65ED 🔤

Dimensions in mm

BT137 SERIES

TRIACS

Glass-passivated 8 ampere triacs intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance with very low thermal resistances. These triacs feature a high surge current capability and a range of gate current sensitivities between 5 and 50 mA. Typical applications include AC power control circuits such as motor, industrial lighting, industrial and domestic heating control and static switching systems.

QUICK REFERENCE DATA

		BT137	-500	600	700	800	
Repetitive peak off-state voltage	VDRM	max.	500	600	700	800	v
RMS on-state current	IT(RMS)	max.	8				А
Non-repetitive peak on-state current at 50 Hz	ITSM	max.	55 60				A
at 60 Hz	ITSM	max.					А

MECHANICAL DATA

MLAE63

Fig.1 TO-220AB

1 = Terminal 1

2 = Terminal 2 3 = Gate

Pinning:

10.3 max 3.7 2.8 5.9 m'n ¥ 15.8 max 3.0 max 3.0 not tinned 7 13.5 1.3 ma 124 0.9 0.6 max (3x) MSA060 - 1 -2.4

Net mass: 2 g Note: The exposed metal mounting base is directly connected to terminal T₂. Supplied on request: accessories (see data sheets Mounting instructions and accessories for TO--220 envelopes).

BT137 SERIES

P2E D 👦 177085P 00P55P5 705 📷 bHIN

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Voltages (in either direction)		BT137	-500	600	700	800	
Non-repetitive peak off-state voltage (t ≤ 10 ms)†	V _{DSM}	max.	500*	600*	700*	800	v
Repetitive peak off-state voltage $(\delta \leqslant 0.01)^{\dagger}$	VDRM	max.	500	600	700	800	v
Crest working off-state voltage	VDWM	max.	400	400	400	400	V
Currents (in either direction)			<u></u>	~~~~			
RMS on-state current (conduction angle 360 ⁰) up to T _{mb} = 97 ^o C	^I T(RMS)	max.			8		A
Repetitive peak on-state current	TRM	max,		5	5		А
Non-repetitive peak on-state current; T _j = 120 ^o C prior to surge; full sinewave				-	-		
t = 20 ms t = 16.7 ms	ITSM ITSM	max. max.	55 60				A A
l^2 t for fusing (t = 10 ms)	13101 1 ² t	max.	15				A ² s
Rate of rise of on-state current after triggering with I _G = 200 mA to I _T = 12 A; dI _G /dt = 0.2 A/μs	dl∓/dt	max.		2	0		A/µs
Gate to terminal 1							
Power dissipation							
Average power dissipation (averaged over any 20 ms period)	P _G (AV)	max.		0.	5		w
Peak power dissipation	PGM	max.			5		W
Temperatures							
Storage temperature	т _{stg}		40) to +12	5		оС
Operating junction temperature full-cycle operation half-cycle operation	Tj Tj	max. max.		12 11			oC oC

†For BT137--500D/600D use $R_{(G-T_1)} = 1 k\Omega$.

*Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 6 A/ μ s.

92

March 1993

Triacs

11

THERMAL RESISTANCE

From junction to mounting base			
full-cycle operation	R _{th} i-mb	=	2.0 K/W
half-cycle operation	R _{th} j-mb	=	2.4 K/W
Transient thermal impedance; $t = 1$ ms	Z _{th} j-mb	=	0.3 K/Ŵ

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

a.	with heatsink compound	R _{th mb-h}	=	0.3	к/w
b.	with heatsink compound and 0.06 mm maximum mica insulator	R _{th mb-h}	=	1.4	K/W
c.	with heatsink compound and 0.1 mm max. mica insulator (56369)	R _{th mb-h}	=	2.2	K/W
d.	with heatsink compound and 0.25 mm max. alumina insulator (56367)	R _{th mb-h}	=	0.8	K/W
e.	without heatsink compound	Rth mb-h	=	1.4	K/W

2. Free-air operation

The quoted values of $R_{\mbox{th}}$ $_{j-a}$ should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at any lead length

R_{th j-a} = 60 K/W

Fig.2 Components of thermal resistance.

