Chapter 4

Designing FPGAs with HDL

Xilinx FPGAs provide the benefits of custom CMOS VLSI and allow
you to avoid the initial cost, time delay, and risk of conventional
masked gate array devices. In addition to the logic in the CLBs and
IOBs, the XC4000 family and XC5200 family FPGAs contain system-
oriented features such as the following.

* Global low-skew clock or signal distribution network

* Wide edge decoders (XC4000 family only)

* On-chip RAM and ROM (XC4000 family and Spartan)

* IEEE 1149.1 — compatible boundary scan logic support

* Flexible I/0 with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

* 12-mA sink current per output and 24-mA sink per output pair
* Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utiliza-
tion and enhance the speed of critical paths in your HDL designs. The
examples in this chapter are provided to help you incorporate these
system features into your HDL designs.

This chapter includes the following sections.

* “Using Global Low-skew Clock Buffers” section

+ “Using Dedicated Global Set/Reset Resource” section
* “Encoding State Machines” section

* “Using Dedicated 1/0 Decoders” section

* “Instantiating LogiBLOX Modules” section

* “Implementing Memory” section

Synopsys (XSI) Synthesis and Simulation Design Guide — 0401737 01 4-1

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

+ “Implementing Boundary Scan (JTAG 1149.1)” section

* “Implementing Logic with IOBs” section

* “Implementing Multiplexers with Tristate Buffers” section
* “Using Pipelining” section

* “Design Hierarchy” section

Using Global Low-skew Clock Buffers

For designs with global signals, use global clock buffers to take
advantage of the low-skew, high-drive capabilities of the dedicated
global buffer tree of the target device. When you use the Insert Pads
command, the FPGA Compiler automatically inserts a BUFG generic
clock buffer whenever an input signal drives a clock signal. The
Xilinx implementation software automatically selects the clock buffer
that is appropriate for your specified design architecture. If you want
to use a specific global buffer, you must instantiate it.

You can instantiate an architecture-specific buffer if you understand
the architecture and want to specify how the resources should be
used. Each XC4000E/L and Spartan device contains four primary
and four secondary global buffers that share the same routing
resources. XC4000EX/XL/XV devices have sixteen global buffers;
each buffer has its own routing resources. XC5200 devices have four
dedicated global buffers in each corner of the device.

XC4000 EX/XL/XV devices have two different types of global buffer,
Global Low-Skew Buffers (BUFGLS) and Global Early Buffers
(BUFGE). Global Low-Skew buffers are standard global buffers that
should be used for most internal clocking or high fanout signals that
must drive a large portion of the device. There are eight BUFGLS
buffers available, two in each corner of the device. The Global Early
buffers are designed to provide faster clock access, but CLB access is
limited to one quadrant of the device. 1/0 access is also limited. Simi-
larly, there are eight BUFGEs, two in each corner of the device.

Because Global early and Global Low-Skew Buffers share a single
pad, a single IPAD can drive a BUFGE, BUFGLS or both in parallel.
The parallel configuration is especially useful for clocking the fast
capture latches of the device. Since the Global Early and Global Low-
Skew Buffers share a common input, they cannot be driven by two
unique signals.

4-2 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

You can use the following criteria to help select the appropriate
global buffer for a given design path.

* The simplest option is to use a Global Low-Skew Buffer.

* If you want a faster clock path, use a BUFG. Initially, the software
will try to use a Global Low-Skew Buffer. If timing requirements
are not met, a BUFGE is automatically used if possible.

» Ifasingle quadrant of the chip is sufficient for the clocked logic,
and timing requires a faster clock than the Global Low-Skew
buffer, use a Global Early Buffer.

Note: For more information on using the XC4000 EX/XL/XV device
family global buffers, refer to the online Xilinx Data Book or the
Xilinx web site at http://www.xilinx.com.

For XC4000E/L and Spartan devices, you can use secondary global
buffers (BUFGS) to buffer high-fanout, low-skew signals that are
sourced from inside the FPGA. To access the secondary global clock
buffer for an internal signal, instantiate the BUFGS_F cell. You can
use primary global buffers (BUFGP) to distribute signals applied to
the FPGA from an external source. Internal signals can be globally
distributed with a primary global buffer, however, the signals must
be driven by an external pin.

XC4000E devices have four primary (BUFGP) and four secondary
(BUFGS) global clock buffers that share four global routing lines, as
shown in the following figure.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-3

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

SGCK1 SGCK4
|-|'-| BUFGS BUFGS lfl
PGCK1 N '|> <ll/l
[} 1> 4 |
BUFGP BUFGP PGCK4
BUFGS
BUFGP
BUFGS BUFGP pGcK3
sGekz B A .
N 1N
| ~N
BUFGP BUFGS
PGCK2 SGCK3

X4987

Figure 4-1 Global Buffer Routing Resources (XC4000E,

Spartan)

4-4

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Xilinx Development System

Designing FPGAs with HDL

Input Register

BEFORE AFTER
108 cLB 108
| FDE IED
Qf— C>—p o}—
IN_SIG
Dc —Pc
Routing Delay:
Output Register
BEFORE AFTER

CLB 0B ioB
= e S OFD.F

=10 o>
OuT _SsIG ,’ OUT _SIG
A

c : —pc
Rouling Delay go;.mng
{No additional eay
setup time)

X4974

Figure 4-2 Global Buffer Routing Resources

These global routing resources are only available for the eight global
buffers. The eight global nets run horizontally across the middle of
the device and can be connected to one of the four vertical longlines
that distribute signals to the CLBs in a column. Because of this
arrangement only four of the eight global signals are available to the
CLBs in a column. These routing resources are “free” resources
because they are outside of the normal routing channels. Use these
resources whenever possible. You may want to use the secondary
buffers first because they have more flexible routing capabilities.

You should use the global buffer routing resources primarily for high-
fanout clocks that require low skew, however, you can use them to
drive certain CLB pins, as shown in the following figure. In addition,

Synopsys (XSI) Synthesis and Simulation Design Guide 4-5

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

4-6

you can use these routing resources to drive high-fanout clock
enables, clear lines, and the clock pins (K) of CLBs and IOBs.

In the figure shown, the C pins drive the input to the H function
generator, Direct Data-in, Preset, Clear, or Clock Enable pins. The F
and G pins are the inputs to the F and G function generators, respec-
tively.

F4 C4 G4 YQ
Gi1

C1

Y

G3

K CLB

Fi cs

X F3
XQ F2 c2 G2

W_J H/_J
“Global" “Global”
Long Lines Long Lines

X5520
Figure 4-3 Global Longlines Resource CLB Connections

If your design does not contain four high-fanout clocks, use these
routing resources for signals with the next highest fanout. To reduce
routing congestion, use the global buffers to route high-fanout
signals. These high-fanout signals include clock enables and reset
signals (not global reset signals). Use global buffer routing resources
to reduce routing congestion; enable routing of an otherwise
unroutable design; and ensure that routing resources are available for
critical nets.

Xilinx recommends that you assign up to four secondary global clock
buffers to the four signals in your design with the highest fanout
(such as clock nets, clock enables, and reset signals). Clock signals
that require low skew have priority over low-fanout non-clock
signals. You can source the signals with an input buffer or a gate
internal to the design. Generate internally sourced clock signals with
a register to avoid unwanted glitches. The synthesis tool can insert
global clock buffers or you can instantiate them in your HDL code.

Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

Note: Use Global Set/Reset resources when applicable. Refer to the
“Using Dedicated Global Set/Reset Resource” section in this chapter
for more information.

Inserting Clock Buffers

Note: Refer to the Synopsys (XSI) Interface/Tutorial Guide for more
information on inserting 1/0 buffers and clock buffers.

Synopsys tools automatically insert a secondary global clock buffer
on all input ports that drive a register’s clock pin or a gated clock
signal. To disable the automatic insertion of clock buffers and specify
the ports that should have a clock buffer, perform the following steps.

1. In the Synopsys Compiler, ports that drive gated clocks or a
register’s clock pin are assigned a clock attribute. Remove this
attribute from ports tagged with the clock attribute by typing:

set_pad type —no_clock “*”

2. Assign a clock attribute to the input ports that should have a
BUFGS as follows:

set_pad _type -clock {input ports}
3. Enter the following commands:

set_port_is_pad “*”
insert_pads

The Insert Pads command causes the FPGA Compiler to auto-
matically insert a clock buffer to ports tagged with a clock
attribute.

To insert a global buffer other than a BUFGS, such as a BUFGP, use
the following commands.

1. Use the following command on all ports with inferred buffers.
set_port_is_pad “*”

2. Specify the buffer as follows.
set_pad type -exact BUFGP_F { port_list}

You can replace BUFGP_F with another supported buffer for the
device you are targeting. Refer to the Synopsys (XSI) Interface/
Tutorial Guide for a list of supported buffers. Port_list specifies the
port(s) for the buffer.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-7

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

3. Generate the buffers for the device as follows.

insert_pads

Instantiating Global Clock Buffers

You can instantiate global buffers in your code as described in this
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout
ports in your code rather than inferring them from a Synopsys script.
If you do instantiate global buffers that are connected to a port, check
your Synopsys script to make sure the Set Port Is Pad command is not
specified for the buffer.

set_port_is_pad {list_of all ports_except_instantiated_buffer_port}

insert_pads
or

set_port_is_pad “*”

remove_attribute {instantiated buffer port} port_is_pad

insert_pads

Instantiating Buffers Driven from Internal Logic

You must instantiate a global buffer in your code in order to use the
dedicated routing resource if a high-fanout signal is sourced from
internal flip-flops or logic (such as a clock divider or multiplexed
clock), or if a clock is driven from the internal oscillator or non-dedi-
cated 1/0 pin. The following VHDL and Verilog examples are exam-
ples of instantiating a BUFGS for an internal multiplexed clock
circuit. A Set Dont Touch attribute is added to the instantiated
component.

