Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

TFT LCD Tentative Specification

MODEL NO.: N089L6 - L02

Customer :	
Approved by :	
Note:	

記錄	工作	審核	角色	投票
2008-05-15 15:52:18 CST	PMMD III Director	masao(王正 雄/#10936)	Director (deputy)	Accept

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 EDID CODE DATA STRUCTURE	 11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 17
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 19
8. PRECAUTIONS 8.1 SYSTEM MATCHING PRECAUTIONS 8.2 HANDLING PRECAUTIONS 8.3 STORAGE PRECAUTIONS 8.4 OPERATION PRECAUTIONS	 22
9. PACKING 9.1 CARTON 9.2 PALLET	 23
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL 10.2 CMO CARTON LABEL	 25

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 0.0	Apr. 21, 2008		All	Tentative specification first issued.

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N089L6 - L02 is a 8.9" TFT Liquid Crystal Display module with LED Backlight unit and 40 pins LVDS interface. This module supports 1024 x 600 Wide-SVGA mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction. The converter module for Backlight is built in.

1.2 FEATURES

- Thin and High Brightness
- WSVGA (1024 x 600 pixels) resolution
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock
- Build in LED Converter

1.3 APPLICATION

- TFT LCD Notebook

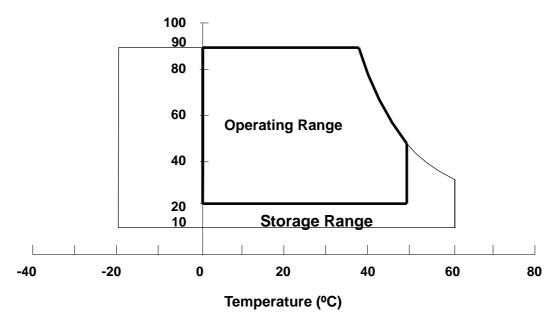
1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	195.072(H) x 113.4(V)	mm	(1)
Bezel Opening Area	198.27(H) x 116.6(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	ixel Number 1024 x R.G.B. x 600		-
Pixel Pitch	xel Pitch 0.1905(H) X 0.189(V)		-
Pixel Arrangement	Pixel Arrangement RGB vertical stripe		-
Display Colors	Display Colors 262,144		-
Transmissive Mode	Normally white	-	-
Surface Treatment Hard coating (3H), Glare Type		-	-

1.5 MECHANICAL SPECIFICATIONS

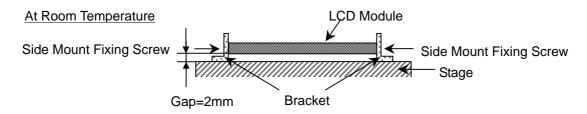
Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	213.06	213.36	231.66	mm	
Module Size	Vertical (V)	129.25	129.55	129.85	mm	(1)
	Depth (D)		5.15	5.45	mm	
We	eight		185	200	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
Item	Symbol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	۰C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	220/2	G/ms	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	


- Note (1) (a) 90 %RH Max. (Ta 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The temperature of panel display surface area should be 0 $^{\circ}$ C Min. and 60 $^{\circ}$ C Max.

Relative Humidity (%RH)

- Note (3) 1 time for $\pm X$, $\pm Y$, $\pm Z$. for Condition (220G / 2ms) is half Sine Wave,.
- Note (4) 10 ~ 500 Hz, 30 min/cycle,1cycles for each X, Y, Z axis.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

_		Va	lue			
Item	Symbol	Symbol Min. Max. Uni		Unit	Note	
Power Supply Voltage	V _{cc}	-0.3	+4.0	V		
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)	
LED Converter Enable	ENA	0	5	V	(1)	
LED BLU Brightness Control	ADJ	0	5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

2.2.2 BACKLIGHT UNIT

Item	Symbol	V	/alue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
LED Light Bar Power Supply Voltage	V_L	0	TBD	V	(1), (2)
LED Light Bar Power Supply Current	ΙL	0	TBD	mA	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

