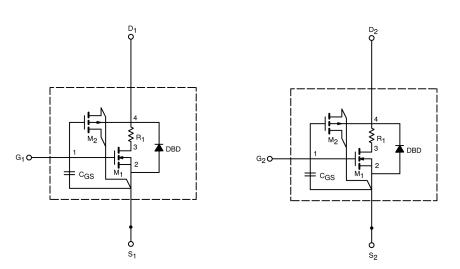


SPICE Device Model Si5902DC

Vishay Siliconix

Dual N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS


- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

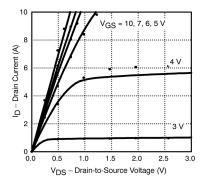
SPICE Device Model Si5902DC

Vishay Siliconix

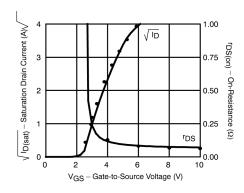
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static	-			
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.94	V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} \text{ = } 10 \text{ V}$	58	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 2.9 A	0.072	Ω
		V_{GS} = 4.5 V, I _D = 2.2 A	0.110	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I _D = 2.9 A	5	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 0.9 A, $V_{\rm GS}$ = 0 V	0.8	V
Dynamic ^b				
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_D = 2.9 A	4.7	nC
Gate-Source Charge	Q _{gs}		0.8	
Gate-Drain Charge	Q _{gd}		1	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R _L = 15 Ω $I_D \cong$ 1 A, V _{GEN} = 10 V, R _G = 6 Ω I_F = 0.9 A, di/dt = 100 A/µs	8	ns
Rise Time ^b	tr		9	
Turn-Off Delay Time ^b	t _{d(off)}		11	
Fall Time ^b	t _f		12	
Source-Drain Reverse Recovery Time	t _{rr}		40	

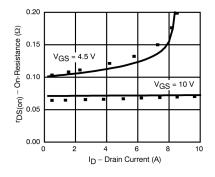
Notes

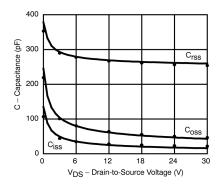
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

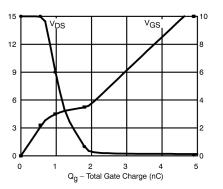





SPICE Device Model Si5902DC


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71550 07-Oct-99