4-8 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

—— CLOCK_MUX.VHD -
—— This is an example of an instantiation of --
—-— global buffer (BUFGS) from an internally --—
—— driven signal, a multiplexed clock. —=
—-— July 1997 -

library IEEE;
use IEEE.std_logic_1164.all;

entity clock_mux is

port (DATA, SEL: in STD_LOGIC;
SLOW_CLOCK, FAST_CLOCK: in STD_LOGIC;
DOUT : out STD_LOGIC);

end clock_mux;
architecture XILINX of clock_mux is

signal CLOCK: STD_LOGIC;
signal CLOCK_GBUF: STD_LOGIC;

component BUFGS
port (I: in STD_LOGIC;
O: out STD_LOGIC);
end component;

begin

Clock MUX: process (SEL)

begin
if (SEL = '1') then
CLOCK <= FAST_CLOCK;
else
CLOCK <= SLOW_CLOCK;
end if;

end process;
GBUF_FOR_MUX_ CLOCK: BUFGS
port map (I => CLOCK,
O => CLOCK_GBUF) ;

Data_Path: process (CLOCK_GBUF, DATA)
begin

Synopsys (XSI) Synthesis and Simulation Design Guide 4-9

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

if (CLOCK_GBUF'event and CLOCK_GBUF='l') then
DOUT <= DATA;
end if;
end process;

end XILINX;
* Verilog

// CLOCK_MUX.V //
// This is an example of an instantiation of //
// global buffer (BUFGS) from an internally //
// driven signal, a multipled clock. //
// September 1997 //
1777777777777 777777777777777707777777777077777777

module clock_mux (DATA, SEL, SLOW_CLOCK, FAST_CLOCK, DOUT);

input DATA, SEL;
input SLOW_CLOCK, FAST_CLOCK;
output DOUT;

reg CLOCK;
wire CLOCK_GRUF;
reg DOUT;

always @ (SEL)

begin
if (SEL == 1'bl)
CLOCK <= FAST_CLOCK;
else
CLOCK <= SLOW_CLOCK;
end

BUFGS GBUF_FOR_MUX_CLOCK (.0 (CLOCK_GBUF), .I(CLOCK));

always @ (posedge CLOCK_GBUF)
DOUT = DATA;

endmodule

Using Dedicated Global Set/Reset Resource

XC4000 and Spartan devices have a dedicated Global Set/Reset
(GSR) net that you can use to initialize all CLBs and IOBs. When the

4-10 Xilinx Development System

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

GSR is asserted, every flip-flop in the FPGA is simultaneously preset
or cleared. You can access the GSR net from the GSR pin on the
STARTUP block or the GSRIN pin of the STARTBUF (VHDL).

Since the GSR net has dedicated routing resources that connect to the
Preset or Clear pin of the flip-flops, you do not need to use general
purpose routing or global buffer resources to connect to these pins. If
your design has a Preset or Clear signal that effects every flip-flop in
your design, use the GSR net to increase design performance and
reduce routing congestion.

The XC5200 family has a dedicated Global Reset (GR) net that resets
all device registers. As in the XC4000 and Spartan devices, the
STARTUP or STARTBUF (VHDL) block must be instantiated in your
code in order to access this resource. The XC3000A devices also have
dedicated Global Reset (GR) that is connected to a dedicated device
pin (see device pinout). Since this resource is always active, you do
not need to do anything to activate this feature.

For XC4000, Spartan, and XC5200 devices, the Global Set/Reset (GSR
or GR) signal is, by default, set to active high (globally resets device
when logic equals 1). For an active low reset, you can instantiate an
inverter in your code to invert the global reset signal. The inverter is
absorbed by the STARTUP block and does not use any device
resources (function generators). Even though the inverted signal may
be behaviorally described in your code, Xilinx recommends instanti-
ating the inverter to prevent the mapping of the inverter into a CLB
function generator, and subsequent delays to the reset signal and
unnecessary use of device resources Also make sure you put a Don’t
Touch attribute on the instantiated inverter before compiling your
design. If you do not add this attribute, the inverter may get mapped
into a CLB function generator.

Note: For more information on simulating the Global Set/Reset, see
the “Simulating Your Design” chapter.

Startup State

The GSR pin on the STARTUP block or the GSRIN pin on the
STARTBUF block drives the GSR net and connects to each flip-flop’s
Preset and Clear pin. When you connect a signal from a pad to the
STARTUP block’s GSR pin, the GSR net is activated. Since the GSR
net is built into the silicon it does not appear in the pre-routed netlist
file. When the GSR signal is asserted High (the default), all flip-flops

Synopsys (XSI) Synthesis and Simulation Design Guide 4-11

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

Note: For the XC3000 family and the XC5200 family, all flip-flops and
latches are reset to zero after configuration.

Preset vs. Clear (XC4000, Spartan)

The XC4000 family flip-flops are configured as either preset (asyn-
chronous set) or clear (asynchronous reset). Automatic assertion of
the GSR net presets or clears each flip-flop. You can assert the GSR
pin at any time to produce this global effect. You can also preset or
clear individual flip-flops with the flip-flop’s dedicated Preset or
Clear pin. When a Preset or Clear pin on a flip-flop is connected to an
active signal, the state of that signal controls the startup state of the
flip-flop. For example, if you connect an active signal to the Preset
pin, the flip-flop starts up in the preset state. If you do not connect the
Clear or Preset pin, the default startup state is a clear state. To change
the default to preset, assign an INIT=S attribute to the flip-flop from
the Synopsys run script, as follows.

set_attribute “cell” fpga_xilinx_init_state -type
string “S”

1/0 flip-flops and latches do not have individual Preset or Clear pins.
The default value of these flip-flops and latches is clear. To change the
default value to preset, assign an INIT=S attribute.

Note: Refer to the Synopsys (XSI) Interface/Tutorial Guide for informa-
tion on changing the initial state of registers that do not use the Preset
or Clear pins.

Increasing Performance with the GSR/GR Net

Many designs contain a net that initializes most of the flip-flops in the
design. If this signal can initialize all the flip-flops, you can use the
GSR/GR net. You should always include a net that initializes your
design to a known state.

To ensure that your HDL simulation results at the RTL level match
the synthesis results, write your code so that every flip-flop and latch
is preset or cleared when the GSR signal is asserted. The Synthesis
tool cannot infer the GSR/GR net from HDL code. To utilize the GSR

4-12 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

net, you must instantiate the STARTUP or STARTBUF block (VHDL),
as shown in the “No_GSR Implemented with Gates” figure.

Design Example without Dedicated GSR/GR
Resource

In the following VHDL and Verilog designs, the RESET signal initial-
izes all the registers in the design; however, it does not use the dedi-
cated global resources. The RESET signal is routed using regular
routing resources. These designs include two 4-bit counters. One
counter counts up and is reset to all zeros on assertion of RESET and
the other counter counts down and is reset to all ones on assertion of
RESET. The “No_GSR Implemented with Gates” figure shows the
No_GSR design implemented with gates.

* VHDL - No GSR

—— NO_GSR Exanple
—— The signal RESET initializes all registers
-— May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all

entity no_gsr is
port (CLOCK: in STD_LOGIC;
RESET: in STD_LOGIC;
UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end no_gsr;

architecture SIMPLE of no_gsr is

signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto O0);

begin
UP_COUNTER: process (CLOCK, RESET)
begin
if (RESET = '1l') then
UP_CNT <= "0000";
elsif (CLOCK'event and CLOCK = 'l1') then
UP_CNT <= UP_CNT + 1;
end if;
Synopsys (XSI) Synthesis and Simulation Design Guide 4-13

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

end process;

DN_COUNTER: process (CLOCK, RESET)

begin
if (RESET = 'l1') then
DN_CNT <= "1111";
elsif (CLOCK'event and CLOCK = 'l') then
DN_CNT <= DN_CNT - 1;
end if;

end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end SIMPLE;

* VHDL -No GR

—— NO_GR.VHD Example

—— The signal RESET initializes all registers

—— Without the use of the dedicated Global Reset routing
—— December 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity no_gr is
port (CLOCK: in STD_LOGIC;
RESET: in STD_LOGIC;
UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end no_gr;

architecture XILINX of no_gr is

signal UP_CNT: STD_LOGIC_VECTOR (3 downto O0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto O0);

begin
UP_COUNTER: process (CLOCK, RESET)
begin
if (RESET = 'l') then
UP_CNT <= "0000";
elsif (CLOCK'event and CLOCK = 'l1') then
4-14 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

UP_CNT <= UP_CNT + 1;
end if;
end process;

DN_COUNTER: process (CLOCK, RESET)

begin
if (RESET = '1') then
DN_CNT <= "1111";
elsif (CLOCK'event and CLOCK = '1') then
DN_CNT <= DN_CNT - 1;
end if;

end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end XILINX;

* Verilog - No GSR

/* NO_GSR Example

* Synopsys HDL Synthesis Design Guide for FPGAs
* The signal RESET initializes all registers

* December 1997 */

module no_gsr (CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

always @ (posedge CLOCK or posedge RESET) begin
if (RESET) begin
UPCNT = 4'b0000;
DNCNT = 4'bl1111;
end else begin

UPCNT = UPCNT + 1'bl;
DNCNT = DNCNT - 1'bl;
end
end
endmodule
Synopsys (XSI) Synthesis and Simulation Design Guide 4-15

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

* Verilog - No GR

/* NO_GR.V Example
* The signal RESET initializes all registers
* Aug 1997 */

module no_gr (CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

always @ (posedge CLOCK or posedge RESET) begin
if (RESET) begin
UPCNT 4'b0000;
DNCNT = 4'b1111;
end else begin
UPCNT = UPCNT + 1'bl;
DNCNT = DNCNT - 1'bl;
end

end

endmodule

4-16 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Designing FPGAs with HDL

RESET[D>——m

W31 1nesplensatsaca
logjc_8
<
=n 1 ace hm'f_i

wdd_d1/lus/plunsubracs>

INC#BEC_TWO_chwmp 8 OBUF_S
j [= S>> wenTca: 6>

OBUF_S
FDC S

cLock>———————— DBUFGS_F —>

OBUF_S

OBUF_S
woma

Lineara <
INC#BER_TWO_CpwP_6 OBUF_S ‘
| | FDC [>—— g > onenTcaie>

OBUF_S

FDC : >ﬁ“‘

OBUF_S
FDC =>¢m 1

OBUF_S

x8505

Figure 4-4 No_GSR Implemented with Gates

Synopsys (XSI) Synthesis and Simulation Design Guide

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Design Example with Dedicated GSR/GR Resource

To reduce routing congestion and improve the overall performance of
the reset net in the No_GSR and No_GR designs, use the dedicated
GSR or GR net instead of the general purpose routing. Instantiate the
STARTUP or STARTBUF block in your design and use the GSR or GR
pin on the STARTUP block (or the GSRIN pin on the STARTBUF
block) to access the global reset net. The modified designs (Use_GSR
and Use_GR) are included at the end of this section. The Use_GSR
design implemented with gates is shown in “Use_GSR Implemented
with Gates” figure.

In XC4000 and Spartan designs, on assertion of the GSR net, flip-flops
return to a clear (or Low) state by default. You can override this
default by describing an asynchronous preset in your code, or by
adding the INIT=S attribute to the flip-flop (described later in this
section) from the Synopsys run script.

In XC5200 family designs, the GR resets all flip-flops in the device to
a logic zero. If a flip-flop is described as asynchronous preset to a
logic 1, Synopsys automatically infers a flip-flop with a synchronous
preset, and the M1 software puts an inverter on the input and output
of the device to simulate a preset.

The Use_GSR and Use_GR designs explicitly state that the down-
counter resets to all ones, therefore, asserting the reset net causes this
counter to reset to a default of all zeros. You can use the INIT = S
attribute to prevent this reset to zeros.

» Attach the INIT=S attribute to the down-counter flip-flops as
follows:

set_attribute cell name fpga_xilinx init_ state
-type string “S”

Note: The “\” character represents a continuation marker.

This command allows you to override the default clear (or Low)
state when your code does not specify a preset condition.
However, since attributes are assigned outside the HDL code, the
code no longer accurately represents the behavior of the design.