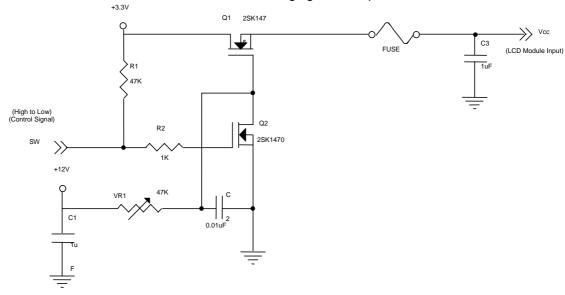
Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

3. ELECTRICAL CHARACTERISTICS

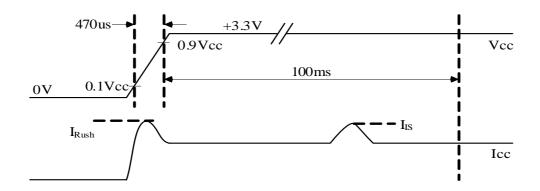
3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, ^{\circ}C$

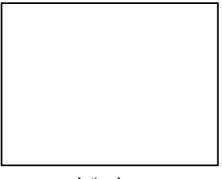

Parameter	Cumbal		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Ullit	Note
Power Supply Voltage	VCC	3.0	3.3	3.6	V	-
Ripple Voltage	V_{RP}	-		100	mV	-
Rush Current	I _{RUSH}	-	1.2	1.5	Α	(2)
Initial Stage Current	I _{IS}			1.0	Α	(2)
Power Supply Current White	Lcc	-	(162)	TBD	mA	(3)a
Black	LCC	1	(212)	TBD	mA	(3)b
LVDS Differential Input High Threshold	V _{TH(LVDS)}			+100	mV	(5), V _{CM} =1.2V
LVDS Differential Input Low Threshold	V _{TL(LVDS)}	-100			mV	(5) V _{CM} =1.2V
LVDS Common Mode Voltage	V_{CM}	1.125		1.375	V	(5)
LVDS Differential Input Voltage	V _{ID}	100		600	mV	(5)
Terminating Resistor	R _T	-	100	-	Ohm	-
Power per EBL WG	P _{EBL}	ı	TBD		W	(4)
LED Power Supply	VLED	4.5	5	5.5	V	
LED Power Current VLED=5V		TBD	(446)	TBD	mA	
Enable Signal Turn-on Level Threshold	VIH _{ENA}	(1.4)			V	
Enable Signal Turn-off Level Threshold	VIL _{ENA}			(0.5)	V	
Brightness Control Signal High Level Threshold	VIH _{ADJ}	(1.4)			V	
Brightness Control Signal Low Level Threshold	VIL _{ADJ}			(0.5)	V	
LED BLU Brightness Control Signal Frequency	F _{ADJ}	TBD	200	TBD	Hz	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH}: the maximum current when VCC is rising


 I_{IS} : the maximum current of the first 100ms after power-on

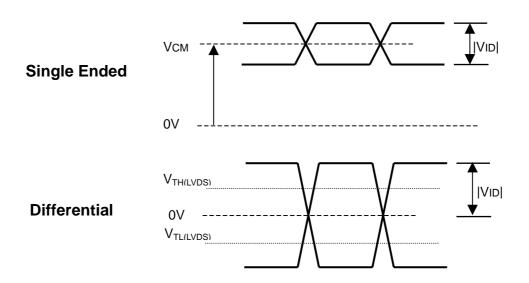
Measurement Conditions: Shown as the following figure. Test pattern: black.


Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$, whereas a power dissipation check pattern below is displayed.

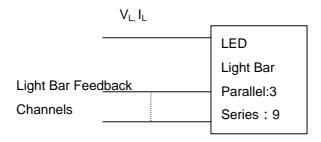
Active Area

Active Area


Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.

- (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$,
- (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
- (c) Luminance: 60 nits.

Note (5) The parameters of LVDS signals are defined as the following figures.



