0.

(c) Port 2 function control register (PFC2)

This register can be read/written in 8-bit or 1-bit units. Bits 3 to 0, however, are fixed to 0 by hardware, so writing 1 to these bits is ignored.


Caution When the port mode is specified by the port 2 mode control register (PMC2), the PFC2 setting becomes invalid.

	7	6	5	4	3	2	1	0	Address	After reset
PFC2	PFC27	PFC26	PFC25	PFC24	0	0	0	0	FFFFF464H	00H

Bit position	Bit name	Function
7 to 4	PFC2n (n = 7 to 4)	Port Function Control Specifies operation mode of P2n pin in control mode. 0: External interrupt request (INTP113 to INTP110) input mode 1: DMA end signal (TC3 to TC0) output mode

14.3.4 Port 3

Port 3 is an 8-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, the port 3 pins can also operate as the serial interface (CSI2, UART2) I/O, external interrupt request inputs, and A/D converter external trigger input in the control mode.

(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type	
Port 3	P30	SO2/INTP130	Serial interface (CSI2) I/O/	L	
	P31	SI2/INTP131	External interrupt request inputs	Н	
	P32	SCK2/INTP132		I	
	P33	TXD2/INTP133	Serial interface (UART2) I/O/	L	
	P34	RXD2/INTP120	External interrupt request inputs	Н	
	P35	INTP121	External interrupt request inputs	В	
	P36	INTP122			
	P37	ADTRG/INTP123	A/D converter external trigger input/ External interrupt request input		

(2) I/O mode/control mode setting

The port 3 I/O mode setting is performed by the port 3 mode register (PM3), and the control mode setting is performed by the port 3 mode control register (PMC3) and the port 3 function control register 3 (PFC3).

(a) Port 3 mode register (PM3)

		7	6	5	4	3	2	1	0	Address	After reset		
РМЗ	F	PM37	PM36	PM35	PM34	РМ33	PM32	PM31	PM30	FFFFF426H	FFH		
	<u> </u>									4			
Bit position Bit name Function													
7 to 0 PM3n Port Mode (n = 7 to 0) Specifies input/output mode for P3n pin.													
			(– 7	,	•	O: Output mode (output buffer on)							
					1: Input mode (output buffer off)								

(b) Port 3 mode control register (PMC3)

This register can be read/written in 8-bit or 1-bit units.

7 6 5 3 2 0 Address After reset 1 PMC3 PMC37 PMC36 PMC35 PMC34 PMC33 PMC32 PMC31 PMC30 FFFFF446H 00H

Bit position	Bit name	Function
7	PMC37	Port Mode Control Specifies operation mode of P37 pin. 0: I/O port mode 1: A/D converter external trigger (ADTRG) input mode/ External interrupt request (INTP123) input mode There is no register that switches between the A/D converter external trigger (ADTRG) input mode and external interrupt request (INTP123) input mode. • When the A/D converter external trigger (ADTRG) input mode is selected: Set to external trigger mode using the ADM1 register. • When the external interrupt request (INTP123) input mode is selected: Set to the mode other than external trigger mode using the ADM1 register.
6	PMC36	Port Mode Control Specifies operation mode of P36 pin. 0: I/O port mode 1: External interrupt request (INTP122) input mode
5	PMC35	Port Mode Control Specifies operation mode of P35 pin. 0: I/O port mode 1: External interrupt request (INTP121) input mode
4	PMC34	Port Mode Control Specifies operation mode of P34 pin. 0: I/O port mode 1: RXD2 input mode/External interrupt request (INTP120) input mode
3	PMC33	Port Mode Control Specifies operation mode of P33 pin. 0: I/O port mode 1: TXD2 output mode/External interrupt request (INTP133) input mode
2	PMC32	Port Mode Control Specifies operation mode of P32 pin. 0: I/O port mode 1: SCK2 input/output mode/External interrupt request (INTP132) input mode
1	PMC31	Port Mode Control Specifies operation mode of P31 pin. 0: I/O port mode 1: SI2 input mode/External interrupt request (INTP131) input mode
0	PMC30	Port Mode Control Specifies operation mode of P30 pin. 0: I/O port mode 1: SO2 output mode/External interrupt request (INTP130) input mode

(c) Port 3 function control register (PFC3)

This register can be read/written in 8-bit or 1-bit units. Bits 5 to 7, however, are fixed to 0, so writing 1 to these bits is ignored.

Caution When the port mode is specified by the port 3 mode control register (PMC3), the PFC3 setting becomes invalid.

	7	6	5	4	3	2	1	0	Address	After reset
PFC3	0	0	0	PFC34	PFC33	PFC32	PFC31	PFC30	FFFFF466H	00H

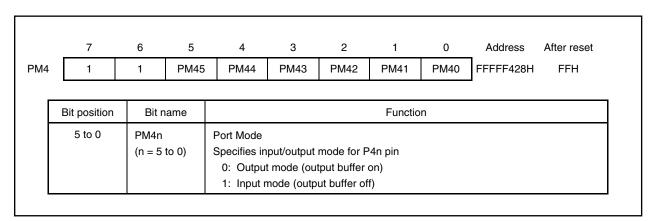
Bit position	Bit name	Function
4	PFC34	Port Function Control Specifies operation mode of P34 pin in control mode. 0: RXD2 input mode 1: External interrupt request (INTP120) input mode
3	PFC33	Port Function Control Specifies operation mode of P33 pin in control mode. 0: TXD2 output mode 1: External interrupt request (INTP133) input mode
2	PFC32	Port Function Control Specifies operation mode of P32 pin in control mode. 0: SCK2 I/O mode 1: External interrupt request (INTP132) input mode
1	PFC31	Port Function Control Specifies operation mode of P31 pin in control mode. 0: SI2 input mode 1: External interrupt request (INTP131) input mode
0	PFC30	Port Function Control Specifies operation mode of P30 pin in control mode. 0: SO2 output mode 1: External interrupt request (INTP130) input mode

14.3.5 Port 4

Port 4 is a 6-bit I/O port that can be set to the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0	Address	After reset
P4	_	_	P45	P44	P43	P42	P41	P40	FFFFF408H	Undefined
			•	•					_	
	Bit position	Bit r	Bit name Function							
Ī	5 to 0	P4n		Port 4						
		(n = 5	to 0)	I/O port						

In addition to their function as port pins, the port 4 pins can also operate as the serial interface (UART0/CSI0, UART1/CSI1) I/O in the control mode.


(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type
Port 4	P40	TXD0/SO0	Serial interface (UART0/CSI0) I/O	G
	P41	RXD0/SI0		Н
	P42	SCK0		М
	P43	TXD1/SO1	Serial interface (UART1/CSI1) I/O	G
	P44	RXD1/SI1		Н
	P45	SCK1		М

(2) I/O mode/control mode setting

The port 4 I/O mode setting is performed by the port 4 mode register (PM4), and the control mode setting is performed by the port 4 mode control register (PMC4) and the port 4 function control register (PFC4).

(a) Port 4 mode register (PM4)

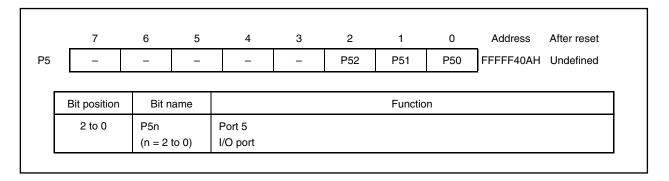
(b) Port 4 mode control register (PMC4)

	7	6	5	4	3	2	1	0	Address	After reset
PMC4	0	0	PMC45	PMC44	PMC43	PMC42	PMC41	PMC40	FFFFF448H	00H

Bit position	Bit name	Function
5	PMC45	Port Mode Control Specifies operation mode of P45 pin. 0: I/O port mode 1: SCK1 I/O mode
4	PMC44	Port Mode Control Specifies operation mode of P44 pin. 0: I/O port mode 1: RXD1/SI1 input mode
3	PMC43	Port Mode Control Specifies operation mode of P43 pin. 0: I/O port mode 1: TXD1/SO1 output mode
2	PMC42	Port Mode Control Specifies operation mode of P42 pin. 0: I/O port mode 1: SCK0 I/O mode
1	PMC41	Port Mode Control Specifies operation mode of P41 pin. 0: I/O port mode 1: RXD0/SI0 input mode
0	PMC40	Port Mode Control Specifies operation mode of P40 pin. 0: I/O port mode 1: TXD0/SO0 output mode

(c) Port 4 function control register (PFC4)

This register can be read/written in 8-bit or 1-bit units. Bits 7 to 5 and 2, however, are fixed to 0, so writing 1 to these bits is ignored.


Caution When the port mode is specified by the port 4 mode control register (PMC4), the PFC4 register setting becomes invalid.

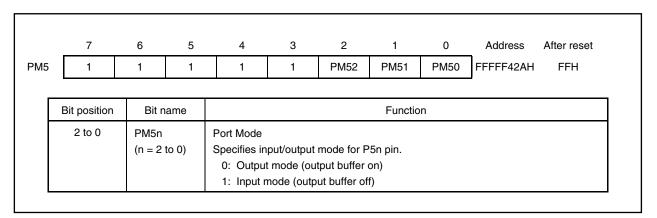
	7	6	5	4	3	2	1	0	Address	After reset
PFC4	0	0	0	PFC44	PFC43	0	PFC41	PFC40	FFFFF468H	00H

Bit position	Bit name	Function
4	PFC44	Port Function Control Specifies operation mode of P44 pin in control mode. 0: SI1 input mode 1: RXD1 input mode
3	PFC43	Port Function Control Specifies operation mode of P43 pin in control mode. 0: SO1 output mode 1: TXD1 output mode
1	PFC41	Port Function Control Specifies operation mode of P41 pin in control mode. 0: SI0 input mode 1: RXD0 input mode
0	PFC40	Port Function Control Specifies operation mode of P40 pin in control mode. 0: SO0 output mode 1: TXD0 output mode

14.3.6 Port 5

Port 5 is a 3-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, the port 5 pins can also operate as the real-time pulse unit (RPU) I/O and external interrupt request inputs in the control mode.

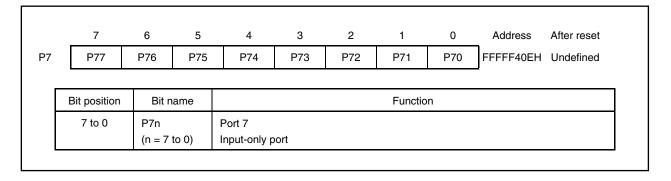

(1) Operation in control mode

	Port	Alternate Function	Remark	Block Type
Port 5	P50	INTP030/TI030	External interrupt request input/ Real-time pulse unit (RPU) input	В
	P51	INTP031	External interrupt request input	
	P52	TO03	Real-time pulse unit (RPU) output	A

(2) I/O mode/control mode setting

The port 5 I/O mode setting is performed by the port 5 mode register (PM5), and the control mode setting is performed by the port 5 mode control register (PMC5).

(a) Port 5 mode register (PM5)


(b) Port 5 mode control register (PMC5)

	7	6	5	4	3	2	1	0	Address	After reset
PMC5	0	0	0	0	0	PMC52	PMC51	PMC50	FFFFF44AH	00H

Bit position	Bit name	Function
2	PMC52	Port Mode Control Specifies operation mode of P52 pin. 0: I/O port mode 1: TO03 output mode
1	PMC51	Port Mode Control Specifies operation mode of P51 pin. 0: I/O port mode 1: External input request (INTP031) input mode
0	PMC50	Port Mode Control Specifies operation mode of P50 pin. 0: I/O port mode 1: External interrupt request (INTP030) input mode/TI030 input mode There is no register that switches between the external interrupt request (INTP030) input mode and TI030 input mode. • When the TI030 input mode is selected: Mask the external interrupt request (INTP030) or specify the CCC30 register as a compare register. • When the external interrupt request (INTP030) input mode (including timer capture input) is selected: Set the ETI3 bit of the TMCC31 register to 0.

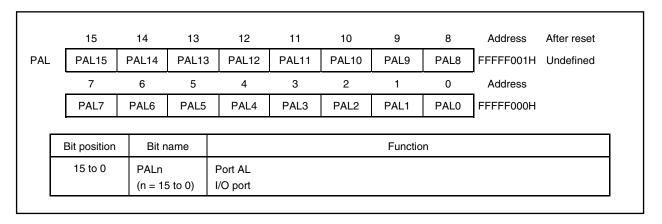
14.3.7 Port 7

Port 7 is an 8-bit input-only port whose pins are fixed to input.

In addition to their function as port pins, the port 7 pins can also operate as the analog inputs to the A/D converter in the control mode.

(1) Operation in control mode

Port		Alternate Function	Remark	Block Type
Port 7	P77 to P70	ANI7 to ANI0	Analog input to A/D converter	С


Caution When performing A/D conversion by selecting a pin from ANI0 to ANI7, the resolution of the A/D conversion may drop when port 7 (P7) is read during A/D conversion (ADCS bit of ADM0 register = 1).

If a digital pulse is applied to the pin adjacent to the pin executing A/D conversion, the A/D conversion value may not be obtained as expected due to coupling noise. Do not apply a digital pulse to the pin adjacent to the pin executing A/D conversion.

14.3.8 Port AL

Port AL (PAL) is a 16-bit I/O port that can be set to the input or output mode in 1-bit units.

When the higher 8 bits of port AL are used as port ALH (PALH) and the lower 8 bits as port ALL (PALL), port AL becomes two 8-bit ports that can be set in the input or output mode in 1-bit units.

In addition to their functions as port pins, in the control mode, the port AL pins operate as an address bus for when the memory is externally expanded.

(1) Operation in control mode

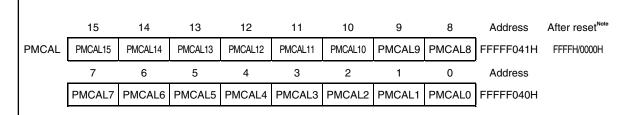
	Port	Alternate Function	Remark	Block Type
Port AL	PAL15 to PAL0	A15 to A0	Address bus when memory expanded	J

(2) I/O mode/control mode setting

The port AL I/O mode setting is performed by the port AL mode register (PMAL), and control mode setting is performed by the port AL mode control register (PMCAL).

(a) Port AL mode register (PMAL)

The port AL mode register (PMAL) can be read/written in 16-bit units.

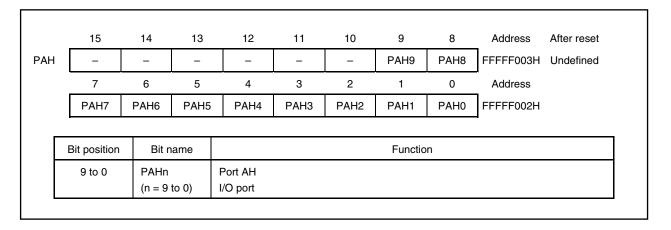

If the higher 8 bits of PMAL are used as port AL mode register H (PMALH), and the lower 8 bits as port AL mode register L (PMALL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.

(b) Port AL mode control register (PMCAL)

The port AL mode control register (PMCAL) can be read/written in 16-bit units.

If the higher 8 bits of PMCAL are used as port AL mode control register H (PMCALH), and the lower 8 bits as port AL mode control register L (PMCALL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.

Note In ROMless modes 0 and 1, and single-chip mode 1: FFFFH In single-chip mode 0: 0000H


Bit position	Bit name	Function
15 to 0	PMCALn (n = 15 to 0)	Port Mode Control Specifies operation mode of PALn pin. 0: I/O port mode 1: A15 to A0 output mode

14.3.9 Port AH

Port AH (PAH) is a 10-bit I/O port that can be set in the input or output mode in 1-bit units.

When the higher 8 bits of port AH are used as port AHH (PAHH) and the lower 8 bits as port AHL (PAHL), port AH becomes two 8-bit ports that can be set in the input or output mode in 1-bit units.

Bits 15 to 10 of port AH (bits 7 to 2 of port AHH) are undefined.

In addition to their functions as port pins, in the control mode, the port AH pins operate as an address bus for when the memory is externally expanded.

(1) Operation in control mode

	Port	Alternate Function Pin Name	Remark	Block Type
Port AH	PAH9 to PAH0	A25 to A16	Address bus when memory expanded	J

(2) I/O mode/control mode setting

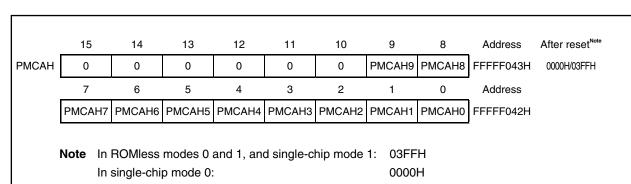
The port AH I/O mode setting is performed by the port AH mode register (PMAH), and the control mode setting is performed by the port AH mode control register (PMCAH).

(a) Port AH mode register (PMAH)

The port AH mode register (PMAH) can be read/written in 16-bit units.

If the higher 8 bits of PMAH are used as port AH mode register H (PMAHH), and the lower 8 bits as port AH mode register L (PMAHL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.

Bits 15 to 10 of PMAH (bits 7 to 2 of PMAHH) are fixed to 1.

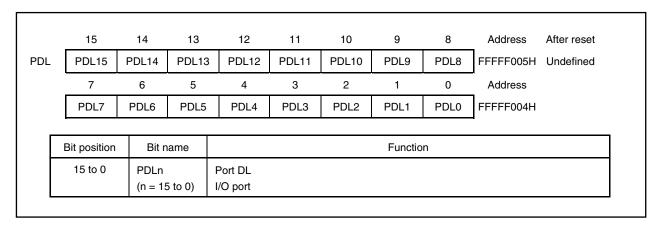

	15	14	13	12	11	10	9	8	Address	After reset
PMAH	1	1	1	1	1	1	РМАН9	PMAH8	FFFFF023H	FFFFH
	7	6	5	4	3	2	1	0	Address	
	PMAH7	РМАН6	PMAH5	PMAH4	РМАН3	PMAH2	PMAH1	РМАН0	FFFFF022H	
	Bit position Bit name			Function						
	9 to 0 PMAHn		In	Port Mode						
	(n = 9 to 0) Specifies input/output mode for PAHn pin.									
			0: Output mode (output buffer on)							
		1: Input mode (output buffer off)								

(b) Port AH mode control register (PMCAH)

The port AH mode control register (PMCAH) can be read/written in 16-bit units.

If the higher 8 bits of PMCAH are used as port AH mode control register H (PMCAHH), and the lower 8 bits as port AH mode control register L (PMCAHL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.

Bits 15 to 10 of PMCAH (bits 7 to 2 of PMCAHH) are fixed to 0.



Bit position	Bit name	Function
9 to 0	PMCAHn	Port Mode Control
	(n = 9 to 0)	Specifies operation mode of PAHn pin.
		0: I/O port mode
		1: A25 to A16 output mode

14.3.10 Port DL

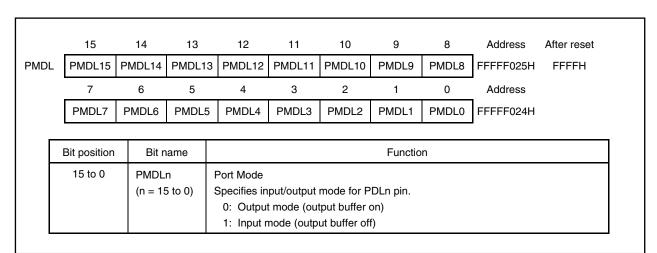
Port DL (PDL) is a 16-bit I/O port that can be set in the input or output mode in 1-bit units.

When the higher 8 bits of port DL are used as port DLH (PDLH), and the lower 8 bits as port DLL (PDLL), port DL becomes two 8-bit ports that can be set in the input or output mode in 1-bit units.

In addition to their functions as port pins, in the control mode, the port DL pins operate as a data bus for when the memory is externally expanded.

(1) Operation in control mode

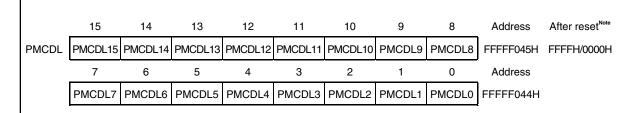
	Port	Alternate Function Pin Name	Remark	Block Type
Port DL	PDL15 to PDL0	D15 to D0	Data bus when memory expanded	0


(2) I/O mode/control mode setting

The port DL I/O mode setting is performed by the port DL mode register (PMDL), and the control mode setting is performed by the port DL mode control register (PMCDL).

(a) Port DL mode register (PMDL)

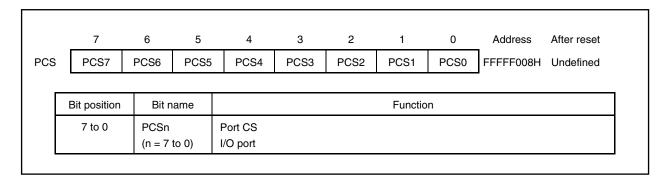
The port DL mode register (PMDL) can be read/written in 16-bit units.


If the higher 8 bits of PMDL are used as port DL mode register H (PMDLH), and the lower 8 bits as port DL mode register L (PMDLL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.

(b) Port DL mode control register (PMCDL)

The port DL mode control register (PMCDL) can be read/written in 16-bit units.

If the higher 8 bits of PMCDL are used as port DL mode control register H (PMCDLH), and the lower 8 bits as port DL mode control register L (PMCDLL), these two 8-bit port mode registers can be read/written in 8-bit or 1-bit units.


Note In ROMless modes 0 and 1, and single-chip mode 1: FFFFH In single-chip mode 0: 0000H

Bit position	Bit name	Function
15 to 0	PMCDLn (n = 15 to 0)	Port Mode Control Specifies operation mode of PDLn pin. 0: I/O port mode 1: D15 to D0 output mode

Caution The D8 to D15 pins are in the input status in ROMless mode 1.

14.3.11 Port CS

Port CS is an 8-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, in the control mode, the port pins can also operate as the chip select signal outputs when memory is externally expanded, the row address strobe signal outputs to DRAM, and the read/write strobe signal output to an external I/O.

(1) Operation in control mode

	Port	Alternate Function Pin Name	Remark	Block Type
Port CS	PCS0	CS0	Chip select signal output	J
	PCS1	CS1/RAS1	Chip select signal output/ row address signal output	
	PCS2	CS2/IOWR	Chip select signal output/ write strobe signal output	К
	PCS3	CS3/RAS3	Chip select signal output/	J
	PCS4	CS4/RAS4	row address signal output	
	PCS5	CS5/IORD	Chip select signal output/ read strobe signal output	К
	PCS6	CS6/RAS6	Chip select signal output/ row address signal output	J
	PCS7	CS7	Chip select signal output	

(2) I/O mode/control mode setting

The port CS I/O mode setting is performed by the port CS mode register (PMCS), and the control mode setting is performed by the port CS mode control register (PMCCS) and the port CS function control register (PFCCS).

(a) Port CS mode register (PMCS)

	7	6	5	4	3	2	1	0	Address	After reset
PMCS	PMCS7	PMCS6	PMCS5	PMCS4	PMCS3	PMCS2	PMCS1	PMCS0	FFFFF028H	FFH
	Bit position	Bit n	ame				Functio	n		
	7 to 0	PMCS (n = 7	1	Port Mode Specifies input/output mode for PCSn pin. 0: Output mode (output buffer on) 1: Input mode (output buffer off)						

(b) Port CS mode control register (PMCCS)

This register can be read/written in 8-bit or 1-bit units.

7 6 5 4 3 2 1 0 Address After reset PMCCS PMCCS7 PMCCS6 PMCCS5 PMCCS4 PMCCS3 PMCCS2 PMCCS1 PMCCS0 FFFF048H 00H/FFH

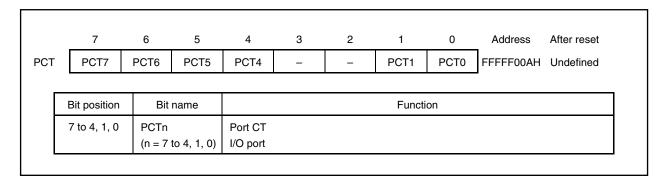
Note In ROMless modes 0 and 1, and single-chip mode 1: FFH In single-chip mode 0: 00H

Bit position	Bit name	Function
7	PMCCS7	Port Mode Control Specifies operation mode of PCS7 pin. 0: I/O port mode 1: CS7 output mode
6	PMCCS6	Port Mode Control Specifies operation mode of PCS6 pin. 0: I/O port mode 1: CS6/RAS6 output mode (CS6/RAS6 signal automatically switched by accessing the targeted memory of each signal)
5	PMCCS5	Port Mode Control Specifies operation mode of PCS5 pin. 0: I/O port mode 1: CS5 output mode/IORD output mode
4	PMCCS4	Port Mode Control Specifies operation mode of PCS4 pin. 0: I/O port mode 1: CS4/RAS4 output mode (CS4/RAS4 signal automatically switched by accessing the targeted memory of each signal)
3	PMCCS3	Port Mode Control Specifies operation mode of PCS3 pin. 0: I/O port mode 1: CS3/RAS3 output mode (CS3/RAS3 signal automatically switched by accessing the targeted memory of each signal)
2	PMCCS2	Port Mode Control Specifies operation mode of PCS2 pin. 0: I/O port mode 1: CS2 output mode/IOWR output mode
1	PMCCS1	Port Mode Control Specifies operation mode of PCS1 pin. 0: I/O port mode 1: CS1/RAS1 output mode (CS1/RAS1 signal automatically switched by accessing the targeted memory of each signal)
0	PMCCS0	Port Mode Control Specifies operation mode of PCS0 pin. 0: I/O port mode 1: CS0 output mode

(c) Port CS function control register (PFCCS)

This register can be read/written in 8-bit or 1-bit units. Bits 7, 6, 4, 3, 1, and 0, however, are fixed to 0, so writing 1 to these bits is ignored.

Caution When the port mode is specified by the port CS mode control register (PMCCS), the PFCCS setting becomes invalid.


	7	6	5	4	3	2	1	0	Address	After reset
PFCCS	0	0	PFCCS5	0	0	PFCCS2	0	0	FFFFF049H	00H

Bit position	Bit name	Function
5	PFCCS5	Port Function Control Specifies operation mode of PCS5 pin in control mode. 0: CS5 output mode 1: IORD output mode
2	PFCCS2	Port Function Control Specifies operation mode of PCS2 pin in control mode. 0: CS2 output mode 1: IOWR output mode Note

Note To output the $\overline{\text{IORD}}$ and $\overline{\text{IOWR}}$ signals during access to the external I/O other than by a DMA flyby transfer, the IOEN bit of the BCP register must be set.

14.3.12 Port CT

Port CT is a 6-bit I/O port that can be set to input or output mode in 1-bit units.

In addition to their function as port pins, in the control mode, the port CT pins operate as control signal outputs for when the memory is externally expanded.

(1) Operation in control mode

Port		Alternate Function Pin Name	Remark	Block Type	
Port CT	PCT0	ICAS/LWR/LDQM	Column address signal output/ write strobe signal output/ output disable/write mask signal	J	
PCT4 I		UCAS/UWR/UDQM	Column address signal output/ write strobe signal output/ output disable/write mask signal		
		RD	Read strobe signal output		
		WE	Write enable signal output		
		ŌĒ	Output enable signal output		
	PCT7	BCYST	Bus cycle status signal output		

(2) I/O mode/control mode setting

The port CT I/O mode setting is performed by the port CT mode register (PMCT), and the control mode setting is performed by the port CT mode control register (PMCCT).

(a) Port CT mode register (PMCT)

	7	6	5	4	3	2	1	0	Address	After reset
PMCT	PMCT7	PMCT6	PMCT5	PMCT4	1	1	PMCT1	PMCT0	FFFFF02AH	FFH
	Bit position Bit name Function									
	7 to 4, 1, 0	PMCT (n = 7	n to 4, 1, 0)	0: Outp	input/outpout out mode (d	ut mode fo output buffe itput buffer				

(b) Port CT mode control register (PMCCT)

This register can be read/written in 8-bit or 1-bit units.

7 6 5 4 3 2 1 0 Address After reset^{Note}

PMCCT PMCCT7 PMCCT6 PMCCT5 PMCCT4 0 0 PMCCT1 PMCCT0 FFFF04AH 00H/F3H

Note In ROMless modes 0 and 1, and single-chip mode 1: F3H In single-chip mode 0: 00H

Bit position	Bit name	Function				
7	PMCCT7	Port Mode Control Specifies operation mode of PCT7 pin. 0: I/O port mode 1: BCYST output mode				
6	PMCCT6	Port Mode Control Specifies operation mode of PCT6 pin. 0: I/O port mode 1: OE output mode				
5	PMCCT5	Port Mode Control Specifies operation mode of PCT5 pin. 0: I/O port mode 1: WE output mode				
4	PMCCT4	Port Mode Control Specifies operation mode of PCT4 pin. 0: I/O port mode 1: RD output mode				
1	PMCCT1	Port Mode Control Specifies operation mode of PCT1 pin. 0: I/O port mode 1: UCAS/UWR/UDQM output mode (UCAS/UWR/UDQM signal automatically switched by accessing the targeted memory of each signal)				
0	РМССТ0	Port Mode Control Specifies operation mode of PCT0 pin. 0: I/O port mode 1: \overline{LCAS/LWR}/LDQM output mode (\overline{LCAS/LWR}/LDQM signal automatically switched by accessing the targeted memory of each signal)				

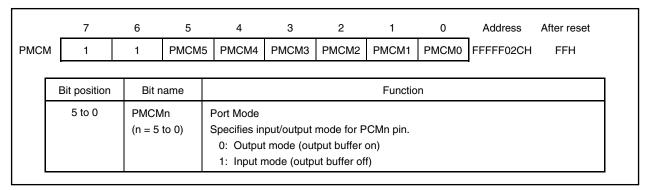
14.3.13 Port CM

Port CM is a 6-bit I/O port that can be set to the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0	Address	After reset
PCM	_	_	PCM5	PCM4	РСМ3	PCM2	PCM1	PCM0	FFFFF00CH	Undefined
-									_	
	Bit position	Bit	name				Functio	n		
5 to 0		PCMr (n = 5		Port CM I/O port						

In addition to their function as port pins, in the control mode, the port CM pins operate as the wait insertion signal input, internal system clock output/bus clock output, bus hold control signal output, and refresh request signal output from DRAM.

(1) Operation in control mode


	Port		Alternate Function Pin Name	Remark	Block Type
*	Port CM	PCM0	WAITNote	Wait insertion signal input	D
	PCM1		CLKOUT/BUSCLK	Internal system clock output/bus clock output	К
		PCM2	HLDAK	Bus hold acknowledge signal output	J
*		PCM3	HLDRQ ^{Note}	Bus hold request signal input	D
		PCM4	REFRQ	Refresh request signal output	J
*		PCM5	SELFREF ^{Note}	Self-refresh request signal input	E

* Note The default assumption of the WAIT, HLDRQ, and SELFREF signals is the control mode in ROMless modes 0 and 1, and single-chip mode 1. Fix these pins to the inactive level when they are not used. When these pins are used as port pins, they function in the control mode until they are set in the port mode by the port CM mode control register (PMCCM). Therefore, be sure to set these pins to the inactive level until they are set in the port mode.

(2) I/O mode/control mode setting

The port CM I/O mode setting is performed by the port CM mode register (PMCM), and the control mode setting is performed by the port CM mode control register (PMCCM) and the port CM function control register (PFCCM).

(a) Port CM mode register (PMCM)

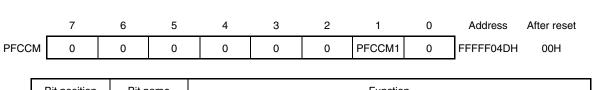
(b) Port CM mode control register (PMCCM)

This register can be read/written in 8-bit or 1-bit units.

Caution If the mode of the PCM1/CLKOUT/BUSCLK pin is changed from the I/O port mode to the CLKOUT/BUSCLK mode, a glitch may be generated in the CLKOUT/BUSCLK output immediately after the change. Therefore, pull up the CLKOUT/BUSCLK pin when using it. In the PLL mode (CKSEL = 0), change the mode to the CLKOUT/BUSCLK mode at a multiple of 1 (CKDIV2 to CKDIV0 bits of CKC register = 000B).

	7	6	5	4	3	2	1	0	Address	After reset ^{Note}
РМССМ	0	0	PMCCM5	PMCCM4	РМССМ3	PMCCM2	PMCCM1	РМССМ0	FFFFF04CH	00H/3FH

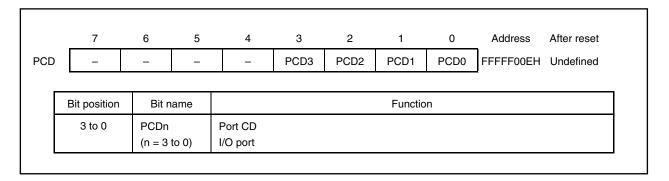
Note In ROMless modes 0 and 1, and single-chip mode 1: 3FH In single-chip mode 0: 00H


Bit position	Bit name	Function
5	PMCCM5	Port Mode Control Specifies operation mode of PCM5 pin. 0: I/O port mode 1: SELFREF input mode
4	PMCCM4	Port Mode Control Specifies operation mode of PCM4 pin. 0: I/O port mode 1: REFRQ output mode
3	РМССМ3	Port Mode Control Specifies operation mode of PCM3 pin. 0: I/O port mode 1: HLDRQ input mode
2	PMCCM2	Port Mode Control Specifies operation mode of PCM2 pin. 0: I/O port mode 1: HLDAK output mode
1	PMCCM1	Port Mode Control Specifies operation mode of PCM1 pin. 0: I/O port mode 1: CLKOUT output mode/BUSCLK output mode
0	PMCCM0	Port Mode Control Specifies operation mode of PCM0 pin. 0: I/O port mode 1: WAIT input mode

(c) Port CM function control register (PFCCM)

This register can be read/written in 8-bit or 1-bit units. Bits 7 to 2 and 0, however, are fixed to 0, so writing 1 to these bits is ignored. To output the half clock of the internal system clock from the BUSCLK pin, the BCP bit of the BCP register must be set to 1.

If the BCP bit of the BCP register is set to 1 with the CLKOUT output mode selected, the external bus operates at half the frequency of the internal system clock frequency, but the CLKOUT pin outputs the internal operating frequency.


Caution When the port mode is specified by the port CM mode control register (PMCCM), the PFCCM setting becomes invalid.

Bit position	Bit name	Function						
1	PFCCM1	Port Function Control Specifies operation mode of PCM1 pin in control mode. 0: CLKOUT output mode 1: BUSCLK output mode						

14.3.14 Port CD

Port CD is a 4-bit I/O port that can be set to the input or output mode in 1-bit units.

In addition to their function as port pins, the port CD pins operate as the clock enable signal output to SDRAM, synchronous clock output, column address strobe signal output, row address strobe signal output, and byte enable signal output to SDRAM upon byte access, in the control mode.

(1) Operation in control mode

	Port	Alternate Function Pin Name	Remark	Block Type
Port CD	PCD0	SDCKE	Clock enable signal output	J
	PCD1	SDCLK	Synchronous clock output	
	PCD3 UBE/SDRAS Byte		Byte enable signal output/column address strobe signal output	К
			Byte enable signal output/ row address strobe signal output	

(2) I/O mode/control mode setting

The port CD I/O mode setting is performed by the port CD mode register (PMCD), and the control mode setting is performed by the port CD mode control register (PMCCD) and the port CD function control register (PFCCD).

(a) Port CD mode register (PMCD)

This register can be read/written in 8-bit or 1-bit units.

(b) Port CD mode control register (PMCCD)

This register can be read/written in 8-bit or 1-bit units.

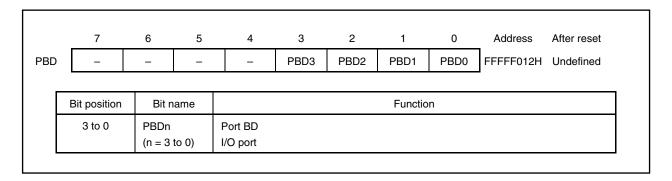
- Cautions 1. Do not perform the SDCLK and SDCKE output mode setting simultaneously. Be sure to perform the SDCLK output mode setting before the SDCKE output mode setting.
 - 2. When in single-chip mode 1, and in ROMless modes 0 and 1, bits 1 and 0 of the PMCCD register become SDCLK output mode and SDCKE output mode after the reset is released, however, bits 3 and 2 become UBE output mode and LBE output mode. When using SDRAM be sure to set the SDRAS output mode and SDCAS output mode using the PFCCD register.

	7	6	5	4	3	2	1	0	Address	After reset ^{Note}
PMCCD	0	0	0	0	PMCCD3	PMCCD2	PMCCD1	PMCCD0	FFFFF04EH	00H/0FH

Note In ROMless modes 0 and 1, and single-chip mode 1: 0FH In single-chip mode 0: 00H

Bit position	Bit name	Function
3	PMCCD3	Port Mode Control Specifies operation mode of PCD3 pin. 0: I/O port mode 1: UBE/SDRAS output mode
2	PMCCD2	Port Mode Control Specifies operation mode of PCD2 pin. 0: I/O port mode 1: LBE/SDCAS output mode
1	PMCCD1	Port Mode Control Specifies operation mode of PCD1 pin. 0: I/O port mode 1: SDCLK output mode
0	PMCCD0	Port Mode Control Specifies operation mode of PCD0 pin. 0: I/O port mode 1: SDCKE output mode

(c) Port CD function control register (PFCCD)


This register can be read/written in 8-bit or 1-bit units. Bits 7 to 4, 1, and 0, however, are fixed to 0, so writing 1 to these bits is ignored.

Caution When the port mode is specified by the port CD mode control register (PMCCD), the PFCCD setting becomes invalid.

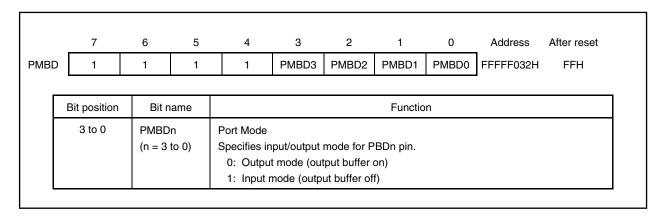
	7	6	5	4	3	2	1	0	Address	After reset	
PFCCD	0	0	0	0	PFCCD3	PFCCD2	0	0	FFFFF04FH	00H	
	Bit position	it position Bit name Function									
3 PFCCD3 Port Function Control Specifies operation mode of PCD3 pin in 0: UBE output mode 1: SDRAS output mode					3 pin in co	ontrol mod	e.				
	2 PFCCD2				Port Function Control Specifies operation mode of PCD2 pin in control mode. 0: LBE output mode 1: SDCAS output mode						

14.3.15 Port BD

Port BD is a 4-bit I/O port that can be set to the input or output mode in 1-bit units.