Note: Refer to the Synopsys (XSI) Interface/Tutorial Guide for more
information on assigning attributes.

4-18 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

The STARTUP block must not be optimized during the synthesis
process. Add a Don’t Touch attribute to the STARTUP or STARTBUF
block before compiling the design as follows:

set_dont_touch cell_instance_name
* VHDL - Use_GSR (XC4000 family)

—— USE_GSR.VHD Example

—— The signal RESET is connected to the GSRIN pin of
—-— the STARTBUF block

-— May 1997

library IEEE;

library UNISIM;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity use_gsr is
port (CLOCK: in STD_LOGIC;
RESET: in STD_LOGIC;
UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end use_gsr;

architecture XILINX of use_gsr is
component STARTBUF
port (GSRIN: in STD_LOGIC) ;
GSROUT: out STD_LOGIC);
end component;
signal RESET_INT: STD_LOGIC;
signal UP_CNT: STD_LOGIC_VECTOR (3 downto O0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);
begin

Ul: STARTBUF port map (GSRIN=>RESET, GSROUT=>RESET_INT) ;

UP_COUNTER: process (CLOCK, RESET_INT)

begin
if (RESET_INT = 'l') then
UP_CNT <= "0000";
elsif CLOCK'event and CLOCK = 'l1'") then
Synopsys (XSI) Synthesis and Simulation Design Guide 4-19

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

UP_CNT <= UP_CNT - 1;
end if;
end process;

DN_COUNTER: (CLOCK, RESET_INT)
begin
if (RESET_INT = 'l') then
DN_CNT <= "1111";
elsif CLOCK'event and CLOCK = '1') then
DN_CNT <= DN_CNT - 1;
end if;
end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end XILINX;

e VHDL - Use_GR

—— USE_GR.VHD Version 1.0 ——
—— Xilinx HDL Synthesis Design Guide -
—— The signal RESET initializes all registers —-
—— Using the global reset resources since ——
—— STARTBUF block was added -
—— December 1997 ——

library IEEE;

library UNISIM;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity use_gr is
port (CLOCK: in STD_LOGIC;
RESET: in STD_LOGIC;
UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end use_gr;

architecture XILINX of use_gr is

4-20 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Designing FPGAs with HDL

component STARTBUF
port (GSRIN: in STD_LOGIC;
GSROUT: out STD_LOGIC) ;
end component;

signal RESET_INT: STD_LOGIC;

signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);
begin

Ul: STARTBUF port map (GSRIN=>RESET, GSROUT=>RESET_INT) ;

UP_COUNTER: process (CLOCK, RESET_INT)

begin
if (RESET_INT = 'l1') then
UP_CNT <= "0000";
elsif (CLOCK'event and CLOCK = '1l') then
UP_CNT <= UP_CNT + 1;
end if;

end process;

DN_COUNTER: process (CLOCK, RESET_INT)

begin
if (RESET_INT = 'l') then
DN_CNT <= "1111";
elsif (CLOCK'event and CLOCK = 'l1') then
DN_CNT <= DN_CNT - 1;
end if;

end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end XILINX;

* Verilog - Use_GSR

[/7777707777777770777777777777777777777777777777
// USE_GSR.V Version 1.0 //
// Xilinx HDL Synthesis Design Guide //
// The signal RESET initializes all registers //
// Using the global reset resources (STARTUP) //
// December 1997 //
L1777 777 7777777777 777777777777777777777777777777

Synopsys (XSI) Synthesis and Simulation Design Guide 4-21

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

module use_gsr (CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

STARTUP Ul (.GSR(RESET)) ;

always @ (posedge CLOCK or posedge RESET) begin
if (RESET) begin
UPCNT 4'b0000;
DNCNT = 4'bl111;
end else begin
UPCNT = UPCNT + 1'bl;
DNCNT = DNCNT - 1'bl;

end
end
endmodule
* Verilog - Use_GR
[17777 777777777777 777777777/77777777777/7777777777
// USE_GR.V Version 1.0 //
// Xilinx HDL Synthesis Design Guide //
// The signal RESET initializes all registers //
// Using the global reset resources since //
// STARTUP block instantiation was added //
// December 1997 //

L7777 707777777777077777777707777777777077777777777
module use_gr (CLOCK, RESET, UPCNT, DNCNT) ;
input CLOCK, RESET;

output [3:0] UPCNT;

output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

STARTUP Ul (.GR(RESET));

4-22 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

always @ (posedge CLOCK or posedge RESET) begin
if (RESET) begin
UPCNT = 4'b0000;
DNCNT = 4'b1111;
end else begin
UPCNT = UPCNT + 1'bl;
DNCNT = DNCNT - 1'bl;
end
end

endmodule

Synopsys (XSI) Synthesis and Simulation Design Guide 4-23

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

cLock>>
e
logjc_B
N
[| logye—1
1. OBUF_S
'NCJEqJWQCr" e B T e FDP D>——gi>wonr<a:e
E BUFGS_F
Lng:n_.— — T
lugt_i
I [OBUF_S
R ie Tt wwTe
TARTBUF
1:5;_1—L A —|
IBUF INV |
RESET[>> '|> DO
logi 8
OBUF_S
FDP wEnTcl
—T
OBUF_S
wii§3/plun/plunsubsl <3 FDP UPEWT <!
—T
BUF_S
— FDP s> DNCNT<3: 8>
e
qIBUFj
FDP TP
OBUF_S
sub.Bi/alsns/niane/sl. 9> FDP MY
—
QBUF_S
[T Sy FDP 1~ DT
x8508

Figure 4-5 Use_ GSR Implemented with Gates

4-24 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

Design Example with Active Low GSR/GR Signal

The Active_Low_GSR design is identical to the Use_GSR design
except an INV is instantiated and connected between the RESET port
and the STARTUP block. Also, a Set_dont_touch attribute is added to
the Synopsys script for both the INV and STARTUP or STARTBUF
(VHDL) symbols. By instantiating the inverter, the global set/reset
signal is now active low (logic level 0 resets all FPGA flip-flops). The
inverter is absorbed into the STARTUP block in the device and no
CLB resources are used to invert the signal. VHDL and Verilog
Active_Low_GSR designs are shown following.

e VHDL - Active_Low_GSR

—— ACTIVE_LOW_GSR.VHD Version 1.0 -
—— Xilinx HDL Synthesis Design Guide ——
—— The signal RESET is inverted before being -
—— connected to the GSRIN pin of the STARTBUF -
—— The inverter will be absorbed by the STARTBUF -—-—
—— September 1997 -

library IEEE;

library UNISIM;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity active_low_gsr is
port (CLOCK: in STD_LOGIC;
RESET: in STD_LOGIC;
UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end active_low_gsr;

architecture XILINX of active_low_gsr is
component INV
port (I: in STD_LOGIC;
O: out STD_LOGIC);
end component;
component STARTBUF

port (GSRIN: in STD_LOGIC;
GSROUT: out STD_LOGIC) ;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-25

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

end component;

signal RESET_NOT: STD_LOGIC;

signal RESET_NOT_INT: STD_LOGIC;

signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);
begin

Ul: INV port map(I => RESET, O => RESET_NOT) ;

U2: STARTBUF port map (GSRIN=>RESET_NOT,
GSROUT=>RESET_NOT_INT) ;

UP_COUNTER: process (CLOCK, RESET_NOT_INT)

begin
if (RESET_NOT_INT = 'l') then
UP_CNT <= "Q000";
elsif (CLOCK'event and CLOCK = 'l1l') then
UP_CNT <= UP_CNT + 1;
end if;

end process;

DN_COUNTER: process (CLOCK, RESET_NOT_INT)

begin
if (RESET_NOT INT = '1l') then
DN_CNT <= "1111";
elsif (CLOCK'event and CLOCK = '1l') then
DN_CNT <= DN_CNT - 1;
end if;

end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end XILINX;

* Verilog - Active_low_GSR
L1777 077 7777777777777 7777777777777777777777777777777

// ACTIVE_LOW_GSR.V Version 1.0 //
// Xilinx HDL Synthesis Design Giude //
// The signal RESET is inverted before being //

// connected to the GSR pin of the STARTUP block //
// The inverter will be absorbed by STARTUP in M1 //

4-26 Xilinx Development System

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

// Inverter is instantiated to avoid being mapped //

// into a LUT by Synopsys //
// September 1997 //
L1777 7 777777777777 7777777777777777777777777777777777

module active_low_gsr (CLOCK, RESET, UPCNT, DNCNT);
input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;
wire RESET_NOT;
reg [3:0] UPCNT;
reg [3:0] DNCNT;
INV Ul (.0(RESET_NOT), .I(RESET));

STARTUP U2 (.GSR(RESET_NOT));

always @ (posedge CLOCK or posedge RESET_NOT)

begin
if (RESET_NOT)
begin
UPCNT = 4'b0000;
DNCNT = 4'bl111;
end
else
begin
UPCNT = UPCNT + 1'bl;
DNCNT = DNCNT - 1'bl;
end
end
endmodule

Encoding State Machines

The traditional methods used to generate state machine logic result in
highly-encoded states. State machines with highly-encoded state
variables typically have a minimum number of flip-flops and wide
combinatorial functions. These characteristics are acceptable for PAL
and gate array architectures. However, because FPGAs have many
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and
density.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-27

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create
state machines with one flip-flop per state and decreased width of
combinatorial logic. One-hot encoding is usually the preferred
method for large FPGA-based state machine implementation. For
small state machines (fewer than 8 states), binary encoding may be
more efficient. To improve design performance, you can divide large
(greater than 32 states) state machines into several small state
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the
three coding methods (binary, enumerated type, and one-hot) you
can use to create state machines. All three examples contain an iden-
tical Case statement. To conserve space, the complete Case statement
is only included in the binary encoded state machine example; refer
to this example when reviewing the enumerated type and one-hot
examples.

Note: The bold text in each of the three examples indicates the
portion of the code that varies depending on the method used to
encode the state machine.

Using Binary Encoding

The state machine bubble diagram in the following figure shows the
operation of a seven-state machine that reacts to inputs A through E
as well as previous-state conditions. The binary encoded method of
coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a
design that has been previously encoded (for example, binary
encoded) and synthesize it to the appropriate decoding logic and
registers. These designs use three flip-flops to implement seven
states.