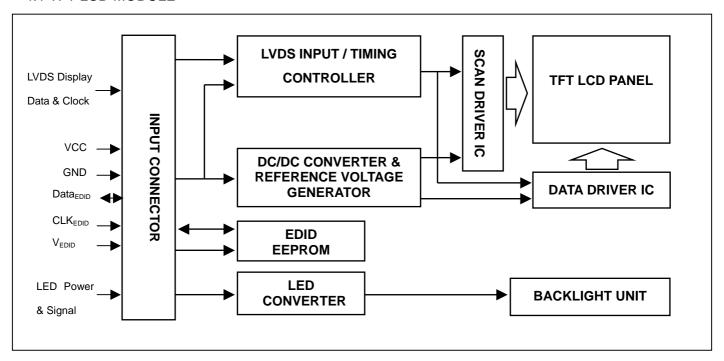
3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Danamatan	Comple at	Value				N
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Quantity			27		PCs	(1)
LED Light Bar Power Supply Voltage	V_L	26.1	28.35	30.6	V	(4) (2) (Duty 1009)
LED Light Bar Power Supply Current	IL		52.5		mA	-(1),(2) (Duty 100%)
Power Consumption	P_L		1.488		W	(3), (Duty 100%)
LED Life Time	L_BL	15000	-	-	Hrs	(4)

Note (1) LED light bar configuration is shown as below.

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.


Note (3)
$$P_L = I_L \times V_L$$

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 17.5 mA(Per EA) until the brightness becomes 50% of its original value.

4. BLOCK DIAGRAM

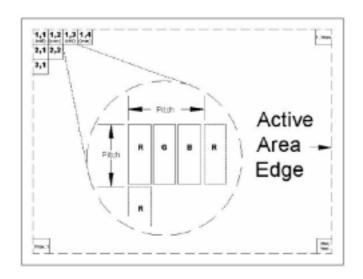
4.1 TFT LCD MODULE

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

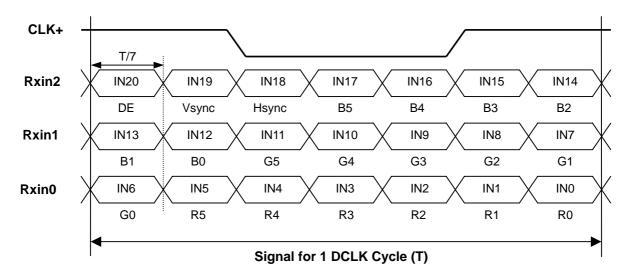
Tentative

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE


Pin	Symbol	Description	Polarity	Remark
1	ĞND	Ground	j	
2	VCC	Power Supply (+3.3V typ.)		
3	VCC	Power Supply (+3.3V typ.)		
4	V_{EDID}	EDID power (+3.3V typ.)		
5	NC	No Connection (Reserved for CMO test)		
6	CLK _{EDID}	EDID clock		
7	DATA _{EDID}	EDID data		
8	Rxin0-	LVDS Differential Data Input	Negative	D0 D5 C0
9	Rxin0+	LVDS Differential Data Input	Positive	R0~R5,G0
10	GND	Ground		
11	Rxin1-	LVDS Differential Data Input	Negative	G1~G5,B0,B1
12	Rxin1+	LVDS Differential Data Input	Positive	G1~G5,60,61
13	GND	Ground		
14	Rxin2-	LVDS Differential Data Input	Negative	B2~B5,DE,Hsync,Vsync
15	Rxin2+	LVDS Differential Data Input	Positive	B2~B3,DE,HSylic,VSylic
16	GND	Ground		
17	CLK-	LVDS Clock Data Input	Negative	LVDS Level Clock
18	CLK+	LVDS Clock Data Input	Positive	LVDS Level Clock
19	GND	Ground		
20	NC	No Connection		
21	NC	No Connection		
22	GND	Ground		
23	NC	No Connection		
24	NC	No Connection		
25	GND	Ground		
26	NC	No Connection		
27	NC	No Connection		
28	GND	Ground		
29	VLED	LED Converter Input Power		
30	VLED	LED Converter Input Power		
31	LED_GND	LED Ground		
32	LED_GND	LED Ground		
33	LED_GND	LED Ground		
34	NC	No Connection		
35	NC	No Connection		
36	NC	No Connection		
37	NC	No Connection		
38	ADJ	LED BLU Brightness Control (PWM)		(3)
39	ENA	LED Converter Enable		
40	NC	No Connection		

Note (1) Connector Part No.: I-PEX 20347-340E-12 or equivalent


Note (2) User's connector Part No: I-PEX 20345-040T-31 or equivalent

Note (3) BLU brightness is proportion to the duty of ADJ signal.

