176-OUTPUT TFT-LCD GATE DRIVER

DESCRIPTION

The μ PD161643 is a TFT-LCD gate driver. Because this gate driver has a level shift circuit for logic input, it can output a high gate scanning voltage in response to a CMOS-level input.

FEATURES

- High-withstanding-voltage output (VT-Vee = 42 V MAX.)
- 3.0 V CMOS level input
- Number of output: 176

ORDERING INFORMATION

Part number	Package
${161643 P} }$	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

2. PIN CONFIGURATION (PAD LAYOUT)

Chip size: $2.3 \times 7.05 \mathrm{~mm}^{2}$
Bump size: INPUT/LEFT/RIGHT (include INPUT/OUTPUT/RIGHT side DUMMY): $49 \times 85 \mu \mathrm{~m}^{2}$ OUTPUT (include OUTPUT side DUMMY): $35 \times 94 \mu \mathrm{~m}^{2}$

Alignment mark 1

Alignment mark 2

Table 2-1. Pad Layout (1/4)

Gate Inputs $70 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	Y [mm]
-	Alignment Mark1	-0.9995	-3.3745
1	DUMMY	-0.9995	-3.2200
2	DUMMY	-0.9995	-3.1500
3	DUMMY	-0.9995	-3.0800
4	DUMMY	-0.9995	-3.0100
5	DUMMY	-0.9995	-2.9400
6	DUMMY	-0.9995	-2.8700
7	DUMMY	-0.9995	-2.8000
8	DUMMY	-0.9995	-2.7300
9	DUMMY	-0.9995	-2.6600
10	DUMMY	-0.9995	-2.5900
11	DUMMY	-0.9995	-2.5200
12	DUMMY	-0.9995	-2.4500
13	DUMMY	-0.9995	-2.3800
14	DUMMY	-0.9995	-2.3100
15	DUMMY	-0.9995	-2.2400
16	DUMMY	-0.9995	-2.1700
17	DUMMY	-0.9995	-2.1000
18	DUMMY	-0.9995	-2.0300
19	DUMMY	-0.9995	-1.9600
20	DUMMY	-0.9995	-1.8900
21	DUMMY	-0.9995	-1.8200
22	DUMMY	-0.9995	-1.7500
23	DUMMY	-0.9995	-1.6800
24	DUMMY	-0.9995	-1.6100
25	DUMMY	-0.9995	-1.5400
26	DUMMY	-0.9995	-1.4700
27	DUMMY	-0.9995	-1.4000
28	PVCC1	-0.9995	-1.3300
29	OE1SEL	-0.9995	-1.2600
30	OE1SEL	-0.9995	-1.1900
31	PVSS	-0.9995	-1.1200
32	OE2SEL	-0.9995	-1.0500
33	OE2SEL	-0.9995	-0.9800
34	PVCC1	-0.9995	-0.9100
35	STVSEL	-0.9995	-0.8400
36	STVSEL	-0.9995	-0.7700
37	PVSS	-0.9995	-0.7000
38	R,/L	-0.9995	-0.6300
39	R,/L	-0.9995	-0.5600
40	PVCC1	-0.9995	-0.4900
41	DUMMY	-0.9995	-0.4200
42	DUMMY	-0.9995	-0.3500
43	VT	-0.9995	-0.2800
44	VT	-0.9995	-0.2100
45	VT	-0.9995	-0.1400
46	VT	-0.9995	-0.0700
47	VT	-0.9995	0.0000
48	DUMMY	-0.9995	0.0700
49	DUMMY	-0.9995	0.1400
50	VCC1	-0.9995	0.2100
51	VCC1	-0.9995	0.2800
52	VCC1	-0.9995	0.3500
53	VCC1	-0.9995	0.4200
54	VCC1	-0.9995	0.4900
55	DUMMY	-0.9995	0.5600
56	DUMMY	-0.9995	0.6300
57	VSS	-0.9995	0.7000
58	VSS	-0.9995	0.7700
59	VSS	-0.9995	0.8400
60	VSS	-0.9995	0.9100
61	VSS	-0.9995	0.9800
62	DUMMY	-0.9995	1.0500
63	DUMMY	-0.9995	1.1200
64	VEE	-0.9995	1.1900
65	VEE	-0.9995	1.2600