4-28 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

State3

Contig

State7
Con
E

State6

Stated

Multi, Cortig Contig,Single

X6102

Figure 4-6 State Machine Bubble Diagram

VHDL - Binary Encoded State Machine Example

—— BINARY.VHD Version 1.0 -
—-— Example of a binary encoded state machine —-=
—— Xilinx HDL Synthesis Design Guide for FPGAs —-—
-— May 1997 —=
Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity binary is
port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC) ;
end binary;

architecture BEHV of binary is
type STATE_TYPE is (S1, s2, s3, s4, s5, s6, s7);
attribute ENUM_ENCODING: STRING;

attribute ENUM_ENCODING of STATE_TYPE:type is "001] 010 011 100 101 110
111";

Synopsys (XSI) Synthesis and Simulation Design Guide 4-29

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

signal CS, NS: STATE_TYPE;
begin
SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET='1l') then
CS <= S1;
elsif (CLOCK'event and CLOCK = '1"')
CS <= NS;
end if;
end process; ——-End REG_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin
case CS is
when S1 =>
MULTI <= '0°';
CONTIG <= '0';
SINGLE <= '0';
if (A and not B and C) then
NS <= S2;
elsif (A and B and not C) then
NS <= S4;
else
NS <= S1;
end if;
when S2 =>
MULTI <= '1°';
CONTIG <= '0';
SINGLE <= '0';
if (not D) then
NS <= S3;
else
NS <= S4;
end if;
when S3 =>
MULTI <= '0';
CONTIG <= 'l';
SINGLE <= '0';
if (A or D) then
NS <= 54;
else
NS <= S$3;

4-30

by 1 Cminer.com El ectronic-Library Service CopyRi ght

then

2003

Xilinx Development System

Designing FPGAs with HDL

end if;
when S4 =>
MULTI <= '1"';
CONTIG <= '1°"';
SINGLE <= '0';
if (A and B and not C) then

NS <= S5;
else

NS <= S4;
end if;

when S5 =>
MULTI <= '1°';
CONTIG <= '0"'";
SINGLE <= '0°';
NS <= S6;

when S6 =>
MULTI <= '0';
CONTIG <= '1";
SINGLE <= '1°';
if (not E) then

NS <= S7;
else

NS <= $S6;
end if;

when S7 =>
MULTI <= '0°';
CONTIG <= 'l1';
SINGLE <= '0°';
if (E) then

NS <= S1;
else
NS <= S7;
end if;
end case;
end process; -- End COMB_PROC
end BEHV;

Verilog - Binary Encoded State Machine Example

JI1T7 777777777777 77777777777777777777777777777
// BINARY.V Version 1.0
// Example of a binary encoded state machine /
// Xilinx HDL Synthesis Design Guide for FPGAs //
// May 1997 //
JI7777 777777777777 7777777777777777777777777777777

Synopsys (XSI) Synthesis and Simulation Design Guide

/77
//
/

4-31

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

module binary (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0] //synopsys enum STATE_TYPE

Sl = 3'b001,

S2 = 3'b010O,

S3 = 3'b011,

s4 = 3'b100,

S5 = 3'b101,

S6 = 3'bl10,

S7 = 3'bl11;

// Declare current state and next state variables
reg [2:0] /* synopsys enum STATE_TYPE */ CS;
reg [2:0] /* synopsys enum STATE_TYPE */ NS;

// synopsys state_vector CS

always @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1'bl)
CcS = S1;
else
CS = NS;
end

always @ (CS or A or B or C or D or D or E)

begin
case (CS) //synopsys full_case
sl
begin
MULTI = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)
NS = S52;
else if (A && B && ~C)
4-32 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

NS = S4;
else
NS = 51;
end
S2
begin
MULTI = 1'bl;
CONTIG = 1'b0O;
SINGLE = 1'b0;
if (!D)
NS = S3;
else
NS = s4;
end
S3
begin
MULTI = 1'b0;
CONTIG = 1'bl;
SINGLE = 1'b0;
if (A || D)
NS = S4;
else
NS = S3;
end
sS4
begin
MULTI = 1'bl;
CONTIG = 1'bl;
SINGLE = 1'b0;
if (A && B && ~C)
NS = S5;
else
NS = s4;
end
S5
begin
MULTI = 1'bl;
CONTIG = 1'b0O;
SINGLE = 1'b0;
NS = S6;
end
56
begin
MULTI = 1'b0;
CONTIG = 1'bl;

Synopsys (XSI) Synthesis and Simulation Design Guide

4-33

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

SINGLE = 1'bl;
if (!'E)
NS = S7;
else
NS = S6;
end
s7
begin
MULTI = 1'b0;
CONTIG = 1'bl;
SINGLE = 1'b0;
if (E)
NS = S1;
else
NS = S7;
end
endcase
end

endmodule

Using Enumerated Type Encoding

The recommended encoding style for state machines depends on
which synthesis tool you are using. You can explicitly declare state
vectors or you can allow the Synopsys tool to determine the vectors.
Synopsys recommends that you use enumerated type encoding to
specify the states and use the Finite State Machine (FSM) extraction
commands to extract and encode the state machine as well as to
perform state minimization and optimization algorithms. The
enumerated type method of encoding the seven-state machine is
shown in the following VHDL and Verilog examples. The encoding
style is not defined in the code, but can be specified later with the
FSM extraction commands. Alternatively, you can allow the
Synopsys compiler to select the encoding style that results in the
lowest gate count when the design is synthesized.

Note: Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code.

4-34 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

VHDL- Enumerated Type Encoded State Machine
Example

Library IEEE;
use IEEE.std_logic_1164.all;

entity enum is
port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);
end enum;
architecture BEHV of enum is
type STATE TYPE is (Sl1, sS2, S3, s4, S5, s6, S7);
signal CS, NS: STATE_TYPE;

begin

SYNC_PROC: process (CLOCK, RESET)

begin
if (RESET='1l') then
CsS <= S1;
elsif (CLOCK'event and CLOCK = 'l') then
CS <= NS;
end if;

end process; ——-End SYNC_PROC

COMB_PROC: process (Cs, A, B, C, D, E)

begin
case CS is
when S1 =>
MULTI <= '0';
CONTIG <= '0';
SINGLE <= '0';
Synopsys (XSI) Synthesis and Simulation Design Guide 4-35

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Verilog - Enumerated Type Encoded State Machine
Example

JI1T7 777777777777 77777777777777777777777777777777777
// ENUM.V Version 1.0 //
// Example of an enumerated encoded state machine //
// Xilinx HDL Synthesis Design Guide for FPGAs //
// May 1997 /7
L1177 777 7777777777777 777777777777777777777777777777

module enum (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0] //synopsys enum STATE_TYPE

Sl = 3'b000,

s2 = 3'b001,

S3 = 3'b010,

s4 = 3'b011,

S5 = 3'b100,

S6 = 3'b101,

S7 = 3'b110;

// Declare current state and next state variables
reg [2:0] /* synopsys enum STATE_TYPE */ CS;
reqg [2:0] /* synopsys enum STATE_TYPE */ NS;

// synopsys state_vector CS

always @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1'bl)
CS = S1;
else
CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin

4-36 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

case (CS) //synopsys full_case
sl
begin
MULTI = 1'bO0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)

NS = S2;

else if (A && B && ~C)
NS = S4;

else
NS = S1;

end

Using One-Hot Encoding

The following examples show a one-hot encoded state machine. Use
this method to control the state vector specification or when you
want to specify the names of the state registers. These examples use
one flip-flop for each of the seven states.

Note: Refer to the previous VHDL and Verilog Binary Encoded State
Machine examples for the complete Case statement portion of the
code. See the “Accelerate FPGA Macros with One-Hot Approach”
appendix for a detailed description of one-hot encoding and its appli-
cations.

VHDL - One-hot Encoded State Machine Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC) ;
end one_hot;

architecture BEHV of one_hot is

Synopsys (XSI) Synthesis and Simulation Design Guide 4-37

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

type STATE_TYPE is (S1, sS2, S3, s4, s5, sS6, S7);
attribute ENUM_ENCODING: STRING;

attribute ENUM_ENCODING of STATE_TYPE: type is "0000
0001000 0010000 0100000 1000000 ™;

signal CS, NS: STATE_TYPE;

begin

SYNC_PROC: process (CLOCK, RESET)

begin
if (RESET='1l') then
CS <= S51;
elsif (CLOCK'event and CLOCK = 'l') then
CS <= NS;
end if;

end process; —--End SYNC_PROC

COMB_PROC: process (Cs, A, B, C, D, E)
begin
case CS is
when S1 =>
MULTTI <= '0";
CONTIG <= '0';
SINGLE <= '0';
if (A and not B and C) then

NS <= S2;

elsif (A and B and not C) then
NS <= S4;

else
NS <= S1;

end if;

4-38

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

001 0000010 0000100

Xilinx Development System

Designing FPGAs with HDL

Verilog - One-hot Encoded State Machine Example

[17777777770777777777707777777777077777777777777777
// ONE_HOT.V Version 1.0 //
// Example of a one-hot encoded state machine //
// Xilinx HDL Synthesis Design Guide for FPGAs //
// May 1997 //
[77777107777777770777777777077777777770777777777777

module one_hot (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG) ;

input CLOCK, RESET;
input A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reqg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0] //synopsys enum STATE_TYPE

Sl = 7'b0000001,

sS2 = 7'b0000010,

S3 = 7'b0000100,

s4 = 7'b0001000,

S5 = 7'b0010000,

S6 = 7'b0100000,

S7 = 7'b1000000;

// Declare current state and next state variables
reqg [2:0] /* synopsys enum STATE_TYPE */ CS;
reqg [2:0] /* synopsys enum STATE_TYPE */ NS;

// synopsys state_vector CS

always @ (posedge CLOCK or posedge RESET)

begin
if (RESET == 1'bl)
CcS = S1;
else
Cs = NS;
end

always @ (CS or A or B or C or D or D or E)

begin
case (CS) //synopsys full_case
sl :
Synopsys (XSI) Synthesis and Simulation Design Guide 4-39

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

begin
MULTI = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)
NS = S2;
else if (A && B && ~C)
NS = S4;
else
NS = S1;
end

Summary of Encoding Styles

In the three previous examples, the state machine’s possible states are
defined by an enumeration type. Use the following syntax to define
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal});

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows:

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE,

The state machine described in the three previous examples has
seven states. The possible values of the signals CS (Current_State)
and NS (Next_State) are S1, S2, ..., S6, S7.

To select an encoding style for a state machine, specify the state
vectors. Alternatively, you can specify the encoding style when the
state machine is compiled. Xilinx recommends that you specify an
encoding style. If you do not specify a style, the Synopsys Compiler
selects a style that minimizes the gate count. For the state machine
shown in the three previous examples, the compiler selected the
binary encoded style: S1=000", S2="001", S3="010", S4="011",
S$5="100", S6="101", and S7="110".

You can use the FSM extraction tool to change the encoding style of a
state machine. For example, use this tool to convert a binary-encoded
state machine to a one-hot encoded state machine. The Synopsys
enum.script file contains the commands you need to convert an

4-40 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

enumerated types encoded state machine to a one-hot encoded state
machine.

Note: Refer to the Synopsys documentation for instructions on how
to extract the state machine and change the encoding style.

Comparing Synthesis Results for Encoding Styles

The following table summarizes the synthesis results from the
different methods used to encode the state machine in the three
previous VHDL and Verilog state machine examples. The results are
for an XC4005EPC84-2 device

Note: The Timing Analyzer was used to obtain the timing results in
this table.