Note (4) The first pixel is odd as shown in the following figure.

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

		Data Signal																	
Color				Re				Green				Blue							
		R5	R4	R3	R2	R1	R0	G5	Ğ4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

MCHI MEI

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

5.5 EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

VESA Plug & Display and FPDI standards.									
Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)					
0	0	Header	TBD	TBD					
1	1	Header	TBD	TBD					
2	2	Header	TBD	TBD					
3	3	Header	TBD	TBD					
4	4	Header	TBD	TBD					
5	5	Header	TBD	TBD					
6	6	Header	TBD	TBD					
7	7	Header	TBD	TBD					
8	8	EISA ID manufacturer name ("CMO")	TBD	TBD					
9	9	EISA ID manufacturer name (Compressed ASCII)	TBD	TBD					
10	0A	ID product code (N089L6-L02)	TBD	TBD					
11	0B	ID product code (hex LSB first; N089L6-L02)	TBD	TBD					
12	0C	ID S/N (fixed "0")	TBD	TBD					
13	0D	ID S/N (fixed "0")	TBD	TBD					
14	0E	ID S/N (fixed "0")	TBD	TBD					
15	0F	ID S/N (fixed "0")	TBD	TBD					
16	10	Week of manufacture (fixed week code)	TBD	TBD					
17	11	Year of manufacture (fixed year code)	TBD	TBD					
18	12	EDID structure version # ("1")	TBD	TBD					
19	13	EDID revision # ("3")	TBD	TBD					
20	14	Video I/P definition ("digital")	TBD	TBD					
21	15	Max H image size ("19.392cm")	TBD	TBD					
22	16	Max V image size ("11.53cm")	TBD	TBD					
23	17	Display Gamma (Gamma = "2.2")	TBD	TBD					
24	18	Feature support ("Active off, RGB Color")	TBD	TBD					
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	TBD	TBD					
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	TBD	TBD					
27	1B	Rx=TBD	TBD	TBD					
28	1C	Ry=TBD	TBD	TBD					
29	1D	Gx=TBD	TBD	TBD					
30	1E	Gy=TBD	TBD	TBD					
31	1F	Bx=TBD	TBD	TBD					
32	20	By=TBD	TBD	TBD					
33	21	Wx=TBD	TBD	TBD					
34	22	Wy=TBD	TBD	TBD					
35	23	Established timings 1	TBD	TBD					
36	24	Established timings 2	TBD	TBD					
37	25	Manufacturer's reserved timings	TBD	TBD					
38	26	Standard timing ID # 1	TBD	TBD					
39	27	Standard timing ID # 1	TBD	TBD					
40	28	Standard timing ID # 2	TBD	TBD					
41	29	Standard timing ID # 2	TBD	TBD					

CHIMEI OPTOELECTRONICS CORP.