Gate Inputs $70 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	Y [mm]
66	VEE	-0.9995	1.3300
67	VEE	-0.9995	1.4000
68	VEE	-0.9995	1.4700
69	DUMMY	-0.9995	1.5400
70	DUMMY	-0.9995	1.6100
71	VB	-0.9995	1.6800
72	VB	-0.9995	1.7500
73	VB	-0.9995	1.8200
74	VB	-0.9995	1.8900
75	VB	-0.9995	1.9600
76	DUMMY	-0.9995	2.0300
77	DUMMY	-0.9995	2.1000
78	STVR	-0.9995	2.1700
79	STVR	-0.9995	2.2400
80	DUMMY	-0.9995	2.3100
81	STVL	-0.9995	2.3800
82	STVL	-0.9995	2.4500
83	DUMMY	-0.9995	2.5200
84	CLK	-0.9995	2.5900
85	CLK	-0.9995	2.6600
86	DUMMY	-0.9995	2.7300
87	OE1	-0.9995	2.8000
88	OE1	-0.9995	2.8700
89	DUMMY	-0.9995	2.9400
90	OE2	-0.9995	3.0100
91	OE2	-0.9995	3.0800
92	DUMMY	-0.9995	3.1500
93	DUMMY	-0.9995	3.2200
-	Alignment Mark1	-0.9995	3.3745

Table 2-1. Pad Layout (2/4)