Table 4-1 State Machine Encoding Styles Comparison
(XC4005E-2)

Comparison One-Hot Binary (OE\':-J::) B
Occupied CLBs 6 9 6
CLB Flip-flops 6 3 7
PadToSetup 9.4 ns (39 13.4ns (4) 9.6 ns (3)
ClockToPad 15.1 ns (3) 15.1 ns (3) 14.9ns (3)
ClockToSetup 13.0 ns (4) 13.9ns (4) 10.1 ns (3)

a.The number in parentheses represents the CLB block level delay.

The binary-encoded state machine has the longest ClockToSetup
delay. Generally, the FSM extraction tool provides the best results
because the Synopsys Compiler reduces any redundant states and
optimizes the state machine after the extraction.

Initializing the State Machine

When you use one-hot encoding, add the following lines of code to
your design to ensure that the FPGA is initialized to a Set state.

« VHDL
SYNC_PROC: process (CLOCK, RESET)
begin
Synopsys (XSI) Synthesis and Simulation Design Guide 4-41

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

if (RESET=’1’) then

Cs <= sl;
* Verilog
always @ (posedge CLOCK or posedge RESET)
begin
if (RESET == 1’b 1)
cs = s1;

Alternatively, you can assign an INIT=S attribute to the initial state
register to specify the initial state.

set_attribute “CS_reg<0>"\
fpga xilinx init_ state -type string “S”

Note: The “\” character in this command represents a continuation
marker.

In the Binary Encode State Machine example, the RESET signal forces
the S1 flip-flop to be preset (initialized to 1) while the other flip-flops
are cleared (initialized to 0).

Using Dedicated I/O Decoders

The periphery of XC4000 family devices has four wide decoder
circuits at each edge. The inputs to each decoder are any of the IOB
signals on that edge plus one local interconnect per CLB row or
column. Each decoder generates a High output (using a pull-up
resistor) when the AND condition of the selected inputs or their
complements is true. The decoder outputs drive CLB inputs so they
can be combined with other logic or can be routed directly to the chip
outputs.

To implement XC4000 family edge decoders in HDL, you must
instantiate edge decoder primitives. The primitive names you can use
vary with the synthesis tool you are using. Using the Synopsys tools,
you can instantiate the following primitives: DECODEI1_IO,
DECODEI1_INT, DECODE4, DECODES, and DECODE16. These
primitives are implemented using the dedicated /0O edge decoders.
The XC4000 family wide decoder outputs are effectively open-drain
and require a pull-up resistor to take the output High when the spec-
ified pattern is detected on the decoder inputs. To attach the pull-up
resistor to the output signal, you must instantiate a PULLUP compo-
nent.

4-42 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

The following VHDL example shows how to use the 1/0 edge
decoders by instantiating the decode primitives from the XSI library.
Each decoder output is a function of ADR (IOB inputs) and CLB_INT
(local interconnects). The AND function of each DECODE output and
Chip Select (CS) serves as the source of a flip-flop Clock Enable pin.
The four edge decoders in this design are placed on the same device
edge. The “Schematic Block Representation of I/O Decoder” figure
shows the schematic block diagram representation of this I/0
decoder design.

VHDL - Using Dedicated I/0 Decoders Example

—-—-Edge Decoder

——A XC4000 LCA has special decoder circuits at each edge. These decoders

—-—are open-drained wired-AND gates. When one or more of the inputs (I) are
——-Low output (O) is Low. When all of the inputs are High, the output is —--
——High.A pull-up resistor must be connected to the output node to achieve
—-—a true logic High.

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity io_decoder is
port (ADR: in std_logic_vector (4 downto 0);
CS: in std_logic;
DATA: in std_logic_vector (3 downto 0);
CLOCK: in std_logic;
QOUT: out std _logic_vector (3 downto 0));
end io_decoder;

architecture STRUCTURE of io_decoder is

COMPONENT DECODE1_TIO
PORT (I: IN std_logic;
O: OUT std_logic);
END COMPONENT;

COMPONENT DECODE1_INT
PORT (I: IN std_logic;
O: OUT std_logic);
END COMPONENT;

COMPONENT DECODE4
PORT (A3, A2, Al, AO0: IN std_logic;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-43

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

O: OUT std_logic);
END COMPONENT;

COMPONENT PULLUP

PORT (O: OUT std_logic);
END COMPONENT;
———— Internal Signal Declarations - —————————-—-----—————
signal DECODE, CLKEN, CLB_INT: std_logic_vector (3 downto 0);
signal ADR_INV, CLB_INV: std_logic_vector (3 downto 0);
begin

ADR _INV <= not ADR (3 downto 0);
CLB_INV <= not CLB_INT;

————— Instantiation of Edge Decoder: Output "DECODE(0)" —-————-——————————
AQ: DECODE4 port map (ADR(3), ADR(2), ADR(1l), ADR_INV(0), DECODE (0));

Al: DECODEl_TIO port map (ADR(4), DECODE(0));

A2: DECODE1_INT port map (CLB_INV(0), DECODE (0));
A3: DECODEl_INT port map (CLB_INT (1), DECODE(0));
Ad4: DECODE1_INT port map (CLB_INT(2), DECODE (0));
A5: DECODE1_INT port map (CLB_INT(3), DECODE (0));
A6: PULLUP port map (DECODE(0));

————— Instantiation of Edge Decoder: Output "DECODE(1l)" —-————-——————————
BO: DECODE4 port map (ADR(3), ADR(2), ADR _INV(1l), ADR(0), DECODE (1));

Bl: DECODE1l_IO port map (ADR(4), DECODE(1l));

B2: DECODEI1_INT port map (CLB_INT(0), DECODE (1));
B3: DECODE1l_INT port map (CLB_INV(l), DECODE(l));
B4: DECODE1_INT port map (CLB_INT(2), DECODE (1));
B5: DECODEI1_INT port map (CLB_INT(3), DECODE (1));

B6: PULLUP port map (DECODE(1l));

4-44 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

————— Instantiation of Edge Decoder: Output "DECODE (2)" ———————————————
CO0: DECODE4 port map (ADR(3), ADR_INV(2), ADR(1), ADR(0), DECODE (2));

Cl: DECODE1l_IO port map (ADR(4), DECODE(2));

C2: DECODEI1_INT port map (CLB_INT(0), DECODE (2));
C3: DECODE1l_INT port map (CLB_INT(l), DECODE(2));
C4: DECODE1_INT port map (CLB_INV(2), DECODE (2));
C5: DECODEI1_INT port map (CLB_INT(3), DECODE (2));
C6: PULLUP port map (DECODE(2));

————— Instantiation of Edge Decoder: Output "DECODE (3)" —————-——————————
DO: DECODE4 port map (ADR_INV(3), ADR(2), ADR(1), ADR(0), DECODE (3));

Dl: DECODE1l_IO port map (ADR(4), DECODE(3));

D2: DECODEI1_INT port map (CLB_INT(0), DECODE (3));
D3: DECODE]l_INT port map (CLB_INT(l), DECODE(3));
D4: DECODE1_INT port map (CLB_INT(2), DECODE (3));
D5: DECODEI1_INT port map (CLB_INV(3), DECODE (3));
D6: PULLUP port map (DECODE (3));

————— CLKEN is the AND function of CS & DECODE—-——————-—

I

CLKEN(0) <= CS and DECODE (0)
CLKEN (1) <= CS and DECODE (1) ;
CLKEN(2) <= CS and DECODE (2);

(3) (3)7

Iz

CLKEN <= CS and DECODE

———————— Internal 4-bit counter - ————————————
process (CLOCK)
begin
if (CLOCK'event and CLOCK='l') then
CLB_INT <= CLB_INT + 1;
end if;
end process;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-45

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

——————— "QOUT (0)" Data Register Enabled

process (CLOCK)
begin

if (CLOCK'event and CLOCK='l")

if (CLKEN(0) =

QOUT (0) <= DATA (0) ;

end if;
end if;
end process;

——————— "QOUT (1) " Data Register Enabled

process (CLOCK)
begin

if (CLOCK'event and CLOCK='l")

if (CLKEN(l) =

QOUT (1) <= DATA(1);

end if;
end if;
end process;

——————— "QOUT (2)" Data Register Enabled

process (CLOCK)
begin

if (CLOCK'event and CLOCK='l")

if (CLKEN(2) =

QOUT (2) <= DATA (2);

end if;
end if;
end process;

——————— "QOUT (3)" Data Register Enabled

process (CLOCK)
begin

if (CLOCK'event and CLOCK='l")

if (CLKEN(3) =

QOUT (3) <= DATA (3);

end if;
end if;
end process;

end STRUCTURE;

4-46

by "CLKEN (0)"————-

then

by "CLKEN (1)"-———-

then

by "CLKEN (2)"————-

then

by "CLKEN (3)"————-

then

Xilinx Development System

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

DATA3

D a l’> OPAD]| QOUT3
1BUF CE OBUF
DECODER_D S
ADR4 [1PAD > 'l> cLk o
1BUF FDGE
DATA2
AoRs (A > b of—{>—m5]aour:
IBUF IBUF CE OBUF
[DECODER_C —Dc
ADR2 [1PAD > 1> 1 cLR
1BUF A[8:0] O I
N
ADR1 [1PAD 1> CLK
1BUF FDCE
DATA1
N
ADRo [1PAD > 1~ [1PAD > D Q 'l> OPAD | QOUT1
1BUF
IBUF CE OBUF
DECODER_B —De
AB:0] O c1h
COUNT4 CLK B
FDCE
DATAQ
o af—]>——@Fmp]aour
CLB_INT[3:0]
cLock 1BUF CE OBUF
CLK DECODER_A c
cLock LR
CLK X8338

Figure 4-7 Schematic Block Representation of I/O Decoder

Note: In the previous figure, the pull-up resistors are inside the
Decoder blocks.

Instantiating LogiBLOX Modules

Note: Refer to the LogiBLOX Reference/User Guide for detailed instruc-
tions on using LogiBLOX.

Synopsys can infer arithmetic DesignWare modules from VHDL or
Verilog code for these operators: +, -, <, <=, >, >=, =, +1, -1. These
adders, subtracters, comparators, incrementers, and decrementers
use FPGA dedicated device resources, such as carry logic, to improve
the speed and area of designs. For bus widths greater than four,
DesignWare modules are generally faster unless multiple instances of
the same function are compiled together. For more information on the
DesignWare libraries, refer to the Synopsys (XSI) Interface/Tutorial
Guide.

If you want to use a module that is not in the DesignWare libraries, or
if you want better performance or area, you can use LogiBLOX to

Synopsys (XSI) Synthesis and Simulation Design Guide 4-47

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

create components that can be instantiated in your code. A simula-
tion model is also created so that RTL simulation can be performed
before your design is compiled.

LogiBLOX is a graphical tool that allows you to select from several
arithmetic, logic, [/0, sequential, and data storage modules for inclu-
sion in your HDL design. Use LogiBLOX to instantiate the modules
listed in the following table.