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

Byte #	Byte #	Field Name and Comments	Value	Value
(decimal)	(hex)	Field Name and Comments	(hex)	(binary)
42	2A	Standard timing ID # 3	TBD	TBD
43	2B	Standard timing ID # 3	TBD	TBD
44	2C	Standard timing ID # 4	TBD	TBD
45	2D	Standard timing ID # 4	TBD	TBD
46	2E	Standard timing ID # 5	TBD	TBD
47	2F	Standard timing ID # 5	TBD	TBD
48	30	Standard timing ID # 6	TBD	TBD
49	31	Standard timing ID # 6	TBD	TBD
50	32	Standard timing ID # 7	TBD	TBD
51	33	Standard timing ID # 7	TBD	TBD
52	34	Standard timing ID # 8	TBD	TBD
53	35	Standard timing ID # 8	TBD	TBD
54	36	Detailed timing description # 1 Pixel clock ("45MHz", According to VESA CVT Rev1.1)	TBD	TBD
55	37	# 1 Pixel clock (hex LSB first)	TBD	TBD
56	38	# 1 H active ("1024")	TBD	TBD
57	39	# 1 H blank ("176")	TBD	TBD
58	3A	# 1 H active : H blank ("1024 : 176")	TBD	TBD
59	3B	# 1 V active ("600")	TBD	TBD
60	3C	# 1 V blank ("25")	TBD	TBD
61	3D	# 1 V active : V blank ("600 :25")	TBD	TBD
62	3E	# 1 H sync offset ("48")	TBD	TBD
63	3F	# 1 H sync pulse width ("32")	TBD	TBD
64	40	# 1 V sync offset : V sync pulse width ("3 : 6")	TBD	TBD
65	41	# 1 H sync offset: H sync pulse width: V sync offset: V sync width ("48: 32: 3: 6")	TBD	TBD
66	42	# 1 H image size ("193 mm")	TBD	TBD
67	43	# 1 V image size ("115 mm")	TBD	TBD
68	44	# 1 H image size : V image size ("193 : 115")	TBD	TBD
69	45	# 1 H boarder ("0")	TBD	TBD
70	46	# 1 V boarder ("0")	TBD	TBD
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	TBD	TBD
72	48	Detailed timing description # 2	TBD	TBD
73	49	# 2 Flag	TBD	TBD
74	4A	# 2 Reserved	TBD	TBD
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N089L6-L02", ASCII)	TBD	TBD
76	4C	# 2 Flag	TBD	TBD
77	4D	# 2 1st character of name ("N")	TBD	TBD
78	4E	# 2 2nd character of name ("0")	TBD	TBD
79	4F	# 2 3rd character of name ("8")	TBD	TBD
80	50	# 2 4th character of name ("9")	TBD	TBD
81	51	# 2 5th character of name ("L")	TBD	TBD
82	52	# 2 6th character of name ("6")	TBD	TBD
83	53	# 2 7th character of name ("-")	TBD	TBD
84	54	# 2 8th character of name ("L")	TBD	TBD

CHIMEI OPTOELECTRONICS CORP.

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

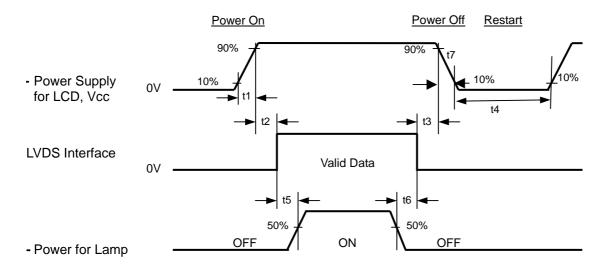
Byte #	Byte #	Field Name and Comments	Value	Value
(decimal)	(hex)		(hex)	(binary)
85		# 2 9th character of name ("0")	TBD	TBD
86		# 2 9th character of name ("2")	TBD	TBD
87		# 2 New line character indicates end of ASCII string	TBD	TBD
88	58	# 2 Padding with "Blank" character	TBD	TBD
89	59	# 2 Padding with "Blank" character	TBD	TBD
90	5A	Detailed timing description # 3	TBD	TBD
91		# 3 Flag	TBD	TBD
92		# 3 Reserved	TBD	TBD
93		# 3 FE (hex) defines ASCII string (Vendor "CMO", ASCII)	TBD	TBD
94		# 3 Flag	TBD	TBD
95	5F	# 3 1st character of string ("C")	TBD	TBD
96		# 3 2nd character of string ("M")	TBD	TBD
97	61	# 3 3rd character of string ("O")	TBD	TBD
98		# 3 New line character indicates end of ASCII string	TBD	TBD
99		# 3 Padding with "Blank" character	TBD	TBD
100	64	# 3 Padding with "Blank" character	TBD	TBD
101		# 3 Padding with "Blank" character	TBD	TBD
102		# 3 Padding with "Blank" character	TBD	TBD
103		# 3 Padding with "Blank" character	TBD	TBD
104		# 3 Padding with "Blank" character	TBD	TBD
105		# 3 Padding with "Blank" character	TBD	TBD
106	6A	# 3 Padding with "Blank" character	TBD	TBD
107		# 3 Padding with "Blank" character	TBD	TBD
108	6C	Detailed timing description # 4	TBD	TBD
109		# 4 Flag	TBD	TBD
110	6E	# 4 Reserved	TBD	TBD
111	6F	# 4 FE (hex) defines ASCII string (Model Name"N089L6-L02", ASCII)	TBD	TBD
112	70	# 4 Flag	TBD	TBD
113	71	# 4 1st character of name ("N")	TBD	TBD
114	72	# 4 2nd character of name ("0")	TBD	TBD
115	73	# 4 3rd character of name ("8")	TBD	TBD
116	74	# 4 4th character of name ("9")	TBD	TBD
117	75	# 4 5th character of name ("L")	TBD	TBD
118	76	# 4 6th character of name ("6")	TBD	TBD
119	77	# 4 7th character of name ("-")	TBD	TBD
120	78	# 4 8th character of name ("L")	TBD	TBD
121	79	# 4 9th character of name ("0")	TBD	TBD
122	7A	# 4 9th character of name ("2")	TBD	TBD
123	7B	# 4 New line character indicates end of ASCII string	TBD	TBD
124	7C	# 4 Padding with "Blank" character	TBD	TBD
125	7D	# 4 Padding with "Blank" character	TBD	TBD
126	7E	Extension flag	TBD	TBD
127	7F	Checksum	TBD	TBD