Gate Outputs $35 \mu \mathrm{~m}$ pitch				Gate Outputs $35 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	Y [mm]	Pad No.	Pad Name	X [mm]	Y [mm]
96	DUMMY	0.8650	3.2725	161	0117	0.9950	0.9975
97	DUMMY	0.9950	3.2375	162	0116	0.8650	0.9625
98	DUMMY	0.8650	3.2025	163	0115	0.9950	0.9275
99	DUMMY	0.9950	3.1675	164	0114	0.8650	0.8925
100	DUMMY	0.8650	3.1325	165	0113	0.9950	0.8575
101	DUMMY	0.9950	3.0975	166	0112	0.8650	0.8225
102	0176	0.8650	3.0625	167	0111	0.9950	0.7875
103	0175	0.9950	3.0275	168	0110	0.8650	0.7525
104	0174	0.8650	2.9925	169	0109	0.9950	0.7175
105	0173	0.9950	2.9575	170	0108	0.8650	0.6825
106	0172	0.8650	2.9225	171	0107	0.9950	0.6475
107	0171	0.9950	2.8875	172	0106	0.8650	0.6125
108	0170	0.8650	2.8525	173	0105	0.9950	0.5775
109	0169	0.9950	2.8175	174	0104	0.8650	0.5425
110	0168	0.8650	2.7825	175	0103	0.9950	0.5075
111	0167	0.9950	2.7475	176	0102	0.8650	0.4725
112	0166	0.8650	2.7125	177	0101	0.9950	0.4375
113	0165	0.9950	2.6775	178	0100	0.8650	0.4025
114	0164	0.8650	2.6425	179	099	0.9950	0.3675
115	0163	0.9950	2.6075	180	098	0.8650	0.3325
116	0162	0.8650	2.5725	181	097	0.9950	0.2975
117	0161	0.9950	2.5375	182	096	0.8650	0.2625
118	0160	0.8650	2.5025	183	095	0.9950	0.2275
119	0159	0.9950	2.4675	184	094	0.8650	0.1925
120	0158	0.8650	2.4325	185	093	0.9950	0.1575
121	0157	0.9950	2.3975	186	092	0.8650	0.1225
122	0156	0.8650	2.3625	187	091	0.9950	0.0875
123	0155	0.9950	2.3275	188	090	0.8650	0.0525
124	0154	0.8650	2.2925	189	089	0.9950	0.0175
125	0153	0.9950	2.2575	190	088	0.8650	-0.0175
126	0152	0.8650	2.2225	191	087	0.9950	-0.0525
127	0151	0.9950	2.1875	192	O86	0.8650	-0.0875
128	0150	0.8650	2.1525	193	O85	0.9950	-0.1225
129	0149	0.9950	2.1175	194	084	0.8650	-0.1575
130	0148	0.8650	2.0825	195	083	0.9950	-0.1925
131	0147	0.9950	2.0475	196	O82	0.8650	-0.2275
132	0146	0.8650	2.0125	197	O81	0.9950	-0.2625
133	0145	0.9950	1.9775	198	O80	0.8650	-0.2975
134	0144	0.8650	1.9425	199	079	0.9950	-0.3325
135	0143	0.9950	1.9075	200	078	0.8650	-0.3675
136	0142	0.8650	1.8725	201	077	0.9950	-0.4025
137	0141	0.9950	1.8375	202	076	0.8650	-0.4375
138	0140	0.8650	1.8025	203	075	0.9950	-0.4725
139	0139	0.9950	1.7675	204	074	0.8650	-0.5075
140	0138	0.8650	1.7325	205	073	0.9950	-0.5425
141	0137	0.9950	1.6975	206	072	0.8650	-0.5775
142	0136	0.8650	1.6625	207	071	0.9950	-0.6125
143	0135	0.9950	1.6275	208	070	0.8650	-0.6475
144	0134	0.8650	1.5925	209	069	0.9950	-0.6825
145	0133	0.9950	1.5575	210	068	0.8650	-0.7175
146	0132	0.8650	1.5225	211	067	0.9950	-0.7525
147	0131	0.9950	1.4875	212	066	0.8650	-0.7875
148	0130	0.8650	1.4525	213	065	0.9950	-0.8225
149	0129	0.9950	1.4175	214	O64	0.8650	-0.8575
150	0128	0.8650	1.3825	215	O63	0.9950	-0.8925
151	0127	0.9950	1.3475	216	O62	0.8650	-0.9275
152	0126	0.8650	1.3125	217	061	0.9950	-0.9625
153	0125	0.9950	1.2775	218	060	0.8650	-0.9975
154	0124	0.8650	1.2425	219	059	0.9950	-1.0325
155	0123	0.9950	1.2075	220	O58	0.8650	-1.0675
156	0122	0.8650	1.1725	221	057	0.9950	-1.1025
157	0121	0.9950	1.1375	222	056	0.8650	-1.1375
158	0120	0.8650	1.1025	223	O55	0.9950	-1.1725
159	0119	0.9950	1.0675	224	054	0.8650	-1.2075
160	0118	0.8650	1.0325	225	O53	0.9950	-1.2425

Table 2-1. Pad Layout (3/4)