Table 4-2 LogiBLOX Modules

Module Description

Arithmetic

Accumulator Adds data to or subtracts it from the current value stored in
the accumulator register

Adder/Subtracter Adds or subtracts two data inputs and a carry input

Comparator Compares the magnitude or equality of two values

Counter Generates a sequence of count values

Logic

Constant Forces a constant value onto a bus

Decoder Routes input data to 1-of-n lines on the output port

Multiplexer Type 1, Type 2 - Routes input data on 1-of-n lines to the
output port

Simple Gates Type 1, Type 2, Type 3 - Implements the AND, INVERT,
NAND, NOR, OR, XNOR, and XOR logic functions

Tristate Creates a tri-stated internal data bus

/0

Bi-directional Input/ Connects internal and external pin signals

Output

Pad Simulates an input/output pad

Sequential

Clock Divider Generates a period that is a multiple of the clock input
period

Counter Generates a sequence of count values

Shift Register Shifts the input data to the left of right

4-48 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

Table 4-2 LogiBLOX Modules

Module

Description

Storage

Data Register

Captures the input data on active clock transitions

Memory: ROM, RAM,
SYNC_RAM, DP_RAM

Stores information and makes it readable

Using LogiBLOX in HDL Designs

1.

Before using LogiBLOX, verify the following.
* Xilinx software is correctly installed
¢ Environment variables are set correctly

* Your display environment variable is set to your machine’s
display

To run LogiBLOX, enter the following command.
lbgui

The LogiBLOX Setup Window appears after the LogiBLOX
module generator is loaded. This window allows you to name
and customize the module you want to create.

Select the Vendor tab in the Setup Window. Select Synopsys in the
Vendor Name field to specify the correct bus notation for
connecting your module.

Select the Project Directory tab.Enter the directory location of
your Synopsys project in the LogiBLOX Project Directory field.

Select the Device Family tab. Select the target device for your
design in the Device Family field.

Select the Options tab and select the applicable options for your
design as follows.

¢ Simulation Netlist

This option allows you to create simulation netlists of the
selected LogiBLOX module in different formats. You can
choose one or more of the outputs listed in the following
table.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-49

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Table 4-3 Simulation Netlist Options

Option Description

Behavioral VHDL netlist Generates a simulation netlist in
behavioral VHDL; output file has a

.vhd extension.

Gate level EDIF netlist Generates a simulation netlist in EDIF
format; output file has an .edn exten-
sion.

Structural Verilog netlist Generates a simulation netlist in
structural Verilog; output file has a .v
extension.

¢« Component Declaration

This option creates instantiation templates in different
formats that can be copied into your design. You can select
none, one, or both of the following options.

Table 4-4 Component Declaration Options

Option Description

VHDL template Generates a LogiBLOX VHDL compo-
nent declaration/instantiation
template that is copied into your
VHDL design when a LogiBLOX
module is instantiated. The output file
has a .vhi extension.

Verilog template Generates a LogiBLOX Verilog module
definition/instantiation template that
is copied into your Verilog design
when a LogiBLOX module is instanti-
ated. The output file has a .vei exten-
sion.

¢ Implementation Netlist

Select NGO File to generate an implementation netlist in
Xilinx NGD binary format. You must select this option when
instantiating LogiBLOX symbols in an HDL design. The

4-50 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

output file has an .ngo extension and can be used as input to
NGDBuild.

¢ LogiBLOX DRC

Select the Stop Process on Warning option to stop module
processing if any warning messages are encountered during
the design process.

For example, if you have a Verilog design, and you are simulating
with Verilog-XL, select Structural Verilog netlist, Verilog
template, NGO File, and Stop Process on Warning. For a VHDL
design and simulating with Synopsys VSS, select Behavioral
VHDL, VHDL template, NGO File, and Stop Process on Warning.

Select OK.

4. Enter a name in the Module Name field in the Module Selector
Window.

Select a base module type from the Module Type field.
Select a bus width from the Bus Width field.

Customize your module by selecting pins and specifying
attributes.

After you have completed module specification, select OK.

This initiates the generation of a component instantiation decla-
ration, a behavioral model, and an implementation netlist.

5. Copy the module declaration/instantiation into your design. The
template file created by LogiBLOX is module_name.vhi (VHDL) or
module_name.vei (Verilog), and is saved in the project directory as
specified in the LogiBLOX setup.

6. Complete the signal connections of the instantiated module to the
rest of your design.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.

7. Create a Synopsys implementation script. Add a Set_dont_touch
attribute to the instantiated LogiBLOX module, and compile your
design.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-51

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Note: Logiblox_instance_name is the name of the instantiated
module in your design. Logiblox_name is the LogiBLOX component
that corresponds to the .ngo file created by LogiBLOX.

set_dont_touch logiblox_instance_name
compile

Also, if you have a Verilog design, use the Remove Design
command before writing the .sxnf netlist.

Note: If you do not use the Remove Design command, Synopsys may
write an empty .sxnf file. If this occurs, the Xilinx software will trim
this module/component and all connected logic.

remove_design logiblox_name

write —format xnf -hierarchy —output design.sxnf

8. Compile your design and create a .sxnf file. You can safely ignore
the following error messages.

Warning: Can’t find the design in the library WORK.
(LBR-1)

Warning: Unable to resolve reference LogiBLOX name in
design_name. (LINK-5)

Warning: Design design_name has [unresolved references.
For more detailed information, use the “1link” command.
(UID-341)

9. Implement your design with the Xilinx tools. Verify that the .ngo
file created by LogiBLOX is in the same project directory as the
Synopsys netlist.

You may get the following warnings during the NGDBuild and
mapping steps. These messages are issued if the Xilinx software
can not locate the corresponding .ngo file created by LogiBLOX.

Warning: basnu - logical block LogiBLOX instance_name of
type LogiBLOX name is unexpanded. Logical Design DRC
complete with 1 warning(s).

If you get this message, you will get the following message
during mapping.

ERROR:basnu - logical block LogiBLOX instance name of
type LogiBLOX name is unexpanded. Errors detected in
general drc.

4-52 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

If you get these messages, first verify that the .ngo file created by
LogiBLOX is in the project directory. If the file is there, verify that
the module is properly instantiated in the code.

10. To simulate your post-layout design, convert your design to a
timing netlist and use the back-annotation flow applicable to
Synopsys.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.

Implementing Memory

XC4000E/EX/XL and Spartan FPGAs provide distributed on-chip
RAM or ROM. CLB function generators can be configured as ROM
(ROM16X1, ROM32X1); level-sensitive RAM (RAM16X1, RAM
32X1); edge-triggered, single-port (RAM16X1S, RAM32X1S); or dual-
port (RAM16x1D) RAM. The edge-triggered capability simplifies
system timing and provides better performance for RAM-based
designs. This distributed RAM can be used for status registers, index
registers, counter storage, constant coefficient multipliers, distributed
shift registers, LIFO stacks, latching, or any data storage operation.
The dual-port RAM simplifies FIFO designs.

Note: For more information on XC4000 family RAM, refer to the
Xilinx Web site or the current release of the Xilinx Data Book.

Implementing XC4000 and Spartan ROMs
ROMs can be implemented in Synopsys as follows.
* Use RTL descriptions of ROMs
* Instantiate 16x1 and 32x1 ROM primitives
* Use LogiBLOX to implement any other ROM size
VHDL and a Verilog examples of an RTL description of a ROM

follow.

VHDL - RTL Description of a ROM

—— Behavioral 16x4 ROM Example
—— rom_rtl.vhd

Synopsys (XSI) Synthesis and Simulation Design Guide 4-53

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
port (ADDR: in INTEGER range 0 to 15;
DATA: out STD_LOGIC_VECTOR (3 downto 0));
end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;

constant ROM: ROM_TABLE := ROM_TABLE' (
ROM_WORD' ("0000"),
ROM_WORD' ("0001"™),
ROM_WORD' ("0010"),
ROM_WORD' ("0100"),
ROM_WORD' ("1000"),
ROM_WORD' ("1100"),
ROM_WORD' ("1010"),
ROM_WORD' ("1001"),
ROM_WORD' ("1001™),
ROM_WORD' ("1010"™),
ROM_WORD' ("1100"),
ROM_WORD' ("1001"™),
ROM_WORD' ("1001"),
ROM_WORD' ("1101"™),
ROM_WORD' ("1011"™),
ROM_WORD' ("1111"));
begin
DATA <= ROM (ADDR) ; —— Read from the ROM

end XILINX;

4-54 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Designing FPGAs with HDL

Verilog - RTL Description of a ROM

/*
* ROM_RTL.V

* Behavioral Example of 16x4 ROM

*/

module rom_rtl (ADDR,
input [3:0] ADDR ;
output [3:0] DATA ;

reg [3:0] DATA ;

DATA) ;

// A memory is implemented
// using a case statement

always @ (ADDR)
begin
case (ADDR)
4'b0000
4'b0001
4'b0010
4'pb0011
4'pb0100
4'pb0101
4'b0110
4'pb0111
4'p1000
4'p1001
4'p1010
4'pb1011
4'p1100
4'p1101
4'p1110
4'p1111
endcase
end

endmodule

DATA
DATA

DATA =

DATA

DATA =

DATA

DATA =

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

= 4'b0000
= 4'b0001
4'b0010
= 4'b0100
4'b1000
= 4'b1000
4'p1100
= 4'b1010
= 4'pb1001
= 4'pb1001
= 4'pb1010
= 4'b1100
= 4'b1001
= 4'pb1001
= 4'pb1101
= 4'b1111

When using an RTL description of a ROM, Synopsys creates ROMs
from random logic gates that are implemented using function genera-

tors.

Synopsys (XSI) Synthesis and Simulation Design Guide

4-55

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Another method for implementing ROMSs in your Synopsys design is
to instantiate the 16x1 or 32x1 ROM primitives. To define the ROM
value use the Set_attribute command as follows.

set_attribute instance name xnf_ init rom_value —-type
string
This attribute allows Synopsys to write the ROM contents to the
netlist file so the Xilinx tools can initialize the ROM. Rom_value
should be specified in hexadecimal values. See the VHDL and Verilog
RAM examples in the following section for examples of this attribute
using a RAM primitive.

Implementing XC4000 Family RAMs

Note: Do not use RTL descriptions of RAMs in your code because
they do not compile efficiently and can cause combinatorial loops.

You can implement RAMs in your HDL code as follows.

+ Instantiate 16x1 and 32x1 RAM primitives (RAM16X1,
RAM32X1, RAMI16X1S, RAM32X1S, RAM16X1D)

* Use LogiBLOX to implement any other RAM size

When implementing RAM in XC4000 and Spartan designs, Xilinx
recommends using the synchronous write, edge-triggered RAM
(RAM16X1S, RAM32X1S, or RAM16X1D) instead of the asynchro-
nous-write RAM (RAM16X1 or RAM32X1) to simplify write timing
and increase RAM performance.

Examples of an instantiation of edge-triggered RAM primitives are
provided in the following VHDL and Verilog designs. As with ROMs,
initial RAM values can be specified from within a Synopsys Script as
follows.

set_attribute instance name xnf_ init ram value -type
string

Ram_value is specified in hexadecimal values.