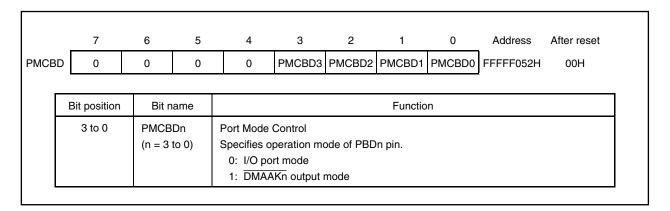
In addition to their function as port pins, the port BD pins operate as the DMA acknowledge signal outputs in the control mode.

(1) Operation in control mode


	Port Alternate Function Pin Name		Remark	Block Type
Port BD	PBD0 to PBD3	DMAAK0 to DMAAK3	DMA acknowledge signal output	J

(2) I/O mode/control mode setting

The port BD I/O mode setting is performed by the port BD mode register (PMBD), and the control mode setting is performed by the port BD mode control register (PMCBD).


(a) Port BD mode register (PMBD)

This register can be read/written in 8-bit or 1-bit units.

(b) Port BD mode control register (PMCBD)

This register can be read/written in 8-bit or 1-bit units.

★ 14.4 Setting to Use Alternate Function of Port Pin

Set the port pins as shown in Table 14-1 to use their alternate function.

User's Manual U14359EJ5V1UD

	Table 14-1. Setting	as When Port Pins	Are Used for	Alternate Functions	s (1/8)
--	---------------------	-------------------	--------------	---------------------	---------

Pin Name	Alternate Function		Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Flix bit of Fli negister	PIVILIX BIL OI PIVILI NEGISLEI	PMCn Register	PFCn Register	
P00	PWM0	Output	P00 = Setting not required	PM00 = Setting not required	PMC00 = 1	-	
P01	INTP000Note 1	Input	P01 = Setting not required	PM01 = Setting not required	PMC01 = 1	_	IES0001 (SESC0), IES0000 (SESC0)
	TI000Note 1	Input	P01 = Setting not required	PM01 = Setting not required	PMC01 = 1	_	TES01 (SESC0), TES00 (SESC0)
P02	INTP001	Input	P02 = Setting not required	PM02 = Setting not required	PMC02 = 1	_	IES0011 (SESC0), IES0010 (SESC0)
P03	TO00	Output	P03 = Setting not required	PM03 = Setting not required	PMC03 = 1	_	
P04	INTP100	Input	P04 = Setting not required	PM04 = Setting not required	PMC04 = 1	PFC04 = 0	ES1001 (INTM1), ES1000 (INTM1)
	DMARQ0	Input	P04 = Setting not required	PM04 = Setting not required	PMC04 = 1	PFC04 = 1	
P05	INTP101	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = 1	PFC05 = 0	ES1011 (INTM1), ES1010 (INTM1)
	DMARQ1	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = 1	PFC05 = 1	
P06	INTP102	Input	P06 = Setting not required	PM06 = Setting not required	PMC06 = 1	PFC06 = 0	ES1021 (INTM1), ES1020 (INTM1)
	DMARQ2	Input	P06 = Setting not required	PM06 = Setting not required	PMC06 = 1	PFC06 = 1	
P07	ĪNTP103	Input	P07 = Setting not required	PM07 = Setting not required	PMC07 = 1	PFC07 = 0	ES1031 (INTM1), ES1030 (INTM1)
	DMARQ3	Input	P07 = Setting not required	PM07 = Setting not required	PMC07 = 1	PFC07 = 1	
P10	PWM1	Output	P10 = Setting not required	PM10 = Setting not required	PMC10 = 1	_	
P11	INTP010Note 2	Input	P11 = Setting not required	PM11 = Setting not required	PMC11 = 1	_	IES0101 (SESC1), IES0100 (SESC1)
	TI010Note 2	Input	P11 = Setting not required	PM11 = Setting not required	PMC11 = 1	_	TES11 (SESC1), TES10 (SESC1)
P12	INTP011	Input	P12 = Setting not required	PM12 = Setting not required	PMC12 = 1	-	IES0111 (SESC1), IES0110 (SESC1)
P13	TO01	Output	P13 = Setting not required	PM13 = Setting not required	PMC13 = 1	_	

Notes 1. There is no register that selects the INTP000 pin or TI000 pin. To use the INTP000 or TI000 pin, make the following setting.

- To use INTP000 pin: Clear the ETI0 bit of the TMCC01 register to 0.
- To use TI000 pin: Mask the INTP000 interrupt request or set the CCC00 register as a compare register.
- 2. There is no register that selects the INTP010 pin or TI010 pin. To use the INTP010 or TI010 pin, make the following setting.
 - To use INTP010 pin: Clear the ETI1 bit of the TMCC11 register to 0.
 - To use TI010 pin: Mask the INTP010 interrupt request or set the CCC10 register as a compare register.

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (2/8)

Pin Name	Alternate Function		Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Flix bit of Fli hegister	FIVILIX BIL OF FIVILI NEGISTEI	PMCn Register	PFCn Register	
P20	NMI	Input	P20 = Setting not required	PM20 = Setting not required	PMC20 = 1	_	
P21	INTP020 ^{Note}	Input	P21 = Setting not required	PM21 = Setting not required	PMC21 = 1	_	IES0201 (SESC2) , IES0200 (SESC2)
	TI020 ^{Note}	Input	P21 = Setting not required	PM21 = Setting not required	PMC21 = 1	_	TES21 (SESC2), TES20 (SESC2)
P22	INTP021	Input	P22 = Setting not required	PM22 = Setting not required	PMC22 = 1	_	IES0211 (SESC2), IES0210 (SESC2)
P23	TO02	Output	P23 = Setting not required	PM23 = Setting not required	PMC23 = 1	_	
P24	ĪNTP110	Input	P24 = Setting not required	PM24 = Setting not required	PMC24 = 1	PFC24 = 0	ES1101 (INTM2), ES1100 (INTM2)
	TC0	Output	P24 = Setting not required	PM24 = Setting not required	PMC24 = 1	PFC24 = 1	
P25	INTP111	Input	P25 = Setting not required	PM25 = Setting not required	PMC25 = 1	PFC25 = 0	ES1111 (INTM2), ES1110 (INTM2)
	TC1	Output	P25 = Setting not required	PM25 = Setting not required	PMC25 = 1	PFC25 = 1	
P26	ĪNTP112	Input	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFC26 = 0	ES1121 (INTM2), ES1120 (INTM2)
	TC2	Output	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFC26 = 1	
P27	INTP113	Input	P27 = Setting not required	PM27 = Setting not required	PMC27 = 1	PFC27 = 0	ES1131 (INTM2), ES1130 (INTM2)
	TC3	Output	P27 = Setting not required	PM27 = Setting not required	PMC27 = 1	PFC27 = 1	
P30	SO2	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	PFC30 = 0	
	INTP130	Input	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	PFC30 = 1	ES1301 (INTM4), ES1300 (INTM4)
P31	SI2	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	PFC31 = 0	
	INTP131	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	PFC31 = 1	ES1311 (INTM4), ES1310 (INTM4)
P32	SCK2	I/O	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFC32 = 0	
	INTP132	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFC32 = 1	ES1321 (INTM4), ES1320 (INTM4)

Note There is no register that selects the INTP020 pin or Tl020 pin. To use the INTP020 or Tl020 pin, make the following setting.

- To use INTP020 pin: Clear the ETI2 bit of the TMCC21 register to 0.
- To use TI020 pin: Mask the INTP020 interrupt request or set the CCC20 register as a compare register.

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (3/8)

Pin Name	Alternate Fu	nction	Day Dit of Da Dogistor	DMny Dit of DMn Dociotor	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCn Register	PFCn Register	
P30	TXD2	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFC33 = 0	
	ĪNTP133	Input	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFC33 = 1	ES1331 (INTM4), ES1330 (INTM4)
P34	RXD2	Input	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFC34 = 0	
	INTP120	Input	P34 = Setting not required	PM24 = Setting not required	PMC34 = 1	PFC34 = 1	ES1201 (INTM3), ES1200 (INTM3)
P35	INTP121	Input	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	_	ES1211 (INTM3), ES1210 (INTM3)
P36	INTP122	Input	P36 = Setting not required	PM36 = Setting not required	PMC36 = 1	_	ES1221 (INTM3), ES1220 (INTM3)
P37	INTP123 ^{Note}	Input	P37 = Setting not required	PM37 = Setting not required	PMC37 = 1	_	ES1231 (INTM3), ES1230 (INTM3)
	ADTRG ^{Note}	Input	P37 = Setting not required	PM37 = Setting not required	PMC37 = 1	_	ES1231 (INTM3), ES1230 (INTM3)
P40	SO0	Output	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	PFC40 = 0	
	TXD0	Output	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	PFC40 = 1	
P41	SI0	Input	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	PFC41 = 0	
	RXD0	Input	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	PFC41 = 1	
P42	SCK0	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	_	
P43	SO1	Output	P43 = Setting not required	PM43 = Setting not required	PMC43 = 1	PFC43 = 0	
	TXD1	Output	P43 = Setting not required	PM43 = Setting not required	PMC43 = 1	PFC43 = 1	
P44	SI1	Input	P44 = Setting not required	PM44 = Setting not required	PMC44 = 1	PFC44 = 0	
	RXD1	Input	P44 = Setting not required	PM44 = Setting not required	PMC44 = 1	PFC44 = 1	
P45	SCK1	I/O	P45 = Setting not required	PM45 = Setting not required	PMC45 = 1	_	

Note There is no register that selects the INTP123 pin or ADTRG pin. To use the INTP123 or ADTRG pin, make the following setting.

- To use INTP123 pin: Set a mode other than the external trigger mode by using the ADM1 register.
- To use ADTRG pin: Set the external trigger mode by using the ADM1 register.

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (4/8)

Pin Name	Alternate Fu	ınction	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	This bit of thregister	T WITH DIE OF T WITH THE GISTER	PMCn Register	PFCn Register	
P50	INTP030 ^{Note}	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1		IES0301 (SESC3), IES0300 (SESC3)
	TI030 ^{Note}	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	_	TES31 (SESC3), TES30 (SESC3)
P51	INTP031	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	_	IES0311 (SESC3), IES0310 (SESC3)
P52	TO03	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	_	
P70	ANI0	Input	P70 = Setting not required	_	ı	_	
P71	ANI1	Input	P71 = Setting not required	_	ı	_	
P72	ANI2	Input	P72 = Setting not required	_	ı	_	
P73	ANI3	Input	P73 = Setting not required	_	ı	_	
P74	ANI4	Input	P74 = Setting not required	_	ı	_	
P75	ANI5	Input	P75 = Setting not required	_	ı	_	
P76	ANI6	Input	P76 = Setting not required	_	ı	_	
P77	ANI7	Input	P77 = Setting not required	_	ı	_	
PAL0	A0	Output	PAL0 = Setting not required	PM42 = Setting not required	PMCAL0 = 1	_	
PAL1	A1	Output	PAL1 = Setting not required	PM43 = Setting not required	PMCAL1 = 1	_	
PAL2	A2	Output	PAL2 = Setting not required	PM43 = Setting not required	PMCAL2 = 1	_	
PAL3	A3	Output	PAL3 = Setting not required	PM44 = Setting not required	PMCAL3 = 1	-	
PAL4	A4	Output	PAL4 = Setting not required	PM44 = Setting not required	PMCAL4 = 1	-	
PAL5	A5	Output	PAL5 = Setting not required	PM45 = Setting not required	PMCAL5 = 1	_	

Note There is no register that selects the INTP030 pin or Tl030 pin. To use the INTP030 or Tl030 pin, make the following setting.

- To use INTP030 pin: Clear the ETI3 bit of the TMCC31 register to 0.
- To use TI030 pin: Mask the INTP030 interrupt request or set the CCC30 register as a compare register.

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (5/8)

Pin Name	Alternate Fu	nction	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Filk bit of Fil hegister	FINITE BIL OF FINITE NEGISTER	PMCn Register	PFCn Register	
PAL6	A6	Output	PAL6 = Setting not required	PMAL6 = Setting not required	PMCAL6 = 1	_	
PAL7	A7	Output	PAL7 = Setting not required	PMAL7 = Setting not required	PMCAL7 = 1	_	
PAL8	A8	Output	PAL8 = Setting not required	PMAL8 = Setting not required	PMCAL8 = 1	_	
PAL9	A9	Output	PAL9 = Setting not required	PMAL9 = Setting not required	PMCAL9 = 1	_	
PAL10	A10	Output	PAL10 = Setting not required	PMAL10 = Setting not required	PMCAL10 = 1	_	
PAL11	A11	Output	PAL11 = Setting not required	PMAL11 = Setting not required	PMCAL11 = 1	_	
PAL12	A12	Output	PAL12 = Setting not required	PMAL12 = Setting not required	PMCAL12 = 1	_	
PAL13	A13	Output	PAL13 = Setting not required	PMAL13 = Setting not required	PMCAL13 = 1	_	
PAL14	A14	Output	PAL14 = Setting not required	PMAL14 = Setting not required	PMCAL14 = 1	_	
PAL15	A15	Output	PAL15 = Setting not required	PMAL15 = Setting not required	PMCAL5 = 1	_	
PAH0	A16	Output	PAH0 = Setting not required	PMAH0 = Setting not required	PMCAH0 = 1	_	
PAH1	A17	Output	PAH1 = Setting not required	PMAH1 = Setting not required	PMCAH1 = 1	_	
PAH2	A18	Output	PAH2 = Setting not required	PMAH2 = Setting not required	PMCAH2 = 1	_	
РАН3	A19	Output	PAH3 = Setting not required	PMAH3 = Setting not required	PMCAH3 = 1	_	
PAL4	A20	Output	PAH4 = Setting not required	PMAH4 = Setting not required	PMCAH4 = 1	_	
PAL5	A21	Output	PAH5 = Setting not required	PMAH5 = Setting not required	PMCAH5 = 1	_	
PAL6	A22	Output	PAH6 = Setting not required	PMAH6 = Setting not required	PMCAH6 = 1	_	

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (6/8)

Pin Name	Alternate Fu	nction	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Filk bit of Fil negister	PIVITIX BIT OF PIVITI NEGISTEF	PMCn Register	PFCn Register	
PAH7	A23	Output	PAH7 = Setting not required	PMAH7 = Setting not required	PMCAH7 = 1	_	
PAH8	A24	Output	PAH8 = Setting not required	PMAH8 = Setting not required	PMCAH8 = 1	_	
PAH9	A25	Output	PAH9 = Setting not required	PMAH9 = Setting not required	PMCAH9 = 1	_	
PDL0	D0	I/O	PDL0 = Setting not required	PMDL0 = Setting not required	PMCDL0 = 1	_	
PDL1	D1	I/O	PDL1 = Setting not required	PMDL1 = Setting not required	PMCDL1 = 1	_	
PDL2	D2	I/O	PDL2 = Setting not required	PMDL2 = Setting not required	PMCDL2 = 1	_	
PDL3	D3	I/O	PDL3 = Setting not required	PMDL3 = Setting not required	PMCDL3 = 1	_	
PDL4	D4	I/O	PDL4 = Setting not required	PMDL4 = Setting not required	PMCDL4 = 1	_	
PDL5	D5	I/O	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = 1	_	
PDL6	D6	I/O	PDL6 = Setting not required	PMDL6 = Setting not required	PMCDL6 = 1	_	
PDL7	D7	I/O	PDL7 = Setting not required	PMDL7 = Setting not required	PMCDL7 = 1	_	
PDL8	D8	I/O	PDL8 = Setting not required	PMDL8 = Setting not required	PMCDL8 = 1	_	
PDL9	D9	I/O	PDL9 = Setting not required	PMDL9 = Setting not required	PMCDL9 = 1	_	
PDL10	D10	I/O	PDL10 = Setting not required	PMDL10 = Setting not required	PMCDL10 = 1	_	
PDL11	D11	I/O	PDL11 = Setting not required	PMDL11 = Setting not required	PMCDL11 = 1	_	
PDL12	D12	I/O	PDL12 = Setting not required	PMDL12 = Setting not required	PMCDL12 = 1	-	
PDL13	D13	I/O	PDL13 = Setting not required	PMDL13 = Setting not required	PMCDL13 = 1	-	
PDL14	D14	I/O	PDL14 = Setting not required	PMDL14 = Setting not required	PMCDL14 = 1	_	
PDL15	D15	I/O	PDL15 = Setting not required	PMDL15 = Setting not required	PMCDL15 = 1	-	

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (7/8)

Pin Name	Alternate Fu	ınction	Day Dit of Da Dogistor	DMny Dit of DMn Degister	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCn Register	PFCn Register	
PCS0	CS0	Output	PCS0 = Setting not required	PMCS0 = Setting not required	PMCCS0 = 1	-	
PCS1	CS1 Note 1	Output	PCS1 = Setting not required	PMCS1 = Setting not required	PMCCS1 = 1	_	
	RAS1 ^{Note 1}	Output	PCS1 = Setting not required	PMCS1 = Setting not required	PMCCS1 = 1	_	
PCS2	CS2	Output	PCS2 = Setting not required	PMCS2 = Setting not required	PMCCS2 = 1	PFCCS2 = 0	
	ĪOWR	Output	PCS2 = Setting not required	PMCS2= Setting not required	PMCCS2 = 1	PFCCS2 = 1	
PCS3	CS3 ^{Note 1}	Output	PCS3 = Setting not required	PMCS3 = Setting not required	PMCCS3 = 1	_	
	RAS3 ^{Note 1}	Output	PCS3 = Setting not required	PMCS3 = Setting not required	PMCCS3 = 1	_	
PCS4	CS4 ^{Note 1}	Output	PCS4 = Setting not required	PMCS4 = Setting not required	PMCCS4= 1	_	
	RAS4 ^{Note 1}	Output	PCS4 = Setting not required	PMCS4 = Setting not required	PMCCS4 = 1	_	
PCS5	CS5	Output	PCS5 = Setting not required	PMCS5 = Setting not required	PMCCS5 = 1	PFCCS5 = 0	
	IORD	Output	PCS5 = Setting not required	PMCS5 = Setting not required	PMCCS5 = 1	PFCCS5 = 1	
PCS6	CS6 ^{Note 1}	Output	PCS6 = Setting not required	PMCS6 = Setting not required	PMCCS6 = 1	_	
	RAS6 ^{Note 1}	Output	PCS6 = Setting not required	PMCS6= Setting not required	PMCCS6= 1	_	
PCS7	CS7	Output	PCS7 = Setting not required	PMCS7 = Setting not required	PMCCT7 = 1	_	
PCT0	LCAS Note 2	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1	_	
	LWR ^{Note 2}	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1	_	
	LDQM ^{Note 2}	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1		
PCT1	UCAS ^{Note 2}	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1		
	UWR ^{Note 2}	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1		
	UDQM ^{Note 2}	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1	-	

Notes 1. The \overline{CSm} or \overline{RASm} signal is automatically selected when the memory to be controlled by each signal is accessed (m = 1, 3, 4, or 6).

2. The kCAS, kWR, or kDQM signal is automatically selected when the memory to be controlled by each signal is accessed (k = L or U).

User's Manual U14359EJ5V1UD

Table 14-1. Settings When Port Pins Are Used for Alternate Functions (8/8)

Pin Name	Alternate Fu	inction	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O	Plix bit of Pli hegister	PIVITIX BIT OF PIVITI REGISTER	PMCn Register	PFCn Register	
PCT4	RD	Output	PCT4 = Setting not required	PMCT4 = Setting not required	PMCCT4 = 1	_	
PCT5	WE	Output	PCT5 = Setting not required	PMCT5 = Setting not required	PMCCT5 = 1	_	
PCT6	ŌĒ	Output	PCT6 = Setting not required	PMCT6 = Setting not required	PMCCT6 = 1	_	
PCT7	BCYST	Output	PCT7 = Setting not required	PMCT7 = Setting not required	PMCCT7 = 1	_	
PCM0	WAIT	Input	PCM0 = Setting not required	PMCM0 = Setting not required	PMCCM0 = 1	_	
PCM1	CLKOUT	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1= 1	PFCCM1 = 0	
	BUSCLK	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1 = 1	PFCCM1 = 1	
PCM2	HLDAK	Output	PCM2 = Setting not required	PMCM2 = Setting not required	PMCCM2= 1	_	
РСМ3	HLDRQ	Input	PCM3 = Setting not required	PMCM3 = Setting not required	PMCCM3 = 1	_	
PCM4	REFRQ	Output	PCM4 = Setting not required	PMCM4 = Setting not required	PMCCM4 = 1	_	
PCM5	SELFREF	Input	PCM5 = Setting not required	PMCM5 = Setting not required	PMCCM5 = 1	_	
PCD0	SDCKE	Output	PCD0 = Setting not required	PMCD0 = Setting not required	PMCCD0 = 1	_	
PCD1	SDCLK	Output	PCD1 = Setting not required	PMCD1= Setting not required	PMCCD1 = 1		
PCD2	LBE	Output	PCD2 = Setting not required	PMCD2 = Setting not required	PMCCD2 = 1	PFCCD2 = 0	
	SDCAS	Output	PCD2 = Setting not required	PMCD2 = Setting not required	PMCCD2 = 1	PFCCD2 = 1	
PCD3	UBE	Output	PCD3 = Setting not required	PMCD3 = Setting not required	PMCCD3 = 1	PFCCD2 = 0	
	SDRAS	Output	PCD3 = Setting not required	PMCD3 = Setting not required	PMCCD3 = 1	PFCCD2 = 1	
PBD0	DMAAK0	Output	PBD0 = Setting not required	PMBD0 = Setting not required	PMCBD0 = 1	-	_
PBD1	DMAAK1	Output	PBD1 = Setting not required	PMBD1 = Setting not required	PMCBD1 = 1	-	
PBD2	DMAAK2	Output	PBD2 = Setting not required	PMBD2 = Setting not required	PMCBD2 = 1	-	
PBD3	DMAAK3	Output	PBD3 = Setting not required	PMBD3 = Setting not required	PMCBD3 = 1	_	

★ 14.5 Operation of Port Function

The operation of a port differs depending on whether the port is in the input or output mode, as described below.

14.5.1 Writing data to I/O port

(1) In output mode

A value can be written to the output latch (Pn) by writing data to the port n register (Pn). The contents of the output latch are output from the pin.

Once data has been written to the output latch, it is retained until new data is written to the output latch.

(2) In input mode

A value can be written to the output latch (Pn) by writing data to the port n register (Pn). Because the output buffer is off, however, the status of the pin does not change.

Once data has been written to the output latch, it is retained until new data is written to the output latch.

Caution A bit manipulation instruction (CLR1, SET1, NOT1) manipulates 1 bit but accesses a port in 8-bit units. The contents of the output latch of a pin set in the input mode, in addition to the bit to be manipulated, are overwritten to the current status of the input pin and become undefined in a port that has a mixture of input and output bits.

14.5.2 Reading data from I/O port

(1) In output mode

The contents of the output latch (Pn) can be read by reading data to the port n register (Pn). The contents of the output latch do not change.

(2) In input mode

The status of the pin can be read by reading data to the port n register (Pn). The contents of the output latch (Pn) do not change.

14.5.3 Output status of alternate function in control mode

The status of a port pin is not dependent upon the setting of the PMCn register, but can be read by setting the port n mode register (PMn) to the input mode. When the PMn register is set to the output mode, the value of the port n register (Pn) can be read in the port mode and the output status of the alternate function can be read in the control mode.

★ 14.6 Cautions

- (1) Procedure to change mode from port mode to control mode Change the mode of a port pin that functions as an output or I/O pin in the control mode to the control mode using the following procedure (except port 7).
 - <1> Set the inactive level of the signal to be output in the control mode to the corresponding bit of port n (n = 0 to 5, AL, AH, DL, CS, CT, CM, CD, BD).
 - <2> Select the control mode by using the port n mode control register (PMCn).

If <1> is not performed, the contents of port n may be momentarily output when the mode is changed from the port mode to the control mode.

(2) Manipulating port with bit manipulation instruction (SET1, CLR1, NOT1)

To manipulate a port by using a bit manipulation instruction (SET1, CLR1, NOT1), read the byte data of the port, process the data of only the bit to be manipulated, and write back the converted byte data to the port.

The output latch of the input pin of a port that has a mixture of input/output pins becomes undefined because the contents of the output latch are overwritten to the other bits in addition to the one to be manipulated (in the input mode, however, the pin status does not change because the output buffer is off).

To change the port mode from input to output mode, therefore, set an expected output value to the bit to be manipulated, and then change the mode to the output mode. The same applies to a port that has a control mode and output pins.

CHAPTER 15 RESET FUNCTIONS

When a low-level signal is input to the RESET pin, a system reset is effected and the hardware is initialized.

When the RESET signal level changes from low to high, the reset state is released and CPU starts program execution. Register contents must be initialized as required in the program.

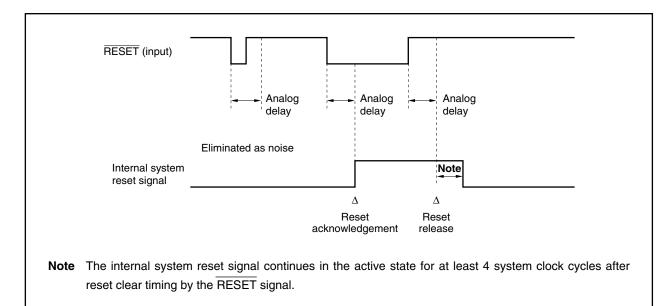
15.1 Features

The reset pin $(\overline{\text{RESET}})$ incorporates a noise eliminator that uses analog delay (\cong 60 ns) to prevent malfunction due to noise.

15.2 Pin Functions

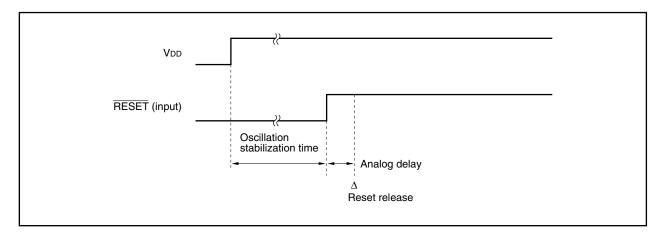
During a system reset, most pins (all but the CLKOUT^{Note}, RESET, X2, VDD, VSS, CVDD, CVSS, AVDD/AVREF, and AVSS pins) enter the high-impedance state. Therefore, when memory is connected externally, a pull-up or pull-down resistor must be connected to the specified pins of ports AL, AH, DL, CS, CT, CM, CD, and BD. If no resistor is connected, external memory may be destroyed when these pins enter the high-impedance state.

For the same reason, the output pins of the on-chip peripheral I/O functions and other output ports should be handled in the same manner.


Note In ROMless modes 0 and 1, and in single-chip mode 1, the CLKOUT signal is output even during reset. In single-chip mode 0, the CLKOUT signal is not output until the PMCCM register is set.

The operation status of each pin during reset is shown below (Table 15-1).

Table 15-1. Operation Status of Each Pin During Reset


		Pin Name		Pin S	State	
			Single-Chip Mode 0	Single-Chip Mode 1	ROMIess Mode 0	ROMIess Mode 1
*	SDRAS		(Port mode)	High impedance		
	CLKOUT		(Port mode)	Operating		
	Port pin Ports 0 to 5, 7, BD		(Input)			
		Ports AL, AH, DL, CM, CT, CS, CD	(Input)	(Control mode)		

(1) Acknowledging the reset signal

(2) Reset when turning on the power

In a reset operation when the power is turned on, because of the low-level width of the RESET signal, it is necessary to secure the oscillation stabilization time between when the power is turned on and when the reset is acknowledged.

15.3 Initialization

Initialize the contents of each register as necessary while programming.

The initial values of the CPU, internal RAM, and on-chip peripheral I/O after a reset are shown in Table 15-2.

Table 15-2. Initial Value of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (1/3)

Inte	rnal Hardware	Register Name	Initial Value After Reset
CPU Program registers		General-purpose register (r0)	00000000H
		General-purpose registers (r1 to r31)	Undefined
		Program counter (PC)	00000000H
	System registers	Status saving registers during interrupt (EIPC, EIPSW)	Undefined
		Status saving registers during NMI (FEPC, FEPSW)	Undefined
		Interrupt source register (ECR)	00000000H
		Program status word (PSW)	00000020H
		Status saving registers during CALLT execution (CTPC, CTPSW)	Undefined
		Status saving registers during exception/debug trap (DBPC, DBPSW)	Undefined
		CALLT base pointer (CTBP)	Undefined
Internal RA	M	-	Undefined
On-chip	Port functions	Ports (P0 to P5, P7, PAL, PAH, PDL, PCS, PCT, PCM, PCD, PBD)	Undefined
peripheral I/O		Mode registers (PM0 to PM5, PMCS, PMCT, PMCM, PMCD, PMBD)	FFH
		Mode registers (PMAL, PMAH, PMDL)	FFFFH
		Mode control registers (PMC0, PMC1, PMC3 to PMC5, PMCBD)	00H
		Mode control register (PMC2)	01H
		Mode control registers (PMCAL, PMCDL)	0000H/FFFFH
		Mode control register (PMCAH)	0000H/03FFH
		Mode control register (PMCCS)	00H/FFH
		Mode control register (PMCCT)	00H/F3H
		Mode control register (PMCCM)	00H/3FH
		Mode control register (PMCCD)	00H/0FH
		Function control registers (PFC0, PFC2 to PFC4, PFCCS, PFCCM, PFCCD)	00H
	Timer/counter	Timer Cn (TMCn) (n = 0 to 3)	0000H
	functions	Capture/compare registers Cn0 and Cn1 (CCCn0 and CCCn1) (n = 0 to 3)	0000H
		Timer mode control register Cn0 (TMCCn0) (n = 0 to 3)	00H
		Timer mode control register Cn1 (TMCCn1) (n = 0 to 3)	20H
		Timer Dn (TMDn) (n = 0 to 3)	0000H
		Compare register (CMDn) (n = 0 to 3)	0000H
		Timer mode control register Dn (n = 0 to 3)	00H

Table 15-2. Initial Value of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (2/3)

Inter	nal Hardware	Register Name	Initial Value After Reset	
On-chip	Serial interface	Clocked serial interface mode register n (CSIMn) (n = 0 to 2)	00H	
peripheral I/O	functions	Clocked serial interface clock select register n (CSICn) (n = 0 to 2)		
1/0		Clocked serial interface transmit buffer register n (SOTBn) (n = 0 to 2)	00H	
		Serial I/O shift register n (SIOn) (n = 0 to 2)	00H	
		Receive-only serial I/O shift register n (SIOEn) (n = 0 to 2)	00H	
		Receive buffer register n (RXBn) (n = 0 to 2)	FFH	
		Transmit buffer register n (TXBn) (n = 0 to 2)	FFH	
		Asynchronous serial interface mode register n (ASIMn) (n = 0 to 2)	01H	
		Asynchronous serial interface status register n (ASISn) (n = 0 to 2)	00H	
		Asynchronous serial interface transmit status register n (ASIFn) (n = 0 to 2)	00H	
		Clock select register n (CKSRn) (n = 0 to 2)	00H	
		Baud rate generator control register n (BRGCn) (n = 0 to 2)	FFH	
	A/D converter	A/D converter mode registers 0 and 2 (ADM0 and ADM2)	00H	
		A/D converter mode register 1 (ADM1)	07H	
		A/D conversion result register n (10 bits) (n = 0 to 7)	0000H	
		A/D conversion result register nH (8 bits) (n = 0 to 7)	00H	
	PWM	PWM control register n (PWMCn) (n = 0, 1)	40H	
		PWM buffer register n (PWMBn) (n = 0, 1)	0000H	
	Interrupt/exceptio	In-service priority register (ISPR)	00H	
	n control functions	External interrupt mode register n (INTMn) (n = 0 to 4)	00H	
		Interrupt mask register n (IMRn) (n = 0 to 3)	FFFFH	
		Valid edge select register Cn (SESCn) (n = 0 to 3)	00H	
		Interrupt control registers (OVIC00 to OVIC03, P00IC0, P00IC1, P01IC0, P01IC1, P02IC0, P02IC1, P03IC0, P03IC1, P10IC0 to P10IC3, P11IC0 to P11IC3, P12IC0 to P12IC3, P13IC0 to P13IC3, CMICD0 to CMICD3, DMAIC0 to DMAIC3, CSIIC0 to CSIIC2, SEIC0 to SEIC2, SRIC0 to SRIC2, STIC0 to STIC2, ADIC)	47H	
	Memory control	Page ROM configuration register (PRC)	7000H	
	functions	DRAM configuration register n (SCRn) (n = 1, 3, 4, 6)	3FC1H	
		SDRAM configuration register n (SCRn) (n = 1, 3, 4, 6)	0000H	
		Refresh control register n (RFSn) (n = 1, 3, 4, 6)	0000H	
		SDRAM refresh control register n (RFSn) (n = 1, 3, 4, 6)	0000H	
		Refresh wait control register (RWC)	00H	

Table 15-2. Initial Value of CPU, Internal RAM, and On-Chip Peripheral I/O After Reset (3/3)

Inter	nal Hardware	Register Name	Initial Value After Reset
On-chip	DMA functions	DMA addressing control register n (DADCn) (n = 0 to 3)	0000H
peripheral		DMA byte count register n (DBCn) (n = 0 to 3)	Undefined
I/O		DMA channel control register n (DCHCn) (n = 0 to 3)	00H
		DMA destination address register nH (DDAnH) (n = 0 to 3)	Undefined
		DMA destination address register nL (DDAnL) (n = 0 to 3)	Undefined
		DMA disable status register (DDIS)	00H
		DMA restart register (DRST)	00H
		DMA source address register nH (DSAnH) (n = 0 to 3)	Undefined
		DMA source address register nL (DSAnL) (n = 0 to 3)	Undefined
		DMA terminal count output control register (DTOC)	01H
		DMA trigger source register n (DTFRn) (n = 0 to 3)	00H
•	Bus control	Address setup wait control register (ASC)	FFFFH
	functions	Bus cycle control register (BCC)	FFFFH
		Bus cycle period control register (BCP)	00H
		Bus cycle type configuration register n (BCTn) (n = 0, 1)	8888H
		Endian configuration register (BEC)	0000H
		Bus size configuration register (BSC)	0000H/5555H
		Chip area select control register n (CSCn) (n = 0, 1)	2C11H
		Data wait control register n (DWCn) (n = 0, 1)	7777H
•	Power-save	Command register (PRCMD)	Undefined
	control functions	Power-save control register (PSC)	00H
		Clock control register (CKC)	00H
		Power-save mode register (PSMR)	00H
•	System control	Peripheral command register (PHCMD)	Undefined
		Peripheral status register (PHS)	00H
		System wait control register (VSWC)	77H
		Flash programming mode control register (FLPMC)	08H/0CH/00H
		Lock register (LOCKR)	0×H

Caution "Undefined" in the above table is undefined after power-on-reset, or undefined as a result of data destruction when RESET↓ is input and the data write timing has been synchronized.

For other RESET↓ signals, data is held in the same state it was in before the RESET operation.

CHAPTER 16 FLASH MEMORY (µPD70F3107A)

The μ PD70F3107A is the flash memory version of the V850E/MA1 and it has an on-chip 256 KB flash memory configured as two 128 KB areas.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When preproducing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Writing to flash memory can be performed with memory mounted on the target system (on board). A dedicated flash programmer is connected to the target system to perform writing.

The following can be considered as the development environment and the applications using flash memory.

- Software can be changed after the V850E/MA1 is solder mounted on the target system.
- Small scale production of various models is made easier by differentiating software.
- Data adjustment in starting mass production is made easier.

16.1 Features

- All area batch erase, or erase in block units (128 KB)
- · Communication through serial interface from the dedicated flash programmer
- Erase/write voltage: VPP = 7.8 V
- · On-board programming
- Flash memory programming by self-programming in block units (128 KB) is possible

16.2 Writing with Flash Programmer

Writing can be performed either on-board or off-board by the dedicated flash programmer.

(1) On-board programming

The contents of the flash memory are rewritten after the V850E/MA1 is mounted on the target system. Mount connectors, etc., on the target system to connect the dedicated flash programmer.

(2) Off-board programming

Writing to flash memory is performed by the dedicated program adapter (FA Series), etc., before mounting the V850E/MA1 on the target system.

Remark The FA Series is a product of Naito Densei Machida Mfg. Co., Ltd.

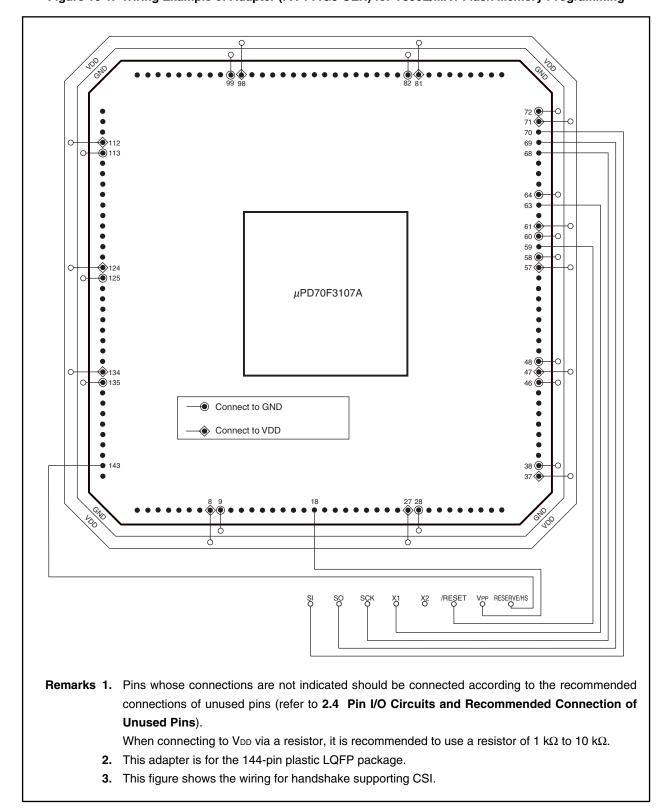


Figure 16-1. Wiring Example of Adapter (FA-144GJ-UEN) for V850E/MA1 Flash Memory Programming

Caution To write to the flash memory by using the flash programmer, the flash memory always operates in the PLL mode at a frequency 10 times higher than that in the normal mode. Therefore, keep the frequency that is input to the X1 pin to 4 to 5 MHz.

