

LOW POWER STL81007x

1550 nm FP Laser in FC Receptacle Package

FEATURES

- Designed for applications in fiber optic networks
- · Laser Diode with Multi-Quantum Well structure
- · Suitable for bit rates up to 1 Gbit/s
- Ternary Photodiode at rear mirror for monitoring and control of radiant power
- Hermetically sealed subcomponents, similar to TO 46
- SM receptacle with 2-hole flange and optional connector

Absolute Maximum Ratings

Module

Module
Operating temperature range at case, T _C 40°C to 85°C
Storage temperature range, T _{Stq} 40°C to 85°C
Soldering temperature t _{max} =10 s,
2 mm distance from bottom edge of case, T _S 260°C
Laser Diode
Direct forward current, I _{F max} 120 mA
Radiant power CW, P _{F, rad} 1 mW
Reverse Voltage, V _R
Monitor Diode
Reverse Voltage, V _R 10 V
Forward Current, I _F 2 mA

DESCRIPTION

www.DataSheet4U.com

Differences between a Fabry-Perot and a DFB Laserdiode

A conventional laser consists of an amplifying medium and two end mirrors. The cavity is longer than one wavelength, and a standing wave is created. The number n of half wavelengths $\boldsymbol{\lambda}$

is
$$n = 2 \times \frac{L}{\lambda}$$
 . If L >> λ then we speak of a Fabry-Perot Laser

because the laserdiode emits multi-longitudinal modes. Typically the laserdiode is 250 μm long. For $\lambda = 1310$ nm/1550 nm n is about 350. Therefore for many neighboring wavelengths the "standing wavelength" condition specified above is fulfilled. For a DFB-Laser a special grating acts as a distributed filter allowing only one of the cavity's longitudinal modes to propa-

gate. This can be described with a reduced oscillator length L which is in the range of λ . For such a reduced oscillator length the standing wavelength condition will be fulfilled for n \approx 2 what means for only one wavelength.

Figure 1. Fabry-Perot Laserdiode

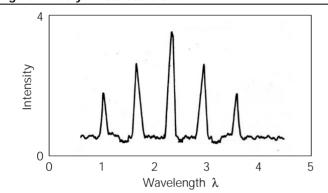
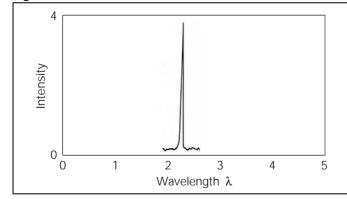



Figure 2. DFB Laserdiode

TECHNICAL DATA

The electro-optical characteristics described in the following tables are only valid for use within the specified maximum ratings or under the recommended operating conditions.

Transmitter Electro-Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Optical output power (maximum)	P _{F, max}	0.4			mW
Emission wavelength center of range P _F =0.5 P _F , max.	λ _{trans}	1510		1590	nm
Spectral width (RMS)	σ_{λ}			5	
Temperature coefficient of wavelength	TC			0.5	nm/K
Threshold current (whole temperature range)	I _{th}	2		45	mA
Forward voltage P _F =0.5 P _{F, max.}	V _F			1.5	V
Radiant power at Ith	P _{th}			10	μW
Slope efficiency (-4085°C)	η	8		60	mW/ A
Variation of 1st derivative of P/I (0.05 to 0.4 mW)	S _{var}	-30		30	%
Differential series resistance	R _S			8	Ω
Rise time (10%-90%)	t _r		100	200	ps
Fall time (10%-90%)	t _f		270	500	

Monitor Diode Electro-Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Dark current, V _R =5 V, P _F =0, T=T _{max}	I _R			500	nA
Photocurrent, V _R =5 V, P _F =0.5 P _F , max.	l _P	100		1000	μΑ
Capacitance, V _R =5 V, f=1 MHz	C ₅			10	pF
Tracking error ⁽¹⁾ , V _R =5 V	TE	-1		1	dB

Note

 The tracking error TE is the maximum deviation of P_F at constant current I_{mon} over a specified temperature range and relative to the reference point: I_{mon,ref}=I_{mon} (T=25°C, P_F=0.5 P_{F, max.}). Thus, TE is given by:

TE [dB] =
$$10 \times \log \frac{P_F [Tc]}{P_F [25^{\circ}C]}$$

End of Life Time Characteristics

W۱	vParameter 4U.com	Symbol	Min.	Тур.	Max.	Units
	Threshold current at $T=T_{max}$	I _{th}			60	mA
	Current above threshold, over full temperature range, at Imon,ref=Imon (T=25°C, P _F =0.5 P _F , max., BOL)	ΔI _F	7		70	
	Tracking Error	TE	-1.5		1.5	dB
	Monitor Dark Current, V _R =2 V, T=T _{max}	I _R			1	μΑ

FIBER DATA

The mechanical fiber characteristics are described in the following table.

Fiber Characteristics

Parameter	Min.	Тур.	Max.	Units
Mode Field Diameter	8	9	10	μm
Cladding Diameter	123	125	127	
Mode Field/Cladding Concentricity Error			1	
Cladding Non-circularity			2	%
Mode Field Non-circularity			6	
Cut off Wavelength	1270			nm
Jacket Diameter	0.8		1	mm
Bending Radius	30			
Tensile Strength Fiber Case	5			N
Length	0.8		1.2	m

Pin Description and Flange

	Pinning (bottom vi	ew)	Pin Description		
Tra	Transmitter				
	2.54 mm - 1		Pinning 1 LD 3 MD		
Ava	Available Pinnings with Flange				
	Туре	Transmitt	er		
	STL81007x	1			

Regulatory Compliance

Feature	Standard	Comments
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD 883D Method 3015.7	Class 1 (<500 V)

EYE SAFETY

Ensure to avoid exposure of human eyes to high power laser diode emitted laser beams. Especially do not look directly into the laser diode or the collimated laser beam when the diode is activated.

CLASS 3B LASER PRODUCT according to IEC 60825-1

Required Labels

INVISIBLE LASER RADIATION AVOID EXPOSURE TO BEAM Class 3B Laser Product

Class IIIb LASER PRODUCT according to FDA Regulations complies with 21 CFR 1040.10 and 1040.11

Required Label

Laser Data

Wavelength	1550 nm
Maximum total output power	less than 50 mW
Beam divergence (1/e ²)	10°

FLANGE OPTION

Model	Туре
STH51007G	SM FC Receptacle Package

www.DataSheet4U.com

Published by Infineon Technologies AG

© Infineon Technologies AG 2001 All Rights Reserved

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact the Infineon Technologies offices or our Infineon Technologies Representatives worldwide - see our webpage at

www.infineon.com/fiberoptics

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your Infineon Technologies offices.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.