4-56 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

VHDL - Instantiating RAM

RAM _PRIMITIVE.VHD -
Example of instantiating 4 -
16x1 synchronous RAMs -
HDL Synthesis Design Guide for FPGAs —-—
May 1997 -

library IEEE;
use IEEE.std_logic_1164.all;

entity ram_primitive is

port (DATA_IN, ADDR in STD_LOGIC_VECTOR (3 downto 0);
WE, CLOCK in STD_LOGIC;
DATA_OUT out STD_LOGIC_VECTOR(3 downto 0));

end ram_primitive;

architecture STRUCTURAL_RAM of ram primitive is

component RAM16X1S
port (D, A3, A2, Al, AO,
O : out STD_LOGIC);
end component;

WE, WCLK

begin
RAMO : RAM16X1S port map (O => DATA_OUT(0),
A3 => ADDR(3), A2
Al => ADDR (1), AO
WE => WE, WCLK =>
RAM1 : RAM16X1S port map (O => DATA_OUT(1l),
A3 => ADDR(3), A2
Al => ADDR (1), AO
WE => WE, WCLK =>
RAM2 : RAM16X1S port map (O => DATA_OUT(2),
A3 => ADDR(3), A2
Al => ADDR (1), AO
WE => WE, WCLK =>

Synopsys (XSI) Synthesis and Simulation Design Guide

in STD_LOGIC;

D => DATA_IN(0),
=> ADDR(2),

=> ADDR(0),
CLOCK) ;

D => DATA_IN(1),
=> ADDR(2),

=> ADDR(0),
CLOCK) ;

D => DATA_IN(2),
=> ADDR(2),

=> ADDR(0),
CLOCK) ;

4-57

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

RAM3 : RAM16X1S port map (O => DATA_OUT(3), D => DATA_IN(3),
A3 => ADDR(3), A2 => ADDR(2),
Al => ADDR(1), A0 => ADDR(0),
WE => WE, WCLK => CLOCK) ;

end STRUCTURAL_RAM;

Verilog - Instantiating RAM
LI1111707707777777077777700777711177777777

// RAM_PRIMITIVE.V //
// Example of instantiating 4 //
// 16x1 Synchronous RAMs /7
// HDL Synthesis Design Guide for FPGAs //
// August 1997 //

[0 0707777077777 7777777777

module ram_primitive (DATA_IN, ADDR, WE, CLOCK, DATA_OUT);

input [3:0] DATA_IN, ADDR;
input WE, CLOCK;
output [3:0] DATA_OUT;

RAM16X1S RAMO (.O(DATA _OUT[O0]), .D(DATA IN[0]), .A3(ADDR[3]),
.A2 (ADDR[2]), .Al(ADDR[1]), .AO(ADDR[O]),
.WE (WE), .WCLK (CLOCK)) ;

RAM16X1S RAM1 (.O(DATA OUT[1]), .D(DATA IN[1]), .A3(ADDR[3]),
.A2 (ADDR[2]), .ALl(ADDR[1]), .AO(ADDR[O]),
.WE (WE), .WCLK(CLOCK));

RAM16X1S RAM2 (.O(DATA_OUT[2]), .D(DATA_IN[2]), .A3(ADDR[3]),
.A2 (ADDR[2]), .ALl(ADDR[1l]), .AO(ADDR[O]),
.WE (WE), .WCLK (CLOCK));

RAM16X1S RAM3 (.O(DATA OUT[3]), .D(DATA_IN[3]), .A3(ADDR[3]),
.A2 (ADDR[2]), .A1l(ADDR[1]), .AO(ADDR[O]),
.WE (WE), .WCLK (CLOCK));

endmodule

4-58 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

Using LogiBLOX to Implement Memory

Use LogiBLOX to create a memory module larger than 32X1 (16X1 for
Dual Port). Implementing memory with LogiBLOX is similar to
implementing any module with LogiBLOX except for defining the
Memory initialization file. Use the following steps to create a memory
module.

Note: Refer to the “Using LogiBLOX in HDL Designs” section for
more information on using LogiBLOX.

1. Before using LogiBLOX, verify the following.
¢ Xilinx software is correctly installed
« Environment variables are set correctly

¢ Your display environment variable is set to your machine’s
display

2. To run LogiBLOX, enter the following command.
1lbgui

The LogiBLOX Setup Window appears after the LogiBLOX
module generator is loaded. This window allows you to name
and customize the module you want to create.

3. Select the Vendor tab in the Setup Window. Select Synopsys in the
Vendor Name field to specify the correct bus notation for
connecting your module.

Select the Project Directory tab. Enter the directory location of
your Synopsys project in the LogiBLOX Project Directory field.

Select the Device Family tab. Select the target device for your
design in the Device Family field.

Select the Options tab and select the applicable options for your
design.

Select OK.

4. Enter a name in the Module Name field in the Module Selector
Window.

Select the Memories module type from the Module Type field to
specify that you are creating a memory module.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-59

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Select a width (any value from 1 to 64 bits) for the memory from
the Data Bus Width field.

In the Details field, select the type of memory you are creating
(ROM, RAM, SYNC_RAM, or DP_RAM).

Enter a value in the Memory Depth field for your memory
module.

Note: Xilinx recommends (this is not a requirement) that you select a
memory depth value that is a multiple of 16 since this is the memory
size of one lookup table.

5. If you want the memory module initialized to all zeros on power
up, you do not need to create a memory file (Mem File).
However, if you want the contents of the memory initialized to a
value other than zero, you must create and edit a memory file.
Enter a memory file name in the Mem File field and click on the
Edit button. Continue with the following steps.

a) A memory template file in a text editor is displayed. This file
does not contain valid data, and must be edited before you
can use it. The data values specified in the memory file Data
Section define the contents of the memory. Data values are
specified sequentially, beginning with the lowest address in
the memory, as defined.

b) Specify the address of a data value. The default radix of the
data values is 16. If more than one radix definition is listed in
the memory file header section, the last definition is the radix
used in the Data Section.

The following definition defines a 16-word memory with the
contents 6,4, 5,5,2,7,5,3,5,5,5,5,5,5,5, 5, starting at
address 0. Note that the contents of locations 2, 3, 6, and 8
through 15 are defined via the default definition. Two
starting addresses, 4 and 7, are given.

depth 16

default 5
data 6,4,
4: 2, 7,

7: 3

¢) After you have finished specifying the data for the memory
module, save the file and exit the editor.

4-60 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

6. Click the OK button. Selecting OK initiates the generation of a
component instantiation declaration, a behavioral model, and an
implementation netlist.

7. Copy the HDL module declaration/instantiation into your HDL
design. The template file created by LogiBLOX is
module_name.vhi for VHDL and module_name.vei for Verilog, and
is saved in the project directory as specified in the LogiBLOX
setup.

8. Complete the signal connections of the instantiated LogiBLOX
memory module to the rest of your HDL design, and complete
initial design coding.

9. Perform a behavioral simulation on your design. For more infor-
mation on behavioral simulation, refer to the “Simulating Your
Design” chapter.

10. Create a Synopsys implementation script. Add a Set_dont_touch
attribute to the instantiated LogiBLOX memory module, and
compile your design.

Note: Logiblox_instance_name is the name of the instantiated
module in your design. Logiblox_name is the LogiBLOX component
that corresponds to the .ngo file created by LogiBLOX.

set_dont_touch logiblox_instance_name
compile

Also, if you have a Verilog design, use the Remove Design
command before writing the .sxnf netlist.

Note: If you do not use the Remove Design command, Synopsys may
write an empty .sxnf file. If this occurs, the Xilinx software will trim
this module/component and all connected logic.

remove_design logiblox_name
write —format xnf -hierarchy —output design.sxnf

11. Compile your design and create a .sxnf file. You can safely ignore
the following warning messages.

Warning: Can’t find the design in the library WORK.
(LBR-1)

Warning: Unable to resolve reference LogiBLOX name in
design_name. (LINK-5)

Synopsys (XSI) Synthesis and Simulation Design Guide 4-61

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Warning: Design design_name has [unresolved references.
For more detailed information, use the “1link” command.
(UID-341)

12. Implement your design with the Xilinx tools. Verify that the .ngo
file created by LogiBLOX is in the same project directory as the
Synopsys netlist.

You may get the following warnings during the NGDBuild and
mapping steps. These messages are issued if the Xilinx software
can not locate the corresponding .ngo file created by LogiBLOX.

Warning: basnu - logical block LogiBLOX instance_name of
type LogiBLOX name is unexpanded. Logical Design DRC
complete with 1 warning(s).

If you get this message, you will get the following message
during mapping.
ERROR:basnu — logical block LogiBLOX instance_name of

type LogiBLOX name is unexpanded. Errors detected in
general drc.

If you get these messages, first verify that the .ngo file created by
LogiBLOX is in the project directory. If the file is there, verify that
the module is properly instantiated in the code.

13. To simulate your post-layout design, convert your design to a
timing netlist and use the back-annotation flow applicable to
Synopsys.

Note: For more information on simulation, refer to the “Simulating
Your Design” chapter.

Implementing Boundary Scan (JTAG 1149.1)

Note: Refer to the Development System User Guide for a detailed
description of the XC4000/XC5200 boundary scan capabilities.

XC4000, Spartan, and XC5200 FPGAs contain boundary scan facilities
that are compatible with IEEE Standard 1149.1. Xilinx devices
support external (I/0 and interconnect) testing and have limited
support for internal self-test.

You can access the built-in boundary scan logic between power-up
and the start of configuration. Optionally, the built-in logic is avail-
able after configuration if you specify boundary scan in your design.

4-62 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

During configuration, a reduced boundary scan capability (sample/
preload and bypass instructions) is available.

In a configured FPGA device, the boundary scan logic is enabled or
disabled by a specific set of bits in the configuration bitstream. To
access the boundary scan logic after configuration in HDL designs,
you must instantiate the boundary scan symbol, BSCAN, and the
boundary scan I/0 pins, TDI, TMS, TCK, and TDO.

The XC5200 BSCAN symbol contains three additional pins: RESET,
UPDATE, and SHIFT, which are not available for XC4000 and
Spartan. These pins represent the decoding of the corresponding state
of the boundary scan internal state machine. If this function is not
used, you can leave these pins unconnected in your HDL design.

Note: Do not use the FPGA Compiler boundary scan commands
such as set_jtag implementation, set_jtag_instruction, and
set_jtag_port with FPGA devices.

Instantiating the Boundary Scan Symbol

To incorporate the boundary scan capability in a configured FPGA
using Synopsys tools, you must manually instantiate boundary scan
library primitives at the source code level. These primitives include
TDI, TMS, TCK, TDO, and BSCAN. The following VHDL and Verilog
examples show how to instantiate the boundary scan symbol,
BSCAN, into your HDL code. Note that the boundary scan I/0O pins
are not declared as ports in the HDL code. The schematic for this
design is shown in the “Bnd_scan Schematic” figure.

You must assign a Synopsys Set Don’t Touch attribute to the net
connected to the TDO pad before you use the Insert Pads and
Compile commands. Otherwise, the TDO pad is removed by the
compiler. In addition, you do not need IBUFs or OBUFs for the TDI,
TMS, TCK, and TDO pads. These special pads connect directly to the
Xilinx boundary scan module.