Table 16-1. Wiring of Adapter for V850E/MA1 Flash Memory Programming (FA-144GJ-UEN)

Pin Config	guration of Flash	Programmer (PG-FP4)	With CS	SI0 + HS	With	CSI0
Signal Name	Input/Output	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	P40/SO0	70	P40/SO0	70
SO/TxD	Output	Transmit signal	P41/SI0	69	P41/SI0	69
SCK	Output	Transfer clock	P42/SCK0	68	P42/SCK0	68
CLK	Output	Clock to V850E/MA1	X1	63	X1	63
CKSEL	Input	CG mode setting	CKSEL	60	CKSEL	60
/RESET	Output	Reset signal	RESET	59	RESET	59
VPP	Output	Write voltage	V _{PP} /MODE2	18	V _{PP} /MODE2	18
HS	Input	Handshake signal for CSI0 + HS communication	PAL0/A0	143	Not needed	Not needed
VDD	-	VDD voltage generation/	V _{DD}	Note 1	V _{DD}	Note 1
		voltage monitor	CV _{DD}	61	CV _{DD}	61
			AVDD/AVREF	71	AV _{DD} /AV _{REF}	71
GND	-	Ground	Vss	Note 2	Vss	Note 2
			CVss	64	CVss	64
			AVss	72	AVss	72
			P20/NMI	46	P20/NMI	46
MODE	_	Flash write mode setting	MODE0	58	MODE0	58
			MODE1	57	MODE1	57

Notes 1. 8, 27, 37, 47, 81, 98, 112, 124, 134

2. 9, 28, 38, 48, 82, 99, 113, 125, 135

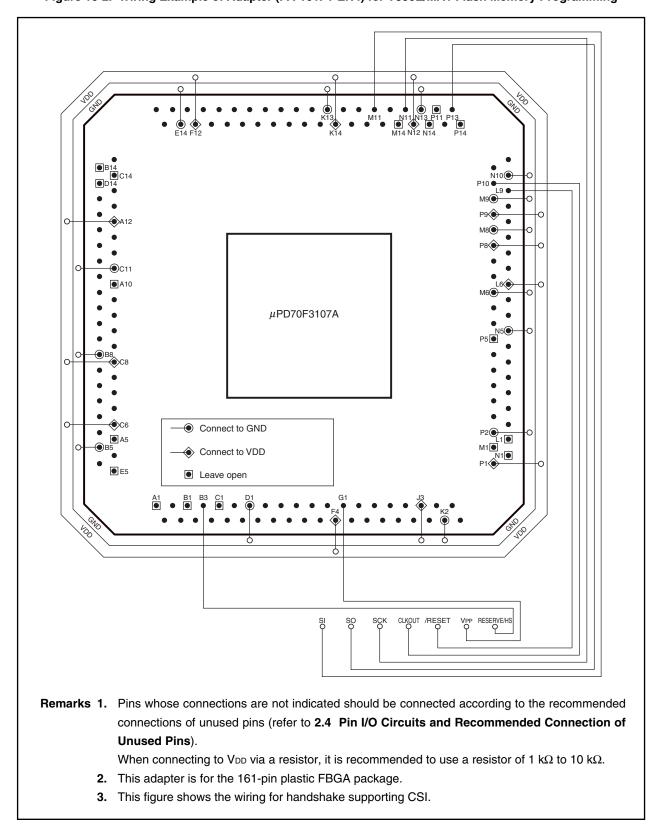
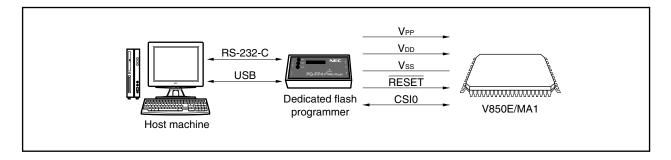


Figure 16-2. Wiring Example of Adapter (FA-161F1-EN4) for V850E/MA1 Flash Memory Programming

Caution To write the flash memory by using the flash programmer, the flash memory always operates in the PLL mode at a frequency 10 times higher than that in the normal mode. Therefore, keep the frequency that is input to the X1 pin to 4 to 5 MHz.

Table 16-2. Wiring of Adapter for V850E/MA1 Flash Memory Programming (FA-161F1-EN4)

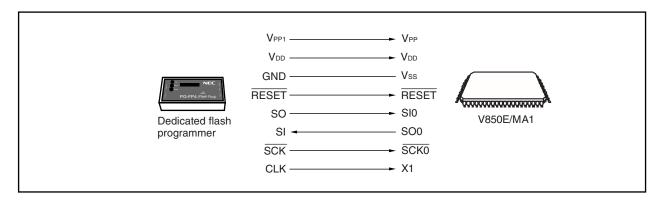

Pin Config	guration of Flash	Programmer (PG-FP4)	With CS	SI0 + HS	With	CSI0
Signal Name	Input/Output	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	P40/SO0	M11	P40/SO0	M11
SO/TxD	Output	Transmit signal	P41/SI0	P13	P41/SI0	P13
SCK	Output	Transfer clock	P42/SCK0	N11	P42/SCK0	N11
CLK	Output	Clock to V850E/MA1	X1	P10	X1	P10
CKSEL	Input	CG mode setting	CKSEL	M9	CKSEL	M9
/RESET	Output	Reset signal	RESET	L9	RESET	L9
VPP	Output	Write voltage	Vpp/MODE2	G1	V _{PP} /MODE2	G1
HS	Input	Handshake signal for CSI0 + HS communication	PAL0/A0	В3	Not needed	Not needed
VDD	_	VDD voltage generation/	V _{DD}	Note 1	V _{DD}	Note 1
		voltage monitor	CV _{DD}	P9	CV _{DD}	P9
			AVDD/AVREF	N12	AV _{DD} /AV _{REF}	N12
GND	=	Ground	Vss	Note 2	Vss	Note 2
			CVss	N10	CVss	N10
			AVss	N13	AVss	N13
_			P20/NMI	N5	P20/NMI	N5
MODE	-	Flash write mode setting	MODE0	M8	MODE0	M8
			MODE1	P8	MODE1	P8

Notes 1. A12, C6, C8, F4, F12, J3, K14, L6, P1

2. B5, B8, C11, D1, E14, K2, K13, M6, P2

16.3 Programming Environment

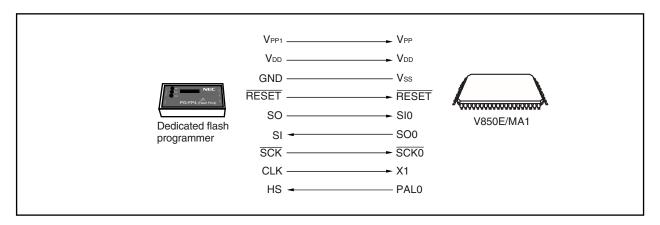
The following shows the environment required for writing programs to the flash memory of the V850E/MA1.


A host machine is required for controlling the dedicated flash programmer.

CSI0 is used for the interface between the dedicated flash programmer and the V850E/MA1 to perform writing, erasing, etc. A dedicated program adapter (FA Series) is required for off-board writing.

16.4 Communication Mode

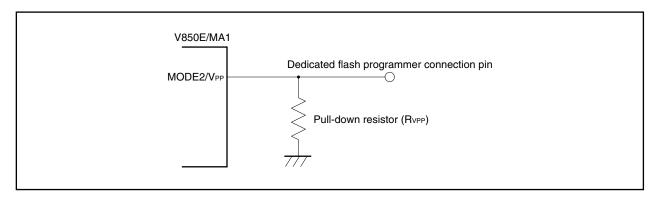
(1) CSI0


Transfer rate: Up to 2 MHz (MSB first)

The dedicated flash programmer outputs the transfer clock and the V850E/MA1 operates as a slave.

(2) Handshake-supported CSI communication

Transfer rate: Up to 2 MHz (MSB first)


16.5 Pin Connection

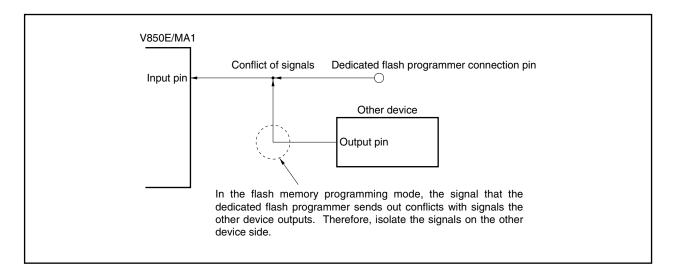
When performing on-board writing, install a connector on the target system to connect to the dedicated flash programmer. Also, install a function to switch from the normal operation mode (single-chip modes 0, 1 or ROMless modes 0, 1) to the flash memory programming mode.

In the flash memory programming mode, all the pins not used for flash memory programming enter the same status as they were immediately after reset in single-chip mode 0. Therefore, because all the ports become output high-impedance, pin connection is required when the external device does not acknowledge the output high-impedance status.

16.5.1 MODE2/VPP pin

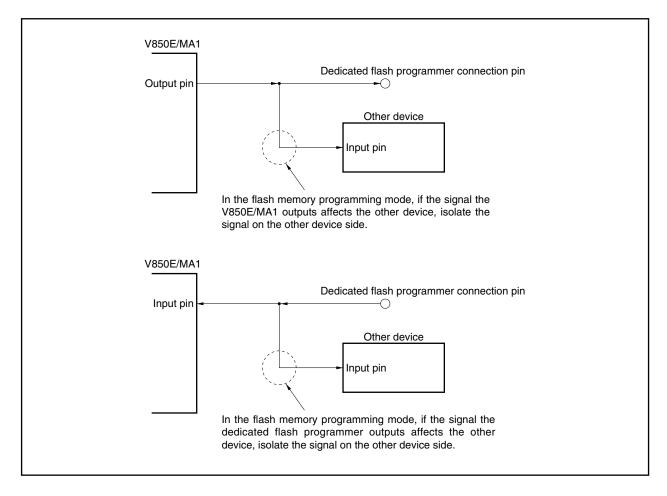
In the normal operation mode, 0 V is input to the MODE2/VPP pin. In the flash memory programming mode, a 7.8 V writing voltage is supplied to the MODE2/VPP pin. The following shows an example of the connection of the MODE2/VPP pin.

16.5.2 Serial interface pin


The following shows the pins used by each serial interface.

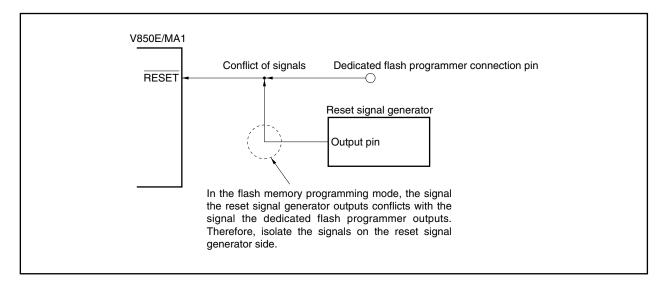
Serial Interface	Pins Used
CSI0	SO0, SI0, SCKO

When connecting a dedicated flash programmer to a serial interface pin that is connected to other devices onboard, care should be taken to avoid the conflict of signals and the malfunction of other devices, etc.


(1) Conflict of signals

When connecting a dedicated flash programmer (output) to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

(2) Malfunction of other device


When connecting a dedicated flash programmer (output or input) to a serial interface pin (input or output) connected to another device (input), the signal output to the other device may cause the device to malfunction. To avoid this, isolate the connection to the other device or set so that the input signal to the other device is ignored.

16.5.3 RESET pin

When connecting the reset signals of the dedicated flash programmer to the RESET pin, which is connected to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When the reset signal is input from the user system in flash memory programming mode, the programming operations will not be performed correctly. Therefore, do not input signals other than the reset signal from the dedicated flash programmer.

16.5.4 NMI pin

Do not change the signal input to the NMI pin in flash memory programming mode. If it is changed in flash memory programming mode, programming may not be performed correctly.

16.5.5 MODE0 to MODE2 pins

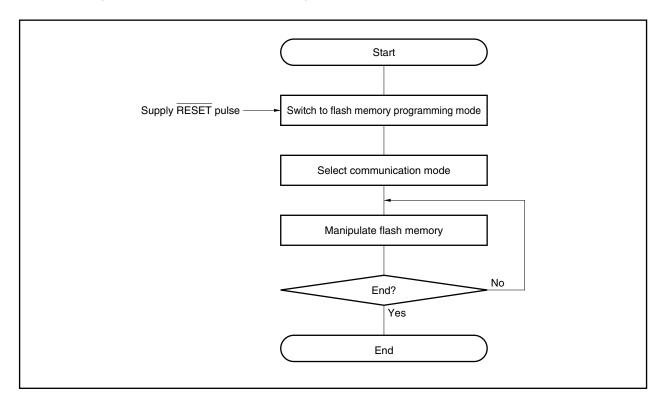
If MODE0 is set as a high-level or low-level input and MODE1 is set as a high-level input, a write voltage (7.8 V) is applied to the MODE2/VPP pin and when reset is released, these pins change to the flash memory programming mode.

16.5.6 Port pins

When the flash memory programming mode is set, all the port pins except the pins that communicate with the dedicated flash programmer become output high-impedance. These pins must be connected according to the recommended connection of unused pins (refer to 2.4 Pin I/O Circuits and Recommended Connection of Unused Pins).

16.5.7 Other signal pins

Connect X1 and X2 in the same status as in the normal operation mode.


16.5.8 Power supply

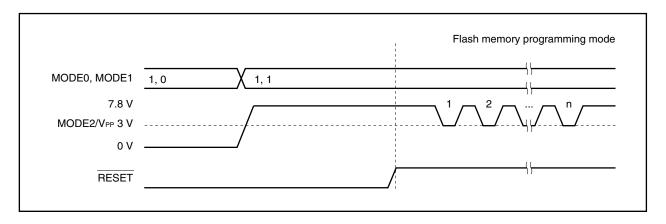
Supply the power (VDD, VSS, AVDD, AVREF, AVSS, CVDD, and CVSS) the same as when in normal operation mode. Connect VDD and GND of the dedicated flash programmer to VDD and VSS. (VDD of the dedicated flash programmer is provided with a power supply monitoring function.)

16.6 Programming Method

16.6.1 Flash memory control

The following shows the procedure for manipulating the flash memory.

16.6.2 Flash memory programming mode


When rewriting the contents of flash memory using the dedicated flash programmer, set the V850E/MA1 in the flash memory programming mode. To switch to this mode, set the MODE0 to MODE1 and MODE2/VPP pins before releasing reset.

When performing on-board writing, switch modes using a jumper, etc.

• MODE0: High-level or low-level input

• MODE1: High-level input

MODE2/V_{PP}: 7.8 V

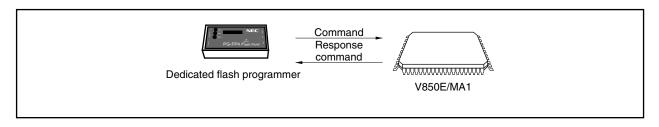
16.6.3 Selection of communication mode

In the V850E/MA1, the communication mode is selected by inputting pulses (16 pulses max.) to the VPP pin after switching to the flash memory programming mode. The VPP pulse is generated by the dedicated flash programmer.

The following shows the relationship between the number of pulses and the communication mode.

 VPP Pulse
 Communication Mode
 Remarks

 0
 CSI0
 V850E/MA1 performs slave operation, MSB first


 3
 Handshake-supporting CSI

 Other
 RFU (reserved)
 Setting prohibited

Table 16-3. List of Communication Modes

16.6.4 Communication commands

The V850E/MA1 communicates with the dedicated flash programmer by means of commands. A command sent from the dedicated flash programmer to the V850E/MA1 is called the "command". The response signal sent from the V850E/MA1 to the dedicated flash programmer is called the "response command".

The following shows the commands for controlling the flash memory of the V850E/MA1. All of these commands are issued from the dedicated flash programmer, and the V850E/MA1 performs the various processing corresponding to the commands.

Category	Command Name	Function
Verify	Batch verify command	Compares the contents of the entire memory and the input data.
	Block verify command	Compares the contents of the specified memory block and the input data.
Erase	Batch erase command	Erases the contents of the entire memory.
	Block erase command	Erases the contents of the specified memory block.
	Write back command	Writes back the contents which were erased.
Blank check	Batch blank check command	Checks the erase state of the entire memory.
	Block blank check command	Checks the erase state of the specified memory block.
Data write	High-speed write command	Writes data by the specification of the write address and the number of bytes to be written, and executes verify check.
	Continuous write command	Writes data from the address following the high- speed write command executed immediately before, and executes verify check.
System setting and control	Status read out command	Acquires the status of operations.
	Oscillating frequency setting command	Sets the oscillation frequency.
	Erasure time setting command	Sets the erasing time of batch erase.
	Write time setting command	Sets the writing time of data write.
	Write back time setting command	Sets the write back time.
	Silicon signature command	Reads outs the silicon signature information.
	Reset command	Escapes from each state.

The V850E/MA1 sends back response commands for the commands issued from the dedicated flash programmer. The following shows the response commands the V850E/MA1 sends out.

Response Command Name	Function
ACK (acknowledge)	Acknowledges command/data, etc.
NAK (not acknowledge)	Acknowledges illegal command/data, etc.

16.7 Flash Memory Programming by Self-Programming

The μ PD70F3107A supports a self-programming function to rewrite the flash memory using a user program. By using this function, the flash memory can be rewritten with a user application. This self-programming function can be also used to upgrade the program in the field.

16.7.1 Outline of self-programming

Self-programming implements erasure and writing of the flash memory by calling the self-programming function (device's internal processing) on the program placed in the block 0 space (000000H to 1FFFFH) and areas other than internal ROM area. To place the program in the block 0 space and internal ROM area, copy the program to areas other than 000000H to 1FFFFH (e.g. internal RAM area) and execute the program to call the self-programming function.

To call the self-programming function, change the operating mode from normal mode to self-programming mode using the flash programming mode control register (FLPMC).

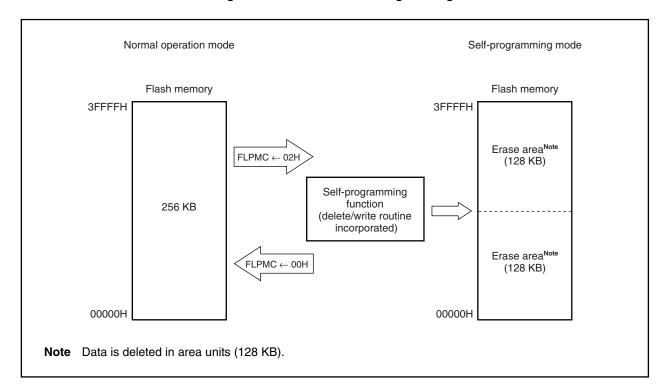


Figure 16-3. Outline of Self-Programming

16.7.2 Self-programming function

The μ PD70F3107A provides self-programming functions, as shown below. By combining these functions, erasing/writing flash memory becomes possible.

Table 16-4. Function List

Туре	Function Name	Function
Erase	Area erase	Erases the specified area.
Write	Continuous write in word units	Continuously writes the specified memory contents from the specified flash memory address, for the number of words specified in 4-byte units.
	Prewrite	Writes 0 to flash memory before erasure.
Check	Erase verify	Checks whether an over erase occurred after erasure.
	Erase byte verify	Checks whether erasure is complete.
	Internal verify	Checks whether the signal level of the post-write data in flash memory is appropriate.
Write back	Area write back	Writes back the flash memory area in which an over erase occurred.
Acquire information	Flash memory information read	Reads out information about flash memory.

16.7.3 Outline of self-programming interface

To execute self-programming using the self-programming interface, the environmental conditions of the hardware and software for manipulating the flash memory must be satisfied.

It is assumed that the self-programming interface is used in an assembly language.

(1) Entry program

This program is to call the internal processing of the device.

It is a part of the application program, and must be executed in memory other than the block 0 space and internal ROM area (flash memory).

(2) Device internal processing

This is manipulation of the flash memory executed inside the device.

This processing manipulates the flash memory after it has been called by the entry program.

(3) RAM parameter

This is a RAM area to which the parameters necessary for self-programming, such as write time and erase time, are written. It is set by the application program and referenced by the device internal processing.

The self-programming interface is outlined below.

Entry program

Self-programming interface

Device internal processing

Flash-memory manipulation

Flash memory

Figure 16-4. Outline of Self-Programming Interface

16.7.4 Hardware environment

To write or erase the flash memory, a high voltage must be applied to the V_{PP} pin. To execute self-programming, a circuit that can generate a write voltage (V_{PP}) and that can be controlled by software is necessary on the application system. An example of a circuit that can select a voltage to be applied to the V_{PP} pin by manipulating a port is shown below.

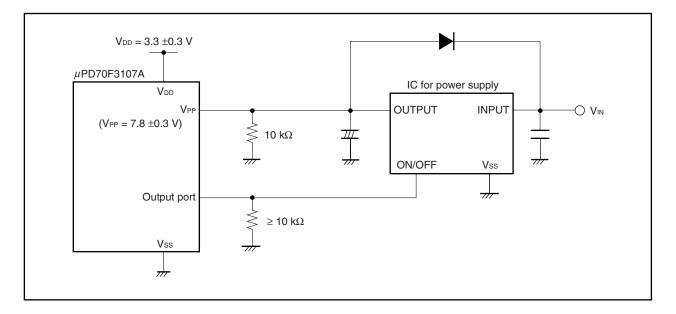
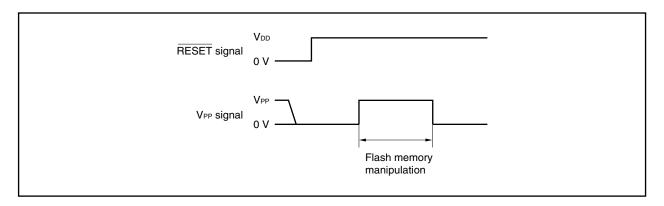



Figure 16-5. Example of Self-Programming Circuit Configuration

The voltage applied to the VPP pin must satisfy the following conditions:

- Hold the voltage applied to the VPP pin at 0 V in the normal operation mode and hold the VPP voltage only while the flash memory is being manipulated.
- The V_{PP} voltage must be stable from before manipulation of the flash memory starts until manipulation is complete.
- Cautions 1. Apply 0 V to the VPP pin when reset is released.
 - 2. Implement self-programming in single-chip mode 0 or 1.
 - 3. Apply the voltage to the VPP pin in the entry program.
 - 4. If both writing and erasing are executed by using the self-programming function and flash memory programmer on the target board, be sure to communicate with the programmer using CSI0 (do not use the handshake-supporting CSI).

Figure 16-6. Timing to Apply Voltage to VPP Pin

16.7.5 Software environment

The following conditions must be satisfied before using the entry program to call the device internal processing.

Table 16-5. Software Environmental Conditions

Item	Description
Location of entry program	Execute the entry program in memory other than the block 0 space and flash memory area. The device internal processing cannot be directly called by the program that is executed on the flash memory.
Execution status of program	The device internal processing cannot be called while an interrupt is being serviced (NP bit of PSW = 0, ID bit of PSW = 1).
Masking interrupts	Mask all the maskable interrupts used. Mask each interrupt by using the corresponding interrupt control register. To mask a maskable interrupt, be sure to specify masking by using the corresponding interrupt control register. Mask the maskable interrupt even when the ID bit of the PSW = 1 (interrupts are disabled).
Manipulation of VPP voltage	Stabilize the voltage applied to the VPP pin (VPP voltage) before starting manipulation of the flash memory. After completion of the manipulation, return the voltage of the VPP pin to 0 V.
Initialization of internal timer	Do not use the internal timer while the flash memory is being manipulated. Because the internal timer is initialized after the flash memory has been used, initialize the timer with the application program to use the timer again.
Stopping reset signal input	Do not input the reset signal while the flash memory is being manipulated. If the reset signal is input while the flash memory is being manipulated, the contents of the flash memory under manipulation become undefined.
Stopping NMI signal input	Do not input the NMI signal while the flash memory is being manipulated. If the NMI signal is input while the flash memory is being manipulated, the flash memory may not be correctly manipulated by the device internal processing. If an NMI occurs while the device internal processing is in progress, the occurrence of the NMI is reflected in the NMI flag of the RAM parameter. If manipulation of the flash memory is affected by the occurrence of the NMI, the function of each self-programming function is reflected in the return value.
Reserving stack area	The device internal processing takes over the stack used by the user program. It is necessary that an area of 300 bytes be reserved for the stack size of the user program when the device internal processing is called. r3 is used as the stack pointer.
Saving general-purpose registers	The device internal processing rewrites the contents of r6 to r14, r20, and r31 (lp). Save and restore these register contents as necessary.

16.7.6 Self-programming function number

To identify a self-programming function, the following numbers are assigned to the respective functions. These function numbers are used as parameters when the device internal processing is called.

Table 16-6. Self-Programming Function Number

Function No.	Function Name
0	Acquiring flash information
1	Erasing area
2 to 4	RFU
5	Area write back
6 to 8	RFU
9	Erase byte verify
10	Erase verify
11 to 15	RFU
16	Successive write in word units
17 to 19	RFU
20	Pre-write
21	Internal verify
Other	Prohibited

Remark RFU: Reserved for Future Use

16.7.7 Calling parameters

The arguments used to call the self-programming function are shown in the table below. In addition to these arguments, parameters such as the write time and erase time are set to the RAM parameters indicated by ep (r30).

Table 16-7. Calling Parameters

Function Name	First Argument (r6) Function No.	Second Argument (r7)	Third Argument (r8)	Fourth Argument (r9)	Return Value (r10)
Acquiring flash information	0	Option number ^{Note 1}	-	-	Note 1
Erasing area	1	Area erase start address	-	-	0: Normal completion Other than 0: Error
Area write back	5	None (acts on erase manipulation area immediately before)	-	-	None
Erase byte verify	9	Verify start address	Number of bytes to be verified	-	0: Normal completion Other than 0: Error
Erase verify	10	None (acts on erase manipulation area immediately before)	-	-	0: Normal completion Other than 0: Error
Successive write in word units ^{Note 2}	16	Write start address ^{Note 3}	Start address of write source data ^{Note 3}	Number of words to be written (word units)	0: Normal completion Other than 0: Error
Pre-write	20	Write start address	Number of bytes to be written	-	0: Normal completion Other than 0: Error
Internal verify	21	Verify start address	Number of bytes to be verified	-	0: Normal completion Other than 0: Error

Notes 1. See 16.7.10 Flash information for details.

- 2. Prepare write source data in memory other than the flash memory when data is written successively in word units.
- 3. This address must be at a 4-byte boundary.

Caution For all the functions, ep (r30) must indicate the first address of the RAM parameter.

16.7.8 Contents of RAM parameters

Reserve the following 48-byte area in the internal RAM or external RAM for the RAM parameters, and set the parameters to be input. Set the base addresses of these parameters to ep (r30).

Table 16-8. Description of RAM Parameter

Address	Size	I/O	Description
ep+0	4 bytes	-	For internal operations
ep+4:Bit 5 ^{Note 1}	1 bit	Input	Operation flag. (Be sure to set this flag to 1 before calling the device internal processing) 0: Normal operation in progress 1: Self-programming in progress
ep+4:Bit 7 ^{Notes 2, 3}	1 bit	Output	NMI flag 0: NMI not detected 1: NMI detected
ep+8	4 bytes	Input	Erase time (unsigned 4 bytes) Expressed as 1 count value in units of the internal operation unit time (100 μ s). Set value = Erase time (μ s)/internal operation unit time (μ s) Example: If erase time is 0.4 s $\rightarrow 0.4 \times 1,000,000/100 = 4,000$ (integer operation)
ep+0xc	4 bytes	Input	Write back time (unsigned 4 bytes) Expressed as 1 count value in units of the internal operation unit time (100 μ s). Set value = Write back time (μ s)/internal operation unit time (μ s) Example: If write back time is 1 ms \rightarrow 1 × 1,000/100 = 10 (integer operation)
ep+0x10	2 bytes	Input	Timer set value for creating internal operation unit time (unsigned 2 bytes) Write a set value that makes the value of timer D the internal operation unit time (100 μ s). Set value = Operating frequency (Hz)/1,000,000 × Internal operation unit time (μ s)/ Timer division ratio (4) + 1 ^{Note 4} Example: If the operating frequency is 50 MHz \rightarrow 50,000,000/1,000,000 × 100/4 + 1 = 1,251 (integer operation)
ep+0x12	2 bytes	Input	Timer set value for creating write time (unsigned 2 bytes) Write a set value that makes the value of timer D the write time. Set value = Operating frequency (Hz)/Write time (μs)/Timer division ratio (4) + 1 ^{Note 4} Example: If the operating frequency is 50 MHz and the write time is 20 μs → 50,000,000/1,000,000 × 20/4 + 1 = 251 (integer operation)
ep+0x14	28 bytes	_	For internal operations

- Notes 1. Fifth bit of address of ep+4 (least significant bit is bit 0).
 - 2. Seventh bit of address of ep+4 (least significant bit is bit 0).
 - 3. Clear the NMI flag by the user program because it is not cleared by the device internal processing.
 - **4.** The device internal processing sets this value minus 1 to the timer. Because the fraction is rounded up, add 1 as indicated by the expression of the set value.

Caution Be sure to reserve the RAM parameter area at a 4-byte boundary.

16.7.9 Errors during self-programming

The following errors related to manipulation of the flash memory may occur during self-programming. An error occurs if the return value (r10) of each function is not 0.

Table 16-9. Errors During Self-Programming

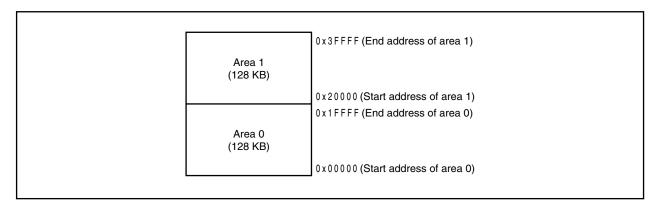
Error	Function	Description
Overerase error	Erase verify	Excessive erasure occurs.
Undererase error (blank check error)	Erase byte verify	Erasure is insufficient. Additional erase operation is needed.
Verify error	Successive writing in word units	The written data cannot be correctly read. Either an attempt has been made to write to flash memory that has not been erased, or writing is not sufficient.
Internal verify error	Internal verify	The written data is not at the correct signal level.

Caution The overerase error and undererase error may simultaneously occur in the entire flash memory.

16.7.10 Flash information

For the flash information acquisition function (function No. 0), the option number (r7) to be specified and the contents of the return value (r10) are as follows. To acquire all flash information, call the function as many times as required in accordance with the format shown below.

Table 16-10. Flash Information

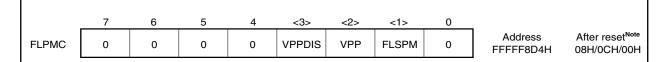

Option No. (r7)	Return Value (r10)				
0	Specification prohibited				
1	Specification prohibited				
2	Bit representation of return value (MSB: bit 31) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				
3+0	End address of area 0				
3+1	End address of area 1				

- Cautions 1. The start address of area 0 is 0. The "end address + 1" of the preceding area is the start address of the next area.
 - The flash information acquisition function does not check values such as the maximum number of areas specified by the argument of an option. If an illegal value is specified, an undefined value is returned.

16.7.11 Area number

The area numbers and memory map of the $\mu PD70F3107A$ are shown below.

Figure 16-7. Area Configuration


16.7.12 Flash programming mode control register (FLPMC)

The flash memory mode control register (FLPMC) is a register used to enable/disable writing to flash memory and to specify the self-programming mode.

This register can be read/written in 8-bit or 1-bit units (the VPP bit (bit 2) is read-only).

Cautions 1. Be sure to transfer control to the internal RAM or external memory beforehand to manipulate the FLSPM bit. However, in on-board programming mode set by the flash programmer, the specification of FLSPM bit is ignored.

2. Do not change the initial value of bits 0 and 4 to 7.

Note 08H: When writing voltage is not applied to the VPP pin

0CH: When writing voltage is applied to the VPP pin

00H: Product not provided with flash memory (μPD703103A, 703105A, 703106A, 703107A)

Bit position	Bit name	Function
3	VPPDIS	VPP Disable Enables/disables writing/deleting on-chip flash memory. When this bit is 1, writing/deleting on-chip flash memory is disabled even if a high voltage is applied to the VPP pin. 0: Enables writing/deleting flash memory 1: Disables writing/deleting flash memory
2	VPP	V _{PP} Indicates the voltage applied to the V _{PP} pin reaches the writing-enabled level. This bit is used to check whether writing is possible or not in the self-programming mode. 0: Indicates high-voltage application is not detected. (the voltage has not reached the writing voltage enable level) 1: Indicates high-voltage application is detected. (the voltage has reached the writing voltage enable level)
1	FLSPM	Flash Self Programming Mode Controls switching between internal ROM and the self-programming interface. This bit can switch the mode between the normal mode set by the mode pin on the application system and the self-programming mode. The setting of this bit is valid only if the voltage applied to the VPP pin reaches the writing voltage enable level. 0: Normal mode (for all addresses, instruction fetch is performed from on-chip flash memory) 1: Self-programming mode (device internal processing is started)

Setting data to the flash programming mode control register (FLPMC) is performed in the following sequence.

- <1> Disable interrupts (set the NP bit and ID bit of the PSW to 1)
- <2> Prepare the data to be set in the specific register in a general-purpose register
- <3> Write data to the peripheral command register (PHCMD)
- <4> Set the flash memory programming mode control register (FLPMC) by executing the following instructions
 - Store instruction (ST/SST instructions)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instructions)
- <5> Insert NOP instructions (5 instructions <5> to <9>)
- <10> Cancel the interrupt disabled state (reset the NP bit of the PSW to 0)

```
[Description example] <1> LDSR rX, 5  
<2> MOV 0x02, r10  
<3> ST.B r10, PHCMD [r0]  
<4> ST.B r10, FLPMC [r0]  
<5> NOP  
<6> NOP  
<7> NOP  
<8> NOP  
<9> NOP  
<10> LDSR rY, 5
```

Remark rX: Value written to the PSW rY: Value returned to the PSW

No special sequence is required for reading a specific register.

- Cautions 1. If an interrupt is acknowledged between when PHCMD is issued (<3>) and writing to a specific register (<4>) immediately after issuing PHCMD, writing to the specific register may not be performed and a protection error may occur (the PRERR bit of the PHS register = 1). Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgment. Similarly, disable acknowledgement of interrupts when a bit manipulation instruction is used to set a specific register.
 - 2. Use the same general-purpose register used to set a specific register (<3>) for writing to the PHCMD register (<4>) even though the data written to the PHCMD register is dummy data. This is the same as when a general-purpose register is used for addressing.
 - 3. Do not use DMA transfer for writing to the PHCMD register and a specific register.

16.7.13 Calling device internal processing

This section explains the procedure to call the device internal processing from the entry program.

Before calling the device internal processing, make sure that all the conditions of the hardware and software environments are satisfied and that the necessary arguments and RAM parameters have been set. Call the device internal processing by setting the FLSPM bit of the flash programming mode control register (FLPMC) to 1 and then executing the trap 0x1f instruction. The processing is always called using the same procedure. It is assumed that the program of this interface is described in an assembly language.

- <1> Set the FLPMC register as follows:
 - VPPDIS bit = 0 (to enable writing/erasing flash memory)
 - FLSPM bit = 1 (to select self-programming mode)
- <2> Clear the NP bit of the PSW to 0 (to enable NMIs (only when NMIs are used on the application)).
- <3> Execute trap 0x1f to transfer the control to the device's internal processing.
- <4> Set the NP bit and ID bit of the PSW to 1 (to disable all interrupts).
- <5> Set the value to the peripheral command register (PHCMD) that is to be set to the FLPMC register.
- <6> Set the FLPMC register as follows:
 - VPPDIS bit = 1 (to disable writing/erasing flash memory)
 - FLSPM bit = 0 (to select normal operation mode)
- <7> Wait for the internal manipulation setup time (see 16.7.13 (5) Internal manipulation setup parameter).

(1) Parameter

- r6: First argument (sets a self-programming function number)
- r7: Second argument
- r8: Third argument
- r9: Fourth argument
- ep: First address of RAM parameter

(2) Return value

r10: Return value (return value from device internal processing of 4 bytes)

ep+4:Bit 7: NMI flag (flag indicating whether an NMI occurred while the device internal processing was being executed)

- 0: NMI did not occur while device internal processing was being executed.
- 1: NMI occurred while device internal processing was being executed.

If an NMI occurs while control is being transferred to the device internal processing, the NMI request may never be reflected. Because the NMI flag is not internally reset, this bit must be cleared before calling the device internal processing. After the control returns from the device internal processing, NMI dummy processing can be executed by checking the status of this flag using software.

(3) Description

Transfer control to the device internal processing specified by a function number using the trap instruction. To do this, the hardware and software environmental conditions must be satisfied. Even if trap 0x1f is used in the user application program, trap 0x1f is treated as another operation after the FLPMC register has been set. Therefore, use of the trap instruction is not restricted on the application.