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	TBD	(45)	TBD	MHz	-
	Vertical Total Time	TV	TBD	(625)	TBD	H	-
	Vertical Active Display Period	TVD	TBD	600	TBD	H	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	(25)	TV-TVD	H	
DE	Horizontal Total Time	TH	TBD	(1200)	TBD	Tc	(2)
	Horizontal Active Display Period	THD	TBD	1024	TBD	Tc	(2)
	Horizontal Active Blanking Period	THB	TH-THD	(176)	TH-THD	Tc	(2)


Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

(2) 1 channel LVDS input.

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Timing Specifications:

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time is better to follow 5 to 300 ms.

CHIMEI OPTOELECTRONICS CORP.

Doc No.:

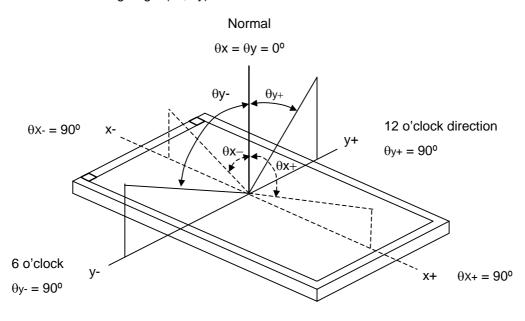
Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Ta	25±2	°C	
Ambient Humidity	На	50±10	%RH	
Supply Voltage	V_{CC}	3.3	V	
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"	
LED Light Bar Input Current	IL	52.5	mA	


The measurement methods of optical characteristics are shown in Section 7.2. The following items should be measured under the test conditions described in Section 7.1 and stable environment shown in Note (5).

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

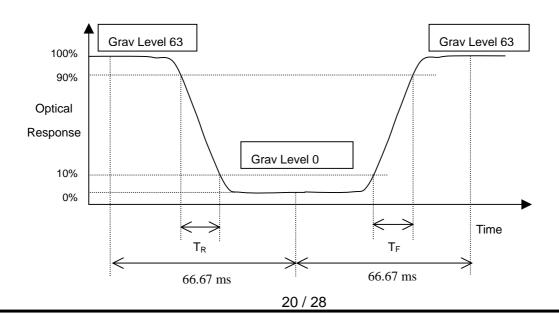
Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		200	300	-	-	(2), (5)	
Response Time		T_R		-	3	8	ms	(3)	
Response Time		T_F		-	7	12	ms		
Average Lumina	nce of White	L_{5p}		160	200	-	cd/m ²	(4), (5)	
Luminance Non-Uniformity		δW_{5p}		-	-	1.4		(5), (6)	
	Dod	Rx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		TBD		-	(4) (5)	
	Red	Ry	Viewing Normal	TYP -0.05	TBD	TYP +0.05	-		
	Green	Gx	Angle		TBD		-		
Color		Gy			TBD		-		
Chromaticity	Blue White	Bx			TBD		-		
		Ву			TBD		-		
		Wx			0.313		-	(1), (5)	
		Wy			0.329		-		
	l lovi-outol	θ_x +		40	45	-			
Viewing Angle	Horizontal	θ_{x} -	07.40	40	45	-	D		
	Vertical	θ _Y +	CR≥10	15	20		Deg.		
	Vertical	θ _Y -		40	45	-			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