Gate Outputs $35 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	Y [mm]
226	052	0.8650	-1.2775
227	051	0.9950	-1.3125
228	050	0.8650	-1.3475
229	049	0.9950	-1.3825
230	048	0.8650	-1.4175
231	047	0.9950	-1.4525
232	046	0.8650	-1.4875
233	045	0.9950	-1.5225
234	044	0.8650	-1.5575
235	043	0.9950	-1.5925
236	042	0.8650	-1.6275
237	041	0.9950	-1.6625
238	O40	0.8650	-1.6975
239	O39	0.9950	-1.7325
240	038	0.8650	-1.7675
241	037	0.9950	-1.8025
242	036	0.8650	-1.8375
243	035	0.9950	-1.8725
244	034	0.8650	-1.9075
245	033	0.9950	-1.9425
246	032	0.8650	-1.9775
247	031	0.9950	-2.0125
248	030	0.8650	-2.0475
249	O29	0.9950	-2.0825
250	028	0.8650	-2.1175
251	027	0.9950	-2.1525
252	026	0.8650	-2.1875
253	O25	0.9950	-2.2225
254	O24	0.8650	-2.2575
255	023	0.9950	-2.2925
256	022	0.8650	-2.3275
257	021	0.9950	-2.3625
258	O20	0.8650	-2.3975
259	O19	0.9950	-2.4325
260	018	0.8650	-2.4675
261	017	0.9950	-2.5025
262	016	0.8650	-2.5375
263	015	0.9950	-2.5725
264	014	0.8650	-2.6075
265	013	0.9950	-2.6425
266	012	0.8650	-2.6775
267	011	0.9950	-2.7125
268	O10	0.8650	-2.7475
269	09	0.9950	-2.7825
270	08	0.8650	-2.8175
271	07	0.9950	-2.8525
272	06	0.8650	-2.8875
273	05	0.9950	-2.9225
274	O4	0.8650	-2.9575
275	03	0.9950	-2.9925
276	O2	0.8650	-3.0275
277	01	0.9950	-3.0625
278	DUMMY	0.8650	-3.0975
279	DUMMY	0.9950	-3.1325
280	DUMMY	0.8650	-3.1675
281	DUMMY	0.9950	-3.2025
282	DUMMY	0.8650	-3.2375
283	DUMMY	0.9950	-3.2725

Table 2-1. Pad Layout (4/4)

Gate Left $600 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	$\mathrm{Y}[\mathrm{mm}]$
94	DUMMY	-0.3000	3.3925
95	DUMMY	0.3000	3.3925

Gate Right $600 \mu \mathrm{~m}$ pitch			
Pad No.	Pad Name	X [mm]	Y [mm]
284	DUMMY	0.3000	-3.3925
285	DUMMY	-0.3000	-3.3925

Pad No.	Pad Name	X [mm]	$\mathrm{Y}[\mathrm{mm}]$
-	Alignment Mark2	0.9950	-3.3925

3. PIN FUNCTIONS

Symbol	Pin Name	Pad No.	I/O	Function
O 1 to O_{176}	Driver output	277 to 102	Output	Scan signal output pins that drive the gate electrode of a TFTLCD. The status of each output pin changes in synchronization with the rising edge of shift clock. The output voltage of the driver is $\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{B}}$.
STVR, STVL	Start pulse input/output	$\begin{aligned} & \hline 78,79, \\ & 81,82 \end{aligned}$	I/O	Input/output pin of the internal shift register. Read of start pulse signal is set at rising (or falling) edge of shift clock, and outputs a scanning signal from a driver output pin. In addition, the effective level of a STVR/STVL pin is determined by setup of STVSEL pin. Moreover, an input/output level is $\mathrm{V}_{\mathrm{cc} 1-}$ Vss (logic level). STVSEL = L: Start pulse is set to low level by the 176th falling edge of shift clock, and is set to a high level by the 177th falling edge.
STVSEL	Start pulse input effective level selection	35, 36	Input	The effective level of the start pulse signal inputted into STVR/STVL is selected. STVSEL = L: Low level STVSEL = H: High level
CLK	Shift clock input	84, 85	Input	Shift clock input for the internal shift register. The contents of internal shift register is shifted at the rising edge of CLK. Connect to GCLK pin of source driver.
R,/L	Shift direction switching input	38, 39	Input	Shift direction switching input pin of the internal shift register. $\mathrm{R}, \mathrm{L}=\mathrm{H}$ (right shift): STVR $\rightarrow \mathrm{O}_{1} \rightarrow \mathrm{O}_{2} \cdots \mathrm{O}_{175} \rightarrow \mathrm{O}_{176} \rightarrow$ STVL $\mathrm{R}, \mathrm{LL}=\mathrm{L}$ (left shift): $\mathrm{STVL} \rightarrow \mathrm{O}_{176} \rightarrow \mathrm{O}_{175} \cdots \mathrm{O}_{2} \rightarrow \mathrm{O}_{1} \rightarrow$ STVR
OE1	Enable input	87, 88	Input	Input of the level selected by OE1SEL fixes a driver output to a low level (input of a low level fixes driver output to low level at the time of OE1SEL = L). However, shift register is not cleared. Moreover, output enable operation is asynchronous on a clock. Connect with GOE1 pin of sauce driver.
OE1SEL	OE1 effective level selection	29, 30	Input	This pin selects effective level of OE1 pin. OE1SEL = L: Low level OE1SEL = H: High level
OE2	Enable input	90, 91	Input	Input of the level selected by OE2SEL fixes a driver output to a high level (input of a low level fixes driver output to high level at the time of OE2SEL = L). However, shift register is not cleared. Moreover, output enable operation is asynchronous on a clock. Connect with GOE2 pin of sauce driver.
OE2SEL	OE2 effective level selection	32, 33	Input	This pin selects effective level of OE2 pin. OE2SEL = L: Low level OE2SEL = H: High level