(4) Program example

An example of a program in which the entry program is executed as a subroutine is shown below. In this example, the return address is saved to the stack and then the device internal processing is called. This program must be located in memory other than the block 0 space and flash memory area.

```
ISETUP
           130
                                             -- Internal manipulation setup parameter
EntryProgram:
   add
               -4, sp
                                              -- Prepare
   st.w
               lp, 0[sp]
                                             -- Save return address
               lo(0x00a0), r0, r10
   movea
   ldsr
               r10, 5
                                              -- PSW = NP, ID
               lo(0x0002), r10
   mov
               r10, PHCMD[r0]
                                             -- PHCMD = 2
   st.b
               r10, FLPMC[r0]
                                             -- VPPDIS = 0, FLSPM = 1
   st.b
   nop
   nop
   nop
   nop
   nop
               lo(0x0020), r0, r10
   movea
   ldsr
               r10, 5
                                             -- PSW = ID
   trap
               0x1f
                                             -- Device Internal Process
               lo(0x00a0), r0, r6
   movea
               r6, 5
   ldsr
                                             -- PSW = NP, ID
               1o(0x08), r6
   mov
   st.b
               r6, PHCMD[r0]
                                             -- PHCMD = 8
               r6, FLPMC[r0]
                                             -- VPPDIS = 1, FLSPM = 0
   st.b
   nop
   nop
   nop
   nop
   nop
               ISETUP, lp
                                             -- loop time = 130
   mov
loop:
   divh
               r6, r6
                                             -- To kill time
   add
               -1, lp
                                             -- Decrement counter
               loop
   jne
   ld.w
               0[sp], lp
                                             -- Reload lp
   add
               4, sp
                                             -- Dispose
               [lp]
                                             -- Return to caller
   jmp
```

(5) Internal manipulation setup parameter

If the self-programming mode is switched to the normal operation mode, the μ PD70F3107A must wait for 100 μ s before it accesses the flash memory. In the program example in (4) above, the elapse of this wait time is ensured by setting ISETUP to "130" (@ 50 MHz operation). The total number of execution clocks in this example is 39 clocks (divh instruction (35 clocks) + add instruction (1 clock) + jne instruction (3 clocks)). Ensure that a wait time of 100 μ s elapses by using the following expression.

39 clocks (total number of execution clocks) \times 20 ns (@ 50 MHz operation) \times 130 (ISETUP) = 101.4 μ s (wait time)

16.7.14 Erasing flash memory flow

The procedure to erase the flash memory is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

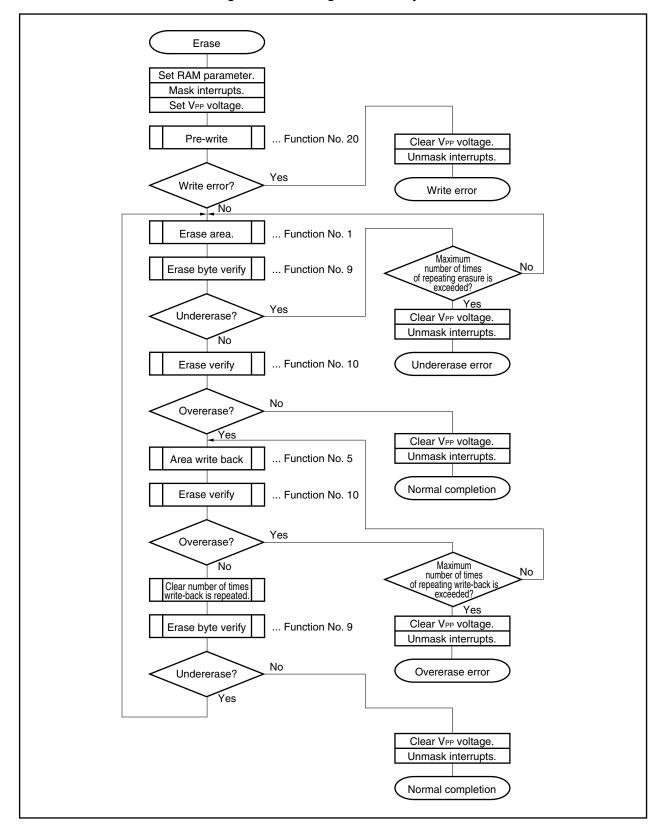


Figure 16-8. Erasing Flash Memory Flow

16.7.15 Successive writing flow

The procedure to write data all at once to the flash memory by using the function to successively write data in word units is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

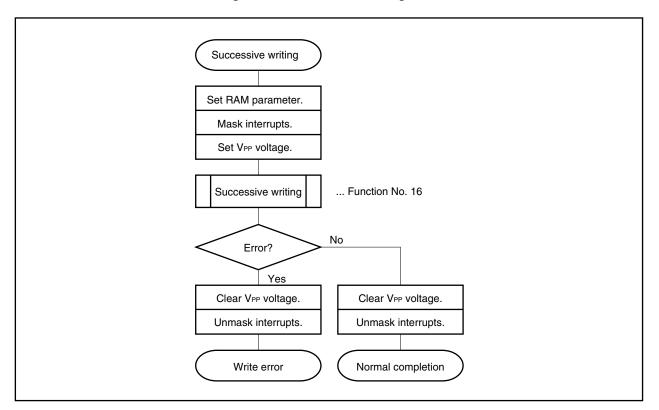


Figure 16-9. Successive Writing Flow

16.7.16 Internal verify flow

The procedure of internal verification is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

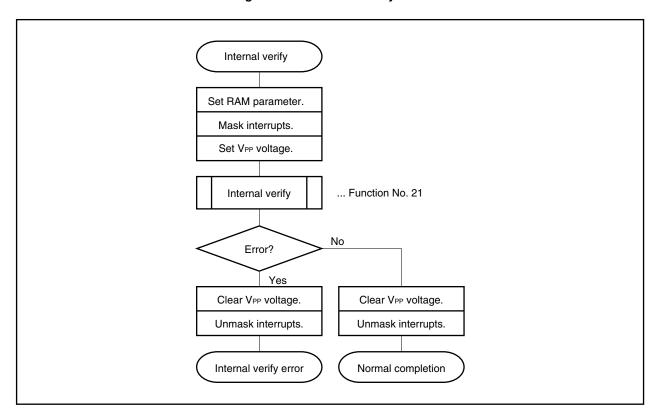


Figure 16-10. Internal Verify Flow

16.7.17 Acquiring flash information flow

The procedure to acquire the flash information is illustrated below. The processing of each function number must be executed in accordance with the specified calling procedure.

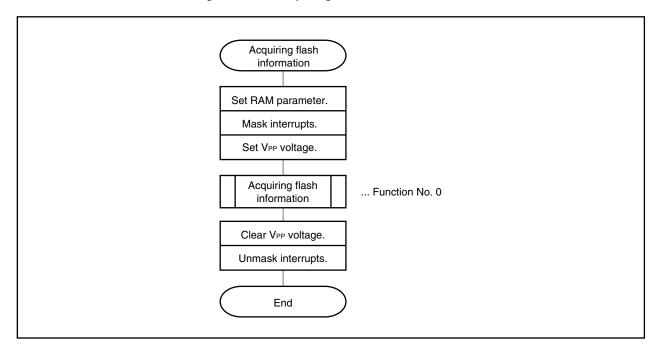


Figure 16-11. Acquiring Flash Information Flow

16.7.18 Self-programming library

V850 Series User's Manual Flash Memory Self Programming Library is available for reference when executing self-programming.

In this manual, the library uses the self-programming interface of the V850 Series and can be used in C as a utility and as part of the application program. To use the library, thoroughly evaluate it on the application system.

(1) Functional outline

Figure 16-12 outlines the function of the self-programming library. In this figure, a rewriting module is located in area 0 and the data in area 1 is rewritten or erased.

The rewriting module is a user program to rewrite the flash memory. The other areas can be also rewritten by using the flash functions included in this self-programming library. The flash functions expand the entry program in the external memory or internal RAM and call the device internal processing.

When using the self-programming library, make sure that the hardware conditions, such as the write voltage, and the software conditions, such as interrupts, are satisfied.

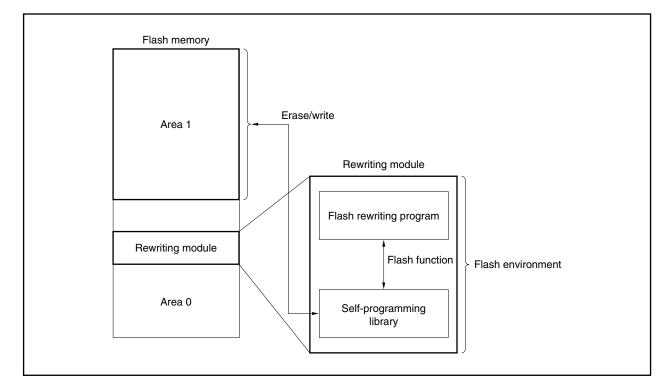
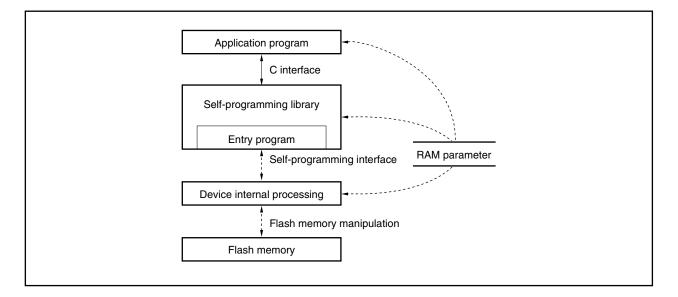



Figure 16-12. Functional Outline of Self-Programming Library

The configuration of the self-programming library is outlined below.

Figure 16-13. Outline of Self-Programming Library Configuration

16.8 How to Distinguish Flash Memory and Mask ROM Versions

It is possible to distinguish a flash memory version (μ PD70F3107A) and mask ROM versions (μ PD703105A, 703106A, 703107A) by means of software, using the methods shown below.

- <1> Disable interrupts (set the NP bit of PSW to 1).
- <2> Write data to the peripheral command register (PHCMD).
- <3> Set the VPPDIS bit of the flash programming mode control register (FLPMC) to 1.
- <4> Insert NOP instructions (5 instructions (<4> to <8>)).
- <9> Cancel the interrupt disabled state (reset the NP bit of the PSW to 0).
- <10> Read the VPPDIS bit of the flash programming mode control register (FLPMC).
 - If the value read is 0: Mask ROM version (μPD703105A, 703106A, 703107A)
 - If the value read is 1: Flash memory version (μPD70F3107A)

```
[Description example]
                      <1> LDSR rX, 5
                      <2> ST.B r10, PHCMD [r0]
                      <3> SET1 3, FLPMC [r0]
                      <4> NOP
                      <5> NOP
                      <6> NOP
                      <7> NOP
                      <8> NOP
                      <9> LDSR rY, 5
                      <10> TST1
                                3, FLPMC [r0]
                                               <Start address of self-programming routine>
                           BNZ
                                               <Routine when writing is not performed>
                           BR
```

- **Remark** rX: Value written to the PSW
 - rY: Value returned to the PSW
- Cautions 1. If an interrupt is acknowledged between when PHCMD is issued (<2>) and writing to a specific register (<3>) immediately after issuing PHCMD, writing to a specific register may not be performed and a protection error may occur (the PRERR bit of the PHS register = 1). Therefore, set the NP bit of the PSW to 1 (<1>) to disable interrupt acknowledgment. Similarly, disable acknowledgement of interrupts when a bit manipulation instruction is used to set a specific register.
 - 2. When a store instruction is used for setting a specific register, be sure to use the same general-purpose register used to set the specific register for writing to the PHCMD register even though the data written to the PHCMD register is dummy data. This is the same as when a general-purpose register is used for addressing.
 - 3. Do not use DMA transfer for writing to the PHCMD register and a specific register.

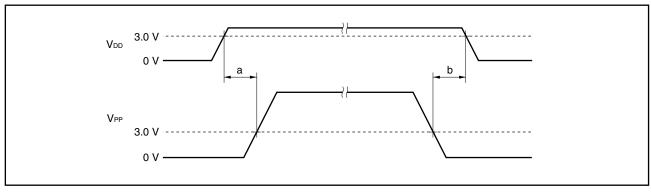
\star

17.1 Normal Operation Mode

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{DD}	V _{DD} pin	-0.5 to +4.6	V
	CV _{DD}	CV _{DD} pin	-0.5 to +4.6	V
	CVss	CVss pin	-0.5 to +0.5	V
	AV _{DD}	AV _{DD} pin	-0.5 to +4.6	V
	AVss	AVss pin	-0.5 to +0.5	V
Input voltage	Vı	X1 pin, except MODE2/V _{PP} pin ^{Notes 1, 2} $V_1 < V_{DD} + 3.0 \text{ V}$	-0.5 to +6.0	٧
		MODE2/V _{PP} pin	-0.5 to +8.5 ^{Note 1}	V
Clock input voltage	Vκ	X1, V _{DD} = 3.3 V ±0.3 V	-0.5 to V _{DD} + 1.0	V
Output current, low	loL	Per pin	4.0	mA
		Total of all pins	100	mA
Output current, high	Іон	Per pin	-4.0	mA
		Total of all pins	-100	mA
Output voltage	Vo	V _{DD} = 3.3 V ±0.3 V	-0.5 to V _{DD} + 0.5	V
Analog input voltage	Vwasn	ANI0 to ANI7, $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $AV_{DD} < V_{DD} + 0.5 \text{ V}$	-0.3 to AV _{DD} + 0.3	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg	LQFP package	-60 to +150	°C
		FBGA package	-40 to +125	°C

Notes 1. μ PD70F3107A and 70F3107A(A) only


2. Make sure that the following conditions of the V_{PP} voltage application timing are satisfied when programming flash memory.

• When supply voltage rises

 V_{PP} must exceed V_{DD} 10 μ s or more after V_{DD} reached the lower-limit value (3.0 V) of the operating voltage range (see "a" in the figure below).

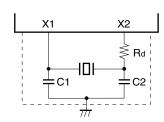
• When supply voltage drops

 V_{DD} must be lowered 10 μ s or more after V_{PP} falls below the lower-limit value (3.0 V) of the operating voltage range of V_{DD} (see "b" in the figure below).

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND. However, direct connections among open-drain and open-collector pins are possible, as are direct connections to external circuits that have timing designed to prevent output conflict with pins that become high-impedance.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance.

Capacitance (TA = 25°C, VDD = CVDD = AVDD = Vss = CVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	fc = 1 MHz			15	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V.			15	pF
Output capacitance	Со				15	pF

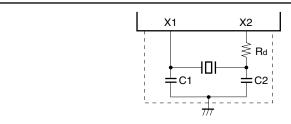

Operating Conditions

Operation Mode	Internal Operation Clock Frequency (fxx)	Operating Ambient Temperature (T _A)	Power Supply Voltage (VDD)		
Direct mode	4 to 25 MHz	–40 to +85°C	$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$		
PLL mode	4 to 50 MHz	–40 to +85°C	$V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$		

Recommended Oscillator

Caution For the resonator selection and oscillator constant of the μ PD703106A(A), 703107A(A), and 70F3107A(A), customers are requested to apply to the resonator manufacturer for evaluation.

- (a) Ceramic resonator
- (i) Murata Mfg. Co., Ltd. ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

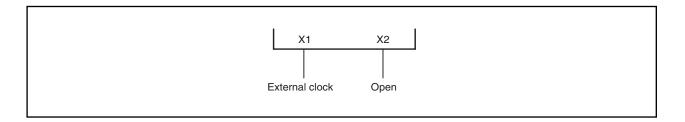


Туре	Product	Oscillation Frequency	Recommended Circuit Constant			Oscillation Ran	9	Oscillation Stabilization Time (MAX.)
		fx (MHz)	C1 (pF)	C2 (pF)	R _d (kΩ)	MIN. (V)	MAX. (V)	Tost (ms)
Surface	CSTCR4M00G55-R0	4.0	On-chip	On-chip	0	3.0	3.6	0.07
mount	CSTCR5M00G55-R0	5.0	On-chip	On-chip	0	3.0	3.6	0.07
	CSTCR6M60G55-R0	6.6	On-chip	On-chip	0	3.0	3.6	0.06

Cautions 1. Connect the oscillator as closely to the X1 and X2 pins as possible.

- 2. Do not wire any other signal lines in the area indicated by the broken lines.
- 3. Thoroughly evaluate the matching between the μ PD703103A, 703105A, 703106A, 703107A, 70F3107A and the resonator.

(ii) Kyocera Corporation ($T_A = -20 \text{ to } +80^{\circ}\text{C}$)



Туре	Product	Oscillation Frequency	Recommended Circuit Constant						Oscillation Stabilization Time (MAX.)
		fx (MHz)	C1 (pF)	C2 (pF)	R_d ($k\Omega$)	MIN. (V)	MAX. (V)	Tost (ms)	
Surface	PBRC4.00AR-A	4.0	33	33	0	3.0	3.6	0.11	
mount	PBRC4.00BR-A	4.0	On-chip	On-chip	0	3.0	3.6	0.11	
	PBRC5.00AR-A	5.0	33	33	0	3.0	3.6	0.08	
	PBRC5.00BR-A	5.0	On-chip	On-chip	0	3.0	3.6	0.08	
Lead	KBR-4.0MSB	4.0	33	33	0	3.0	3.6	0.11	
	KBR-4.0MKC	4.0	On-chip	On-chip	0	3.0	3.6	0.11	
	KBR-5.0MSB	5.0	33	33	0	3.0	3.6	0.08	
	KBR-5.0MKC	5.0	On-chip	On-chip	0	3.0	3.6	0.08	

Cautions 1. Connect the oscillator as closely to the X1 and X2 pins as possible.

- 2. Do not wire any other signal lines in the area indicated by the broken lines.
- 3. Thoroughly evaluate the matching between the μ PD703103A, 703105A, 703106A, 703107A, 70F3107A and the resonator.

(b) External clock input ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

DC Characteristics (TA = -40 to +85°C, VDD = CVDD = AVDD = 3.3 V ±0.3 V, Vss = CVss = AVss = 0 V) (1/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	Except for Note 1		2.0		5.5	V
		Note 1		0.75V _{DD}		5.5	V
Input voltage, low	VIL	Except fo	or Note 1	-0.5		0.8	V
		Note 1		-0.5		0.2V _{DD}	V
Clock input voltage, high	V _{XH}	X1 pin	Direct mode	0.8V _{DD}		V _{DD} + 0.3	٧
			PLL mode	0.8V _{DD}		V _{DD} + 0.3	٧
Clock input voltage, low	VxL	X1 pin	Direct mode	-0.5		0.15V _{DD}	V
			PLL mode	-0.5		0.15V _{DD}	V
Schmitt-triggered input threshold	V _T +	Note 1, rising edge			2.0		٧
voltage	V _T -	Note 1, falling edge			1.0		V
Schmitt-triggered input hysteresis	V _T + -	Note 1		0.3			V
width	V _T -						
Output voltage, high	Vон	Іон = −2.5	5 mA	0.8V _{DD}			V
		Іон = -10	0 μΑ	V _{DD} - 0.4			V
Output voltage, low	Vol	loL = 2.5	mA			0.45	V
Input leakage current, high	Ін	VI = VDD, 6	except for Note 2			10	μΑ
Input leakage current, low	ILIL	Vı = 0 V, 6	except for Note 2			-10	μΑ
Output leakage current, high	Ісон	Vo = V _{DD}				10	μА
Output leakage current, low	ILOL	Vo = 0 V				-10	μА
Analog pin input leakage current	ILWASN	Note 2				±10	μА
VPP supply voltageNote 3	V _{PP0}	During no	ormal operation	0		0.2V _{DD}	V

Notes 1. P01/TI000/INTP000, P02/INTP001, P04/ \overline{D} MARQ0/ \overline{I} NTP100 to P07/ \overline{D} MARQ3/ \overline{I} NTP103, P11/TI010/INTP010, P12/INTP011, P20/NMI, P21/TI020/INTP020, P22/INTP021, P24/ \overline{T} C0/ \overline{I} NTP110 to P27/ \overline{T} C3/ \overline{I} NTP113, P30/SO2/ \overline{I} NTP130, P31/SI2/ \overline{I} NTP131, P32/ \overline{S} CK2/ \overline{I} NTP132, P33/TXD2/ \overline{I} NTP133, P34/RXD2/ \overline{I} NTP120, P35/ \overline{I} NTP121, P36/ \overline{I} NTP122, P37/ADTRG/ \overline{I} NTP123, P41/RXD0/SI0, P42/ \overline{S} CK0, P44/RXD1/SI1, P45/ \overline{S} CK1, P50/TI030/INTP030, P51/INTP031, MODE0, MODE1, MODE2/ \overline{V} PP (VPP is available in μ PD70F3107A and 70F3107A(A) only, RESET, CKSEL

- 2. P70/ANI0 to P77/ANI7
- **3.** μ PD70F3107A and 70F3107A(A) only

Remark TYP. values are reference values for when $T_A = 25^{\circ}C$ and $V_{DD} = 3.3 \text{ V}$.

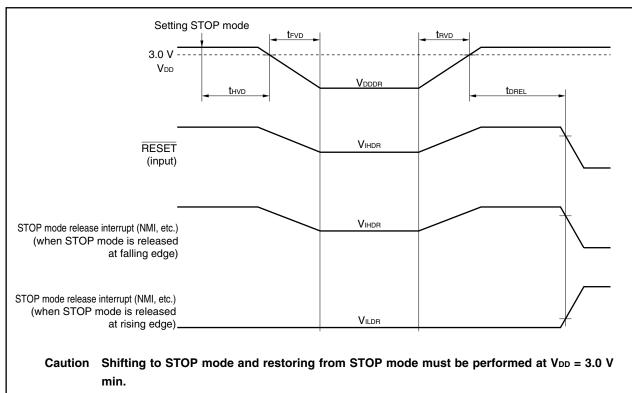
DC Characteristics (TA = $-40 \text{ to } +85^{\circ}\text{C}$, VDD = CVDD = AVDD = 3.3 V $\pm 0.3 \text{ V}$, Vss = CVss = AVss = 0 V) (2/2)

Param	neter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply	During	I _{DD1}	Direct mode	Note 1		$2.6 \times fxx + 30$	$3.9 \times fxx + 45$	mA
current				Note 2		$3.2 \times fxx + 30$	$4.8 \times fxx + 45$	mA
(VDD + CVDD) operation		PLL mode	Note 1		$2.6 \times fxx + 30$	$3.9 \times fxx + 45$	mA	
				Note 2		$3.2 \times fxx + 30$	$4.8 \times fxx + 45$	mA
	In HALT IDD2		Direct mode		$1.6 \times fxx + 20$	$2.4 \times fxx + 30$	mA	
	mode		PLL mode		$1.6 \times fxx + 20$	$2.4 \times fxx + 30$	mA	
	In IDLE	I _{DD3}	Direct mode		10	30	mA	
	mode		PLL mode		10	30	mA	
	In STOP IDD4		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +40^{\circ}\text{C}$		10	60	μΑ	
mode	40°C < T _A ≤ 85°C	Note 1			250	μΑ		
				Note 2			600	μΑ

Notes 1. μ PD703103A, 703105A, 703106A, 703106A(A), 703107A, 703107A(A)

2. μPD70F3107A, 70F3107A(A)

Remarks 1. TYP. values are reference values for when $T_A = 25^{\circ}C$ and $V_{DD} = 3.3 \text{ V}$. The current does not include the current flowing through pull-up resistors.

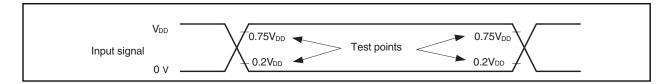

2. fxx: CPU operation frequency

Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

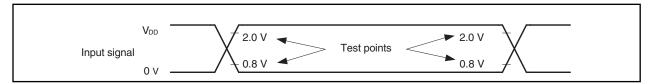
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Data retention voltage	V _{DDDR}	STOP r	node and VDD = VDDD	R	1.5		3.6	٧
Data retention current	IDDDR	V _{DD} =	-40°C ≤ T _A ≤ +40°C			10	60	μΑ
		VDDDR	40°C < T _A ≤ 85°C	Note 1			250	μΑ
				Note 2			600	μΑ
Power supply voltage rise time	trvd				200			μs
Power supply voltage fall time	trvd				200			μs
Power supply voltage hold time (from STOP mode setting)	thvd				0			ms
STOP release signal input time	t DREL				0			ns
Data retention input voltage, high	VIHDR	Note 3			0.8VDDDR		VDDDR	٧
Data retention input voltage, low	VILDR	Note 3			-0.5		0.2VDDDR	٧

- **Notes 1.** μ PD703103A, 703105A, 703106A, 703106A(A), 703107A, 703107A(A)
 - **2.** μPD70F3107A, 70F3107A(A)
 - 3. P01/TI000/INTP000, P02/INTP001, P04/DMARQ0/INTP100 to P07/DMARQ3/INTP103, P11/TI010/INTP010, P12/INTP011, P20/NMI, P21/TI020/INTP020, P22/INTP021, P24/TC0/INTP110 to P27/TC3/INTP113, P30/SO2/INTP130, P31/SI2/INTP131, P32/SCK2/INTP132, P33/TXD2/INTP133, P34/RXD2/INTP120, P35/INTP121, P36/INTP122, P37/ADTRG/INTP123, P41/RXD0/SI0, P42/SCK0, P44/RXD1/SI1, P45/SCK1, P50/TI030/INTP030, P51/INTP031, MODE0, MODE1, MODE2/V_{PP} (V_{PP} is available in μPD70F3107A and 70F3107A(A) only), RESET, CKSEL

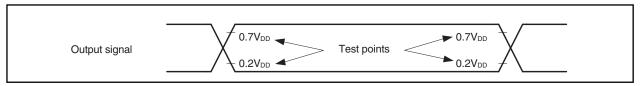
Remark TYP. values are reference values for when $T_A = 25$ °C.

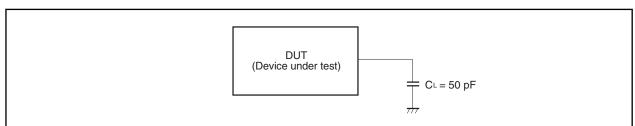


AC Characteristics


(TA = -40 to +85°C, VDD = CVDD = AVDD = 3.3 V ± 0.3 V, Vss = CVss = AVss = 0 V, output pin load capacitance: CL = 50 pF)

AC test input test points

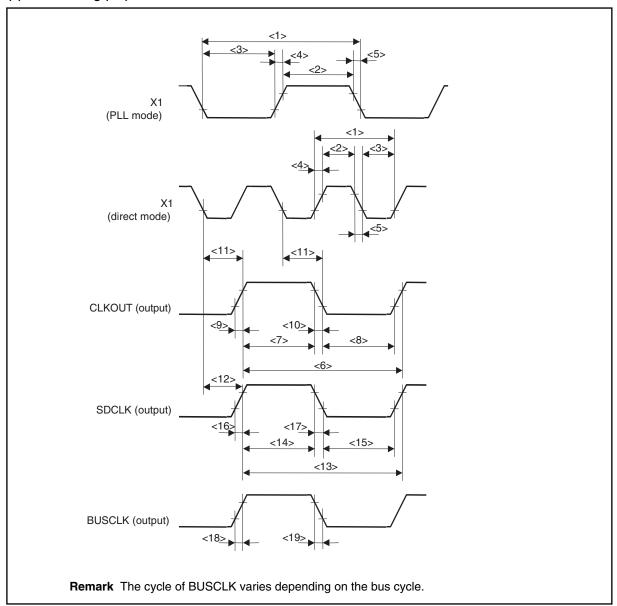

(a) P01/Tl000/INTP000, P02/INTP001, P04/DMARQ0/INTP100 to P07/DMARQ3/INTP103, P11/Tl010/INTP010, P12/INTP011, P20/NMI, P21/Tl020/INTP020, P22/INTP021, P24/TC0/INTP110 to P27/TC3/INTP113, P30/SO2/INTP130, P31/Sl2/INTP131, P32/SCK2/INTP132, P33/TXD2/INTP133, P34/RXD2/INTP120, P35/INTP121, P36/INTP122, P37/ADTRG/INTP123, P41/RXD0/Sl0, P42/SCK0, P44/RXD1/Sl1, P45/SCK1, P50/Tl030/INTP030, P51/INTP031, MODE0, MODE1, MODE2/VPP (VPP is available in μPD70F3107A and 70F3107A(A) only), RESET, CKSEL


(b) Other than (a) above

AC test output test points

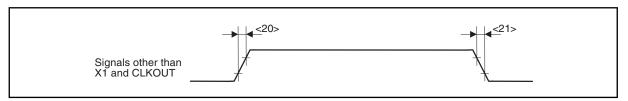
Load condition

Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the device's load capacitance to 50 pF or lower.


(1) Clock timing (1/2)

Parameter	Syr	nbol	Conditions		MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode		20	125	ns
			PLL mode	×10	200	250	ns
				Other than ×10	150	250	ns
X1 input high-level width	<2>	twxн	Direct mode		5		ns
			PLL mode		50		ns
X1 input low-level width	<3>	twxL	Direct mode		5		ns
			PLL mode		50		ns
X1 input rise time	<4>	txR	Direct mode			4	ns
			PLL mode			10	ns
X1 input fall time	<5>	txF	Direct mode			4	ns
			PLL mode			10	ns
CLKOUT output cycle	<6>	tcyk1			20	250	ns
CLKOUT high-level width	<7>	twkH1			0.5T - 5		ns
CLKOUT low-level width	<8>	twkL1			0.5T - 6		ns
CLKOUT rise time	<9>	t _{KR1}				5	ns
CLKOUT fall time	<10>	t _{KF1}				4	ns
Delay time from X1↓ to CLKOUT	<11>	tokx				40	ns
Delay time from X1↓ to SDCLK	<12>	tosx				40	ns
SDCLK output cycle	<13>	tcyk2			20	250	ns
SDCLK high-level width	<14>	twkH2			0.5T - 5		ns
SDCLK low-level width	<15>	twkl2			0.5T - 6		ns
SDCLK rise time	<16>	t _{KR2}				5	ns
SDCLK fall time	<17>	t _{KF2}				4	ns
BUSCLK rise time	<18>	t _{KR3}				5	ns
BUSCLK fall time	<19>	t _{KF3}				4	ns

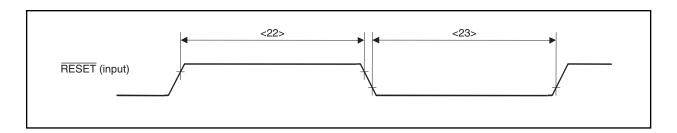
Remarks 1. $T = t_{CYK}$


2. The phase difference between CLKOUT and SDCLK, and between CLKOUT and BUSCLK cannot be defined.

(1) Clock timing (2/2)

(2) Output waveform (other than X1 and CLKOUT)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	<20>	tor			5	ns
Output fall time	<21>	tof			4	ns



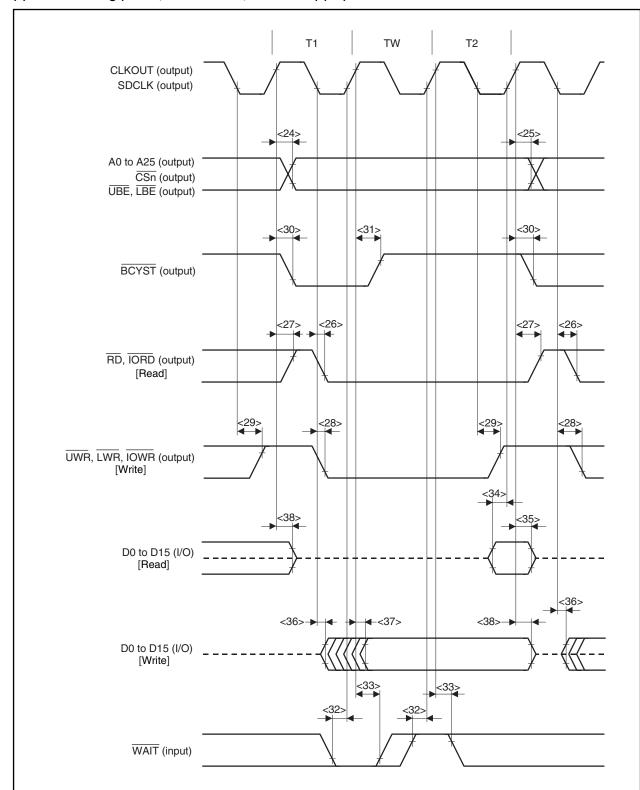
(3) Reset timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
RESET pin high-level width	<22>	twrsh		500		ns
RESET pin low-level width	<23>	twrsL	At power-on and at STOP mode release	500 + Tost		ns
			Other than at power-on and at STOP mode release	500		ns

Remark Tost: Oscillation stabilization time

Caution Thoroughly evaluate the oscillation stabilization time.

(4) SRAM, external ROM, and external I/O access timing (when BCP bit of BCP register = 0)


(a) Access timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address, CSn output delay time (from CLKOUT↑)	<24>	TDKA1		2	13	ns
Address, CSn output delay time (from SDCLK↑)				0	13	ns
Address, CSn output hold time (from CLKOUT↑)	<25>	t hka		2	13	ns
Address, CSn output hold time (from SDCLK↑)				0	13	ns
RD, IORD↓ delay time (from CLKOUT↓)	<26>	t DKRDL		2	13	ns
$\overline{\text{RD}}, \overline{\text{IORD}} \downarrow \text{ delay time (from SDCLK} \downarrow)$				0	13	ns
RD, IORD↑ delay time (from CLKOUT↑)	<27>	t HKRDH		2	13	ns
RD, IORD↑ delay time (from SDCLK↑)				0	13	ns
UWR, LWR, IOWR↓ delay time (from CLKOUT↓)	<28>	t DKWRL		2	13	ns
UWR, LWR, IOWR↓ delay time (from SDCLK↓)				0	13	ns
UWR, LWR, IOWR↑ delay time (from CLKOUT↓)	<29>	thkwrh		2	13	ns
UWR, LWR, IOWR↑ delay time (from SDCLK↓)				0	13	ns
BCYST↓ delay time (from CLKOUT↑)	<30>	t _{DKBSL}		2	13	ns
BCYST↓ delay time (from SDCLK↑)				0	13	ns
BCYST [↑] delay time (from CLKOUT [↑])	<31>	tнквsн		2	13	ns
BCYST↑ delay time (from SDCLK↑)				0	13	ns
WAIT setup time (to CLKOUT↑)	<32>	tswк		8		ns
WAIT setup time (to SDCLK↑)				10		ns
WAIT hold time (from CLKOUT↑)	<33>	tнкw		2		ns
WAIT hold time (from SDCLK↑)				2		ns
Data input setup time (to CLKOUT [↑])	<34>	t skid		8		ns
Data input setup time (to SDCLK1)				10		ns
Data input hold time (from CLKOUT [↑])	<35>	tнкір		2		ns
Data input hold time (from SDCLK↑)				2		ns
Data output delay time (from CLKOUT↓)	<36>	t DKOD1		2	13	ns
Data output delay time (from SDCLK↓)				0	13	ns
Data output delay time (from CLKOUT [↑])	<37>	tdkod2		2	13	ns
Data output delay time (from SDCLK↑)				0	13	ns
Data float delay time (from CLKOUT [↑])	<38>	t HKOD		2	13	ns
Data float delay time (from SDCLK↑)				0	13	ns

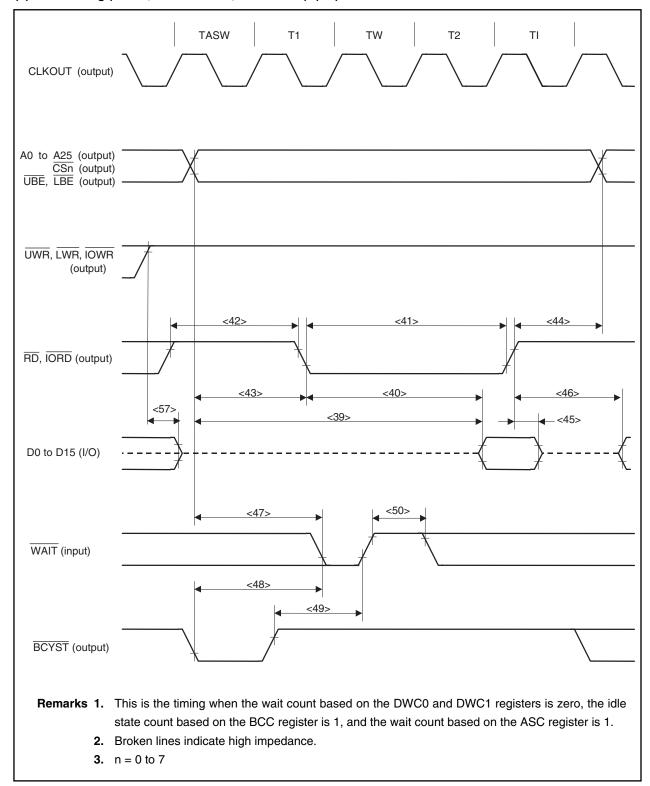
 $\textbf{Remarks 1.} \quad \textbf{Maintain at least one of the data input hold times, throughout the least one of the data input hold times, throughout the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the data input hold times, the least one of the lea$

2. n = 0 to 7

(a) Access timing (SRAM, external ROM, external I/O) (2/2)

Remarks 1. This is the timing when the number of waits based on the DWC0 and DWC1 registers is zero.

- 2. Broken lines indicate high impedance.
- **3.** n = 0 to 7


(b) Read timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
Data input setup time (from address)	<39>	tsaid			$(2 + w + w_D + w_{AS})T - 19$	ns
Data input setup time (from RD)	<40>	tsrdid			(1.5 + w + w _D)T − 19	ns
RD, IORD low-level width	<41>	twrdl		$(1.5 + w + w_D)T - 10$		ns
RD, IORD high-level width	<42>	twrdh		(0.5 + was + i)T - 10		ns
Delay time from address, CSn, to RD, IORD↓	<43>	tdard		(0.5 + was)T - 10		ns
Delay time from RD, IORD↑ to address	<44>	torda		iT		ns
Data input hold time (from RD, IORD↑)	<45>	thrdid		0		ns
Delay time from RD, IORD↑ to data output	<46>	tdrdod		(0.5 + i)T – 10		ns
WAIT setup time (to address)	<47>	tsaw	Note		(1 + was)T – 21	ns
WAIT setup time (to BCYST↓)	<48>	tsssw	Note		(1 + was)T – 21	ns
WAIT hold time (from BCYST↑)	<49>	tнвsw	Note	T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Data output hold time (from UWR, LWR, IOWR↑)	<57>	thwrod		(0.5 + i)T - 8		ns

Note For the first WAIT sampling when the wait count based on the DWC0 and DWC1 registers is zero.