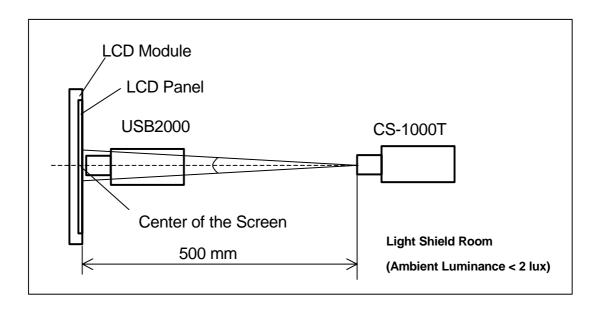
L 0: Luminance of gray level 0

$$CR = CR (1)$$

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (LAVE):

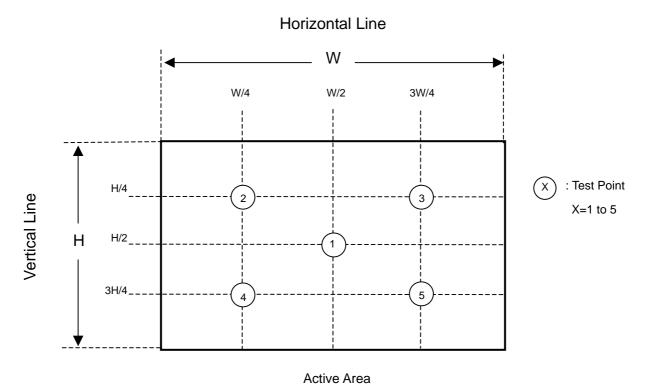

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Tentative

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = \{ Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)] \}$

8. PRECAUTIONS

8.1 SYSTEM MATCHING PRECAUTIONS

- (1) Refer to the drawing.
- (2) To avoid wireless noise interference, please keep the antenna away from LCD control board.

8.2 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.

Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

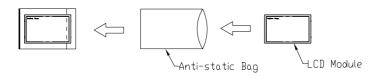
Tentative

- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.3 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

8.4 OPERATION PRECAUTIONS


- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.

9. PACKING

9.1 CARTON

Box Dimensions: 575(L)*380(W)*300(H) mm Weight: Approx. 11.63kg (50 module .per. 1 box)

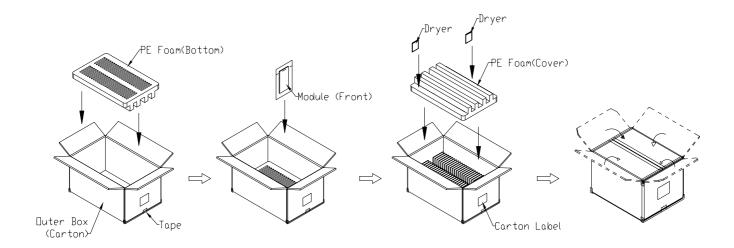


Figure. 9-1 Packing method

9.2 PALLET

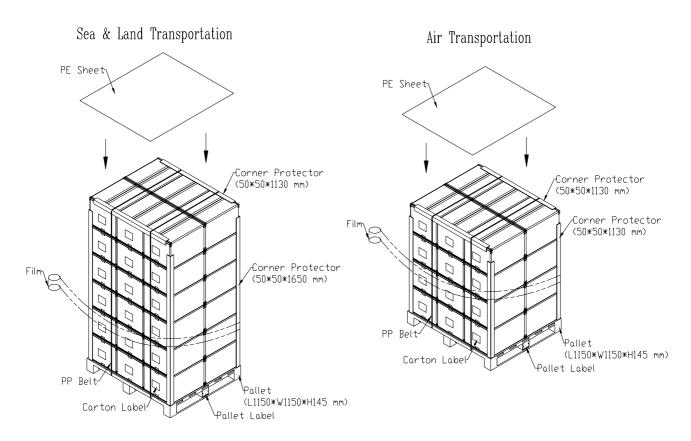
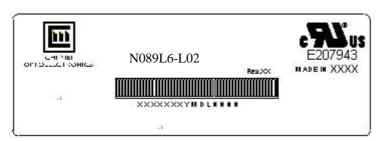


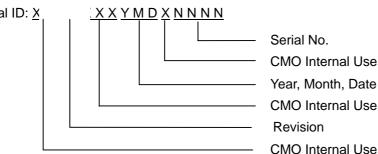
Figure. 9-2 Packing method


Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: N089L6 - L02

(b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

(c) Serial ID: X

(d) Production Location: MADE IN XXXX. XXXX stands for production location.

