## Am27C020 ## 2 Megabit (262,144 x 8-Bit) CMOS EPROM #### DISTINCTIVE CHARACTERISTICS - Fast access time - 70 ns - Low power consumption - 100 μA maximum CMOS standby current - JEDEC-approved pinout - Plug in upgrade of 1 Mbit EPROM - Easy upgrade from 28-pin JEDEC EPROMs - Single +5 V power supply - ±10% power supply tolerance standard on most speeds - 100% Flashrite<sup>™</sup> programming - Typical programming time of 32 seconds - Latch-up protected to 100 mA from -1 V to Vcc + 1 V - High noise immunity - Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbit - DESC SMD No. 5962-90912 #### GENERAL DESCRIPTION The Am27C020 is a 2 Mbit, ultraviolet erasable programmable read-only memory. It is organized as 256K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) including TSOP, PLCC, and PDIP. Typically, any byte can be accessed in less than 70 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C020 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system. AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 $\mu$ W in standby mode. All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C020 supports AMD's Flashrite programming algorithm (100 µs pulses) resulting in typical programming times of 32 seconds. Publication# 11507 Rev. E Amendment/0 Issue Date: June 1994 #### PRODUCT SELECTOR GUIDE | Family Part No. | Am27C020 | | | | | | | | | |------------------------------|----------|-----|------|------|------|------|--|--|--| | Ordering Part No:<br>Vcc ±5% | -75 | | | | | -255 | | | | | Vcc±10% | -70 | -90 | -120 | -150 | -200 | -250 | | | | | Max Access Time (ns) | 70 | 90 | 120 | 150 | 200 | 250 | | | | | CE (E) Access (ns) | 70 | 90 | 120 | 150 | 200 | 250 | | | | | ŌE (G) Access (ns) | 40 | 40 | 50 | 65 | 75 | 100 | | | | #### **CONNECTION DIAGRAMS** #### **Top View** #### Notes: - 1. JEDEC nomenclature is in parentheses. - 2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration. #### PIN DESIGNATIONS **LOGIC SYMBOL** A0-A17 Address Inputs CE (E) Chip Enable Input A0-A17 DQ0-DQ7 Data Input/Outputs OE (G) Output Enable Input DQ0-DQ7 PGM (P) Program Enable Input CE (E) Vcc Vcc Supply Voltage PGM (P) $V_{PP}$ Program Input Voltage OE (G) Vss Ground 11507E-4 #### **TSOP PACKAGE** 27C020 EPROM in 32 Lead TSOP ## ORDERING INFORMATION EPROM Products AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: | Valid Combinations | | | | | | | |--------------------|-----------------------------------------|--|--|--|--|--| | AM27C020-70 | DO DOD DI DID | | | | | | | AM27C020-75 | DC, DCB, DI, DIB,<br>LC, LCB, LI, LIB | | | | | | | AM27C020-90 | LO, LOO, LI, LIB | | | | | | | AM27C020-120 | | | | | | | | AM27C020-150 | DC, DCB, DI, DIB,<br>DE, DEB, LCB, LIB, | | | | | | | AM27C020-200 | LE, LEB, LC, LI | | | | | | | AM27C020-255 | <u> </u> | | | | | | #### **Valid Combinations** Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. #### **ORDERING INFORMATION** #### **OTP Products** AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: | Valid Combinations | | | | | | | |--------------------|---------------------------|--|--|--|--|--| | AM27C020-75 | | | | | | | | AM27C020-90 | ] | | | | | | | AM27C020-120 | | | | | | | | AM27C020-150 | PC, JC, PI,<br>JI, EC, EI | | | | | | | AM27C020-200 | ] | | | | | | | AM27C020-255 | ] | | | | | | #### **Valid Combinations** Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. #### **MILITARY ORDERING INFORMATION** #### **APL Products** AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of: | Valid Combinations | | | | | | | |--------------------|------------|--|--|--|--|--| | AM27C020-120 | | | | | | | | AM27C020-150 | | | | | | | | AM27C020-200 | /BXA, /BUA | | | | | | | AM27C020-250 | | | | | | | #### **Valid Combinations** Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. #### **Group A Tests** Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11. ## FUNCTIONAL DESCRIPTION Erasing the Am27C020 In order to clear all locations of their programmed contents, it is necessary to expose the Am27C020 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C020. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 $\mu\text{W}/\text{cm}^2$ for 15 to 20 minutes. The Am27C020 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure. It is important to note that the Am27C020, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C020 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance. #### Programming the Am27C020 Upon delivery, or after each erasure, the Am27C020 has all 2,097,152 bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27C020 through the procedure of programming. The programming mode is entered when 12.75 V $\pm$ 0.25 V is applied to the V<sub>PP</sub> pin, $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ are at V<sub>IL</sub> and $\overline{\text{OE}}$ is at V<sub>IH</sub>. For programming, the data to be programmed is applied 8 bits in parallel to the data output pins. The Flashrite algorithm reduces programming time by using 100 $\mu$ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C020. This part of the algorithm is done at $V_{CC}$ = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{CC}$ = $V_{PP}$ = 5.25 V. #### **Program Inhibit** Programming of multiple Am27C020s in parallel with different data is also easily accomplished. Except for $\overline{CE}$ , all like inputs of the parallel Am27C020 may be common. A TTL low-level program pulse applied to an Am27C020 $\overline{CE}$ input with $V_{PP} = 12.75 \text{ V} \pm 0.25 \text{ V}$ , $\overline{PGM}$ LOW, and $\overline{OE}$ HIGH will program that Am27C020. A high-level $\overline{\text{CE}}$ input inhibits the other Am27C020s from being programmed. #### **Program Verify** A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{OE}$ and $\overline{CE}$ at $V_{IL}$ , $\overline{PGM}$ at $V_{IH}$ , and $V_{PP}$ between 12.5 V and 13.0 V. #### **Auto Select Mode** The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the Am27C020. To activate this mode, the programming equipment must force 12.0 V $\pm$ 0.5 V on address line A9 of the Am27C020. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V<sub>IL</sub> to V<sub>IH</sub>. All other address lines must be held at V<sub>IL</sub> during auto select mode. Byte 0 ( $A0 = V_{IL}$ ) represents the manufacturer code, and Byte 1 ( $A0 = V_{IH}$ ), the device identifier code. For the Am27C020, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit. #### **Read Mode** The Am27C020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable $(\overline{CE})$ is the power control and should be used for device selection. Output Enable $(\overline{OE})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from $\overline{CE}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{OE}$ , assuming that $\overline{CE}$ has been LOW and addresses have been stable for at least tacc – toe. #### Standby Mode The Am27C020 has a CMOS standby mode which reduces the maximum VCC current to 100 $\mu A.$ It is placed in CMOS-standby when $\overline{CE}$ is at $V_{CC}\pm0.3$ V. The Am27C020 also has a TTL-standby mode which reduces the maximum $V_{CC}$ current to 1.0 mA. It is placed in TTL-standby when $\overline{CE}$ is at $V_{IH}.$ When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{OE}$ input. #### **Output OR-Tieing** To accommodate multiple memory connections, a twoline control function is provided to allow for: - Low memory power dissipation, and - Assurance that output bus contention will not occur It is recommended that $\overline{\text{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device. #### **System Applications** During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 $\mu\text{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 $\mu\text{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array. #### MODE SELECT TABLE | Mode | Pins | CE | ŌĒ | PGM | A0 | A9 | Vpp | Outputs | |-------------------------|-------------------|-------------|-----|-----|-----|----|-----|---------| | Read | | ViL | VIL | Х | Х | Х | Х | Dout | | Output Disab | le | VIL | ViH | Х | Х | Х | Х | High Z | | Standby (TTL | -) | Viн | X | Х | Х | X | х | High Z | | Standby (CMOS) | | Vcc ± 0.3 V | Х | Х | Х | Х | Х | High Z | | Program | Program | | ViH | VIL | Х | Х | Vpp | DIN | | Program Veri | Program Verify | | VIL | ViH | Х | Х | Vpp | Douт | | Program Inhibit | | ViH | Х | х | Х | Х | Vpp | High Z | | Auto Select<br>(Note 3) | Manufacturer Code | VIL | ViL | Х | VıL | Vн | × | 01H | | | Device Code | VıL | ViL | Х | ViH | Vн | Х | 97H | #### Notes: - 1. $V_H = 12.0 \text{ V} \pm 0.5 \text{ V}$ - 2. X can be either VIL or VIH - 3. $A1-A8 = A10-A17 = V_{IL}$ #### **ABSOLUTE MAXIMUM RATINGS** | Storage Temperature: | |-----------------------------------------| | OTP Products65°C to +125°C | | All Other Products –65°C to +150°C | | Ambient Temperature | | with Power Applied55°C to +125°C | | Voltage with Respect to Vss: | | All pins except A9, VPP, and | | Vcc (Note 1)0.6 V to Vcc + 0.6 V | | A9 and $V_{PP}$ (Note 2)0.6 V to 13.5 V | | Vcc0.6 V to 7.0 V | #### Notes: - 1. During transitions, the input may overshoot $V_{SS}$ to -2.0~V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to $V_{CC}+2.0~V$ for periods of up to 20 ns. - During transitions, A9 and V<sub>PP</sub> may overshoot V<sub>SS</sub> to -2.0 V for periods of up to 20 ns. A9 and V<sub>PP</sub> must not exceed 13.5 V for any period of time. Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. #### **OPERATING RANGES** | Commercial (C) Devices | |--------------------------------------------------| | Case Temperature (Tc) 0°C to +70°C | | Industrial (I) Devices | | Case Temperature (Tc)40°C to +85°C | | Extended Commercial (E) Devices | | Case Temperature (Tc)55°C to +125°C | | Military (M) Devices | | Case Temperature (T <sub>C</sub> )55°C to +125°C | | Supply Read Voltages: | | Vcc for Am27C020-XX5 +4.75 V to +5.25 V | | Vcc for Am27C020-XX0 +4.50 V to +5.50 V | Operating ranges define those limits between which the functionality of the device is guaranteed. # DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 2, and 4) (for APL products, Group A, Subgroups 1, 2, 3, 6, and 7 are tested unless otherwise noted) | PRELIMINARY | | | | | | | | | |---------------------|--------------------------------|---------------------------------------|--------------------|------|------|------|--|--| | Parameter<br>Symbol | Parameter Description | Test Conditions | | Min | Max | Unit | | | | Vон | Output HIGH Voltage | Юн = -400 μА | | 2.4 | | ٧ | | | | Vol | Output LOW Voltage | loL = 2.1 mA | IoL = 2.1 mA | | 0.45 | ٧ | | | | ViH | Input HIGH Voltage | | | | | ٧ | | | | VIL | Input LOW Voltage | | | -0.5 | +0.8 | ٧ | | | | lLi | Input Load Current | VIN = 0 V to Vcc | | 1.0 | μА | | | | | lto | Output Leakage Current | Vout = 0 V to Vcc | | | 5.0 | μА | | | | lcc <sub>1</sub> | Vcc Active Current<br>(Note 3) | CE = V <sub>IL</sub> ,<br>f = 10 MHz, | C/I Devices | | 30 | mA | | | | <u> </u> | Iout = 0 mA | IOUT = 0 mA | E/M Devices | | 60 | WA. | | | | lcc2 | Vcc TTL Standby Current | CE = VIH, OE = VIL | CE = VIH, OE = VIL | | | mA | | | | lcc3 | Vcc CMOS Standby Current | CE = Vcc + 0.3 V | | | 100 | μА | | | | lPP1 | Vpp Supply Current (Read) | CE = OE = VIL, VPP | = Vcc | | 100 | μА | | | #### Notes: - 1. $V_{CC}$ must be applied simultaneously or before $V_{PP}$ , and removed simultaneously or after $V_{PP}$ . - 2. Caution: The Am27C020 must not be removed from (or inserted into) a socket when VCC or VPP is applied. - 3. $I_{CC1}$ is tested with $\overline{OE} = V_{IH}$ to simulate open outputs. - 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is $V_{CC} + 0.5$ V, which may overshoot to $V_{CC} + 2.0$ V for periods less than 20 ns. Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz #### **CAPACITANCE** | | Parameter | Test | CD\ | /032 | CL | /032 | PD | 032 | PL | 032 | TS | 032 | | |--------|--------------------|------------|-----|------|-----|------|-----|-----|-----|-----|-----|-----|------| | Symbol | Description | Conditions | Тур | Max | Unit | | Cin | Input Capacitance | VIN = 0 V | 10 | 12 | 8 | 10 | 10 | 12 | 8 | 10 | 10 | 12 | ρF | | Соит | Output Capacitance | Vout = 0 V | 12 | 15 | 9 | 12 | 12 | 15 | 9 | 12 | 12 | 14 | ρF | #### Note: # SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3, and 4) (for APL products, Group A, Subgroups 9, 10, and 11 are tested unless otherwise noted) | | ameter | | | | | | Am2 | 7C020 | | | | |-----------------|-------------------|----------------------------------------------|-----------------|------------|------------|-----|-----------|-----------|------|--------------|------| | | mbols<br>Standard | Parameter<br>Description | Test Conditions | | -75<br>-70 | -90 | -120 | -150 | -200 | -255<br>-250 | Unit | | tavqv | tacc | Address to<br>Output Delay | CE = OE = VIL | Min<br>Max | 70 | 90 | 120 | 150 | 200 | | ns | | telov | tce | Chip Enable<br>to Output Delay | OE = VIL | Min<br>Max | 70 | 90 | | | | 250 | ns | | tGLQV | toe | Output Enable to Output Delay | CE = VIL | Min<br>Max | 40 | 40 | 120<br>50 | 150<br>55 | 60 | 250<br>75 | ns | | tehoz,<br>tghoz | tDF<br>(Note 2) | Chip Enable HIGH or Output Enable | | Min | ,,, | 70 | 30 | - 33 | - 00 | /3 | | | | , , | HIGH, whichever comes first, to Output Float | | Мах | 25 | 25 | 30 | 30 | 40 | 60 | ns | | taxox | tон | Output Hold from<br>Addresses, CE, or | | Min | 0 | 0 | 0 | 0 | 0 | 0 | | | | | OE, whichever occurred first | | Max | | | | | | | ns | #### Notes: - 1. $V_{CC}$ must be applied simultaneously or before $V_{PP}$ , and removed simultaneously or after $V_{PP}$ . - 2. This parameter is only sampled and not 100% tested. - 3. Caution: The Am27C020 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied. - 4. Output Load: 1 TTL gate and C<sub>L</sub> = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 V to 2.4 V, Timing Measurement Reference Level—Inputs: 0.8 V and 2 V, Outputs: 0.8 V and 2 V <sup>1.</sup> This parameter is only sampled and not 100% tested. ### **SWITCHING TEST CIRCUIT** $C_L = 100 \text{ pF}$ including jig capacitance ## **SWITCHING TEST WAVEFORM** AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns. #### **KEY TO SWITCHING WAVEFORMS** KS000010 #### **SWITCHING WAVEFORM** - 1. $\overline{OE}$ may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC. - 2. tDF is specified from OE or CE, whichever occurs first. #### **CDV032** ## 32-Pin Ceramic DIP with UV Lens (measured in inches) 16-000038H-3 CDV032 DB11 6-17-94 ae #### **CLV032** ## 32-Pin Rectangular Ceramic Leadless Chip Carrier with UV Lens (measured in inches) DA45 6-23-94 ae #### PD 032 ## 32-Pin Plastic Dual-In-Line Package (measured in inches) ## PL 032 32-Pin Plastic Leaded Chip Carrier (measured in inches) #### **TS 032** ## 32-Pin Thin Small Outline, Standard Pin-Out (measured in millimeters) #### **Trademarks** Copyright © 1994 Advanced Micro Devices, Inc. All rights reserved. AMD and the AMD logo are registered trademarks of Advanced Micro Devices, Inc. Flashrite is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. <sup>\*</sup>For reference only. BSC is an ANSI standard for Basic Space Centering. | North Americ | ean | |-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | (205) 882-9122 | | ARIZONA | (602) 242-4400 | | CALIFORNIA. | (002) 242 4400 | | | (310) 645-1524 | | Newport Beach | (714) 752-6262 | | | ville)(916) 786-6700 | | San Diego | (619) 560-7030 | | San Jose | (408) 922-0500 | | Woodland Hills | (818) 878-9988 | | CANADA, Ontario, | | | Kanata | (613) 592-0060 | | | (416) 222-7800 | | | (303) 741-2900 | | CONNECTICUT | (203) 264-7800 | | FLORIDA, | | | Clearwater | (813) 530-9971 | | Boca Raton | (407) 361-0050 | | Orlando (Longwoo | od)(407) 862-9292 | | GEORGIA | (404) 449-7920 | | | (208) 377-0393 | | ILLINOIS, | (227, 27, 0000 | | Chicago (Itasca) | (708) 773-4422 | | Naperville | (708) 505-9517 | | MARYLAND | (301) 381-3790 | | MASSACHUSETTS | (617) 273-3970 | | | (612) 938-0001 | | NEW JERSEY. | (012) 938-0001 | | | (609) 662-2900 | | Pareionany | (201) 