- **Remarks 1.** $T = t_{CYK}$
 - 2. w: Wait count based on WAIT
 - 3. wb: Wait count based on the DWC0 and DWC1 registers
 - 4. Maintain at least one of the data input hold times through or thkid
 - **5.** n = 0 to 7
 - 6. i: Idle state count
 - 7. was: Address setup wait count based on the ASC register
 - 8. For the number of w and wo to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(b) Read timing (SRAM, external ROM, external I/O) (2/2)

(c) Write timing (SRAM, external ROM, external I/O) (1/2)

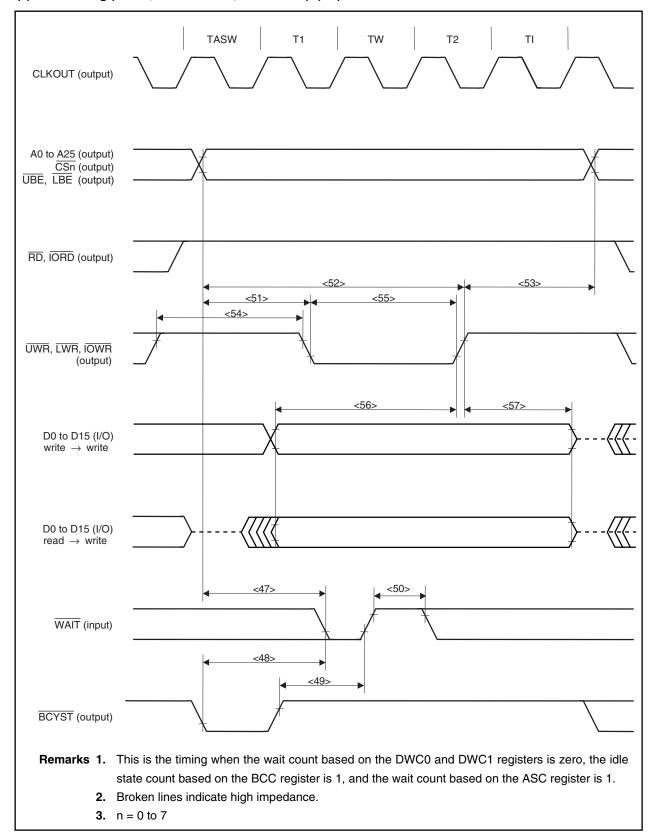
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
WAIT setup time (from address)	<47>	tsaw	Note		(1 + was)T – 21	ns
WAIT setup time (from BCYST↓)	<48>	tsssw	Note		(1 + was)T – 21	ns
WAIT hold time (from BCYST↑)	<49>	tнвsw	Note	T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Delay time from address, CSn to UWR, LWR, IOWR↓	<51>	tdawr		(0.5 + was)T - 10		ns
Address setup time (to UWR, LWR, IOWR↑)	<52>	tsawr		(1.5 + w + wd + was)T - 10		ns
Delay time from UWR, LWR, IOWR↑ to address	<53>	t dwra		(0.5 + i)T - 10		ns
UWR, LWR, IOWR high-level width	<54>	twwrh		(0.5 + i + was)T - 10		ns
UWR, LWR, IOWR low-level width	<55>	twwrL		(1 + w + w _D)T - 10		ns
Data output setup time (to UWR, LWR, IOWR↑)	<56>	tsodwr		(0.5 + w + w _D)T - 10		ns
Data output hold time (from UWR, LWR, IOWR↑)	<57>	thwrod		(0.5 + i)T - 8		ns

 $\textbf{Note} \quad \text{For the first } \overline{\text{WAIT}} \text{ sampling when the wait count based on the DWC0 and DWC1 registers is zero.}$

Remarks 1. T = tcyk

2. w: Wait count based on WAIT

3. wb: Wait count based on the DWC0 and DWC1 registers


4. n = 0 to 7

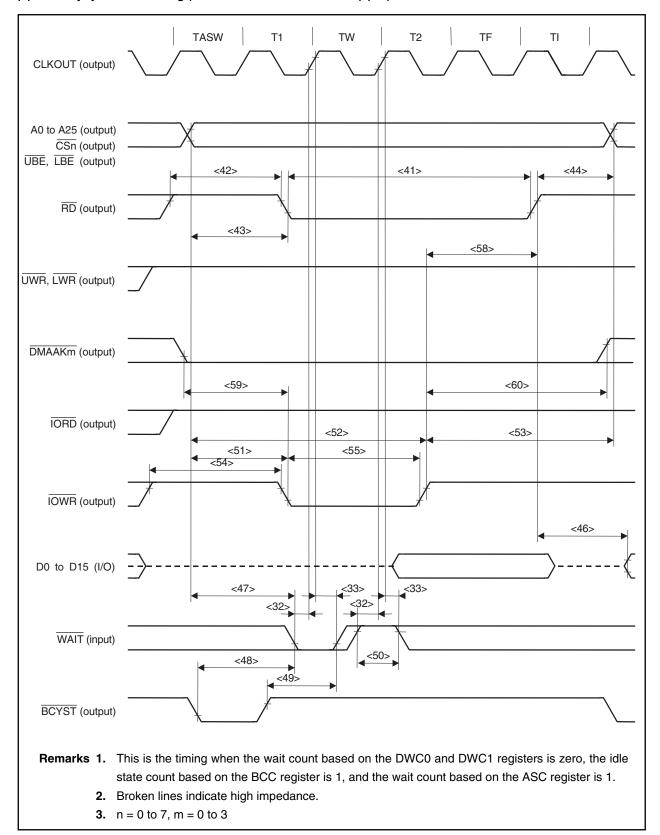
5. i: Idle state count

6. was: Address setup wait count based on the ASC register

7. For the number of w and wo to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(c) Write timing (SRAM, external ROM, external I/O) (2/2)

(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (1/2)


Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from CLKOUT↑)	<33>	thkw		0		ns
RD low-level width	<41>	twrdl		(1.5 + w + w _D)T - 10		ns
RD high-level width	<42>	twrdh		(0.5 + was + i)T - 10		ns
Delay time from address, $\overline{\text{CSn}}$ to $\overline{\text{RD}} \downarrow$	<43>	tdard		(0.5 + was)T - 10		ns
Delay time from RD↑ to address	<44>	torda		iT		ns
Delay time from RD↑ to data output	<46>	tordod		(0.5 + i)T - 10		ns
WAIT setup time (to address)	<47>	tsaw	Note		(1 + was)T - 21	ns
WAIT setup time (to BCYST↓)	<48>	tsssw	Note		(1 + was)T - 21	ns
WAIT hold time (from BCYST↑)	<49>	tнвsw	Note	T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Delay time from address to $\overline{IOWR} \downarrow$	<51>	tdawr		(0.5 + was)T - 10		ns
Address setup time (to IOWR↑)	<52>	tsawr		$(1.5 + w + w_D + w_{AS})T - 10$		ns
Delay time from IOWR↑ to address	<53>	towra		(1.5 + i)T - 10		ns
IOWR high-level width	<54>	twwrh		(0.5 + i + was)T - 10		ns
IOWR low-level width	<55>	twwrL		$(1 + w + w_D)T - 10$	_	ns
Delay time from IOWR↑ to RD↑	<58>	tolwrrd		1.5T – 10		ns
Delay time from DMAAKm↓ to IOWR↓	<59>	tddawr		(0.5 + was)T - 10		ns
Delay time from IOWR↑ to DMAAKm↑	<60>	t DWRDA		(1.5 + i)T - 10		ns

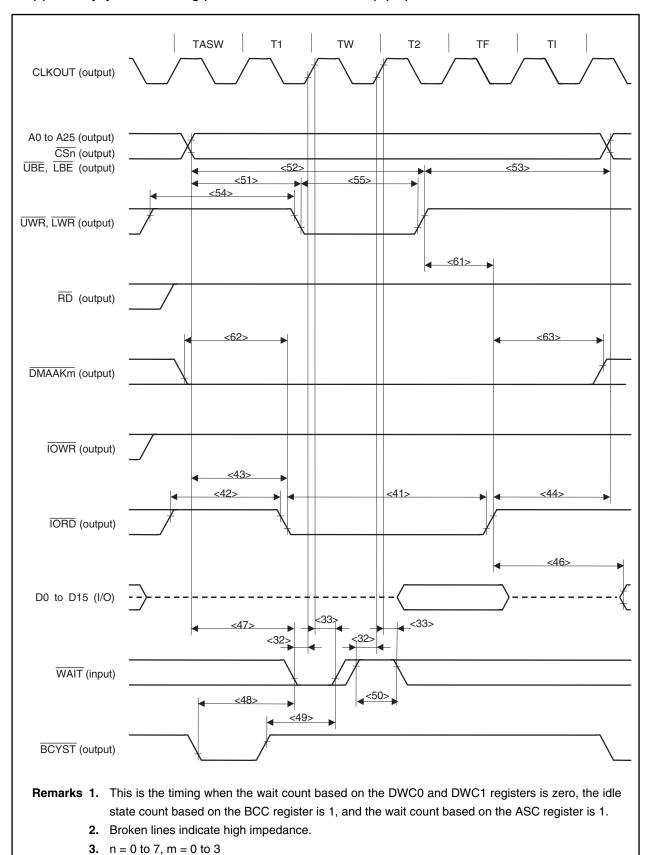
For the first $\overline{\text{WAIT}}$ sampling when the number of waits based on the DWC0 and DWC1 registers is zero. Note

Remarks 1. $T = t_{CYK}$

- 2. w: Wait count based on $\overline{\text{WAIT}}$
- 3. wb: Wait count based on the DWC0 and DWC1 registers
- **4.** n = 0 to 7, m = 0 to 3
- 5. i: Idle state count
- 6. was: Address setup wait count based on the ASC register
- 7. For the number of w and wp to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (2/2)

(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (1/2)

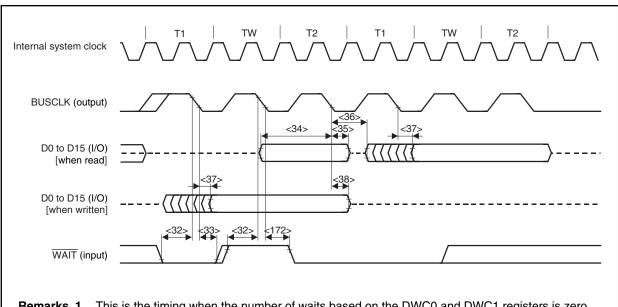

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from CLKOUT↑)	<33>	tнкw		0		ns
IORD low-level width	<41>	twrdl		$(2 + w + w_D)T - 10$		ns
IORD high-level width	<42>	twrdh		(1 + i + was)T - 10		ns
Delay time from address, $\overline{\text{CSn}}$ to $\overline{\text{IORD}} \downarrow$	<43>	t DARD		(0.5 + was)T – 10		ns
Delay time from IORD↑ to address	<44>	t DRDA		(0.5 + i) T - 10		ns
Delay time from IORD↑ to data output	<46>	t DRDOD		(1 + i)T – 10		ns
WAIT setup time (to address)	<47>	tsaw	Note		(1 + was)T – 21	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{BCYST}} \downarrow$)	<48>	tsssw	Note		(1 + was)T – 21	ns
WAIT hold time (from BCYST↑)	<49>	tнвsw	Note	T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Delay time from address to $\overline{\text{UWR}}, \overline{\text{LWR}} \downarrow$	<51>	tdawr		(0.5 + was)T – 10		ns
Address setup time (to UWR, LWR↑)	<52>	tsawr		$(1.5 + w + w_D + w_{AS})T - 10$		ns
Delay time from UWR, LWR↑ to address	<53>	towra		(0.5 + i)T - 10		ns
UWR, LWR high-level width	<54>	twwrh		(0.5 + i + was)T - 10		ns
UWR, LWR low-level width	<55>	twwrL		(1 + w + w _D)T - 10		ns
Delay time from UWR, LWR↑ to IORD↑	<61>	towrind		T – 10		ns
Delay time from DMAAKm↓ to IORD↓	<62>	t ddard		(0.5 + was)T - 10		ns
Delay time from IORD↑ to DMAAKm↑	<63>	t DRDDA		(0.5 + i)T - 10		ns

Note For first WAIT sampling when wait count based on the DWC0 and DWC1 registers is zero.

Remarks 1. $T = t_{CYK}$

- 2. w: Wait count based on WAIT
- 3. wb: Wait count based on the DWC0 and DWC1 registers
- **4.** n = 0 to 7, m = 0 to 3
- 5. i: Count of idle states inserted when a write cycle follows a read cycle
- 6. was: Address setup wait count based on the ASC register
- 7. For the number of w and wb to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (2/2)


(5) SRAM, external ROM, and external I/O access timing (vis-à-vis BUSCLK signal) (when BCP bit of BCP register = 1)

(a) Access timing (SRAM, external ROM, external I/O)

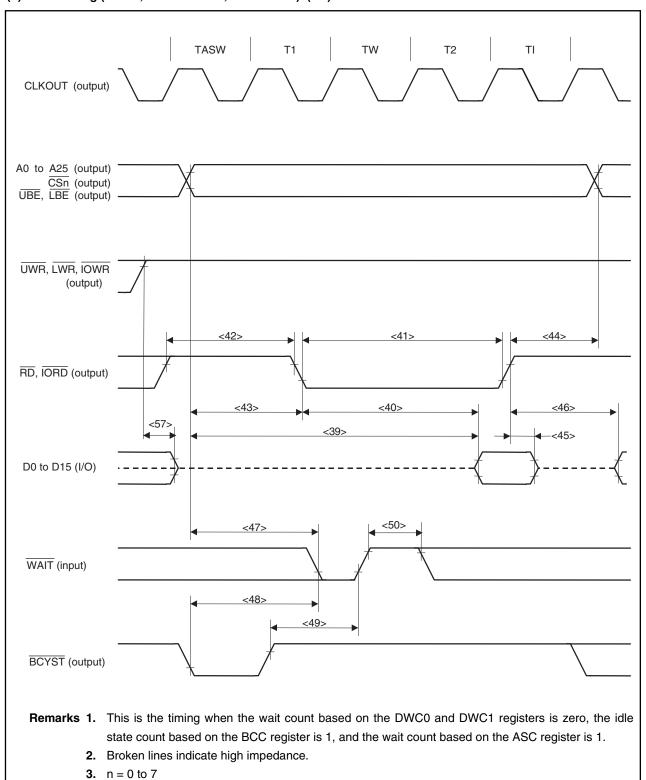
Parameter	Sy	/mbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to BUSCLK ↓)	<32>	tswк		8		ns
WAIT hold time (from BUSCLK ↓)	<33>	tнкw		0.5T – 4		ns
WAIT hold time (from BUSCLK ↓)	<172>	thkw1		T + 2		ns
Data input setup time (to BUSCLK \downarrow)	<34>	t skid		8		ns
Data input hold time (from BUSCLK \downarrow)	<35>	t HKID		0.5T – 4		ns
Data output delay time (from BUSCLK \downarrow)	<36>	tdkod1		T – 5	T + 8	ns
Data output delay time (from BUSCLK \downarrow)	<37>	tdkod2		-5	+8	ns
Data float delay time (from BUSCLK \downarrow)	<38>	t HKOD		0.5T – 4	0.5T + 8	ns

Remarks 1. Maintain at least one of the data input hold times, through or thkid.

2. T = Internal system clock cycle (this does not mean x2 bus cycle).

Remarks 1. This is the timing when the number of waits based on the DWC0 and DWC1 registers is zero.

2. Broken lines indicate high impedance.


(b) Read timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
Data input setup time (to address)	<39>	tsaid			$(2 + w + w_D + w_{AS})T - 19$	ns
Data input setup time (to RD)	<40>	tsrdid			(1.5 + w + w _D)T - 19	ns
RD, IORD low-level width	<41>	twrdl		(1.25 + w + w _D)T - 10		ns
RD, IORD high-level width	<42>	twrdh		(0.75 + was + i)T - 10		ns
Delay time from address, CSn, to RD, IORD↓	<43>	tdard		(0.75 + was)T - 10		ns
Delay time from RD, IORD↑ to address	<44>	torda		iT		ns
Data input hold time (from RD, IORD↑)	<45>	thrdid		0		ns
Delay time from RD, IORD↑ to data output	<46>	tordod		(0.25 + i)T - 10		ns
WAIT setup time (to address)	<47>	tsaw	Note		(1 + was)T – 21	ns
WAIT setup time (to BCYST↓)	<48>	tsssw	Note		(1 + was)T – 21	ns
WAIT hold time (from BCYST↑)	<49>	thesw	Note	0.5T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Data output hold time (from UWR, LWR, IOWR↑)	<57>	thwrod		(0.25 + i)T - 8		ns

For the first WAIT sampling when the wait count based on the DWC0 and DWC1 registers is zero. Note

- **Remarks 1.** T = BUSCLK cycle (internal system clock/2)
 - 2. w: Wait count based on \overline{WAIT}
 - 3. wp: Wait count based on the DWC0 and DWC1 registers
 - 4. Maintain at least one of the data input hold times through or through
 - **5.** n = 0 to 7
 - 6. i: Idle state count
 - 7. was: Address setup wait count based on the ASC register
 - 8. For the number of w and wp to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(b) Read timing (SRAM, external ROM, external I/O) (2/2)

(c) Write timing (SRAM, external ROM, external I/O) (1/2)

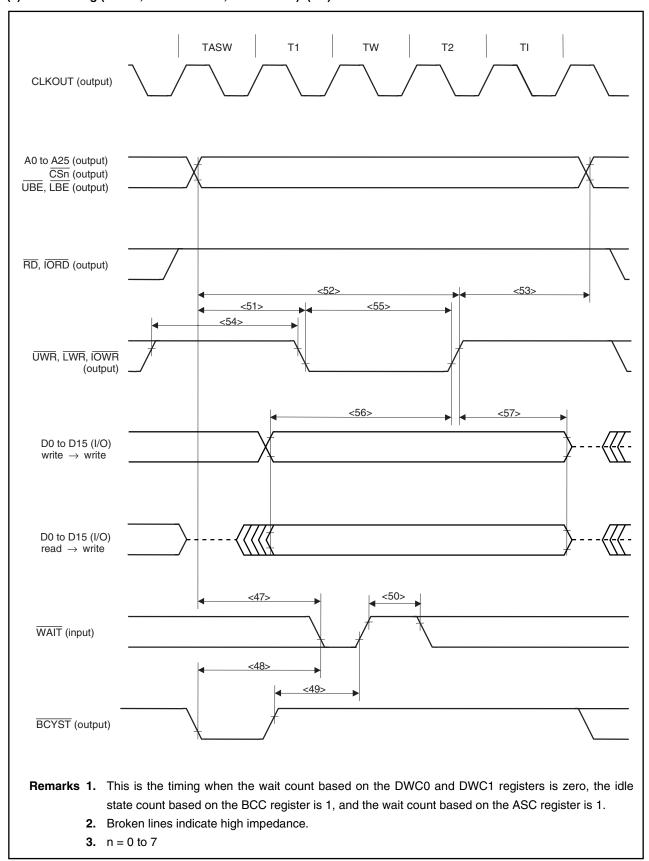
Parameter	Syr	mbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to address)	<47>	tsaw	Note		(1 + was)T – 21	ns
WAIT setup time (to BCYST↓)	<48>	tsssw	Note		(1 + was)T – 21	ns
WAIT hold time (from BCYST↑)	<49>	thesw	Note	0.5T – 10		ns
WAIT high-level width	<50>	twwн		T – 10		ns
Delay time from address, CSn to UWR, LWR, IOWR↓	<51>	tdawr		(0.75 + was)T – 10		ns
Address setup time (to UWR, LWR, IOWR↑)	<52>	tsawr		(1.75 + w + wd + was)T - 10		ns
Delay time from UWR, LWR, IOWR↑ to address	<53>	towra		(0.25 + i)T - 10		ns
UWR, LWR, IOWR high-level width	<54>	twwrh		(1 + i + was)T - 10		ns
UWR, LWR, IOWR low-level width	<55>	twwrL		(1 + w + w _D)T - 10		ns
Data output setup time (to UWR, LWR, IOWR↑)	<56>	tsodwr		(1.25 + w + w _D)T - 10		ns
Data output hold time (from UWR, LWR, IOWR↑)	<57>	thwrod		(0.25 + i)T - 8		ns

Note For the first WAIT sampling when the wait count based on the DWC0 and DWC1 registers is zero.

Remarks 1. T = BUSCLK cycle (internal system clock/2)

2. w: Wait count based on WAIT

3. wp: Wait count based on the DWC0 and DWC1 registers


4. n = 0 to 7

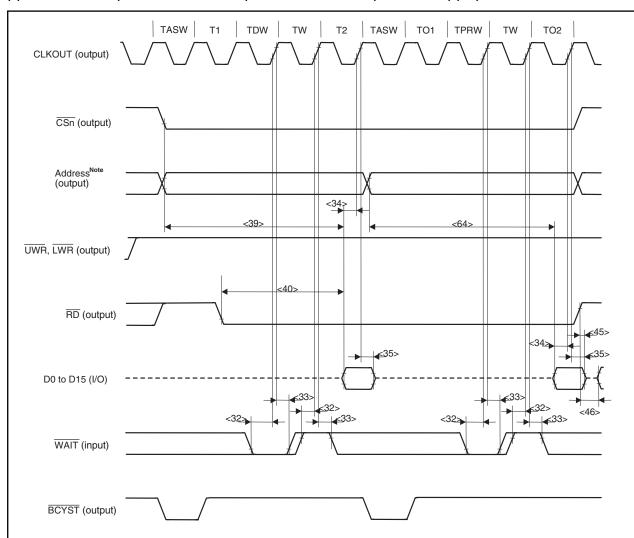
5. i: Idle state count

6. was: Address setup wait count based on the ASC register

7. For the number of w and wb to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(c) Write timing (SRAM, external ROM, external I/O) (2/2)

(6) Page ROM access timing


(a) 8-bit bus width (halfword/word access) and 16-bit bus width (word access) (1/2)

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from CLKOUT↑)	<33>	tнкw		0		ns
Data input setup time (to CLKOUT↑)	<34>	t skid		8		ns
Data input hold time (from CLKOUT1)	<35>	thkid		0		ns
Off-page data input setup time (to address)	<39>	tsaid			(2 + w + wd + was)T - 21	ns
Off-page data input setup time (to RD)	<40>	tsrdid			(1.5 + w + w _D)T - 21	ns
Data input hold time (from RD↑)	<45>	thrdid		0		ns
Delay time from RD↑ to data output	<46>	tordod		(0.5 + i)T - 10		ns
On-page data input setup time (to address)	<64>	tsoaid			(2 + w + wpr + was)T - 21	ns

Remarks 1. T = tcyk

- 2. w: Wait count based on $\overline{\text{WAIT}}$
- 3. wp: Wait count based on the DWC0 and DWC1 registers
- 4. WPR: Wait count based on the PRC register
- 5. i: Count of idle states inserted when a write cycle follows a read cycle
- 6. was: Address setup wait count based on the ASC register
- 7. Maintain at least one of the data input hold times thkid or through
- 8. For the number of w and wb to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(a) 8-bit bus width (halfword/word access) and 16-bit bus width (word access) (2/2)

Note On-page and off-page addresses are as follows.

PRC Register				On-Page	Off-Page	
MA6	MA5	MA4	MA3	Address	Address	
0	0	0	0	A0 to A2	A3 to A25	
0	0	0	1	A0 to A3	A4 to A25	
0	0	1	1	A0 to A4	A5 to A25	
0	1	1	1	A0 to A5	A6 to A25	
1	1	1	1	A0 to A6	A7 to A25	

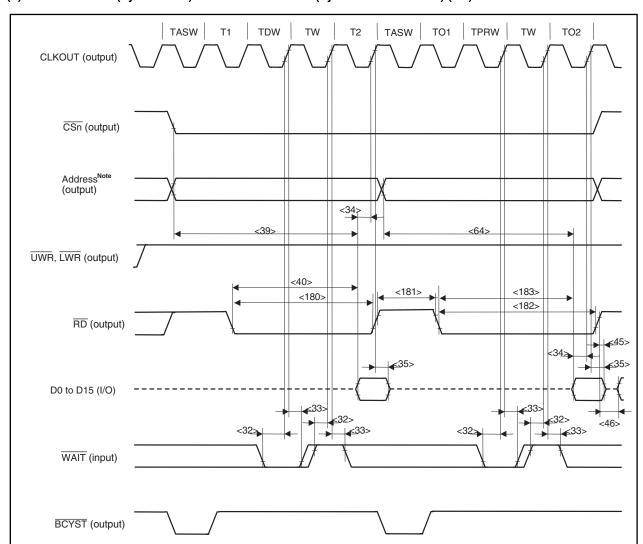
Remarks 1. This is the timing for the following case.

Wait count based on the DWC0 and DWC1 registers (TDW): 1

Wait count based on the PRC register (TPRW): 1

Wait count based on the ASC register (TASW): 1

- 2. Broken lines indicate high impedance.
- 3. n = 0 to 7


(b) 8-bit bus width (byte access) and 16-bit bus width (byte/halfword access) (1/2)

Parameter	Sym	nbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from CLKOUT↑)	<33>	tнкw		0		ns
Data input setup time (to CLKOUT↑)	<34>	tskid		8		ns
Data input hold time (from CLKOUT [↑])	<35>	thkid		0		ns
Off-page data input setup time (to address)	<39>	tsaid			(2 + w + wp + was)T - 21	ns
Off-page data input setup time (to RD)	<40>	tsrdid			(1.5 + w + w _D)T - 21	ns
Off-page RD low-level width	<180>	twrdl		$(1.5 + w + w_D)T - 10$		ns
RD high-level width	<181>	twrdh		(0.5 + was)T - 10		ns
Data input hold time (from $\overline{RD}\uparrow$)	<45>	thrdid		0		ns
Delay time from RD↑ to data output	<46>	tdrdod		(0.5 + i)T - 10		ns
On-page RD low-level width	<182>	twordl		(1.5+w+wpr)T-10		ns
On-page data input setup time (to address)	<64>	tsoaid			(2 + w + wpr + was)T - 21	ns
On-page data input setup time (to RD)	<183>	tsordid			(1.5 + w + wpr)T - 21	ns

Remarks 1. $T = t_{CYK}$

- 2. w: Wait count based on $\overline{\text{WAIT}}$
- 3. wp: Wait count based on the DWC0 and DWC1 registers
- 4. WPR: Wait count based on the PRC register
- 5. i: Count of idle states inserted when a write cycle follows a read cycle
- 6. was: Address setup wait count based on the ASC register
- 7. Maintain at least one of the data input hold times thkid or through
- 8. For the number of w and wb to be inserted, refer to 4.6.3 Relationship between programmable wait and external wait.

(b) 8-bit bus width (byte access) and 16-bit bus width (byte/halfword access) (2/2)

Note On-page and off-page addresses are as follows.

	PRC R	egister		On-Page	Off-Page	
MA6	MA5	MA4	МАЗ	Address	Address	
0	0	0	0	A0 to A2	A3 to A25	
0	0	0	1	A0 to A3	A4 to A25	
0	0	1	1	A0 to A4	A5 to A25	
0	1	1	1	A0 to A5	A6 to A25	
1	1	1	1	A0 to A6	A7 to A25	

Remarks 1. This is the timing for the following case.

Wait count based on the DWC0 and DWC1 registers (TDW): 1

Wait count based on the PRC register (TPRW): 1

Wait count based on the ASC register (TASW): 1

2. Broken lines indicate high impedance.

3. n = 0 to 7

(7) DRAM access timing

(a) Read timing (EDO DRAM) (1/3)

		- ` `					
Parameter		Sym	nbol	Conditions	MIN.	MAX.	Unit
Data input setup time (to	CLKOUT↓)	<34>	tskid		8		ns
Data input hold time (from	m CLKOUT↓)	<35>	thkid		0		ns
Delay time from OE↑ to	data output	<46>	tordod		(1 + i)T - 10		ns
Read/write cycle time		<65>	thpc		(1 + WDA + WCP)T - 10		ns
Row address setup time	е	<66>	tasr		0.5T – 10		ns
Row address hold time		<67>	trah		(0.5 + wвн)T – 10		ns
Column address setup	time	<68>	tasc		0.5T – 10		ns
Column address hold ti	me	<69>	tcah		(0.5 + WDA)T - 10		ns
RAS precharge time		<70>	t _{RP}	WRP = 0	T – 10		ns
				w _{RP} ≥ 1	WRPT - 10		ns
Column address read ti RAS↑)	me (to	<71>	tral		(1.5 + WCP + WDA)T - 10		ns
CAS hold time		<72>	tсsн		(1.5 + WRH + WDA)T - 10		ns
Delay time from RAS to	column	<73>	tRAD		(0.5 + wян)T – 10		ns
Delay time from RAS to	CAS	<74>	trcd		(1 + wrh)T - 10		ns
CAS to RAS precharge	time	<75>	tcrp	WRP = 0	1.5T – 10		ns
				WRP ≥ 1	(0.5 + WRP)T - 10		ns
RAS hold time from CAS	S precharge	<76>	trhcp		(1.5 + WCP + WDA)T - 10		ns
WE setup time (to CAS	↓)	<77>	trcs	$\mathbf{w}_{RP} = 0$	(3 + WRH)T - 10		ns
				w _{RP} ≥ 1	(2 + WRP + WRH)T - 10		ns
WE hold time (from RA	Ī ↑)	<78>	trrh		(1 + i)T - 10		ns
WE hold time (from CA	S ↑)	<79>	trch		(1.5 + i)T - 10		ns
RAS pulse width	Off-page	<80>	trasp		(2 + WRH + WDA)T - 10		ns
CAS pulse width		<81>	thcas		(0.5 + WDA)T - 10		ns
CAS precharge time		<82>	tcp		$(0.5 + w_{CP})T - 10$		ns
CAS hold time from OE	Off-page	<83>	tосн1	WRP = 0	(2.5 + WRH + WDA)T - 10		ns
				w _{RP} ≥ 1	(1.5 + WRP + WRH + WDA)T - 10		ns
	On-page	<84>	toch2		(0.5 + WCP + WDA)T - 10		ns
Access time to CAS pre	echarge	<85>	tacp			$(1.5 + W_{CP} + W_{DA})T - 21$	ns
Data input hold time (fro	om CAS↓)	<86>	t DHC		0		ns
CAS access time		<87>	tcac			(1 + WDA)T - 21	ns
Access time from colum	nn address	<88>	taa			(1.5 + WDA)T - 21	ns

(a) Read Timing (EDO DRAM) (2/3)

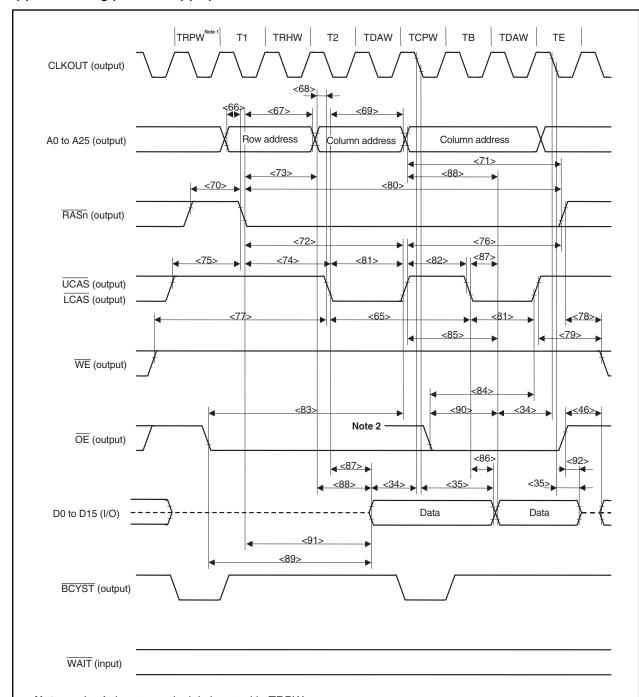
Parameter		Symbol		Conditions	MIN.	MAX.	Unit
Output enable access Off-p time	Off-page	<89>	toea1	WRP = 0		(3 + WRP + WRH + WDA)T - 21	ns
				w _{RP} ≥ 1		(2 + WRP + WRH + WDA)T - 21	ns
	On-page	<90>	toea2			(1 + WCP + WDA)T - 21	ns
RAS access time		<91>	trac			(2 + WRH + WDA) T – 21	ns
Output buffer turn-off delay	time (from OE)	<92>	toez		0		ns

Cautions 1. At least one clock is inserted in W_{RP} by default regardless of the setting of the RPC1n and RPC0n bits in the SCRn register (n = 1, 3, 4, or 6)

2. The $\overline{\text{WAIT}}$ signal cannot be controlled using the $\overline{\text{BCYST}}$ signal when using EDO DRAM.

Remarks 1. $T = t_{CYK}$

2. WDA: Wait count based on the DAC1n and DAC0n bits of the SCRn register (n = 1, 3, 4, 6)


3. wcp: Wait count based on the CPC1n and CPC0n bits of the SCRn register (n = 1, 3, 4, 6)

4. WRP: Wait count based on the RPC1n and RPC0n bits of the SCRn register (n = 1, 3, 4, 6)

5. WRH: Wait count based on the RHC1n and RHC0n bits of the SCRn register (n = 1, 3, 4, 6)

6. i: Idle state count

(a) Read timing (EDO DRAM) (3/3)

Notes 1. At least one clock is inserted in TRPW.

2. During on-page access from other cycles while \overline{RAS} is low level.

Remarks 1. This is the timing for the following case.

Wait count based on the RPC1n and RPC0n bits of the SCRn register (TRPW): 1 Wait count based on the RHC1n and RHC0n bits of the SCRn register (TRHW): 1

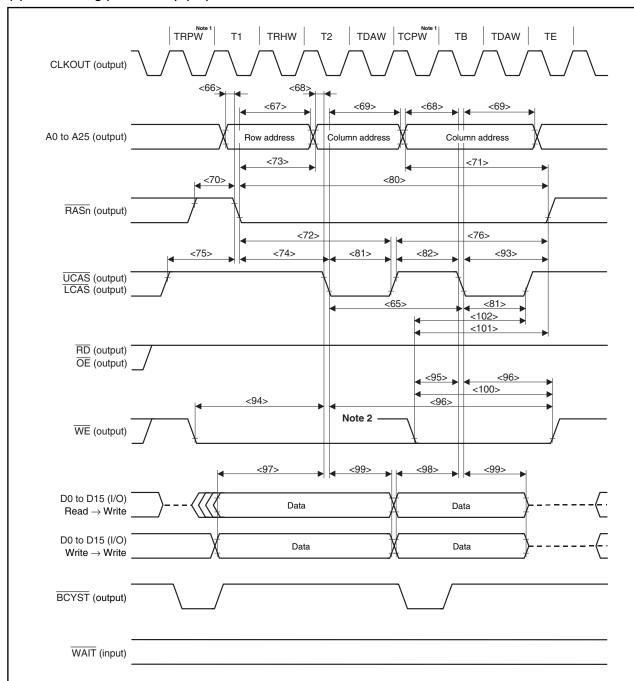
That seam based on the first many in contract of the contract

Wait count based on the DAC1n and DAC0n bits of the SCRn register (TDAW): 1

Wait count based on the CPC1n and CPC0n bits of the SCRn register (TCPW): 1

- 2. Broken lines indicate high impedance.
- 3. n = 1, 3, 4, 6

(b) Write timing (EDO DRAM) (1/2)


Parameter		Syr	mbol	Conditions	MIN.	MAX.	Unit
Read/write cycle time		<65>	thpc	wcp = 0	(2 + WDA)T - 10		ns
				WCP ≥ 1	(1 + WDA + WCP)T - 10		ns
Row address setup time		<66>	tasr		0.5T – 10		ns
Row address hold time		<67>	tпан		(0.5 + wrн)T – 10		ns
Column address setup time		<68>	tasc		0.5T – 10		ns
Column address hold time		<69>	t CAH		(0.5 + WDA)T - 10		ns
RAS precharge time		<70>	trp	WRP = 0	T – 10		ns
				WRP ≥ 1	WRPT - 10		ns
Column address read time (t	to RAS ↓)	<71>	tral	WCP = 0	(2.5 + WDA)T - 10		ns
				WCP ≥ 1	(1.5 + WCP + WDA)T - 10		ns
CAS hold time		<72>	tсsн		(1.5 + WRH + WDA)T - 10		ns
Delay time from RAS to colu	mn address	<73>	trad		(0.5 + wrн)T – 10		ns
Delay time from \overline{RAS} to \overline{CA}	s	<74>	trcd		(1 + w _{RH})T - 10		ns
CAS to RAS precharge time)	<75>	tcrp	WRP = 0	1.5T – 10		ns
				WRP ≥ 1	(0.5 + WRP)T - 10		ns
RAS hold time from CAS pr	echarge	<76>	t RHCP	wcp = 0	(2.5 + WDA)T - 10		ns
				WCP ≥ 1	(1.5 + WCP + WDA)T - 10		ns
RAS pulse width	Off-page	<80>	t RASP		(2 + WRH + WDA)T - 10		ns
CAS pulse width	CAS pulse width		thcas		(0.5 + WDA)T - 10		ns
CAS precharge time		<82>	tcp	wcp = 0	1.5T – 10		ns
				WCP ≥ 1	(0.5 + wcp)T - 10		ns
RAS hold time		<93>	tпsн		(1 + WDA)T - 10		ns
WE setup time (to CAS↓)	Off-page	<94>	twcs1	WRP = 0	(2 + WRH)T - 10		ns
				WRP ≥ 1	(1 + WRP + WRH)T - 10		ns
	On-page	<95>	twcs2	WCP = 0	T – 10		ns
				wcp ≥ 1	wcpT − 10		ns
WE hold time (from CAS↓)		<96>	twcн		(1 + WDA)T - 10		ns
Data setup time (to $\overline{CAS} \downarrow$)	Off-page	<97>	t _{DS1}		(1.5 + wrн)T – 10		ns
	On-page	<98>	t _{DS2}	wcp = 0	1.5T – 10		ns
				wcp ≥ 1	(0.5 + wcp)T - 10		ns
Data hold time (from CAS \))	<99>	tон		(0.5 + WDA)T - 10		ns
WE pulse width	On-page	<100>	twp	WCP = 0	(2 + WDA)T - 10		ns
				WCP ≥ 1	(1 + WDA + WCP)T - 10		ns
WE read time (to RAS↑)	On-page	<101>	trwL	WCP = 0	(2 + WDA)T - 10		ns
				WCP ≥ 1	(1 + WDA + WCP)T - 10		ns
WE read time (to CAS↑)	On-page	<102>	tcwL	wcp = 0	(1.5 + WDA)T - 10		ns
				WCP ≥ 1	(0.5 + WDA + WCP)T - 10		ns

- Cautions 1. At least one clock is inserted in wRP by default regardless of the setting of the RPC1n and RPC0n bits in the SCRn register (n = 1, 3, 4, 6).
 - 2. At least one clock is inserted in wcp by default regardless of the setting of the CPC1n and CPC0n bits in the SCRn register (n = 1, 3, 4, 6).
 - 3. The WAIT signal cannot be controlled using the BCYST signal when using EDO DRAM.