11

BT137 SERIES

65E D	-	7110826	0062264	T85	PHIN
-------	---	---------	---------	-----	------

_

CHARACTERISTICS (T _j = 25 °C unlo Polarities, positive or negative, are identi			Т ₁ .					
Voltages and currents (in either direction	n)							
On-state voltage (measured under pulse of	conditions to	prevent	excessiv	e dissipa	ation)			
Ι _Τ = 10 A			v	т		<	1.65	v
Rate of rise of off-state voltage that will	not trigger			•				
any device; $T_i = 120 \text{ °C}$; gate open c								
BT137 series			d	V _D /dt		<	100	V/µs
BT137 series G				V _D /dt		<	200	V/μs
BT137 series F				V _D /dt		<	50	V/μs
BT137 series E	-			VD/dt		typ.	50	V/µs
BT137–500D/600D $(R_{(G-T_1)} = 1k)$	(22)		d	V _D /dt		typ.	5	V/μs
Rate of change of commutating voltage t trigger any device whendI _{com} /dt = IT(RMS) = 8 A; T _{mb} = 70 °C; gate o	= 3.6 A/ms;	Vn = Vi		•				
BT137 series	, spon on our	· U · 1		∧ V _{com} /d	t	typ.	10	V/µs
BT137 series G				V _{com} /d		<	10	V/µs
BT137 series F	Com					typ.	10	V/µs
Off-state current								
$V_D = V_{DWMmax}; T_i = 120 ^{\circ}C$			ł	n		<	0.5	mΑ
Gate voltage that will trigger all devices		VGT			>	1.5	v	
Gate voltage that will not trigger any dev $V_D = V_{DWMmax}$; $T_j = 120 °C$; T_2 and G positive or negative	vice			GD		<	250	mV
		<u>.</u>	v	GD			200	
Gate current that will trigger all devices ((IGT); G to I	1	- .		i -	1 -		
Holding current (I _H)			Т ₂ + G+	T ₂ +		· T ₂ - G+	-	
Latching current (I _L); $V_D = 12 V$				0-	0-			
	IGT	>	35	35	35	70		mA
BT137 series	ЧЙ	<	20	20	20	20		mΑ
	١Ľ	<	30	45	30	45		mΑ
	IGT	>	50	50	50	100		mA
BT137 series G	1H	<	40	40	40	40		mΑ
	ΗĽ	<	45	60	45	60		mΑ
		>	25	25	25	70		mA
BT137 series F	I _{GT} Iн	\langle	20	20	20	20		mA
	in Ii	<	30	45	30	45		mΑ
······································	·····		10	10	10			A
DT107 series F	IGT	> <	10 20	10 20	10 20	25		mA mA
BT137 series E	I H	$\overline{\langle}$	20 25	35	20	35		mA
			_	5	5	1 10		mΑ
	IGT	>	5		-			
BT137-500D/600D	IGT I _H I _I	> < <	5 15 15	15 20	15 15	15 20		mA mA

Triacs

BT137 SERIES

MOUNTING INSTRUCTIONS

 The device may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.

65E D

- The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The leads can be bent, twisted or straightened by 90° maximum. The minimum bending radius is 1 mm.
- 3. It is recommended that the circuit connection be made to tag T_2 , rather than direct to the heatsink.
- Mounting by means of a spring clip is the best mounting method because it offers:
 a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting.

b. safe isolation for mains operation.

However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.

- For good thermal contact, heatsink compound should be used between mounting base and heatsink. Values of R_{th} mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended.
- 6. Rivet mounting (only possible for non-insulated mounting) Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole. The maximum recommended hole size for rivet mounting is 3.5mm. The pre-formed head of the rivet should be on the device side and any rivet tool used should not damage the plastic body of the device.
- 7. The heatsink must have a flatness in the mounting area of 0.02 mm maximum per 10 mm. Mounting holes must be deburred.

March 1993

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

OPERATING NOTES

Dissipation and heatsink considerations:

a. The method of using Fig.3 is as follows:

Starting with the required current on the $I_T(AV)$ or $I_T(RMS)$ axis, trace upwards to meet the appropriate form factor or conduction angle curve. Trace horizontally and upwards from the appropriate value on the T_{amb} scale. The intersection determines the $R_{th\ mb-a}$. The heatsink thermal resistance value ($R_{th\ h-a}$) can now be calculated from:

R_{th h-a} = R_{th mb-a} - R_{th mb-h}.

b. Any measurement of heatsink temperature should be made immediately adjacent to the device.

March 1993

Triacs

65E D 🗰 7110826 0062267 794 🖿 PHIN

BT137 SERIES

Fig.4 Maximum permissible duration of steady overload (provided that T_{mb} does not exceed 120 °C during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not exceed 125 °C. During these overload conditions the triac may lose control. Therefore the overload should be terminated by a separate protection device.

Fig.5 Thermal impedance as a function of dissipation time.

-

Fig.7 On-state voltage drop (V_T) versus on-state current (I_T) .

BT137 SERIES

Fig.8 Typical commutation dV/dt for BT137 series versus T_j. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.

Fig.9 Limit commutation dV/dt for BT137G series versus T_{j} . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dIT/dt.

100

March 1993

Fig.10 Typical commutation dV/dt for BT137F series versus T_j . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dI_T/dt.

March 1993