299-0002 | | | (201) 200 0002 | | NEW YORK, | (014) 070 0202 | | | (914) 279-8323 | | | (716) 425-8050 | | NORTH CAROLINA | | | Charlotte | (704) 875-3091 | | | (919) 878-8111 | | OHIO, | // · | | Columbus (Weste | rville)(614) 891-6455 | | | (513) 439-0268 | | OREGON | (503) 245-0080 | | PENNSYLVANIA | (215) 398-8006 | | TEXAS, | | | Austin | (512) 346-7830 | | <b>-</b> | (214) 024 0000 | | Dallas | (214) 934-9099 | | Houston | (214) 934-9099<br>(713) 376-8084 | | Houston | (713) 376-8084 | | HoustonInternational | (713) 376-8084 | | HoustonInternational | (713) 376-8084<br> | | HoustonInternational BELGIUM, Antwerpe | (713) 376-8084<br> | | HoustonInternational BELGIUM, Antwerpe | rn TEL (03) 248 43 00<br>FAX (03) 248 46 42<br>TEL (1) 49-75-10-10 | | HoustonInternational BELGIUM, Antwerpe FRANCE, Paris | (713) 376-8084<br> | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 | | Houston International BELGIUM, Antwerpe FRANCE, Paris GERMANY, Bad Homburg | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 | | Houston International BELGIUM, Antwerpe FRANCE, Paris GERMANY, Bad Homburg | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 | | Houston | (713) 376-8084 TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 | | Houston | (713) 376-8084 TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 | | Houston | (713) 376-8084 TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 TEL (03) 3346-7550 | | Houston | TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 TEL (03) 3346-7550 FAX (03) 3342-5196 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 TEL (03) 3346-7550 FAX (03) 3342-5196 FAX (03) 3342-5196 TEL (06) 243-3250 | | Houston | TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 TEL (03) 3346-7550 FAX (03) 3342-5196 TEL (06) 243-3250 FAX (06) 243-3253 | | Houston | (713) 376-8084 In TEL (03) 248 43 00 FAX (03) 248 46 42 TEL (1) 49-75-10-10 FAX (1) 49-75-10-13 TEL (06172)-24061 FAX (06172)-23195 TEL (089) 45053-0 FAX (089) 406490 TEL (852) 865-4525 FAX (852) 865-4335 TEL (02) 3390541 FAX (02) 38103458 TEL (03) 3346-7550 FAX (03) 3342-5196 FAX (03) 3342-5196 TEL (06) 243-3250 | | International | (Continued) | ters vall hids vall die voor de de de de proposities van de gewone van de gewone van de gewone van de gewone v | |-----------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------| | LATIN AMERICA,<br>Ft. Lauderdale | TEL | (305) 484-8600 | | SINGAPORE | TEL | | | SWEDEN,<br>Stockholm area | TEL | (08) 98 61 80 | | | FAX | (08) 98 09 06<br>(886) 2-7153536<br>(886) 2-7122183 | | UNITED KINGDOM,<br>Manchester area | TEL | (0925) 830380 | | London area<br>(Woking) | TEL | (0925) 830204<br>(0483) 740440<br>(0483) 756196 | | | | ntatives | | CANADA | | | | | - VITEL ELECTRON | ING (604) 430-3680<br>IICS (613) 592-0060 | | VITEL ELECTRO | NICS | (905) 564-9720<br>CS (514) 636-5951 | | ILLINOIS<br>Skokie – INDUST | | | | IOWA | | (708) 967-8430 | | KANSAS | | (319) 377-4666 | | | | (913) 469-1312<br>(316) 721-0500 | | Chula Vista - SC | | CA (619) 498-8340<br>CA (523) 647-4250 | | Mexico Čity – SC | NIKA ELECTRONIC | CA (523) 754-6480 | | MICHIGAN | | A (523) 358-9280<br>(616) 335-8418 | | Brighton - COM- | | (313) 227-0007 | | MINNESOTA Mel Foster Tech. MISSOURI | Sales, Inc | (612) 941-9790 | | | | (314) 997-4558 | | | | (402) 475-4660 | | | ERT STATES | (505) 883-4343 | | | NYCOM, INC<br>MPONENT | (315) 437-8343 | | CONSULTANTS,<br>OHIO | INC | (516) 273-5050 | | Westlake - DOLF | | )(513) 433-6776<br>(216) 899-9370 | | PENNSYLVANIA<br>RUSSELL F. CLA<br>PUERTO RICO | ARK CO.,INC | (412) 242-9500 | | | OC, INC | (809) 746-6550 | | | MARKETING | (801) 288-2500 | | WISCONSIN | | (206) 821-7442 | | Brookfield – INDU<br>REPRESENTATIV | | (414) 574-9393 | Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein. Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 APPLICATIONS HOTLINE & LITERATURE ORDERING • TOLL FREE: (800) 222-9323 • (408) 749-5703 © 1994 Advanced Micro Devices, Inc. CP-8.8M-7/94-0 4/7/94 11507E Printed in USA