Remarks 1. $T = t_{CYK}$

- 2. WDA: Wait count based on the DAC1n and DAC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 3. wcp: Wait count based on the CPC1n and CPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 4. WRP: Wait count based on the RPC1n and RPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- **5.** WRH: Wait count based on the RHC1n and RHC0n bits of the SCRn register (n = 1, 3, 4, 6)

(b) Write timing (EDO DRAM) (2/2)

Notes 1. At least one clock is inserted in TRPW and TCPW.

2. During on-page access from other cycles while RAS is low level.

Remarks 1. This is the timing for the following case.

Wait count based on the RPC1n and RPC0n bits of the SCRn register (TRPW): 1 Wait count based on the RHC1n and RHC0n bits of the SCRn register (TRHW): 1

Wait count based on the DAC1n and DAC0n bits of the SCRn register (TDAW): 1

Wait count based on the CPC1n and CPC0n bits of the SCRn register (TCPW): 1

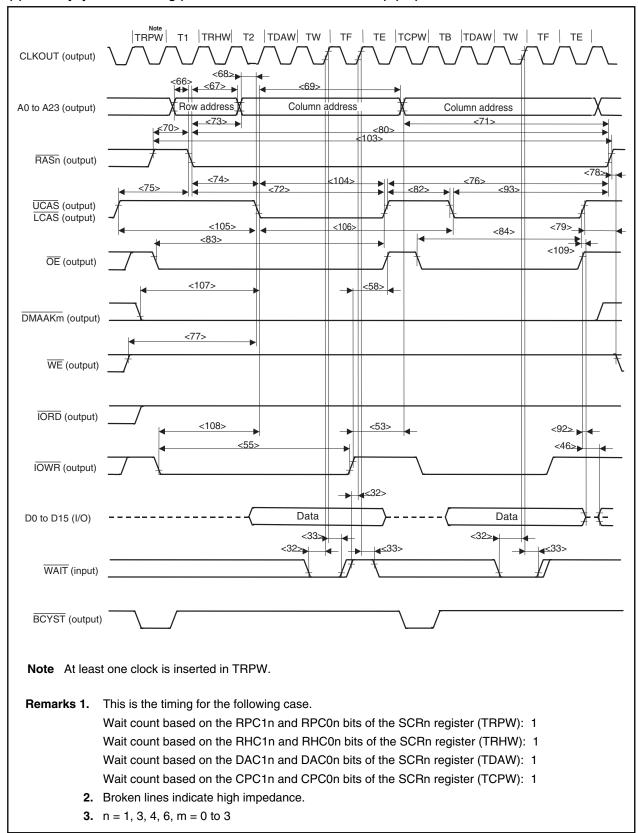
- 2. Broken lines indicate high impedance.
- 3. n = 1, 3, 4, 6

(c) DMA flyby transfer timing (EDO DRAM \rightarrow external I/O transfer) (1/3)

Parameter		Syr	nbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to CL	.KOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from C	LKOUT ¹)	<33>	thkw		0		ns
Delay time from OE↑ to	data output	<46>	tordod		(1 + i)T - 10		ns
Delay time from $\overline{\text{IOWR}} \uparrow$ to address		<53>	t dwra		1.5T – 10		ns
IOWR low-level width		<55>	twwrL	WRP = 0	(3 + WRH + WDA + W)T - 10		ns
				w _{RP} ≥ 1	(2 + WRP + WDA + WRH + W)T - 10		ns
Delay time from IOWR1	r to OE↑	<58>	towrrd		T – 10		ns
Row address setup time	е	<66>	tasr		0.5T – 10		ns
Row address hold time		<67>	t RAH		(0.5 + wrн)T – 10		ns
Column address setup	time	<68>	tasc		0.5T – 10		ns
Column address hold ti	me	<69>	t CAH		$(2.5 + W_{DA} + W)T - 10$		ns
RAS precharge time		<70>	t _{RP}	WRP = 0	T – 10		ns
				w _{RP} ≥ 1	WRPT - 10		ns
Column address read ti	me (to	<71>	tral		$(3.5 + w_{CP} + w_{DA} + w)T - 10$		ns
CAS hold time		<72>	tcsh (3 + WRH + WDA + W)T - 10			ns	
Delay time from \overline{RAS} to column address		<73>	trad		(0.5 + w _{RH})T – 10		ns
Delay time from RAS to CAS		<74>	trcd		(1 + wrh)T - 10		ns
CAS to RAS precharge time		<75>	tcrp	WRP = 0	2T – 10		ns
				WRP ≥ 1	(1 + WRP)T - 10		ns
RAS hold time from CAS	orecharge	<76>	trhcp		$(4 + W_{CP} + W_{DA} + W)T - 10$		ns
WE setup time (to CAS	↓)	<77>	trcs	WRP = 0	(3 + WRH)T - 10		ns
				WRP ≥ 1	(2 + WRP + WRH)T - 10		ns
WE hold time (from RA	Ī ↑)	<78>	trrh		0		ns
WE hold time (from CA	Ī\$↑)	<79>	tпсн		T – 10		ns
RAS pulse width	Off-page	<80>	trasp		(4 + WRH + WDA + W) T - 10		ns
CAS precharge time	•	<82>	tcp		$(1 + w_{CP})T - 10$		ns
OE to CAS hold time	Off-page	<83>	toch1	WRP = 0	$(4 + W_{RH} + W_{DA} + W)T - 10$		ns
				w _{RP} ≥ 1	(3 + WRP + WRH + WDA + W)T - 10		ns
	On-page	<84>	toch2		$(2 + W_{CP} + W_{DA} + w)T - 10$		ns
Output buffer turn-off de	elay time	<92>	toez		0		ns
RAS hold time		<93>	tпsн		$(3 + w_{DA} + w) T - 10$		ns
Read/write cycle time		<103>	trc	wrp = 0	(5.5 + WRH + WDA + W)T - 10		ns
				w _{RP} ≥ 1	(4.5 + WRP + WRH + WDA + W)T - 10		ns
CAS pulse width		<104>	tcas		$(2 + w_{DA} + w)T - 10$		ns
CAS precharge time		<105>	t CPN	W _{RP} = 0	(3 + WRH)T - 10		ns
				W _{RP} ≥ 1	(2 + WRP + WRH)T - 10		ns
High-speed page mode	cycle time	<106>	t PC		(3 + WCP + WDA + W)T - 10		ns

(c) DMA flyby transfer timing (EDO DRAM → external I/O transfer) (2/3)

Parameter	Syı	mbol	ol Conditions MIN.		MAX.	Unit
Delay time from DMAAKm↓ to CAS↓	<107>	tddacs	WRP = 0	(2.5 + w _{RH})T - 10		ns
			W RP ≥ 1	(1.5 + WRP + WRH)T - 10		ns
Delay time from IOWR↓ to CAS↓	<108>	<108> tordcs w		(2 + WRH)T - 10		ns
			WRP ≥ 1	(1 + WRP + WRH)T - 10		ns
Output buffer turn-off delay time (from CAS↑)	<109>	toff		0		ns


Cautions

- 1. At least one clock is inserted in WRP by default regardless of the setting of the RPC1n and RPC0n bits in the SCRn register (n = 1, 3, 4, 6).
- 2. The WAIT signal cannot be controlled using the BCYST signal when using EDO DRAM.

Remarks 1. $T = t_{CYK}$

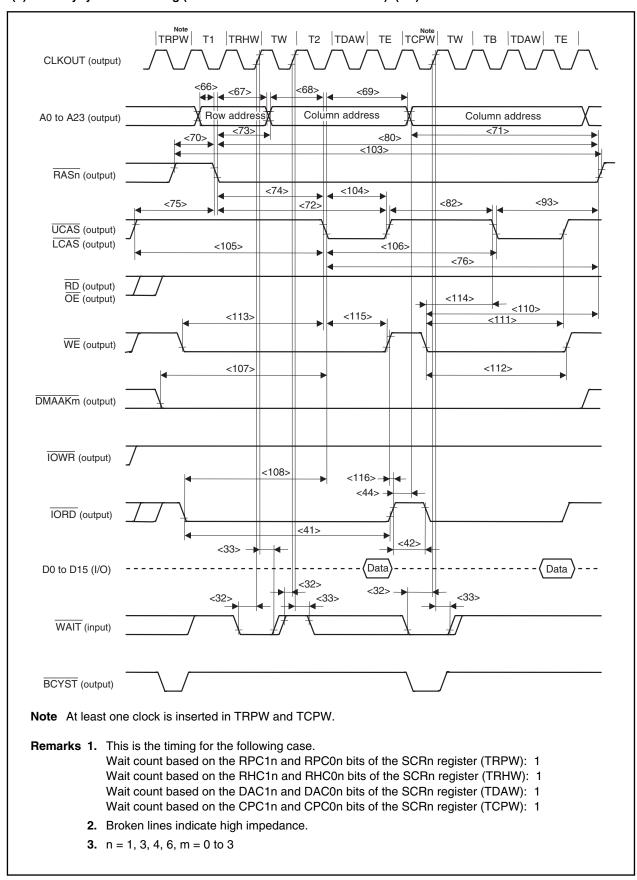
- 2. w: Wait count based on WAIT
- 3. WDA: Wait count based on the DAC1n and DAC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 4. wcp: Wait count based on the CPC1n and CPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 5. WRP: Wait count based on the RPC1n and RPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 6. WRH: Wait count based on the RHC1n and RHC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 7. i: Idle state count
- **8.** m = 0 to 3

(c) DMA flyby transfer timing (EDO DRAM \rightarrow external I/O transfer) (3/3)

(d) DMA flyby transfer timing (external I/O \rightarrow EDO DRAM transfer) (1/3)

· · · · · · · · · · · · · · · · · · ·	<u> </u>						
Parame	ter	Sym	nbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to	CLKOUT↑)	<32>	tswĸ		8		ns
WAIT hold time (from	n CLKOUT↑)	<33>	tнкw		0		ns
IORD low-level width		<41>	twrdl		(2 + WRH + WDA + W) T – 10		ns
IORD high-level widt	h	<42>	twrdh		T – 10		ns
Delay time from IOR		<44>	t DRDA		(0.5 + i) T – 10		ns
Row address setup t	ime	<66>	tasr		0.5T – 10		ns
Row address hold tin	ne	<67>	t RAH		(0.5 + WRH)T - 10		ns
Column address setu	ıp time	<68>	tasc		0.5T – 10		ns
Column address hold	d time	<69>	t CAH		(1.5 + WDA)T - 10		ns
RAS precharge time		<70>	t RP	WRP = 0	T – 10		ns
				WRP ≥ 1	WRPT - 10		ns
Column address read	d time (to RAS)	<71>	tral		(2.5 + WCP + WDA + W)T - 10		ns
CAS hold time		<72>	tсsн		(2 + WRH + WDA + W)T - 10		ns
Delay time from RAS	to column	<73>	trad		(0.5 + WRH) T-10		ns
Delay time from RAS	to CAS	<74>	trcd		(1 + w _{RH} + w)T – 10		ns
CAS to RAS precharge time		<75>	tcrp	WRP = 0	2T – 10		ns
				WRP ≥ 1	(1 + WRP)T - 10		ns
RAS hold time from	CAS precharge	<76>	t RHCP		(4 + WCP + WDA + W)T - 10		ns
RAS pulse width	Off-page	<80>	trasp		(3 + WRH + WDA + W)T - 10		ns
CAS precharge time		<82>	t CP		(1 + WCP + W)T - 10		ns
RAS hold time		<93>	trsh		(2 + WDA)T - 10		ns
Read/write cycle time	Э	<103>	t RC	WRP = 0	(4.5 + WRH + WDA + W)T - 10		ns
				w _{RP} ≥ 1	(3.5 + WRP + WRH + WDA + W)T - 10		ns
CAS pulse width		<104>	tcas		(1 + WDA)T - 10		ns
CAS precharge time		<105>	t CPN	WRP = 0	(3 + WRH + W)T - 10		ns
				WRP ≥ 1	(2 + WRP + WRH + W)T - 10		ns
High-speed page mo	de cycle	<106>	t PC		$(2 + W_{CP} + W_{DA} + W)T - 10$		ns
Delay time from DMA	$\overline{AKm} \downarrow to \ \overline{CAS} \downarrow$	<107>	tddacs	WRP = 0	(2.5 + wrh + w)T - 10		ns
				WRP ≥ 1	$(1.5 + W_{RP} + W_{RH} + W)T - 10$		ns
Delay time from IOR	D↓ to CAS↓	<108>	tordcs	WRP = 0	(2 + WRH + W)T - 10		ns
				WRP ≥ 1	(1 + WRP + WRH + W)T - 10		ns
WE read time (to RA	S ↑)	<110>	trwL		(3 + WDA + W)T - 10		ns
WE read time (to CA	S ↑)	<111>	tcwL		(2 + WDA + W)T - 10		ns
WE pulse width		<112>	twp		(2 + WDA + W)T - 10		ns
WE setup time (to	Off-page	<113>	twcs1		(2 + WRH + W)T - 10		ns
CAS ↓)	On-page	<114>	twcs2		T – 10		ns

(d) DMA flyby transfer timing (external I/O → EDO DRAM transfer) (2/3)

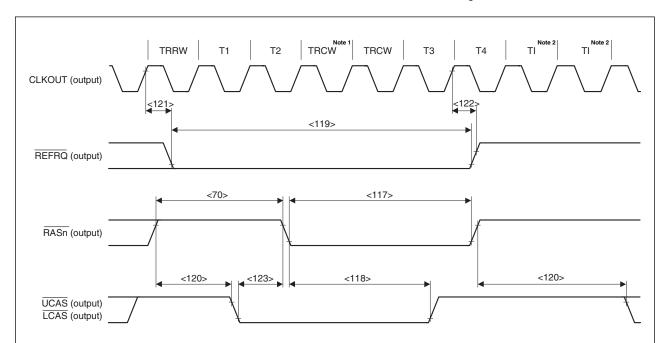

Parameter	Syn	nbol	Conditions	MIN.	MA X.	U nit
$\overline{\text{WE}}$ hold time (from $\overline{\text{CAS}} \downarrow$)	<115>	twcн		(1 + WDA)T - 10		ns
Delay time from WE↑ to IORD↑	<116>	towerd		0		ns

- Cautions 1. At least one clock is inserted in WRP by default regardless of the setting of the RPC1n and RPC0n bits in the SCRn register (n = 1, 3, 4, 6).
 - 2. At least one clock is inserted in wcp by default regardless of the setting of the CPC1n and CPC0n bits in the SCRn register (n = 1, 3, 4, 6).
 - 3. The WAIT signal cannot be controlled using the BCYST signal when using EDO DRAM.

Remarks 1. T = tcyk

- 2. w: Wait counts based on \overline{WAIT}
- 3. WDA: Wait count based on the DAC1n and DAC0n bits of the SCRn register (n = 1, 3, 4, 6)
- **4.** wcp: Wait count based on the CPC1n and CPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 5. WRP: Wait count based on the RPC1n and RPC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 6. WRH: Wait count based on the RHC1n and RHC0n bits of the SCRn register (n = 1, 3, 4, 6)
- 7. i: Idle state count
- **8.** m = 0 to 3

(d) DMA flyby transfer timing (external I/O \rightarrow EDO DRAM transfer) (3/3)


(e) CBR refresh timing

Parameter	Syn	Symbol Conditions MIN.		MA X.	U nit	
RAS precharge time	<70>	t _{RP}		(1.5 + WRRW)T - 10		ns
RAS pulse width	<117>	tras		(1.5 + WRCW ^{Note})T - 10		ns
CAS hold time	<118>	tchr		(0.5 + WRCW ^{Note})T - 10		ns
REFRQ pulse width	<119>	twrfl	$(3 + W_{RRW} + W_{RCW}^{Note})T - 10$			ns
RAS precharge CAS hold time	<120>	trpc	(2.5 + WRRW)T - 10			ns
REFRQ active delay time (from CLKOUT [↑])	<121>	t DKRF		2	13	ns
REFRQ inactive delay time (from CLKOUT [↑])	<122>	thkrf		2	13	ns
CAS setup time	<123>	tcsr		T – 10		ns

Note At least one clock is inserted in wacw by default, regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

Remarks 1. $T = t_{CYK}$

- 2. WRRW: Wait count based on the RRW0 and RRW1 bits of the RWC register
- 3. WRCW: Wait count based on the RCW0 to RCW2 bits of the RWC register

Notes 1. At least one clock is inserted in TRCW, regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

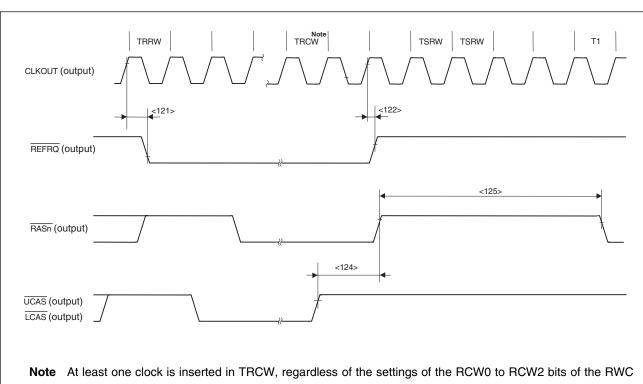
2. Idle state (TI) independent of the setting of the BCC register

Remarks 1. This is the timing for the following case.

Wait count based on the RRW0 and RRW1 bits of the RWC register (TRRW): 1 Wait count based on the RCW0 to RCW2 bits of the RWC register (TRCW): 2

2. n = 0 to 7

(f) CBR self-refresh timing


Parameter	Sym	Symbol		MIN.	MAX.	Unit
REFRQ active delay time (from CLKOUT1)	<121>	t DKRF		2	13	ns
REFRQ inactive delay time (from CLKOUT1)	<122>	thkrf		2	13	ns
CAS hold time	<124>	tснs		-(wrcwT - 10)		ns
RAS precharge time	<125>	trps	WRP = 0	(3 + 2wsrw)T - 10		ns
			WRP ≥ 1	(2 + 2wsrw + wrpw)T - 10		ns

Remarks 1. T = tcyk

2. wsrw: Wait count based on the SRW0 to SRW2 bits of the RWC register

3. WRCW: Wait count based on the RCW0 to RCW2 bits of the RWC register

4. WRPW: Wait count based on the RRW0 and RRW1 bits of the RWC register

register.

Remarks 1. This is the timing for the following case.

Wait count based on the RRW0 and RRW1 bits of the RWC register (TRRW): 1

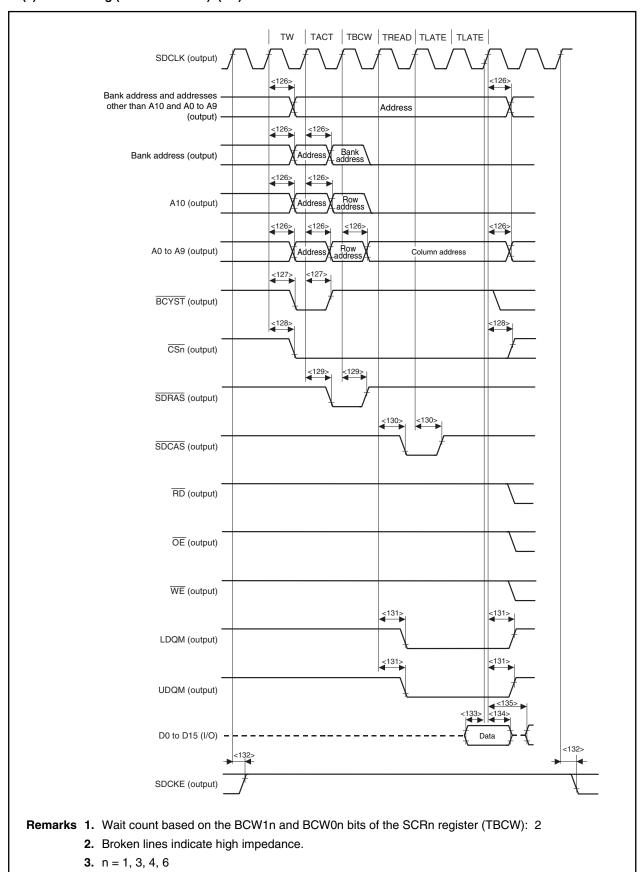
Wait count based on the RCW0 to RCW2 bits of the RWC register (TRCW): 1

Wait count based on the SRW0 to SRW2 bits of the RWC register (TSRW): 1 (twice the number of waits as the set value are inserted)

2. n = 1, 3, 4, 6

(8) SDRAM access timing

(a) Read timing (SDRAM access) (1/2)

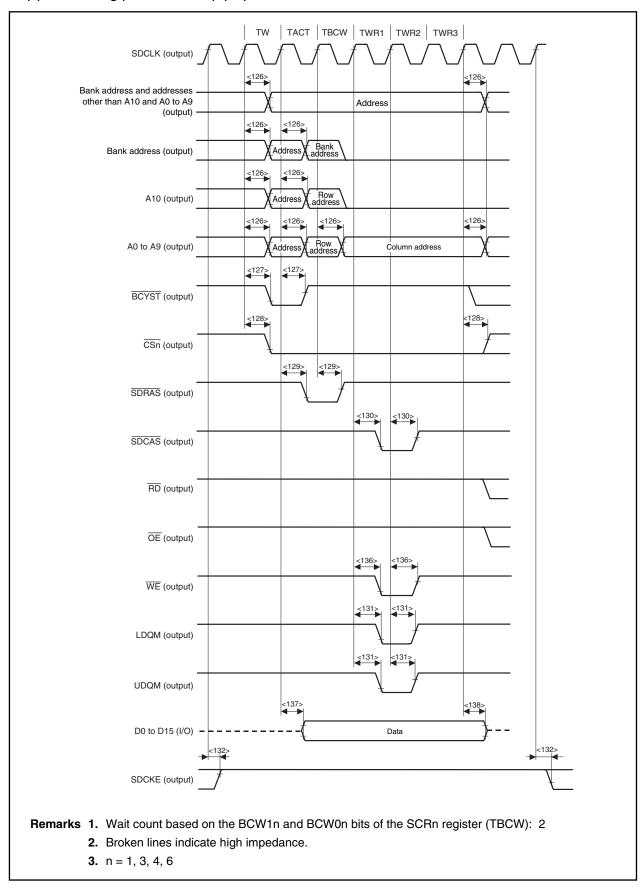

Parameter	Syı	mbol	Conditions	MIN.	MAX.	Unit
Address delay time (from SDCLK↑)	<126>	T _{DKA2}		2	13	ns
BCYST delay time (from SDCLK↑)	<127>	t DKBC		2	13	ns
CSn delay time (from SDCLK↑)	<128>	tokes		2	13	ns
SDRAS delay time (from SDCLK↑)	<129>	t DKRAS		2	13	ns
SDCAS delay time (from SDCLK↑)	<130>	tokcas		2	13	ns
UDQM, LDQM delay time (from SDCLK↑)	<131>	tdkdqм		2	13	ns
SDCKE delay time (from SDCLK↑)	<132>	t DKCKE		2	13	ns
Data input setup time (at SDRAM read, to SDCLK1)	<133>	tsdrmk		8		ns
Data input hold time (at SDRAM read, from SDCLK1)	<134>	thkdrm		0		ns
Delay time from SDCLK↑ to data output	<135>	tosdod		(1 + i) T – 5	_	ns

Remarks 1. $T = t_{CYK2}$

2. i = Idle state count

3. n = 1, 3, 4, 6

(a) Read timing (SDRAM access) (2/2)

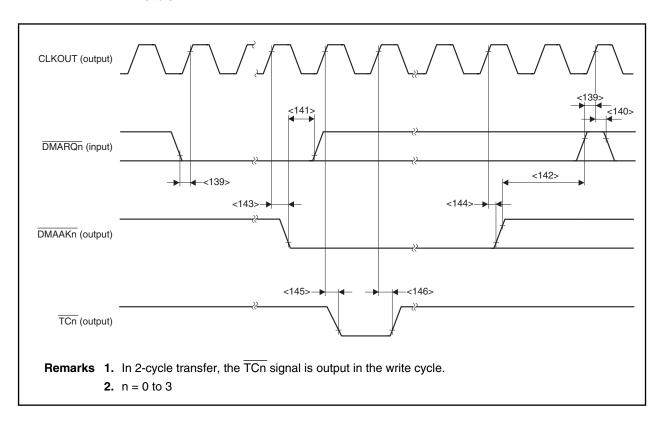


(b) Write timing (SDRAM access) (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Address delay time (from SDCLK↑)	<126>	tdka2		2	13	ns
BCYST delay time (from SDCLK↑)	<127>	tokec		2	13	ns
CSn delay time (from SDCLK↑)	<128>	tokcs		2	13	ns
SDRAS delay time (from SDCLK↑)	<129>	tokras		2	13	ns
SDCAS delay time (from SDCLK↑)	<130>	tokcas		2	13	ns
UDQM, LDQM delay time (from SDCLK↑)	<131>	t DKDQM		2	13	ns
SDCKE delay time (from SDCLK↑)	<132>	t DKCKE		2	13	ns
WE delay time (from SDCLK↑)	<136>	tokwe		2	13	ns
Data output delay time (from SDCLK1)	<137>	t DKDT		2	13	ns
Data float delay time (from SDCLK↑)	<138>	t HZKDT		2	13	ns

Remark n = 1, 3, 4, 6

(b) Write timing (SDRAM access) (2/2)

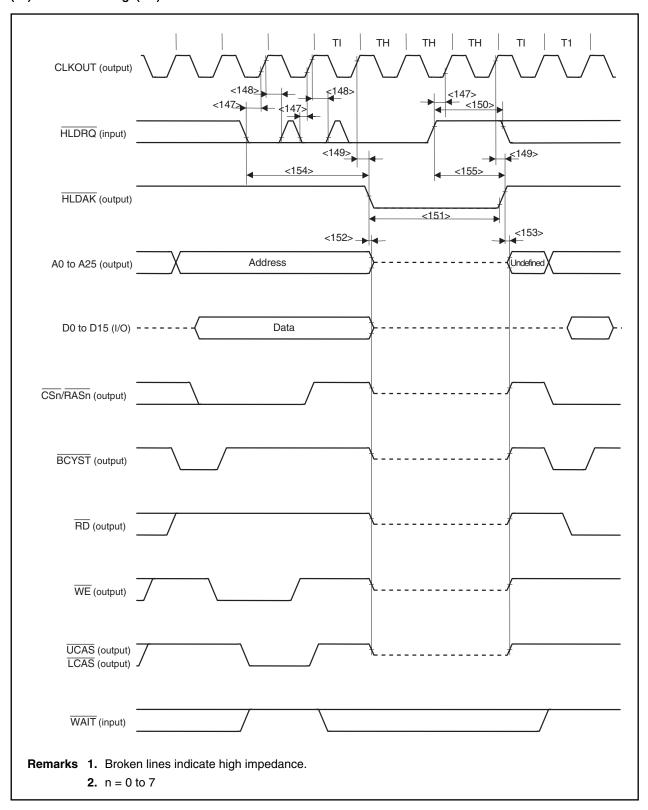


(9) DMAC timing

Parameter	Sym	nbol	Conditions	MIN.	MAX.	Unit
DMARQn setup time (to CLKOUT↑)	<139>	tsdrk		8		ns
DMARQn hold time	<140>	thkdr1	After inactive (from CLKOUT↑)	3		ns
	<141>	thkdr2		Until DMAAKn↓		ns
Second DMA request disable timing in single transfer	<142>	takdr			2T-21	ns
DMAAKn output delay time (from CLKOUT1)	<143>	t DKDA		2	13	ns
DMAAKn output hold time (from CLKOUT1)	<144>	thkda		2	13	ns
TCn output delay time (from CLKOUT1)	<145>	tнктс		2	13	ns
TCn output hold time (from CLKOUT↑)	<146>	tнктс		2	13	ns

Remarks 1. T = tcyk

2. n = 0 to 3

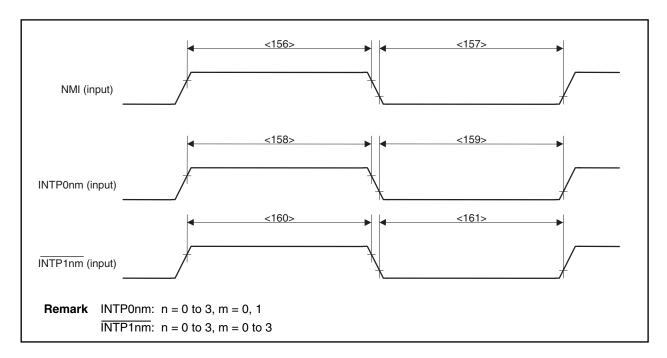


(10) Bus hold timing (1/2)

Parameter	Syn	Symbol		MIN.	MAX.	Unit
HLDRQ setup time (to CLKOUT [↑])	<147>	t shrk		8		ns
HLDRQ hold time (from CLKOUT [↑])	<148>	thkhr		3		ns
Delay time from CLKOUT↑ to HLDAK	<149>	t dkha		2	13	ns
HLDRQ high-level width	<150>	twнqн		T + 3		ns
HLDAK low-level width	<151>	twhal		T – 11		ns
Delay time from HLDAK↓ to bus float	<152>	t DKCF		0		ns
Delay time from HLDAK↑ to bus output	<153>	t DHAC		2	13	ns
Delay time from HLDRQ↓ to HLDAK↓	<154>	tdhqha1		2T		ns
Delay time from HLDRQ↑ to HLDAK↑	<155>	tdhqha2		Т	2T + 10	ns

Remark T = tcyk

(10) Bus hold timing (2/2)

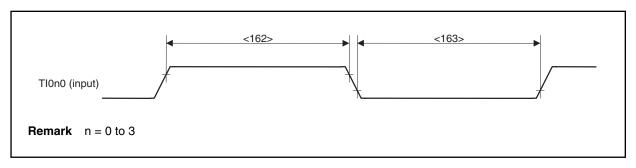


(11) Interrupt timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	<156>	twnih		500		ns
NMI low-level width	<157>	twniL		500		ns
INTP0nm high-level width	<158>	twiтон		3T + 500		ns
INTP0nm low-level width	<159>	twitol		3T + 500		ns
INTP1nm high-level width	<160>	twiT1H		500		ns
INTP1nm low-level width	<161>	t wiT1L		500		ns

Remarks 1. INTP0nm: n = 0 to 3, m = 0, 1 $\overline{\text{INTP1nm}}$: n = 0 to 3, m = 0 to 3

2. $T = t_{CYK}$



(12) RPU timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
TI0n0 high-level width	<162>	twтıн		3T + 500		ns
TI0n0 low-level width	<163>	t wTIL		3T + 500		ns

Remarks 1. n = 0 to 3

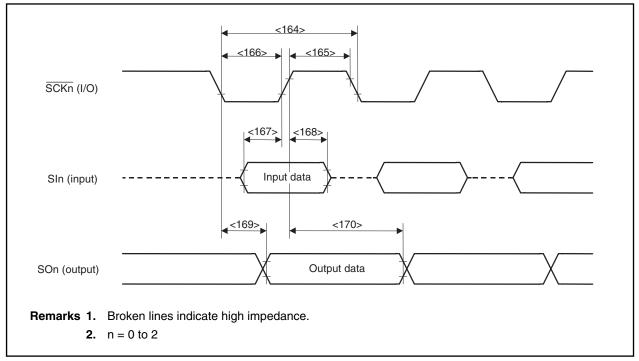
2. $T = t_{CYK}$

(13) CSI0 to CSI2 timing (1/3)

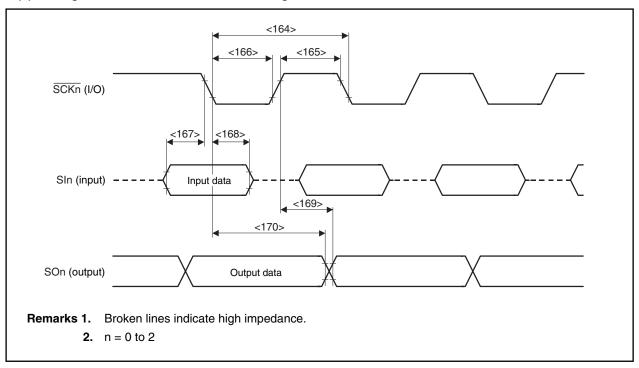
(a) Master mode

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<164>	tcysk1	Output	320		ns
SCKn high-level width	<165>	twsĸ1H	Output	0.5tcүsк1 – 20		ns
SCKn low-level width	<166>	twsk1L	Output	0.5tcүsк1 – 20		ns
SIn setup time (to SCKn↑)	<167>	tssisk		30		ns
SIn setup time (to $\overline{\text{SCKn}} \downarrow$)				30		ns
SIn hold time (from SCKn↑)	<168>	thsksi		30		ns
SIn hold time (from SCKn ↓)				30		ns
SOn output delay time (from SCKn↓)	<169>	toskso			30	ns
SOn output delay time (from SCKn ↑)					30	ns
SOn output hold time (from SCKn↑)	<170>	thskso		0.5tcүsк1 — 5		ns
SOn output hold time (from SCKn ↓)				0.5tcүsк1 — 5		ns

Remark n = 0 to 2

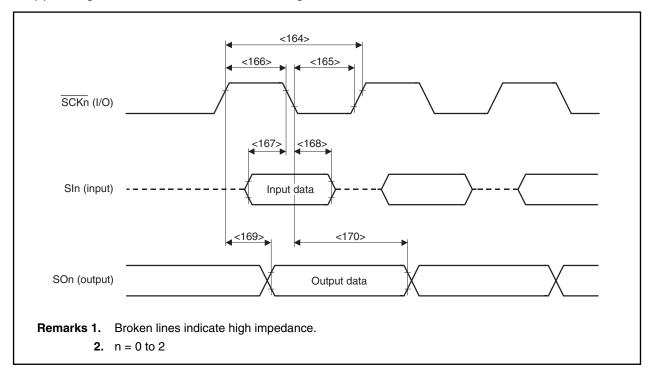

(b) Slave mode

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<164>	tcysk1	Input	200		ns
SCKn high-level width	<165>	twsĸ1H	Input	90		ns
SCKn low-level width	<166>	twsk1L	Input	90		ns
SIn setup time (to SCKn↑)	<167>	tssisk		50		ns
SIn setup time (to $\overline{\text{SCKn}} \downarrow$)				50		ns
SIn hold time (from SCKn↑)	<168>	thsksi		50		ns
SIn hold time (from $\overline{\text{SCKn}} \downarrow$)				50		ns
SOn output delay time (from SCKn↓)	<169>	toskso			50	ns
SOn output delay time (from SCKn ↑)					50	ns
SOn output hold time (from SCKn↑)	<170>	thskso		twsĸ1H		ns
SOn output hold time (from $\overline{\text{SCKn}} \downarrow$)				twsĸ1H		ns

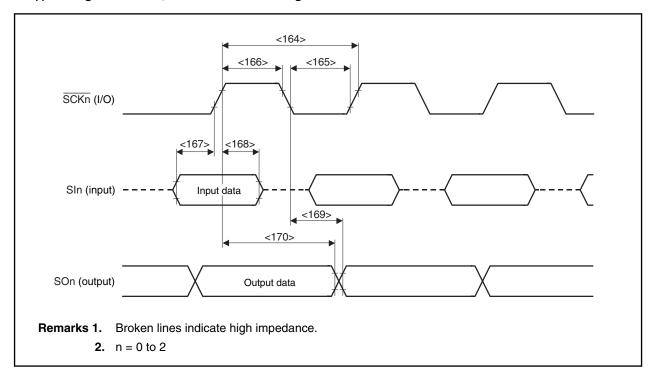

Remark n = 0 to 2

(13) CSI0 to CSI2 timing (2/3)

(c) Timing when CKPn, DAPn bits of CSICn register = 00



(d) Timing when CKPn, DAPn bits of CSICn register = 01



(13) CSI0 to CSI2 timing (3/3)

(e) Timing when CKPn, DAPn bits of CSICn register = 10

(f) Timing when CKPn, DAPn bits of CSICn register = 11

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = CV_{DD} = AV_{DD} = 3.0 \text{ to } 3.6 \text{ V}$, $V_{SS} = CV_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	_		10			bit
Overall error ^{Note 1}	_				±0.49	%FSR
Quantization error	_				±1/2	LSB
Conversion time	tconv		5		10	μs
Sampling time	tsamp		Conversion clock ^{Note 2} /6			Clocks
Zero-scale error ^{Note 1}	_				±0.49	%FSR
Full-scale error ^{Note 3}	_				±0.49	%FSR
Integral linearity error ^{Note 3}	_				±4	LSB
Differential linearity error ^{Note 3}	_				±4	LSB
Analog input voltage	Vwasn		-0.3		AV _{REF} + 0.3	٧
AVREF input voltage	AVREF	AVREF = AVDD	3.0		3.6	٧
AVDD supply current	Aldd				10	mA

Notes 1. Excluding quantization error (±0.05 %FSR)

2. Conversion clock is the number of clocks set by the ADM1 resister.

3. Excluding quantization error (±0.5 LSB)

FSR: Full Scale Range

 $\mbox{\%FSR}$ is the ratio to the full-scale value.