(e)UL logo: LEOO especially stands for panel manufactured by CMO NingBo satisfying UL requirement.

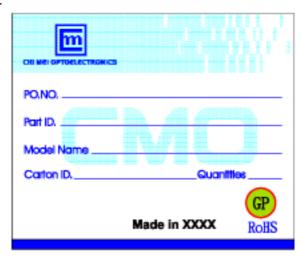
The panel without LEOO mark stands for manufactured by CMO Taiwan satisfying UL requirement.

Serial ID includes the information as below:

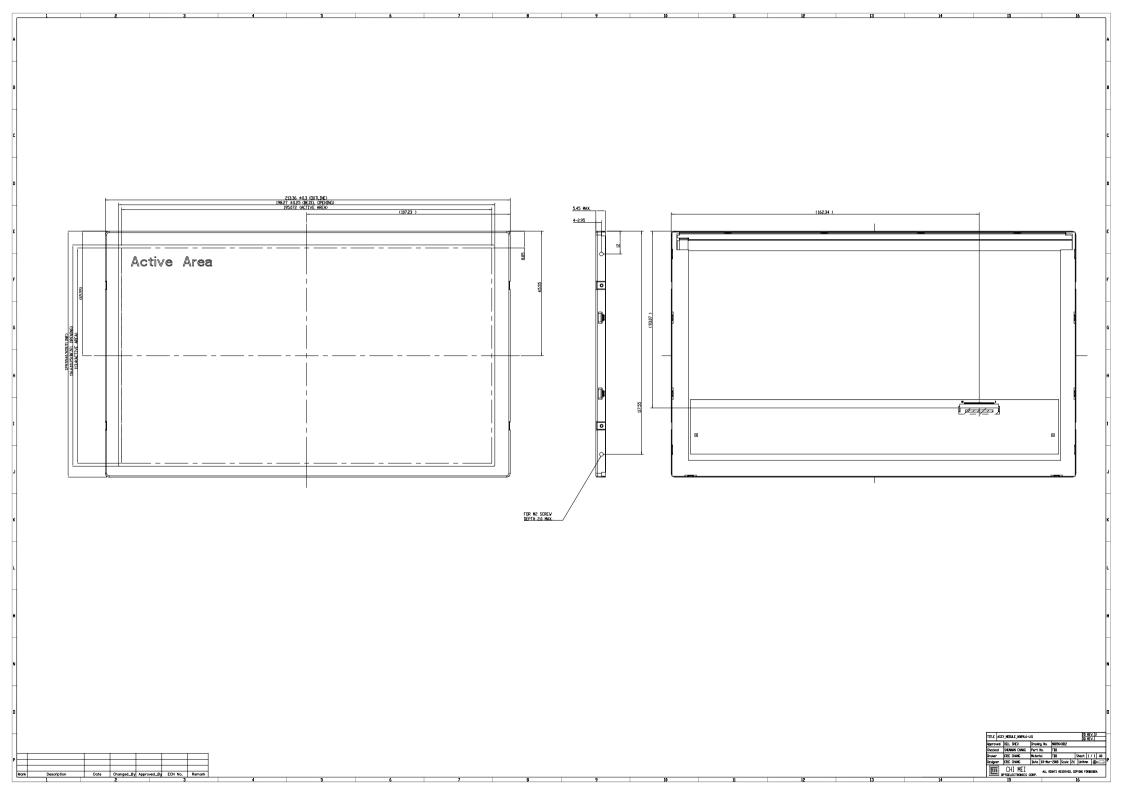
(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U


(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product


Issued Date: Apr. 21, 2008 Model No.: N089L6 - L02

Tentative

10.2 CMO CARTON LABEL

(a) Production location: Made In XXXX. XXXX stands for production location.