Symbol	Name	Pad No.	I/O	Function
V_{T}	Positive power supply for driver	43 to 47	-	Positive power supply for level shifter and output buffer. Positive power supply for Liquid crystal.
$\mathrm{V}_{\text {EE }}$	Negative power supply for logic	64 to 68	-	Negative power supply for level shifter.
V_{B}	Negative power supply for driver	71 to 75	-	Negative power supply for output buffer. Negative power supply for Liquid crystal.
$\mathrm{V}_{\text {CC1 }}$	Positive power supply for logic	50 to 54	-	Positive power supply for logic circuit.
$V_{\text {Ss }}$	Ground	57 to 61	-	Connect to the system ground.
PVCC1	Pull-up power supply	$28,34,40$	-	Pull-up power supply for mode setting pins (R,/L, STVSEL, OE1SEL, OE2SEL).
PVSS	Pull-down power supply	31,37	-	Pull-down power supply for mode setting pins (R,/L, STVSEL, OE1SEL, OE2SEL).

4. MODE DESCRIPTION

Output Mode Selection

R,/L	STVR	STVL	Scan Direction
H	Input	Output	$1 \rightarrow 176$
L	Output	Input	$176 \rightarrow 1$

Remark H: Vcc1, L: Vss

5. TIMING CHART

The timing chart in each condition is shown as follows.

$R, / L=L, S T V S E L=H, O E 1 S E L=H, O E 2 S E L=H$

$R, / L=L, S T V S E L=H, O E 1 S E L=H, O E 2 S E L=L$

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Rating	Unit
Supply Voltage	V_{T}	-0.5 to +30	V
Supply Voltage	$\mathrm{V}_{\mathrm{CC} 1}$	-0.5 to +6.5	V
Supply Voltage	$\mathrm{V}_{\mathrm{T}-}-\mathrm{V}_{\mathrm{EE}}$	-0.5 to +45	V
Supply Voltage	V_{EE}	-25 to +0.5	V
Supply Voltage	V_{B}	$\mathrm{V}_{\mathrm{EE}}-0.5$ to +0.5	V
Input Voltage ${ }^{\text {Note }}$	-0.5 to $\mathrm{V}_{\mathrm{CC} 1}+0.5$	V	
Operating Ambient Temperature	V_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note R,/L, CLK, STVR, STVL, OE1, OE2, STVSEL, OE1SEL, OE2SEL

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{T}	10	15	25	V
Supply Voltage	V_{EE}	-20	-15	-10	V
Supply Voltage	V_{B}	V_{EE}	-15	-6.5	V
Supply Voltage	$\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{EE}}$	20	30	42	V
Supply Voltage	$\mathrm{V}_{\mathrm{CC} 1}$	2.5	3.0	3.6	V
Input Voltage ${ }^{\text {Note }}$	V_{I}	0		$\mathrm{~V}_{\mathrm{CC} 1}$	V