17.2 Flash Memory Programming Mode (µPD70F3107A and 70F3107A(A) Only)

Basic Characteristics ($T_A = 10$ to 40° C (during rewrite), $T_A = -40$ to $+85^{\circ}$ C (except during rewrite), $V_{DD} = CV_{DD} = AV_{DD} = 3.0$ to 3.6 V, $V_{SS} = CV_{SS} = AV_{SS} = 0$ V) (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fxx		4		50	MHz
V _{PP} supply voltage	V _{PP1}	During flash memory programming	7.5	7.8	8.1	V
	V _{PPL}	V _{PP} low-level detection	-0.5		0.2V _{DD}	V
	V _{РРМ}	V _{PP} , V _{DD} level detection	0.65V _{DD}		V _{DD} + 0.3	V
	V _{РРН}	V _{PP} high-voltage level detection	7.5	7.8	8.1	V
V _{DD} supply current	IDD	VPP = VPP1			4.8fxx + 45	mA
VPP supply current	I _{PP}	V _{PP} = 7.8 V			100	mA
Step erase time	ter	Note 1	0.398	0.4	0.402	S
Overall erase time per area	tera	When the step erase time = 0.4 s Note 2			40	s/area
Writeback time	twв	Note 3	0.99	1	1.01	ms
Number of writebacks per writeback command	Сwв	When the writeback time = 1 ms Note 4			300	Count/ writeback command
Number of erase/writebacks	CERWB				16	Count
Step writing time	twт	Note 5	18	20	22	μs
Overall writing time per word	twrw	When the step writing time = 20 μ s (1 word = 4 bytes) Note 6	20		200	μs/word

- **Notes 1.** The recommended setting value of the step erase time is 0.4 s.
 - 2. The prewrite time prior to erasure and the erase verify time (writeback time) are not included.
 - 3. The recommended setting value of the writeback time is 1 ms.
 - **4.** Writeback is executed once by the issuance of the writeback command. Therefore, the retry count must be the maximum value minus the number of commands issued.
 - **5.** The recommended setting value of the step writing time is 20 μ s.
 - 6. 100 μ s is added to the actual writing time per word. The internal verify time during and after the writing is not included.
- **Remarks 1.** When the PG-FP4 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings otherwise specified.
 - **2.** Area 0 = 00000H to 1FFFFH, area 1 = 20000H to 3FFFFH

Basic Characteristics (T_A = 10 to 40°C (during rewrite), T_A = -40 to +85°C (except during rewrite), V_{DD} = CV_{DD} = AV_{DD} = 3.0 to 3.6 V, Vss = CVss = AVss = 0 V) (2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Number of rewrites per area	CERWR	1 erase + 1 write	Note 2		20		Count/area
		after erase = 1 rewrite Note 1	Note 3		100		

Notes 1. When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only".

Example (P: Write, E: Erase) Shipped product \longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

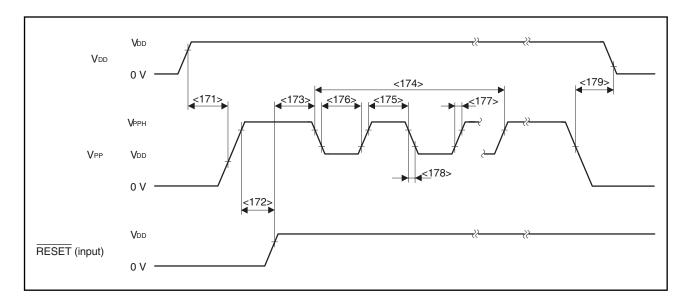
Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites

2. LQFP package: Lot number 0124Pxxxx or earlier FBGA package: Lot number 0123Pxxxx or earlier

3. LQFP package: Lot number 0125Pxxxx or later FBGA package: Lot number 0124Pxxxx or later

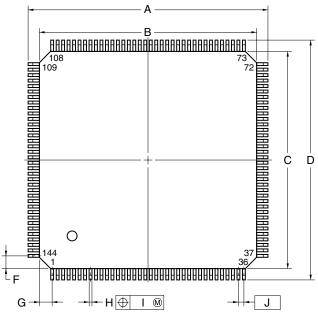
- **Remarks 1.** When the PG-FP4 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings otherwise specified.
 - **2.** Area 0 = 00000H to 1FFFFH, area 1 = 20000H to 3FFFFH
 - 3. 01 indicates the year of manufacture and 23, 24, 25 indicate the week of manufacture.

The products that are guaranteed for 100 rewrites are as follows.

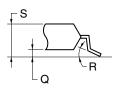

LQFP package: Products manufactured in 25th week or later (25, 26, 27...)

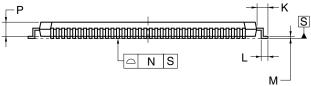
FBGA package: Products manufactured in 24th week or later (24, 25, 26...)

Serial Write Operation Characteristics


Parameter	Syr	nbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} ↑ to V _{PP} ↑ set time	<171>	torpsr		10			μs
V _{PP} ↑ to RESET↑ set time	<172>	tpsrrf		1			μs
RESET↑ to V _{PP} count start time	<173>	trfof	V _{PP} = 7.8 V	10T + 1500			ns
Count execution time	<174>	tcount				15	ms
VPP counter high-level width	<175>	tсн		1			μs
VPP counter low-level width	<176>	tcL		1			μs
V _{PP} counter rise time	<177>	tR				1	μs
VPP counter fall time	<178>	t⊧				1	μs
V _{PP} ↓ to V _{DD} ↓ reset time	<179>	t PFDR		10			μs

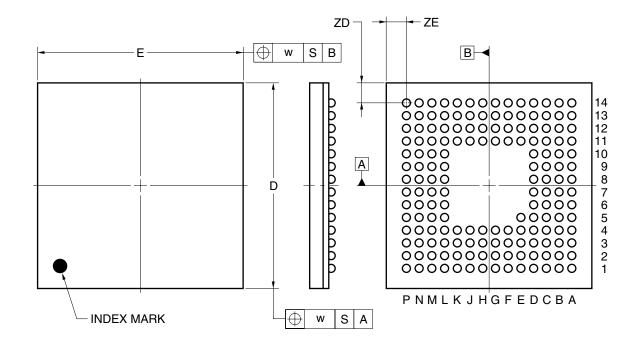
Remark T = tcyk

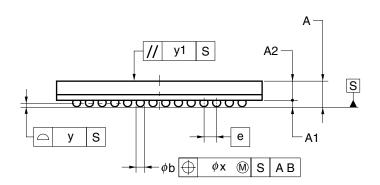



*

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

detail of lead end


NOTE


Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	22.0±0.2
В	20.0±0.2
С	20.0±0.2
D	22.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
1	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5±0.2
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.4
Q	0.10±0.05
R	3°+4° -3°
S	1.5±0.1

S144GJ-50-UEN

161-PIN PLASTIC FBGA (13x13)

ITEM	MILLIMETERS
D	13.00±0.10
Е	13.00±0.10
w	0.20
Α	1.48±0.10
Α1	0.35±0.06
A2	1.13
е	0.80
b	$0.50^{+0.05}_{-0.10}$
х	0.08
У	0.10
y1	0.20
ZD	1.30
ZE	1.30

P161F1-80-EN4-1

★ CHAPTER 19 RECOMMENDED SOLDERING CONDITIONS

The V850E/MA1 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 19-1. Surface Mounting Type Soldering Conditions

(1) μ PD703106AGJ-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD703107AGJ-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3107AGJ-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3107AGJ(A)-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 25 to 40 seconds (at 200°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-103-2
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

(2) μ PD703106AF1-xxx-EN4: 161-pin plastic FBGA (13 × 13) μ PD703107AF1-xxx-EN4: 161-pin plastic FBGA (13 × 13) μ PD70F3107AF1-EN4: 161-pin plastic FBGA (13 × 13)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 25 to 40 seconds (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-2

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark The soldering conditions for the following product is undetermined.

• μ PD703103AGJ-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

• μ PD703105AGJ-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

• μ PD703106AGJ(A)-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 \times 20)

• μ PD703107AGJ(A)-xxx-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

APPENDIX A NOTES ON TARGET SYSTEM DESIGN

The following shows a diagram of the connection conditions between the in-circuit emulator option board and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system as shown below.

Side view In-circuit emulator In-circuit emulator

Figure A-1. 144-Pin Plastic LQFP (Fine Pitch) (20 × 20)

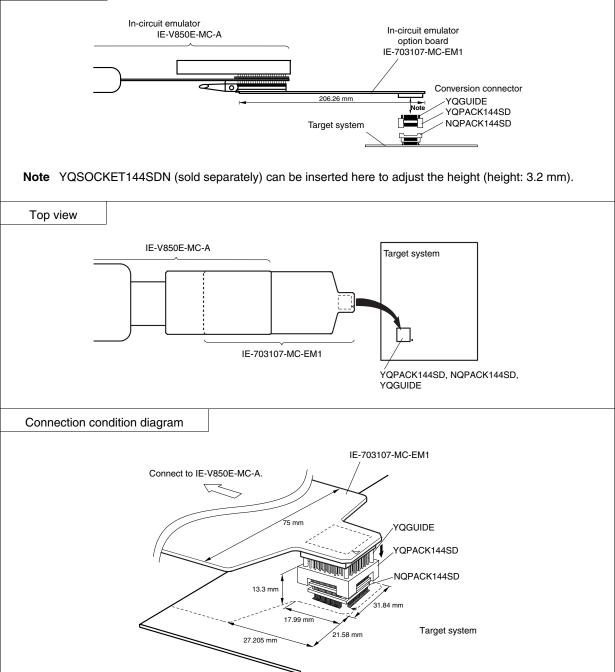
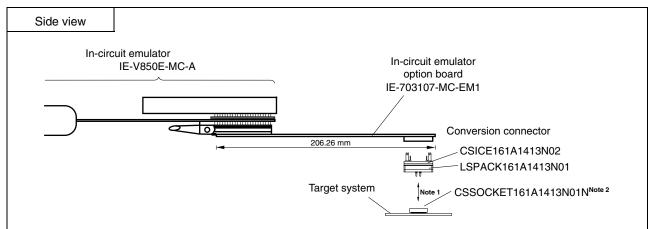
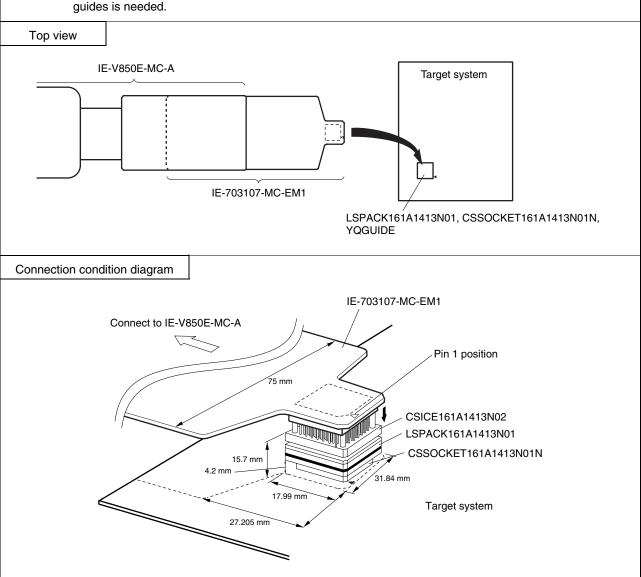




Figure A-2. 161-Pin Plastic FBGA (13 × 13)

- **Notes 1.** The CSSOCKET161A1413N01S1 (sold separately) can be inserted here to adjust the height (height: 3.2 mm).
 - 2. This is a target socket without guides. Remove suffix N from the part number when a target socket with guides is needed.

*

B.1 Restriction on Page ROM Access

B.1.1 Description

In systems connecting multiple page ROMs to multiple different CSn spaces, when the page ROM of a different CSn space is continuously accessed immediately after a page ROM is accessed, if the value of the former address and that of the latter address are on the same page of the page ROM, even if the two CSn spaces are different, it is taken as access of the same page of the page ROM, and the on-page cycle is issued for the latter access (n = 0 to 7). As a result, the data access time of the latter access is insufficient, making it impossible to perform normal reading.

Caution The page ROM has a page access function and includes memory, such as mask ROM and flash memory, that allows high-speed continuous access on the page (refer to Figure B-1).

For example, if the 8xxxxx2H address of the CS4 space is accessed immediately after the 0xxxxx0H address of the CS0 space is accessed, the on-page cycle is executed for 8xxxxx2H. (Refer to **Figure B-1**.)

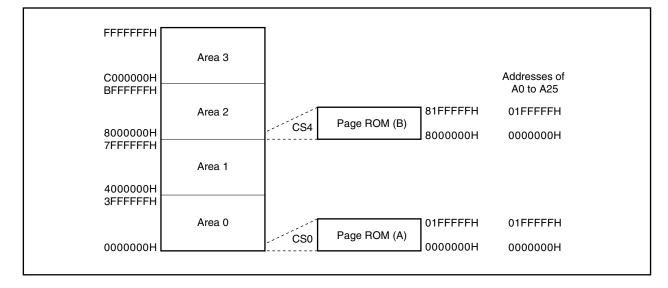


Figure B-1. Example of Structure of Memory Map with Error

Examples of conditions under which an error does not occur are shown below.

- ROM with page mode is not used.
- Only one ROM with page mode is used.
- The addresses of A0 to A25 do not overlap in all the ROMs with page mode used.

B.1.2 Countermeasures

When using several page ROMs, arrange the page ROMs so that the addresses of A0 to A25 do not overlap. For example, when arranging two 2 MB page ROMs in different CSn spaces, set one page ROM to 0000000H to 01FFFFFH, and the other page ROM to F800000H to F9FFFFFH (refer to **Figure B-2**).

FFFFFFH Addresses of A0 to A25 Area 3 F9FFFFH 39FFFFFH C000000H Page ROM (B) CS7 **BFFFFFFH** F800000H 3800000H Area 2 8000000H 7FFFFFH Area 1 4000000H 3FFFFFH Area 0 01FFFFFH 01FFFFFH Page ROM (A) CS₀ 0000000H 0000000H 0000000H

Figure B-2. Example of Structure of Memory Map Preventing Error

B.2 Restriction on Conflict Between sld Instruction and Interrupt Request

B.2.1 Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result of the instruction in <1> may not be stored in a register.

Instruction <1>

Id instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu

• Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2	not reg1, reg2	satsubr reg1, reg2	satsub reg1, reg2
satadd reg1, reg2	satadd imm5, reg2	or reg1, reg2	xor reg1, reg2
and reg1, reg2	tst_reg1, reg2	subr reg1, reg2	sub reg1, reg2
add reg1, reg2	add imm5, reg2	cmp reg1, reg2	cmp imm5, reg2
mulh reg1, reg2	shr imm5, reg2	sar imm5, reg2	shl imm5, reg2

<Example>

<i>></i>	ld.w [r11], r10	If the decode operation of the mov instruction <ii> immediately before the sld</ii>
	•	instruction <iii> and an interrupt request conflict before execution of the Id instruction</iii>
	•	<i> is complete, the execution result of instruction <i> may not be stored in a register.</i></i>

<ii> mov r10, r28 <iii> sld.w 0x28, r10

B.2.2 Countermeasure

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the following methods.

- Insert a nop instruction immediately before the sld instruction.
- Do not use the same register as the sld instruction destination register in the above instruction <ii> executed immediately before the sld instruction.

APPENDIX C REGISTER INDEX

(1/8)

Register Symbol	Register Name	Unit	Page
ADCR0	A/D conversion result register 0 (10 bits)	ADC	416
ADCR0H	A/D conversion result register 0H (8 bits)	ADC	416
ADCR1	A/D conversion result register 1 (10 bits)	ADC	416
ADCR1H	A/D conversion result register 1H (8 bits)	ADC	416
ADCR2	A/D conversion result register 2 (10 bits)	ADC	416
ADCR2H	A/D conversion result register 2H (8 bits)	ADC	416
ADCR3	A/D conversion result register 3 (10 bits)	ADC	416
ADCR3H	A/D conversion result register 3H (8 bits)	ADC	416
ADCR4	A/D conversion result register 4 (10 bits)	ADC	416
ADCR4H	A/D conversion result register 4H (8 bits)	ADC	416
ADCR5	A/D conversion result register 5 (10 bits)	ADC	416
ADCR5H	A/D conversion result register 5H (8 bits)	ADC	416
ADCR6	A/D conversion result register 6 (10 bits)	ADC	416
ADCR6H	A/D conversion result register 6H (8 bits)	ADC	416
ADCR7	A/D conversion result register 7 (10 bits)	ADC	416
ADCR7H	A/D conversion result register 7H (8 bits)	ADC	416
ADIC	Interrupt control register	INTC	281
ADM0	A/D converter mode register 0	ADC	411
ADM1	A/D converter mode register 1	ADC	413
ADM2	A/D converter mode register 2	ADC	415
ASC	Address setup wait control register	BCU	113
ASIF0	Asynchronous serial interface transmission status register 0	UART0	370
ASIF1	Asynchronous serial interface transmission status register 1	UART1	370
ASIF2	Asynchronous serial interface transmission status register 2	UART2	370
ASIM0	Asynchronous serial interface mode register 0	UART0	365
ASIM1	Asynchronous serial interface mode register 1	UART1	365
ASIM2	Asynchronous serial interface mode register 2	UART2	365
ASIS0	Asynchronous serial interface status register 0	UART0	369
ASIS1	Asynchronous serial interface status register 1	UART1	369
ASIS2	Asynchronous serial interface status register 2	UART2	369
BCC	Bus cycle control register	BCU	118
ВСР	Bus cycle period control register	BCU	114
ВСТ0	Bus cycle type configuration register 0	BCU	94
BCT1	Bus cycle type configuration register 1	BCU	94
BEC	Endian configuration register	BCU	97

(2/8)

Register Symbol	Register Name	Unit	Page
BRGC0	Baud rate generator control register 0	BRG0	388
BRGC1	Baud rate generator control register 1	BRG1	388
BRGC2	Baud rate generator control register 2	BRG2	388
BSC	Bus size configuration register	BCU	96
CCC00	Capture/compare register C00	RPU	330
CCC01	Capture/compare register C01	RPU	330
CCC10	Capture/compare register C10	RPU	330
CCC11	Capture/compare register C11	RPU	330
CCC20	Capture/compare register C20	RPU	330
CCC21	Capture/compare register C21	RPU	330
CCC30	Capture/compare register C30	RPU	330
CCC31	Capture/compare register C31	RPU	330
CKC	Clock control register	CG	306
CKSR0	Clock select register 0	UART0	387
CKSR1	Clock select register 1	UART1	387
CKSR2	Clock select register 2	UART2	387
CMD0	Compare register D0	RPU	354
CMD1	Compare register D1	RPU	354
CMD2	Compare register D2	RPU	354
CMD3	Compare register D3	RPU	354
CMICD0	Interrupt control register	INTC	281
CMICD1	Interrupt control register	INTC	281
CMICD2	Interrupt control register	INTC	281
CMICD3	Interrupt control register	INTC	281
CSC0	Chip area select control register 0	BCU	90
CSC1	Chip area select control register 1	BCU	90
CSIC0	Clocked serial interface clock selection register 0	CSI0	398
CSIC1	Clocked serial interface clock selection register 1	CSI1	398
CSIC2	Clocked serial interface clock selection register 2	CSI2	398
CSIIC0	Interrupt control register	INTC	280
CSIIC1	Interrupt control register	INTC	281
CSIIC2	Interrupt control register	INTC	281
CSIM0	Clocked serial interface mode register 0	CSI0	396
CSIM1	Clocked serial interface mode register 1	CSI1	396
CSIM2	Clocked serial interface mode register 2	CSI2	396
DADC0	DMA addressing control register 0	DMAC	204
DADC1	DMA addressing control register 1	DMAC	204
DADC2	DMA addressing control register 2	DMAC	204
DADC3	DMA addressing control register 3	DMAC	204

(3/8)

Register Symbol	Register Name	Unit	Page
DBC0	DMA byte count register 0	DMAC	206
DBC1	DMA byte count register 1	DMAC	206
DBC2	DMA byte count register 2	DMAC	206
DBC3	DMA byte count register 3	DMAC	206
DCHC0	DMA channel control register 0	DMAC	209
DCHC1	DMA channel control register 1	DMAC	209
DCHC2	DMA channel control register 2	DMAC	209
DCHC3	DMA channel control register 3	DMAC	209
DDA0H	DMA destination address register 0H	DMAC	204
DDA0L	DMA destination address register 0L	DMAC	205
DDA1H	DMA destination address register 1H	DMAC	204
DDA1L	DMA destination address register 1L	DMAC	205
DDA2H	DMA destination address register 2H	DMAC	204
DDA2L	DMA destination address register 2L	DMAC	205
DDA3H	DMA destination address register 3H	DMAC	204
DDA3L	DMA destination address register 3L	DMAC	205
DDIS	DMA disable status register	DMAC	211
DMAIC0	Interrupt control register	INTC	281
DMAIC1	Interrupt control register	INTC	281
DMAIC2	Interrupt control register	INTC	281
DMAIC3	Interrupt control register	INTC	281
DRST	DMA restart register	DMAC	211
DSA0H	DMA source address register 0H	DMAC	202
DSA0L	DMA source address register 0L	DMAC	203
DSA1H	DMA source address register 1H	DMAC	202
DSA1L	DMA source address register 1L	DMAC	203
DSA2H	DMA source address register 2H	DMAC	202
DSA2L	DMA source address register 2L	DMAC	203
DSA3H	DMA source address register 3H	DMAC	202
DSA3L	DMA source address register 3L	DMAC	203
DTFR0	DMA trigger factor register 0	DMAC	213
DTFR1	DMA trigger factor register 1	DMAC	213
DTFR2	DMA trigger factor register 2	DMAC	213
DTFR3	DMA trigger factor register 3	DMAC	213
DTOC	DMA terminal count output control register	DMAC	212
DWC0	Data wait control register 0	BCU	111
DWC1	Data wait control register 1	BCU	111
FLPMC	Flash programming mode control register	CPU	549

(4/8)

			(4/8
Register Symbol	Register Name	Unit	Page
IMR0	Interrupt mask register 0	INTC	284
IMR1	Interrupt mask register 1	INTC	284
IMR2	Interrupt mask register 2	INTC	284
IMR3	Interrupt mask register 3	INTC	284
INTM0	External interrupt mode register 0	INTC	287
INTM1	External interrupt mode register 1	INTC	287
INTM2	External interrupt mode register 2	INTC	287
INTM3	External interrupt mode register 3	INTC	287
INTM4	External interrupt mode register 4	INTC	287
ISPR	In-service priority register	INTC	285
LOCKR	Lock register	CPU	309
OVIC00	Interrupt control register	INTC	281
OVIC01	Interrupt control register	INTC	281
OVIC02	Interrupt control register	INTC	281
OVIC03	Interrupt control register	INTC	281
P0	Port 0	Port	474
P00IC0	Interrupt control register	INTC	281
P00IC1	Interrupt control register	INTC	281
P01IC0	Interrupt control register	INTC	281
P01IC1	Interrupt control register	INTC	281
P02IC0	Interrupt control register	INTC	281
P02IC1	Interrupt control register	INTC	281
P03IC0	Interrupt control register	INTC	281
P03IC1	Interrupt control register		281
P1	Port 1	Port	477
P10IC0	Interrupt control register	INTC	281
P10IC1	Interrupt control register	INTC	281
P10IC2	Interrupt control register	INTC	281
P10IC3	Interrupt control register	INTC	281
P11IC0	Interrupt control register	INTC	281
P11IC1	Interrupt control register	INTC	281
P11IC2	Interrupt control register	INTC	281
P11IC3	Interrupt control register	INTC	281
P12IC0	Interrupt control register	INTC	281
P12IC1	Interrupt control register	INTC	281
P12IC2	Interrupt control register	INTC	281
P12IC3	Interrupt control register	INTC	281
P13IC0	Interrupt control register	INTC	281
P13IC1	Interrupt control register	INTC	281
P13IC2	Interrupt control register	INTC	281

(5/8)

Register Symbol	Register Name	Unit	Page
P13IC3	Interrupt control register	INTC	281
P2	Port 2	Port	479
P3	Port 3	Port	483
P4	Port 4	Port	486
P5	Port 5	Port	489
P7	Port 7	Port	491
PAH	Port AH	Port	492
PAL	Port AL	Port	492
PBD	Port BD	Port	510
PCD	Port CD	Port	507
PCM	Port CM	Port	504
PCS	Port CS	Port	498
PCT	Port CT	Port	502
PDL	Port DL	Port	496
PFC0	Port 0 function control register	Port	472
PFC2	Port 2 function control register	Port	482
PFC3	Port 3 function control register	Port	485
PFC4	Port 4 function control register	Port	488
PFCCD	Port CD function control register	Port	508
PFCCM	Port CM function control register	Port	506
PFCCS	Port CS function control register	Port	501
PHCMD	Peripheral command register	CPU	305
PHS	Peripheral status register	CPU	308
PM0	Port 0 mode register	Port	474
PM1	Port 1 mode register	Port	477
PM2	Port 2 mode register	Port	480
PM3	Port 3 mode register	Port	483
PM4	Port 4 mode register	Port	486
PM5	Port 5 mode register	Port	489
PMAH	Port AH mode register	Port	495
PMAL	Port AL mode register	Port	492
PMBD	Port BD mode register	Port	510
PMC0	Port 0 mode control register	Port	475
PMC1	Port 1 mode control register	Port	478
PMC2	Port 2 mode control register	Port	481
PMC3	Port 3 mode control register	Port	484
PMC4	Port 4 mode control register	Port	487
PMC5	Port 5 mode control register	Port	490

(6/8)

Register Symbol	Register Name	Unit	Page
PMCAH	Port AH mode control register	Port	495
PMCAL	Port AL mode control register	Port	493
PMCBD	Port BD mode control register	Port	493
PMCCD	Port CD mode control register	Port	511
PMCCM	Port CM mode control register	Port	505
PMCCS	Port CS mode control register	Port	500
PMCCT	Port CT mode control register	Port	503
PMCD	Port CD mode register	Port	507
PMCDL	Port DL mode control register	Port	497
PMCM	Port CM mode register	Port	504
PMCS	Port CS mode register	Port	499
PMCT	Port CT mode register	Port	502
PMDL	Port DL mode register	Port	496
PRC	Page ROM configuration register	MEMC	145
PRCMD	Command register	CPU	312
PSC	Power-save control register	CPU	313
PSMR	Power-save mode register	CPU	312
PWMB0	PWM buffer register 0	PWM	452
PWMB1	PWM buffer register 1	PWM	452
PWMC0	PWM control register 0	PWM	450
PWMC1	PWM control register 1	PWM	450
RFS1	Refresh control register 1	MEMC	161
	SDRAM refresh control register 1	MEMC	190
RFS3	Refresh control register 3	MEMC	161
	SDRAM refresh control register 3	MEMC	190
RFS4	Refresh control register 4	MEMC	161
	SDRAM refresh control register 4	MEMC	190
RFS6	Refresh control register 6	MEMC	161
	SDRAM refresh control register 6	MEMC	190
RWC	Refresh wait control register	MEMC	163
RXB0	Receive buffer register 0	UART0	371
RXB1	Receive buffer register 1	UART1	371
RXB2	Receive buffer register 2	UART2	371
SCR1	DRAM configuration register 1	MEMC	153
	SDRAM configuration register 1	MEMC	174
SCR3	DRAM configuration register 3	MEMC	153
	SDRAM configuration register 3	MEMC	174

(7/8)

Register Symbol	Register Name	Unit	Page
SCR4	DRAM configuration register 4	MEMC	153
	SDRAM configuration register 4	MEMC	174
SCR6	DRAM configuration register 6	MEMC	153
	SDRAM configuration register 6	MEMC	174
SEIC0	Interrupt control register	INTC	281
SEIC1	Interrupt control register	INTC	281
SEIC2	Interrupt control register	INTC	281
SESC0	Valid edge select register C0	INTC	289, 336
SESC1	Valid edge select register C1	INTC	289, 336
SESC2	Valid edge select register C2	INTC	289, 336
SESC3	Valid edge select register C3	INTC	289, 336
SIO0	Serial I/O shift register 0	CSI0	400
SIO1	Serial I/O shift register 1	CSI1	400
SIO2	Serial I/O shift register 2	CSI2	400
SIOE0	Receive-only serial I/O shift register 0	CSI0	401
SIOE1	Receive-only serial I/O shift register 1	CSI1	401
SIOE2	Receive-only serial I/O shift register 2	CSI2	401
SOTB0	Clocked serial interface transmit buffer register 0	CSI0	402
SOTB1	Clocked serial interface transmit buffer register 1	CSI1	402
SOTB2	Clocked serial interface transmit buffer register 2	CSI2	402
SRIC0	Interrupt control register	INTC	281
SRIC1	Interrupt control register	INTC	281
SRIC2	Interrupt control register	INTC	281
STIC0	Interrupt control register	INTC	281
STIC1	Interrupt control register	INTC	281
STIC2	Interrupt control register	INTC	281
TMC0	Timer C0	RPU	328
TMC1	Timer C1	RPU	328
TMC2	Timer C2	RPU	328
TMC3	Timer C3	RPU	328
TMCC00	Timer mode control register C00	RPU	332
TMCC01	Timer mode control register C01	RPU	334
TMCC10	Timer mode control register C10	RPU	332
TMCC11	Timer mode control register C11	RPU	334
TMCC20	Timer mode control register C20	RPU	332
TMCC21	Timer mode control register C21	RPU	334
TMCC30	Timer mode control register C30	RPU	332
TMCC31	Timer mode control register C31	RPU	334

APPENDIX C REGISTER INDEX

(8/8)

Register Symbol	Register Name	Unit	Page
TMCD0	Timer mode control register D0	RPU	356
TMCD1	Timer mode control register D1	RPU	356
TMCD2	Timer mode control register D2	RPU	356
TMCD3	Timer mode control register D3	RPU	356
TMD0	Timer D0	RPU	356
TMD1	Timer D1	RPU	356
TMD2	Timer D2		356
TMD3	Timer D3	RPU	356
TXB0	Transmit buffer register 0	UART0	372
TXB1	Transmit buffer register 1	UART1	372
TXB2	Transmit buffer register 2	UART2	372
VSWC	System wait control register	BCU	86

APPENDIX D INSTRUCTION SET LIST

D.1 Conventions

(1) Register symbols used to describe operands

Register Symbol		Explanation
reg1	General-purpose register: L	Jsed as source register.
reg2	, ,	Used mainly as destination register. Also used as source register in some nstructions.
reg3	, ,	Used mainly to store the remainders of division results and the higher 3 bits of multiplication results.
bit#3	3-bit data for specifying the bi	it number
immX	X bit immediate data	
dispX	X bit displacement data	
regID	System register number	
vector	5-bit data that specifies the trap vector (00H to 1FH)	
cccc	4-bit data that shows the cond	ditions code
sp	Stack pointer (r3)	
ер	Element pointer (r30)	
listX	X item register list	

(2) Register symbols used to describe opcodes

Register Symbol	Explanation
R	1-bit data of a code that specifies reg1 or regID
r	1-bit data of the code that specifies reg2
w	1-bit data of the code that specifies reg3
d	1-bit displacement data
1	1-bit immediate data (indicates the higher bits of immediate data)
i	1-bit immediate data
cccc	4-bit data that shows the condition codes
CCCC	4-bit data that shows the condition codes of Bcond instruction
bbb	3-bit data for specifying the bit number
L	1-bit data that specifies a program register in the register list
S	1-bit data that specifies a system register in the register list

(3) Register symbols used in operation

Register Symbol	Explanation
←	Input for
GR[]	General-purpose register
SR[]	System register
zero-extend (n)	Expand n with zeros until word length.
sign-extend (n)	Expand n with signs until word length.
load-memory (a, b)	Read size b data from address a.
store-memory (a, b, c)	Write data b into address a in size c.
load-memory-bit (a, b)	Read bit b of address a.
store-memory-bit (a, b, c)	Write c to bit b of address a.
saturated (n)	Execute saturated processing of n (n is a 2's complement). If, as a result of calculations, $n \geq 7 FFFFFFFH, \text{ let it be } 7FFFFFFH.$ $n \leq 80000000H, \text{ let it be } 80000000H.$
result	Reflects the results in a flag.
Byte	Byte (8 bits)
Halfword	Halfword (16 bits)
Word	Word (32 bits)
+	Addition
-	Subtraction
II	Bit concatenation
×	Multiplication
÷	Division
%	Remainder from division results
AND	Logical product
OR	Logical sum
XOR	Exclusive OR
NOT	Logical negation
logically shift left by	Logical shift left
logically shift right by	Logical shift right
arithmetically shift right by	Arithmetic shift right

(4) Register symbols used in an execution clock

Register Symbol	Explanation
i	If executing another instruction immediately after executing the first instruction (issue).
r	If repeating execution of the same instruction immediately after executing the first instruction (repeat).
1	If using the results of instruction execution in the instruction immediately after the execution (latency).

(5) Register symbols used in flag operations

Identifier	Explanation
(Blank)	No change
0	Clear to 0
×	Set or cleared in accordance with the results.
R	Previously saved values are restored.

(6) Condition codes

Condition Name (cond)	Condition Code (cccc)	Condition Formula	Explanation
V	0 0 0 0	OV = 1	Overflow
NV	1 0 0 0	OV = 0	No overflow
C/L	0 0 0 1	CY = 1	Carry Lower (Less than)
NC/NL	1 0 0 1	CY = 0	No carry Not lower (Greater than or equal)
Z/E	0 0 1 0	Z = 1	Zero Equal
NZ/NE	1 0 1 0	Z = 0	Not zero Not equal
NH	0 0 1 1	(CY or Z) = 1	Not higher (Less than or equal)
Н	1 0 1 1	(CY or Z) = 0	Higher (Greater than)
N	0 1 0 0	S = 1	Negative
Р	1 1 0 0	S = 0	Positive
Т	0 1 0 1	-	Always (Unconditional)
SA	1 1 0 1	SAT = 1	Saturated
LT	0 1 1 0	(S xor OV) = 1	Less than signed
GE	1 1 1 0	(S xor OV) = 0	Greater than or equal signed
LE	0 1 1 1	$((S \times OV) \text{ or } Z) = 1$	Less than or equal signed
GT	1 1 1 1	((S xor OV) or Z) = 0	Greater than signed

D.2 Instruction Set (in Alphabetical Order)

(1/6)

	T	T			1			1			(1/6)
Mnemonic	Operand	Opcode	Operation			ecuti Clock			ı	Flags	;	
					i	r	1	CY	OV	S	Z	SAT
ADD	reg1, reg2	rrrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend (i	imm5)	1	1	1	×	×	×	×	
ADDI	imm16, reg1, reg2	rrrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend (imm16)	1	1	1	×	×	×	×	
AND	reg1, reg2	rrrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	
ANDI	imm16, reg1, reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	end (imm16)	1	1	1		0	0	×	
Bcond	disp9	ddddd1011dddcccc Note 1			3 Note 2	3 Note 2	3 Note 2					
				When conditions are not satisfied	1	1	1					
BSH	reg2, reg3	rrrrr11111100000 wwwww01101000010	GR[reg3]←GR[reg2] (23:16) II GR[r GR[reg2] (7:0) II GR[reg2] (15:8)	reg2] (31:24) II	1	1	1	×	0	×	×	
BSW	reg2, reg3	rrrrr11111100000 wwwww01101000000	GR[reg3]←GR[reg2] (7:0) GR[reg GR[reg2] (23:16) GR[reg2] (31:24		1	1	1	×	0	×	×	
CALLT	imm6	0000001000iiiii	CTPC←PC+2 (return PC) CTPSW←PSW adr←CTBP+zero-extend (imm6 logic PC←CTBP+zero-extend (Load-mem-		5	5	5					
CLR1	bit#3, disp16[reg1]	10bbb1111110RRRRR ddddddddddddddddd	adr←GR[reg1]+sign-extend (disp16 Z flag←Not (Load-memory-bit (adr, Store-memory-bit (adr, bit#3, 0)	•	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrrr1111111RRRRR 0000000011100100	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr, Store-memory-bit (adr, reg2, 0)	reg2))	3 Note 3	3 Note 3	3 Note 3				×	
CMOV	cccc, imm5, reg2, reg3	rrrrr111111iiii wwwww011000cccc0	if conditions are satisfied then GR[reg3]—sign-extended (imr else GR[reg3]—GR[reg2]	n5)	1	1	1					
	cccc, reg1, reg2, reg3	rrrrr111111RRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3]—GR[reg1] else GR[reg3]—GR[reg2]		1	1	1					
CMP	reg1, reg2	rrrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5, reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend (imm	n5)	1	1	1	×	×	×	×	
CTRET		0000011111100000 0000000101000100	PC←CTPC PSW←CTPSW		4	4	4	R	R	R	R	R
DBRET		0000011111100000 0000000101000110	PC←DBPC PSW←DBPSW		4	4	4	R	R	R	R	R

(2/6)

Mnemonic	Operand	Opcode	Operation	Ex	ecut	ion		-	Flags	,	2/6)
		·	·	(Clocl	k			Ĭ		
				i	r	I	CY	ov	s	Z	SAT
DBTRAP		1111100001000000	DBPC←PC+2 (returned PC) DBPSW←PSW PSW.NP←1 PSW.EP←1 PSW.ID←1 PC←00000060H	4	4	4					
DI		0000011111100000 0000000101100000	PSW.ID←1	1	1	1					
DISPOSE	imm5, list12	0000011001iiiiiL LLLLLLLLLL00000	sp←sp+zero-extend (imm5 logically shift left by 2) GR[reg in list12]←Load-memory (sp, Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded		n+1 Note4						
	imm5, list12, [reg1]	0000011001iiiiiL LLLLLLLLLLRRRRR Note 5	sp←sp+zero-extend (imm5 logically shift left by 2) GR[reg in list12]←Load-memory (sp, Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]		n+3 Note 4						
DIV	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01011000000	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVH	reg1, reg2	rrrrr000010RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6}	35	35	35		×	×	×	
	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01010000000	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6} GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVHU	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01010000010	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6} GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
DIVU	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01011000010	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
El		1000011111100000 0000000101100000	PSW.ID←0	1	1	1					
HALT		0000011111100000 0000000100100000	Stop	1	1	1					
HSW	reg2, reg3	rrrrr11111100000 wwwww01101000100	GR[reg3]←GR[reg2] (15:0) II GR[reg2] (31:16)	1	1	1	×	0	×	×	
JARL	disp22, reg2	rrrrr11110dddddd ddddddddddddddd0 Note 7	GR[reg2]←PC+4 PC←PC+sign-extend (disp22)	3	3	3					
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	4	4	4					
JR	disp22	0000011110dddddd dddddddddddddd0 Note 7	PC←PC+sign-extend (disp22)	3	3	3					
LD.B	disp16[reg1], reg2	rrrrr111000RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend (disp16) GR[reg2]←sign-extend (Load-memory (adr, Byte))	1	1	Note					
LD.BU	disp16[reg1], reg2	rrrrr11110bRRRRR ddddddddddddddd1 Notes 8, 10	adr←GR[reg1]+sign-extend (disp16) GR[reg2]←zero-extend (Load-memory (adr, Byte))	1	1	Note 11					

		<u> </u>			I			1			(3/6
Mnemonic	Operand	Opcode	Орег	ration		ecut Clock		Flags		;		
					i	r	ı	CY	ov	S	Z	SA
LD.H	disp16[reg1], reg2	rrrrr111001RRRRR dddddddddddddddd0 Note 8	adr←GR[reg1]+sign-extend GR[reg2]←sign-extend (Lo Halfword))		1	1	Note 11					
LDSR	reg2, regID	rrrrr1111111RRRRR	SR[regID]←GR[reg2]	Other than regID = PSW	1	1	1					
		0000000000100000 Note 12		regID = PSW	1	1	1	×	×	×	×	×
LD.HU	disp16[reg1], reg2	rrrrr111111RRRRR dddddddddddddddd1 Note 8	adr←GR[reg1]+sign-extend GR[reg2]←zero-extend (Lo Halfword)		1	1	Note 11					
LD.W	disp16[reg1], reg2	rrrrr111001RRRRR dddddddddddddddd1 Note 8	adr←GR[reg1]+sign-exten GR[reg2]←Load-memory (1	1	Note 11					
MOV	reg1, reg2	rrrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					
	imm5, reg2	rrrrr010000iiiii	GR[reg2]←sign-extend (im	nm5)	1	1	1					
	imm32, reg1	00000110001RRRRR	GR[reg1]←imm32		2	2	2					
MOVEA	imm16, reg1, reg2	rrrrr110001RRRRR	GR[reg2]←GR[reg1]+sign-	extend (imm16)	1	1	1					
MOVHI	imm16, reg1, reg2	rrrrr110010RRRRR	GR[reg2]←GR[reg1]+(imm	116 II 0 ¹⁶)	1	1	1					
MUL ^{Note 22}	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01000100000	GR[reg3] II GR[reg2]←GR	[reg2]×GR[reg1]	1	2 Note14	2					
	imm9, reg2, reg3	rrrrr111111iiii wwwww01001IIII00 Note 13	GR[reg3] II GR[reg2]←GR	[reg2]×sign-extend (imm9)	1	2 Note14	2					
MULH	reg1, reg2	rrrrr000111RRRRR	GR[reg2]←GR[reg2] ^{Note 6} ×G	GR[reg1] ^{Note 6}	1	1	2					
	imm5, reg2	rrrrr010111iiii	GR[reg2]←GR[reg2] ^{Note 6} ×si	ign-extend (imm5)	1	1	2					
MULHI	imm16, reg1, reg2	rrrrr110111RRRRR	GR[reg2]←GR[reg1] ^{Note 6} ×in	nm16	1	1	2					
MULU ^{Note 22}	reg1, reg2, reg3	rrrrr1111111RRRRR wwwww01000100010	GR[reg3] II GR[reg2]←GR	[reg2]×GR[reg1]	1	2 Note 14	2					
	imm9, reg2, reg3	rrrrr111111iiii wwwww01001IIII10 Note 13	GR[reg3] II GR[reg2]←GR	[reg2]×zero-extend (imm9)	1	2 Note 14	2					
NOP		0000000000000000	Pass at least one clock cyc	cle doing nothing.	1	1	1					
NOT	reg1, reg2	rrrrr000001RRRRR	GR[reg2]←NOT (GR[reg1]	()	1	1	1		0	×	×	
NOT1	bit#3, disp16[reg1]	01bbb1111110RRRRR ddddddddddddddddd	adr←GR[reg1]+sign-exten Z flag←Not (Load-memory Store-memory-bit (adr, bit#	r-bit (adr, bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrrr1111111RRRRR 0000000011100010	adr←GR[reg1] Z flag←Not (Load-memory Store-memory-bit (adr, reg	r-bit (adr, reg2))	3 Note 3	3 Note 3	3 Note 3				×	

*

 \star

(4/6)

							1			(4/6)
Mnemonic	Operand	Opcode	Operation		ecut Clocl			F	Flags	;	
				i	r	I	CY	OV	S	Z	SAT
OR	reg1, reg2	rrrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]	1	1	1		0	×	×	
ORI	imm16, reg1, reg2	rrrrr110100RRRRR	GR[reg2]←GR[reg1]OR zero-extend (imm16)	1	1	1		0	×	×	
PREPARE	list12, imm5	0000011110iiiiiL LLLLLLLLLL00001	Store-memory (sp–4, GR[reg in list12], Word) sp←sp–4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend (imm5)		n+1 Note4	n+1 Note4					
	list12, imm5, sp/imm ^{Note 15}	0000011110iiiiiL LLLLLLLLLLLff011 imm16/imm32 Note 16	Store-memory (sp–4, GR[reg in list12], Word) GR[reg in list12]←Load memory (sp, Word) sp←sp–4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]	Note 4	Note 4	n+2 Note4 Note17					
RETI		0000011111100000 0000000101000000	if PSW.EP=1 then PC ←EIPC PSW ←EIPSW else if PSW.NP=1 then PC ←FEPC PSW ←FEPSW else PC ←EIPC PSW ←EIPSW	4	4	4	R	R	R	R	R
SAR	reg1, reg2	rrrrr1111111RRRRR 0000000010100000	GR[reg2]←GR[reg2] arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrrr010101iiiii	GR[reg2]←GR[reg2] arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SASF	cccc, reg2	rrrr1111110ccc	if conditions are satisfied then GR[reg2]←(GR[reg2] Logically shift left by 1) OR 00000001H else GR[reg2]←(GR[reg2] Logically shift left by 1) OR 00000000H	1	1	1					
SATADD	reg1, reg2	rrrrr000110RRRRR	GR[reg2]←saturated (GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×
	imm5, reg2	rrrrr010001iiiii	GR[reg2]←saturated (GR[reg2]+sign-extend (imm5)	1	1	1	×	×	×	×	×
SATSUB	reg1, reg2	rrrrr000101RRRRR	GR[reg2]←saturated (GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	×
SATSUBI	imm16, reg1, reg2	rrrrr110011RRRRR	GR[reg2]←saturated (GR[reg1]–sign-extend (imm16)	1	1	1	×	×	×	×	×
SATSUBR	reg1, reg2	rrrrr000100RRRRR	GR[reg2]←saturated (GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc, reg2	rrrrr1111110ccc	If conditions are satisfied then GR[reg2]—00000001H else GR[reg2]—00000000H	1	1	1					

1	T	1					1			(5/6)
Mnemonic	Operand	Opcode	Operation		ecut Clocl			ı	Flags	;	
				i	r	1	CY	OV	S	Z	SAT
SET1	bit#3, disp16[reg1]	00bbb111110RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend (disp16) Z flag←Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, 1)	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrrr1111111RRRRR 0000000011100000	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr, reg2)) Store-memory-bit (adr, reg2, 1)	3 Note 3	3 Note 3	3 Note 3				×	
SHL	reg1, reg2	rrrrr1111111RRRRR 0000000011000000	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrrr010110iiiii	GR[reg2]←GR[reg2] logically shift left by zero-extend (imm5)	1	1	1	×	0	×	×	
SHR	reg1, reg2	rrrrr1111111RRRRR 0000000010000000	GR[reg2]←GR[reg2] logically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5, reg2	rrrrr010100iiiii	GR[reg2]←GR[reg2] logically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SLD.B	disp7[ep], reg2	rrrrr0110ddddddd	adr←ep+zero-extend (disp7) GR[reg2]←sign-extend (Load-memory (adr, Byte))	1	1	Note 9					
SLD.BU	disp4[ep], reg2	rrrrr0000110dddd Note 18	adr←ep+zero-extend (disp4) GR[reg2]←zero-extend (Load-memory (adr, Byte))	1	1	Note 9					
SLD.H	disp8[ep], reg2	rrrrr1000ddddddd Note 19	adr←ep+zero-extend (disp8) GR[reg2]←sign-extend (Load-memory (adr, Halfword))	1	1	Note 9					
SLD.HU	disp5[ep], reg2	rrrrr0000111dddd Notes 18, 20	adr←ep+zero-extend (disp5) GR[reg2]←zero-extend (Load-memory (adr, Halfword))	1	1	Note 9					
SLD.W	disp8[ep], reg2	rrrrr1010dddddd0 Note 21	adr←ep+zero-extend (disp8) GR[reg2]←Load-memory (adr, Word)	1	1	Note 9					
SST.B	reg2, disp7[ep]	rrrrr0111ddddddd	adr←ep+zero-extend (disp7) Store-memory (adr, GR[reg2], Byte)	1	1	1					
SST.H	reg2, disp8[ep]	rrrrr1001ddddddd Note 19	adr←ep+zero-extend (disp8) Store-memory (adr, GR[reg2], Halfword)	1	1	1					
SST.W	reg2, disp8[ep]	rrrrr1010dddddd1 Note 21	adr←ep+zero-extend (disp8) Store-memory (adr, GR[reg2], Word)	1	1	1					
ST.B	reg2, disp16[reg1]	rrrrr111010RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend (disp16) Store-memory (adr, GR[reg2], Byte)	1	1	1					
ST.H	reg2, disp16[reg1]	rrrrr111011RRRRR dddddddddddddddd0 Note 8	adr←GR[reg1]+sign-extend (disp16) Store-memory (adr, GR[reg2], Halfword)	1	1	1					
ST.W	reg2, disp16[reg1]	rrrrr111011RRRRR ddddddddddddddd1 Note 8	adr←GR[reg1]+sign-extend (disp16) Store-memory (adr, GR[reg2], Word)	1	1	1					
STSR	regID, reg2	rrrrr1111111RRRRR 0000000001000000	GR[reg2]←SR[regID]	1	1	1					

(6/6)

Mnemonic	Operand	Opcode	Operation		ecut			F	lags	,	0/0)
				i	r	1	CY	OV	S	Z	SAT
SUB	reg1, reg2	rrrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1, reg2	rrrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	0000000010RRRR	adr←(PC+2)+(GR[reg1] logically shift left by 1) PC←(PC+2)+(sign-extend (Load-memory (adr, Halfword))) logically shift left by 1	5	5	5					
SXB	reg1	00000000101RRRRR	GR[reg1]←sign-extend (GR[reg1] (7:0))	1	1	1					
SXH	reg1	00000000111RRRRR	GR[reg1]←sign-extend (GR[reg1] (15:0))	1	1	1					
TRAP	vector	00000111111iiii 0000000100000000	EIPC ← PC + 4 (return PC) EIPSW ← PSW ECR.EICC ← exception code	4	4	4					
TST	reg1, reg2	rrrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3, disp16[reg1]	11bbb111110RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend (disp16) Z flag←Not (Load-memory-bit (adr, bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrrr1111111RRRRR 00000000011100110	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr, reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1, reg2	rrrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16, reg1, reg2	rrrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	00000000100RRRRR	GR[reg1]←zero-extend (GR[reg1] (7:0))	1	1	1					
ZXH	reg1	00000000110RRRRR	GR[reg1]←zero-extend (GR[reg1] (15:0))	1	1	1					

- Notes 1. dddddddd: Higher 8 bits of disp9.
 - 2. 4 if there is an instruction that rewrites the contents of PSW immediately before
 - 3. If there is no wait state (3 + the number of read access wait states).
 - **4.** n is the total number of list12 load registers. (According to the number of wait states. Also, if there are no wait states, n is the total number of list12 registers. Same operation as when n = 1 if n = 0)
 - 5. RRRRR: other than 00000.
 - **6.** The lower halfword data only is valid.
 - 7. dddddddddddddddddd: The higher 21 bits of disp22.
 - 8. dddddddddddddd: The higher 15 bits of disp16.
 - 9. According to the number of wait states (1 if there are no wait states).
 - 10. b: bit 0 of disp16.
 - 11. According to the number of wait states (2 if there are no wait states).

- **Notes 12.** In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the opcode. Therefore, the meaning of register specification in the mnemonic description and in the opcode differs from other instructions.
 - rrrrr = regID specification
 - RRRRR = reg2 specification
 - 13. iiiii: Lower 5 bits of imm9.
 - IIII: Higher 4 bits of imm9.
 - **14.** In the case of reg2 = reg3 (the lower 32 bits of the results are not written in the register) or reg3 = r0 (the higher 32 bits of the results are not written in the register), shortened by 1 clock.
 - 15. sp/imm: Specified by bits 19 and 20 of the sub-opcode.
 - **16.** ff = 00: Load sp in ep.
 - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
 - 17. If imm = imm32, n + 3 clocks.
 - 18. rrrrr: Other than 00000.
 - 19. ddddddd: Higher 7 bits of disp8.
 - 20. dddd: Higher 4 bits of disp5.
 - 21. dddddd: Higher 6 bits of disp8.
 - **22.** Do not make a register combination that satisfies all the following conditions when executing the "MUL reg1, reg2, reg3" instructions. If an instruction that satisfies these conditions is executed, the operation is not guaranteed.
 - reg1 = reg3
 - reg1 ≠ reg2
 - reg1 ≠ r0
 - reg3 ≠ r0

.

*

E.1 Major Revisions in This Edition

(1/3)

	(1/3
Page	Description
p. 37	Modification of description in 2.2 Pin Status
pp. 44, 45	Addition of Caution to 2.3 (9) (b) (i) WAIT (Wait) and (v) HLDRQ (Hold request)
p. 50	Modification of description in 2.3 (13) (b) (i) A16 to A25 (Address)
p. 50	Modification of description in 2.3 (14) (b) (i) A0 to A15 (Address)
p. 51	Modification of description in 2.3 (15) (b) (i) D0 to D15 (Data)
p. 54	Change of I/O circuit type of CKSEL in 2.4 Pin I/O Circuits and Recommended Connection of Unused Pins
p. 55	Addition of Remark to 2.5 Pin I/O Circuits
p. 88	Modification of description in 4.2.1 Pin status during internal ROM, internal RAM, and on-chip peripheral I/O
	access
p. 94	Addition of description to 4.4 (1) Bus cycle type configuration registers 0, 1 (BCT0, BCT1)
p. 119	Addition of description to 4.8.1 Function outline
p. 131	Deletion of description from 4.10.1 Program space
p. 171	Addition of description to 5.4.3 (1) Output of each address and connection of SDRAM
p. 173	Addition of description to 5.4.3 (2) Bank address output
p. 174	Addition of Caution to 5.4.4 SDRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)
p. 190	Addition of Caution to 5.4.6 (1) SDRAM refresh control registers 1, 3, 4, 6 (RFS1, RFS3, RFS4, RFS6)
p. 202	Modification of description in 6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)
p. 202	Addition of description and Caution to 6.3.1 (1) DMA source address registers 0H to 3H (DSA0H to DSA3H)
p. 204	Modification of description in 6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)
p. 204	Addition of description and Caution to 6.3.2 (1) DMA destination address registers 0H to 3H (DDA0H to
	DDA3H)
p. 206	Addition of Cautions and modification of description in 6.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)
p. 207	Addition of description and Cautions to 6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)
pp. 209, 210	Modification of description in 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)
p. 211	Modification of description in 6.3.6 DMA disable status register (DDIS)
p. 211	Modification of description in 6.3.7 DMA restart register (DRST)
pp. 213, 215	Addition of Caution and modification of description in 6.3.9 DMA trigger factor registers 0 to 3 (DTFR0 to
	DTFR3)
p. 223	Addition of Caution to 6.6.1 2-cycle transfer
p. 251	Deletion of Note from Table 6-2 External Bus Cycles During DMA Transfer
p. 252	Modification of description in 6.9 Next Address Setting Function
p. 254	Addition of Cautions to 6.10 DMA Transfer Start Factors
p. 256	Modification of description in 6.11 Terminal Count Output upon DMA Transfer End
p. 256	Addition of Figure 6-22 Terminal Count Signal (TCn) Timing Example (2)
p. 257	Modification of description in 6.12 Forcible Suspension
p. 258	Modification of description of Remark in Figure 6-23 Example of Forcible Termination of DMA Transfer

648

(2/3)

Page	Description
p. 259	Addition of 6.13.1 Restriction related to DMA transfer forcible termination
p. 261	Modification of description in 6.14 Times Related to DMA Transfer
pp. 261, 262	Addition of Caution and modification of description in 6.15.1 Example of response time to DMA request
p. 263	Addition of 6.15.2 Maximum response time for DMA transfer request
p. 264	Addition of 6.16 (4) Holding DMARQn signal
p. 264	Addition of description to 6.16 (5) DMAAKn signal output
p. 264	Addition of 6.16 (7) Program execution and DMA transfer with internal RAM
p. 264	Addition of 6.16 (8) Restrictions related to automatic clearing of TCn bit of DCHCn register
p. 265	Addition of 6.16 (9) Read values of DSAn and DDAn registers
p. 269	Deletion of description from 7.2 Non-Maskable Interrupts
p. 281	Addition of Caution to 7.3.4 Interrupt control register (xxICn)
p. 285	Addition of Caution to 7.3.6 In-service priority register (ISPR)
p. 300	Modification of description in Figure 7-14 Pipeline Operation at Interrupt Request Acknowledgement
	(Outline)
p. 301	Addition of description to 7.8 Periods in Which Interrupts Are Not Acknowledged
p. 319	Addition of description to 9.5.4 (2) (a) Release according to a non-maskable interrupt request or an
	unmasked maskable interrupt request
p. 322	Addition of description to 9.5.5 (2) (a) Release according to a non-maskable interrupt request or an
	unmasked maskable interrupt request
pp. 341, 342	Addition of timing to Figure 10-5 Compare Operation Example
p. 343	Change of timing of Figure 10-6 TMC1 Compare Operation Example (Set/Reset Output Mode)
pp. 365, 366	Addition of Caution and Notes to 11.2.3 (1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)
p. 377	Addition of Caution to 11.2.5 (3) Continuous transmission operation
pp. 411, 412	Modification of description in 12.3 (1) A/D converter mode register 0 (ADM0)
p. 413	Addition of Cautions to 12.3 (2) A/D converter mode register 1 (ADM1)
p. 419	Addition of description to 12.4.2 (1) (b) Timer trigger mode
p. 421	Modification of description in Figure 12-3 Select Mode Operation Timing: 1-Buffer Mode (ANI1)
p. 422	Modification of description in Figure 12-4 Select Mode Operation Timing: 1-Buffer Mode (ANI6)
p. 423	Modification of description in Figure 12-5 Scan Mode Operation Timing: 4-Channel Scan (ANIO)
p. 442	Addition of 12.8.5 Reconversion operation in timer 1 trigger mode
p. 443	Addition of 12.8.6 Supplementary information on A/D conversion time
p. 457	Addition of Remark to 14.2 Port Configuration
p. 491	Modification of description of Caution in 14.3.7 (1) Operation in control mode
p. 504	Addition of Note to 14.3.13 (1) Operation in control mode
p. 511	Addition of 14.4 Setting to Use Alternate Function of Port Pin
p. 520	Addition of 14.5 Operation of Port Function
p. 521	Addition of 14.6 Cautions
p. 522	Addition of description to Table 15-1 Operation Status of Each Pin During Reset
p. 561	Addition of CHAPTER 17 ELECTRICAL SPECIFICATIONS
p. 620	Addition of CHAPTER 18 PACKAGE DRAWINGS
p. 622	Addition of CHAPTER 19 RECOMMENDED SOLDERING CONDITIONS

(3/3)

Page	Description
p. 624	Addition of APPENDIX A NOTES ON TARGET SYSTEM DESIGN
p. 627	Addition of APPENDIX B CAUTIONS
pp. 643, 646,	Addition of description and Note to D.2 Instruction Set (In Alphabetical Order)
647	
p. 648	Addition of APPENDIX E REVISION HISTORY

E.2 Revision History up to Preceding Edition

The following table shows the revision history up to the previous edition. The "Applied to:" column indicates the chapters of each edition in which the revision was applied.

(1/7)

Edition	Major Revision from Previous Edition	Applied to:				
2nd	Bit numbers of bits defined as reserved words in the device file are enclosed in brackets.	Throughout				
	Change of bit unit for manipulation for the following registers: VSWC, DDIS, DRST, ADM1, BCP, RWC, TMCCn1, SESCn, CKC, DTOC, INTMn, CSICn, SOTBn, RXBn, ASISn, TXBn, CKSRn, BRGCn (n = 0 to 3, 1 to 4, or 0 to 2)					
	Change of names of CE, CAE, and CS bits of each register					
	Addition of description to 2.3 (9) (b) (vii) SELFREF	CHAPTER 2 PIN				
	Change from type 5-K to type 5-AC in 2.4 Pin I/O Circuits and Recommended Connection of Unused Pins	FUNCTIONS				
	Change from type 5-K to type 5-AC in 2.5 Pin I/O Circuits					
	Modification of r2 in 3.2 CPU Register Set	CHAPTER 3 CPU FUNCTION				
	Modification of description of r2 in 3.2.1 Program register set					
	Deletion of Caution 1 from 3.4.5 (3) Internal peripheral I/O area					
	Deletion of description from 3.4.7 Recommended use of address space					
	Modification of PAL, PAH, PDL, PMAL, PMAH, PMDL, PMCAL, PMCAH, and PMCDL registers in 3.4.8 Peripheral I/O registers					
	Modification of IMR0 to IMR3 registers in 3.4.8 Peripheral I/O registers					
	Change of symbol of DRCn register to SCRn register (n = 1, 3, 4, 6) in 3.4.8 Peripheral I/O registers					
	Change of symbol of RFCn register to RFSn register (n = 1, 3, 4, 6) in 3.4.8 Peripheral I/O registers					
	Change of symbol of UNLOCK register to LOCKR in 3.4.8 Peripheral I/O registers					
	Modification of address of DTOC register in 3.4.8 Peripheral I/O registers					
	Addition of description to 3.4.9 Specific registers					
	Change of set value in 3.4.10 System wait control register (VSWC)					
	Addition of description to 3.4.11 Cautions					
	Modification of description in 4.2.1 Pin status during internal ROM, internal RAM, and peripheral I/O access	CHAPTER 4 BUS CONTROL				
	Addition of Caution 3 to 4.6.1 (3) Bus cycle period control register (BCP)	FUNCTION				

(2/7)

Edition	Major Revision from Previous Edition	Applied to:
2nd	Change of symbol of DRCn register to SCRn register (n = 1, 3, 4, 6) in 5.3.4 DRAM configuration registers 1, 3, 4, 6 (SCR1, SCR3, SCR4, SCR6)	CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION
	Change of symbol of RFCn register to RFSn register (n = 1, 3, 4, 6) in 5.3.6 (1) Refresh control registers 1, 3, 4, 6 (RFS1, RFS3, RFS4, RFS6)	
	Addition of Caution 2 to 5.3.7 Self-refresh control function	
	Addition of Note 1 to Figure 5-10 Self Refresh Timing (DRAM)	
	Addition of Caution 2 to 5.4.7 Self-refresh control function	
	Addition of Note 1 to Figure 5-19 Self Refresh Timing (SDRAM)	
	Change of bit name in 6.3.8 DMA terminal count output control register (DTOC)	CHAPTER 6 DMA
	Addition of DFn bit to 6.3.9 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	FUNCTIONS (DMA
	Change and addition of description in 6.5.1 Single transfer mode	CONTROLLER)
	Addition of Note 1 to Figure 6-8 Timing of 2-Cycle DMA Transfer (External I/O → SRAM)	
	Addition timing of 2-cycke DMA transfer to Figures 6-9 through 6-12	
	Addition of description to 6.6.2 Flyby transfer	
	Change of Remark 1 in 6.7.1 Transfer type and transfer object	
	Change of description in 6.17 (3) Bus arbitration for CPU	
	Modification of names of interrupt sources in Table 7-1 Interrupt/Exception Source List	CHAPTER 7
	Change and addition of description in 7.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)	INTERRUPT/EXCEP TION PROCESSING FUNCTION
	Modification of Caution in 7.3.9 (2) Valid edge selection registers C0 to C3 (SESC0 to SESC3)	
	Addition of description of CKDIV0 to CKDIV2 bits to 9.3.4 Clock control register (CKC)	CHAPTER 9 CLOCK GENERATOR FUNCTION
	Change of symbol of UNLOCK register to LOCKR register and addition of Caution in 9.4 PLL Lockup	
	Addition of Caution to 9.5.3 (1) Setting and operation status	
	Addition of timing of CLKOUT to 9.6.1 (1) Securing the time using an on-chip time base counter	
	Modification of generated interrupt signal names in Table 10-1 Timer C Configuration	CHAPTER 10 TIMER/COUNTER FUNCTION (REAL- TIME PULSE UNIT)
	Addition of description to Caution in 11.2.3 (1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)	CHAPTER 11 SERIAL INTERFACE FUNCTION
	Addition of description to Caution in 11.2.6 (2) (a) Clock select registers 0 to 2 (CKSR0 to CKSR2)	
	Addition of high-speed transfer in slave mode to 11.3.1 Features	
	Addition of description to Caution and Pin status with CSIn operation disabled to 11.3.3 (1) Clocked serial interface mode registers 0 to 2 (CSIM0 to CSIM2)	
	Addition of description to 12.3 (4) A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)	CHAPTER 12 A/D CONVERTER
	Modification of description in 12.6.1 (2) (a) 1-trigger mode	

(3/7)

Edition	Major Revision from Previous Edition	Applied to:
2nd	Modification of block diagram of each type in Figures 14-2, 14-4, 14-5 , and 14-7 through 14-14	CHAPTER 14 PORT FUNCTIONS
	Addition of description and Note to 14.3.8 Port AL	
	Addition of description and Note to 14.3.9 Port AH	
	Addition of description and Note to 14.3.10 Port DL	
	Addition of Note to 14.3.11 (2) (b) Port CS mode control register (PMCCS)	
	Addition of Note to 14.3.12 (2) (b) Port CT mode control register (PMCCT)	
	Addition of Caution and Note to 14.3.13 (2) (b) Port CM mode control register (PMCCM)	
	Addition of description to 14.3.13 (2) (c) Port CM function control register (PFCCM)	
	Addition of Note to 14.3.14 (2) (b) Port CD mode control register (PMCCD)	
	Modification of Figure 16-1 Connection Example of Adapter (FA-144GJ-UEN) for V850E/MA1 Flash Memory Programming	CHAPTER 16 FLASH MEMORY (µPD70F3107)
	Addition of handshake-supporting CSI as communication mode to 16.6.3 Selection of communication mode	
	Change and addition of description in 16.7 Flash Memory Programming by Self Writing	
3rd	 The following products have been developed µPD703016GJ-xxx-UEN, 703107GJ-xxx-UEN, and 70F3107GJ-UEN Addition of product under development 161-pin plastic FBGA package 	Throughout
	Change of pin names in Pin Identification	CHAPTER 1 INTRODUCTION CHAPTER 2 PIN FUNCTIONS
	Modification of description in 1.6.2 (11) Ports	
	Change of pin names in 2.1 (2) Non-port pins	
	Addition of description to 2.3 (12) (b) (ii) SDCLK (SDRAM clock output)	
	Change of description in 2.4 Pin I/O Circuits and Recommended Connection of Unused Pins	
	Addition of Note and modification of Caution 1 in 3.4.5 (3) Internal peripheral I/O area	CHAPTER 3 CPU FUNCTION
	Modification of Note in Figure 3-9 Recommended Memory Map	
	Change of description in 3.4.10 System wait control register (VSWC)	
	Addition of Note to 4.3 Memory Block Function	CHAPTER 4 BUS CONTROL FUNCTION
	Modification of description in 4.5.1 Number of access clocks	
	Modification of description in Table 4-1 Bus Cycles in Which Wait Function Is Valid	
	Modification of description in 4.9 Bus Priority Order	
	Addition of Note to Figure 5-5 Page ROM Access Timing	CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION
	Modification of Figure 5-18 CBR Refresh Timing (SDRAM)	
	Modification of Figure 5-19 Self-Refresh Timing (SDRAM)	
	Modification of Remark 1 in Table 6-1 Relationship Between Transfer Type and Transfer Object	CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)

(4/7)

Edition	Major Revision from Previous Edition	Applied to:
3rd	Modification of Figure 7-14 Pipeline Operation at Interrupt Request Acknowledgement (Outline)	CHAPTER 7 INTERRUPT/EXCEP TION PROCESSING FUNCTION
	Addition of description to 7.8 Periods in Which Interrupts Are Not Acknowledged	
	Modification of description in 9.3.1 Direct mode	CHAPTER 9 CLOCK GENERATION FUNCTION
	Modification of Caution in 9.3.2 PLL mode	
	Modification of Caution 3 in 9.3.4 Clock control register (CKC)	
	Modification of Caution 4 in 9.5.2 (3) Power-save control register (PSC)	
	Modification of Figure in 9.6.1 (1) Securing the time using an on-chip time base counter	
	Modification of Figure in 9.6.1 (2) Securing the time according to the signal level width (RESET pin input)	
	Addition of Caution to 10.1.5 (1) Timer mode control registers C00 to C30 (TMCC00 to TMCC30)	CHAPTER 10 TIMER/COUNTER
	Addition of description to 10.1.6 (4) Compare operation	FUNCTION (REAL- TIME PULSE UNIT)
	Modification and addition in Figure 10-5 Compare Operation Example	TIME POLSE ONIT)
	Modification of Figure 10-8 Interval Timer Operation Timing Example	
	Modification of Figure 10-10 PWM Output Timing Example	
	Modification of Figure 10-12 Cycle Measurement Operation Timing Example	
	Modification of Figure 10-14 TMD0 Compare Operation Example]
	Modification of Caution in 11.2.3 (1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)	CHAPTER 11 SERIAL INTERFACE FUNCTION
	Modification of description in 11.3.4 (1) Transfer mode	
	Addition of description to 12.3 (2) A/D converter mode register 1 (ADM1)	CHAPTER 12 A/D CONVERTER
	Modification of Caution in 12.3 (3) A/D converter mode register 2 (ADM2)	
	Modification of Figure 14-10 Block Diagram of Type K	CHAPTER 14 PORT FUNCTIONS
	Modification of Remark in Figure 16-1 Connection Example of Adapter (FA-144GJ-UEN) for V850E/MA1 Flash Memory Programming	CHAPTER 16 FLASH MEMORY (μPD70F3107)
	Modification of description in 16.5.6 Port pins	
	Addition of description to 16.7.1 Outline of self-programming	
	Modification of Table 16-8 Flash Information	
	Modification of Caution 1 in 16.7.12 Flash programming mode control register (FLPMC)	
4th	 Deletion of the following products: μPD703103, 703105, 703106, 703107, and 70F3107 Addition of the following product names: μPD703103A, 703105A, 703106A, 703106A(A), 703107A, 703107A(A), 70F3107A, and 70F3107A(A) 	Throughout
	Change of description in 1.4 Ordering Information	CHAPTER 1 INTRODUCTION
	Change of pin configuration in 1.5 Pin Configuration (Top View) 161-pin plastic FBGA (13 × 13)	
	Addition of 1.7 Differences Among Products	

(5/7)

Edition	Major Revision from Previous Edition	Applied to:
4th	Modification of description in 2.3 (9) (b) (i) WAIT (Wait)	CHAPTER 2 PIN FUNCTIONS
	Addition of Caution to 2.3 (9) (b) (vii) SELFREF (Self-refresh request)	
	Modification of Caution in 3.4.3 (1) Program space	CHAPTER 3 CPU FUNCTION
	Change of description and addition of Caution in 3.4.5 (2) Internal RAM area	
	Deletion of description from 3.4.7 (1) Program space	
	Change of Bit Units for Manipulation for DMA terminal count output control register in 3.4.8 Peripheral I/O registers	
	Change of description in Table and addition of Remark to 3.4.10 System wait control register (VSWC)	
	Change of description in 4.2.1 Pin status during internal ROM, internal RAM, and peripheral I/O access	CHAPTER 4 BUS CONTROL
	Addition of Caution to 4.3.1 Chip select control function	FUNCTION
	Addition of description to 4.4.1 (1) Bus cycle type configuration registers 0, 1 (BCT0, BCT1)	
	Change of description in 4.5.1 Number of access clocks	
	Addition of description to 4.5.2 (1) Bus size configuration register (BSC)	
	Addition of Caution to 4.5.3 (1) Endian configuration register (BEC)	
	Addition of Caution to 4.6.1 (2) Address setup wait control register (ASC)	
	Change of description and addition of Caution in 4.6.1 (3) Bus cycle period control register (BCP)	
	Addition of description to 5.3.4 DRAM configuration registers 1 , 3 , 4 , 6 (SCR1, SCR3, SCR4, SCR6)	CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION
	Change of description to LTM2n to LTM0n bits = 00x in 5.4.4 SDRAM configuration registers 1 , 3 , 4 , 6 (SCR1, SCR3, SCR4, SCR6)	
	Change of description in Figure 5-16 SDRAM Access Timing	
	Addition of Caution to 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)
	Change of description and addition of reserved word < > of device file to bits 3 to 0 in 6.3.8 DMA terminal count output control register (DTOC)	
	Addition of Caution to 6.3.9 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)	
	Addition of description and Figure to 6.5.1 Single transfer mode	
	Addition of description to 6.5.3 Block transfer mode	
	Addition of Caution to 6.8 DMA Channel Priorities	
	Addition of description to 6.16 One-Time Transfer During Single Transfer via DMARQ0 to DMARQ3 Signals	
	Addition of 6.17 (5) DMA start factors	

(6/7)

Edition	Major Revision from Previous Edition	Applied to:
4th	Deletion of description from CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION	CHAPTER 7 INTERRUPT/EXCEP
	Change of description in Figure 7-2 Acknowledging Non-Maskable Interrupt Request	TION PROCESSING
	Addition of Caution to and deletion of reserved word < > of device file from 7.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)	FUNCTION
	Addition of Caution to 7.3.9 (1) External interrupt mode registers 1 to 4 (INTM1 to INTM4)	
	Addition of Caution to 7.3.9 (2) Valid edge select registers C0 to C3 (SESC0 to SESC3)	
	Change of description in Figure 7-14 Pipeline Operation at Interrupt Request Acknowledgement (Outline)	
	Change of description in 7.8 Periods in Which Interrupts Are Not Acknowledged	
	Addition of description to 9.5.4 (2) (a) Release according to a non-maskable interrupt request or an unmasked maskable interrupt request	CHAPTER 9 CLOCK
	Addition of description to 9.5.5 (2) (a) Release according to a non-maskable interrupt request or an unmasked maskable interrupt request	GENERATION FUNCTION
	Change of Figure in 9.6.1 (1) Securing the time using an on-chip time base counter	
	Change of Figure in 9.6.1 (2) Securing the time according to the signal level width (RESET pin input)	
	Addition of Caution to 10.1.4 (2) (a) Setting these registers as capture registers (CMSn0 and CMSn1 of TMCCn1 = 0)	CHAPTER 10 TIMER/COUNTER
	Addition of description and change of bit name to bit 5 in 10.1.5 (2) Timer mode control registers C01 to C31 (TMCC01 to TMCC31)	FUNCTION (REAL- TIME PULSE UNIT)
	Addition of Note and deletion of Caution from Figure 10-12 Cycle Measurement Operation Timing Example	
	Change of description in Figure 10-13 Example of Timing During TMDn Operation	
	Addition of Caution to 10.2.5 (1) Timer mode control registers D0 to D3 (TMCD0 to TMCD3)	
	Addition of description to Caution in 11.2.3 (1) Asynchronous serial interface mode registers 0 to 2 (ASIM0 to ASIM2)	CHAPTER 11 SERIAL
	Change of description to PEn bit = 0, FEn bit = 0, OVEn bit = 0 in 11.2.3 (2) Asynchronous serial interface status registers 0 to 2 (ASIS0 to ASIS2)	INTERFACE FUNCTION
	Change of description to TXBFn bit, TXSFn bit in 11.2.3 (3) Asynchronous serial interface transmission status registers 0 to 2 (ASIF0 to ASIF2)	
	Change of description in and addition of Figure to 11.2.5 (3) Continuous transmission operation	
	Change of description and addition of Note in Figure 11-5 Continuous Transmission Starting Procedure	
	Change of description in Figure 11-6 Continuous Transmission Ending Procedure	
	Modification of Figure 11-7 and addition of Caution to Figure 11-7 Asynchronous Serial Interface Reception Completion Interrupt Timing	
	Addition of Caution to 11.2.6 (2) (a) Clock select registers 0 to 2 (CKSR0 to CKSR2)	
	Addition of (2) to 11.2.7 Cautions	
	Addition of description to 11.3.3 (1) Clocked serial interface mode registers 0 to 2 (CSIM0 to CSIM2)	

(7/7)

Edition	Major Revision from Previous Edition	Applied to:
4th	Addition of description to 12.2 (5) Successive approximation register (SAR)	CHAPTER 12 A/D CONVERTER
	Change of bit names in 12.3 (4) A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)	
	Addition of 12.9 How to Read A/D Converter's Characteristic Table	
	Change of bit names in 13.3 (2) PWM buffer registers 0, 1 (PWMB0, PWMB1)	CHAPTER 13 PWM UNIT
	Change of block type to ports 3 and 4 in 14.2 (1) Function of each port	CHAPTER 14 PORT FUNCTIONS
	Change of Figure 14-4 Block Diagram of Type D	
	Change of Figure 14-5 Block Diagram of Type E	
	Addition of Figure 14-7 Block Diagram of Type G	
	Change of Figure 14-8 Block Diagram of Type H	
	Change of Figure 14-9 Block Diagram of Type I	
	Change of Figure 14-12 Block Diagram of Type L	
	Change of Figure 14-13 Block Diagram of Type M	
	Change of Figure 14-14 Block Diagram of Type N	
	Partial deletion of description from PMC0n bit = 0 in 14.3.1 (2) (b) Port 0 mode control register (PMC0)	
	Partial deletion of description from PMC2n bit = 0 in 14.3.3 (2) (b) Port 2 mode control register (PMC2)	
	Change of block type to P30 and P33 in 14.3.4 (1) Operation in control mode	
	Change of block type to P40 and P43 in 14.3.5 (1) Operation in control mode	
	Addition of Caution to 14.3.7 (1) Operation in control mode	
	Addition of Caution to 14.3.10 (2) (b) Port DL mode control register (PMCDL)	
	Addition of Caution to 16.2 Writing with Flash Programmer	CHAPTER 16 FLASH MEMORY (µPD70F3107)
	Addition of Table 16-1 Wiring of Adapter for V850E/MA1 Flash Memory Programming (FA-144GJ-UEN)	
	Addition of Figure 16-2 Wiring Example of Adapter (FA-161F1-EN4) for V850E/MA1 Flash Memory Programming	
	Addition of Table 16-2 Wiring of Adapter for V850E/MA1 Flash Memory Programming (FA-161F1-EN4)	
	Change of Execution status of program in Table 16-5 Software Environmental Conditions	
	Change of description in B.2 Instruction Set (In Alphabetical Order)	APPENDIX B INSTRUCTION SET LIST