Note R,/L, CLK, STVR, STVL, OE1, OE2, STVSEL, OE1SEL, OE2SEL

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vc} 1=2.5$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{B}}=-15 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High Level Input Voltage	$\mathrm{V}_{\mathrm{H} 1}$	R,/L, CLK, STVR, STVL, OE1, OE2, STVSEL, OE1SEL, OE2SEL	0.8 Vcc 1		Vcc1	V
Low Level Input Voltage	VIL1		0		0.2 Vcc 1	V
High Level Output Voltage	Vон	STVR, STVL, Ioh $=-40 \mu \mathrm{~A}$	Vcc1-0.4		Vcc 1	V
Low Level Output Voltage	Vol	STVR, STVL, Ioh $=+40 \mu \mathrm{~A}$	0		0.4	V
Output ON Resistance	Ron1	O_{1} to $\mathrm{O}_{176}, \mathrm{~V}_{\text {Out }}=\mathrm{V}_{T}-0.5 \mathrm{~V}$		5.0	7.5	$\mathrm{k} \Omega$
	Ron2	O_{1} to $\mathrm{O}_{176}, \mathrm{~V}_{\text {OUt }}=\mathrm{V}_{\text {EE }}+0.5 \mathrm{~V}$		5.0	7.5	$\mathrm{k} \Omega$
Input Current	${ }_{1 / 1}$	Logic input pin			± 1.0	$\mu \mathrm{A}$
Dynamic Current 1	Icc 1	Vcci, Note			200	$\mu \mathrm{A}$
Dynamic Current 2	It_{T}	$\mathrm{V}_{\text {T, }}$, Note			100	$\mu \mathrm{A}$
Dynamic Current 3	IEE	V_{EE}, Note			100	$\mu \mathrm{A}$
Static Current ${ }^{\text {Note }}$	Iss	$\mathrm{V}_{\text {cc1 }}, \mathrm{V}_{\mathrm{T}}$ in stand-by mode			10	$\mu \mathrm{A}$

Note fclk $=20 \mathrm{kHz}$, frame frequency $=60 \mathrm{~Hz}$, output no load

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{B}}=-15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Cascade Output Delay Time	tPHL1	$\begin{aligned} & \mathrm{CL}=20 \mathrm{pF}, \\ & \text { CLK } \rightarrow \text { STVL (STVR) } \end{aligned}$			800	ns
	tpLH1				800	ns
Driver Output Delay Time 1	tpHL2	$\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{CLK} \rightarrow \mathrm{O}_{\mathrm{n}} \end{aligned}$			1.5	$\mu \mathrm{s}$
	tpLH2				1.5	$\mu \mathrm{s}$
Driver Output Delay Time2	tpHL3	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF}, \\ & \mathrm{OE} 1 \rightarrow \mathrm{On} \end{aligned}$			1.5	$\mu \mathrm{s}$
	tpLH3				1.5	$\mu \mathrm{s}$
Driver Output Delay Time 3	tpHL4	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF}, \\ & \mathrm{OE} 2 \rightarrow \mathrm{On} \end{aligned}$			1.5	$\mu \mathrm{s}$
	tpLH4				1.5	$\mu \mathrm{s}$
Output Rise Time	tтLH	$\mathrm{CL}=50 \mathrm{pF}$			1.5	$\mu \mathrm{s}$
Output Fall Time	tтHL				1.5	$\mu \mathrm{s}$
Input Capacitance	Cl_{1}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	pF
Clock Frequency	fclk	When connected in cascade		20	100	kHz

Timing Requirement ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.5$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{B}}=-15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse High Period	PWCLK(H)		500			ns
Clock Pulse Low Period	PWCLK(L)		500			ns
Enable Pulse High Period	PWOE	OE1, OE2	1			$\mu \mathrm{~s}$
Data Setup Time	tsetup	STVR $($ STVL $) \downarrow \rightarrow$ CLK \uparrow	200			ns
Data Hold Time	thoLD	CLK $\uparrow \rightarrow$ STVR (STVL) \uparrow	200			ns

Remark The rise and fall times of logic input must be $t r=t_{f}=20 \mathrm{~ns}$ (10 to 90%)
\star Switching Characteristics Waveform (R,/L=H,STVSEL = L, OE1SEL = L, OE2SEL = L)

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

* Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of February, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