VHDL - Boundary Scan

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity bnd_scan is
port (TDI_P, TMS_P, TCK_P : in STD_LOGIC;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-63

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

LOAD_P, CE_P, CLOCK_P, RESET_P: in STD_LOGIC;

DATA_P: in STD_LOGIC_VECTOR (3 downto 0);

TDO_P: out STD_LOGIC;

COUT_P: out STD_LOGIC_VECTOR (3 downto 0));
end bnd_scan;

architecture XILINX of bnd_scan is

component BSCAN
port (TDI, TMS, TCK :in STD_LOGIC;
TDO: out STD_LOGIC);
end component;

component TDI
port (I: in STD_LOGIC) ;
end component;

component TMS
port (I: in STD_LOGIC) ;
end component;

component TCK
port (I: in STD_LOGIC);
end component;

component TDO
port (O: out STD_LOGIC);
end component;

component count4
port (LOAD, CE, CLOCK, RST: in STD_LOGIC;
DATA: in STD_LOGIC_VECTOR (3 downto 0);
COUT: out STD_LOGIC_VECTOR (3 downto 0));
end component;

—— Defining signals to connect BSCAN to Pins --—

signal TCK_NET : STD_LOGIC;

signal TDI_NET : STD_LOGIC;

signal TMS_NET : STD_LOGIC;

signal TDO_NET : STD_LOGIC;
begin

Ul: BSCAN port map (TDO => TDO_NET,
TDI => TDI_NET,

4-64 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

TMS => TMS_NET,
TCK => TCK_NET) ;

U2: TDI port map (I =>TDI_NET);

U3: TCK port map (I =>TCK_NET);

U4: TMS port map (I =>TMS_NET) ;

U5: TDO port map (O =>TDO_NET) ;

U6: count4 port map (LOAD => LOAD_P,
CE => CE_P,
CLOCK => CLOCEK_P,
RST => RESET_P,
DATA => DATA_P,
COUT => COUT_P);

end XILINX;

Verilog - Boundary Scan

L1777 0777777777777 7070707077777

// BND_SCAN.V !/
// Example of instantiating the BSCAN symbol in //
// activating the Boundary Scan circuitry //

// Count4 is an instantiated
// September 1997

.v file of a counter //

//

LI P77 7777777770707 0707077707777

module bnd_scan (LOAD_P, CLOCK_P, CE_P, RESET_P,
DATA_P, COUT_P);

input LOAD_P, CLOCK_P, CE_P, RESET_P;
input [3:0] DATA P;
output [3:0] COUT_P;
wire TDI_NET, TMS_NET, TCK_NE, TDO_NET;
BSCAN Ul (.TDO(TDO_NET), .TDI(TDI_NET), .TMS(TMS_NET), .TCK(TCK_NET));
TDI U2 (.I(TDI_NET));
TCK U3 (.I(TCK_NET));
TMS U4 (.I(TMS_NET));

Synopsys (XSI) Synthesis and Simulation Design Guide

4-65

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

TDO U5 (.O(TDO_NET));

count4 U6 (.LOAD(LOAD P), .CLOCK(CLOCK_P), .CE(CE_P),

.RST (RESET_P), .DATA (DATA_P), .COUT(COUT_P));
endmodule
IBUF
N
cEP [>
BFUG_F
CLOCK P[> 'l>
DATA_P<3:0> [> count4 >
COUT_P<3:0>
IBUF — -
™.
LOAD_P [> >
IBUF
N
RESET P[> >
I [OD>— ———<__]TDo
—=
BSCAN [g
—=
| =
logic_0
logic_0 &
™S [DO——
X8341
Tk [>————

Figure 4-8 Bnd_scan Schematic

Implementing Logic with IOBs

You can move logic that is normally implemented with CLBs to IOBs.
By moving logic from CLBs to IOBs, additional logic can be imple-
mented in the available CLBs. Using IOBs also improves design
performance by increasing the number of available routing resources.

The XC4000 and Spartan devices have different IOB functions. The
following sections provide a general description of the IOB function
in XC4000E/EX/XL/XV and Spartan devices. A description of how
to manually implement additional 1/0 features is also provided.

4-66 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

XC4000E/EX/XL/XV and Spartan IOBs

You can configure XC4000E/EX/XL/XV and Spartan 1OBs as input,
output, or bidirectional signals. You can also specify pull-up or pull-
down resistors, independent of the pin usage.

These various buffer and 1/0 structures can be inferred from
commands executed in a script or the Design Analyzer. The Set Port
Is Pad command in conjunction with the Insert Pads command
allows Synopsys to create the appropriate buffer structure according
to the direction of the specified port in the HDL code. Attributes can
also be added to these commands to further control pull-up, pull-
down, and clock buffer insertion, as well as slew-rate control.

Inputs

The buffered input signal that drives the data input of a storage
element can be configured as either a flip-flop or a latch. Additionally,
the buffered signal can be used in conjunction with the input flip-flop
or latch, or without the register.

To avoid external hold-time requirements, IOB input flip-flops and
latches have a delay block between the external pin and the D input.
You can remove this default delay by instantiating a flip-flop or latch
with a NODELAY attribute. The NODELAY attribute decreases the
setup-time requirement and introduces a small hold time.

If an IOB or register is instantiated in your HDL code, do not use the
Set Port Is Pad command on that port. Doing so may automatically
infer a buffer on that port and create an invalid double-buffer struc-
ture.

Note: Registers that connect to an input or output pad and require a
Direct Clear or Preset pin are not implemented by the FPGA or
Design Compiler in the IOB.

Outputs

The output signal that drives the programmable tristate output buffer
can be a registered or a direct output. The register is a positive-edge
triggered flip-flop and the clock polarity can be inverted inside the
IOB. (Xilinx software automatically optimizes any inverters into the
IOB.) The XC4000 and Spartan output buffers can sink 12 mA. Two
adjacent outputs can be inter-connected externally to sink up to
24mA.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-67

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Note: The FPGA Compiler and Design Compiler can optimize flip-
flops attached to output pads into the IOB. However, these compilers
cannot optimize flip-flops into an IOB configured as a bidirectional
pad.

Slew Rate

Add the following to your Synopsys script to control slew rate; add
after the Set Port Is Pad command, and before the Insert Pads
command.

set_pad type —-slewrate HIGH {output_ports}
set_pad type -slewrate LOW {output_ports}

Note: Synopsys High slew control corresponds to Xilinx Slow slew
rate. Synopsys Low slew control corresponds to Xilinx Fast slew rate.
If a slew rate is not specified, the default is High or Slow.

You can also specify slew rate by instantiating the appropriate OBUF
primitive. To specify a fast slew rate, instantiate a fast output primi-
tive (such as, OBUF_F and OBUFT_F). The default output buffer has
a slow slew rate (such as, OBUF_S and OBUFT_S), and you do not
need to instantiate it in your HDL code. If you do instantiate an 1/O
buffer or register, make sure that the Set Port Is Pad is not performed
on this port to prevent creation of a double 1/O buffer.

Pull-ups and Pull-downs

XC4000 and Spartan devices have programmable pull-up and pull-
down resistors available in the /0O regardless of whether it is config-
ured as an input, output, or bi-directional 1/0. By default, all unused
IOBs are configured as an input with a pull-up resistor. The value of
the pull-ups and pull-downs vary depending on operating conditions
and device process variances but should be approximately 50 K
Ohms to 100 K Ohms. If a more precise value is required, use an
external resistor.

To specify these internal pull-up or pull-down 1/0O resistors, add the
following to your Synopsys script rather than instantiating them in
your HDL code. Add the following to your script after executing the
Set Port Is Pad command and before executing the Insert Pads
command.

4-68 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

set_pad type —pullup {port names}
set_pad type —pulldown {port_names}

XC4000EX/XL/XV Output Multiplexer/2-Input Function
Generator

A function added to XC4000EX/XL/XV families is a two input multi-
plexer connected to the IOB output allowing the output clock to
select either the output data or the IOB clock enable as the output
pad. This allows you to share output pins between two signals effec-
tively doubling the number of device outputs without requiring a
larger device and/or package. Additionally, this multiplexer can be
configured as a two-input function generator allowing you to imple-
ment any 2-input logic function in the IOB thus freeing up additional
logic resources in the device and allowing for very fast pin-to-pin
paths.

To use the output multiplexer (OMUX), you must instantiate it in
your code. See the following VHDL and Verilog examples. Instantia-
tion of the other types of two-input output primitives, (OAND2,
OOR2, OXOR2, etc.) are similar to these examples.

Note: Since the OMUX uses the IOB output clock and clock enable
routing structures, the output flip-flop (OFD) can not be used within
the same IOB. The input flip-flop (IFD) can be used if the clock enable
is not used.

* VHDL - Output Multiplexer

—— OMUX_EXAMPLE.VHD -
—— Example of OMUX instantiation -
—— For an XC4000EX/XL/XV device -
—— HDL Synthesis Design Guide for FPGAs —--—
—— August 1997 -

library IEEE;
use IEEE.std_logic_1164.all;

entity omux_example is
port (DATA_IN: in STD_LOGIC_VECTOR (1 downto 0);

SEL: in STD_LOGIC;
DATA_OUT: out STD_LOGIC) ;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-69

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

end omux_example;
architecture XILINX of omux_example is

component OMUX2
port (DO, D1, SO : in STD_LOGIC;
o : out STD_LOGIC) ;
end component;

begin

DUEL_OUT: OMUX2 port map (O=>DATA_OUT, DO=>DATA_IN(O),
D1=>DATA _IN(l), SO0=>SEL);

end XILINX;
* Verilog - Output Multiplexer
[177777777770777777777777777777777777777777

// OMUX_EXAMPLE.V //
// Example of instantiating an OMUX2 //
// in an XC4000EX/XL IOB //
// HDL Synthesis Design Guide for FPGAs //
// August 1997 //

L1770 777 7077777777777 777777777777777777777
module omux_example (DATA_IN, SEL, DATA_OUT) ;

input [1:0] DATA_IN ;

input SEL ;
output DATA_OUT ;
OMUX2 DUEL_OUT (.0 (DATA_OUT), .DO(DATA_IN[O]),

.D1(DATA_IN[1]), .SO(SEL));

endmodule

XC5200 IOBs

XC5200 IOBs consist of an input buffer and an output buffer that can
be configured as an input, output, or bi-directional 1/O. The structure
of the XC5200 is similar to the XC4000 IOB except the XC5200 does
not contain a register/latch. The XC5200 IOB has a programmable
pull-up or pull-down resistor, and two slew rate control modes (Fast
and Slow) to minimize bus transients. The input buffer can be

4-70 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

globally configured to TTL or CMOS levels, and the output buffer can
sink or source 8.0 mA.

1/0 buffer structures (as with the XC4000 IOBs) can be inferred from
a Synopsys script with the Set Port Is Pad command in conjunction
with the Insert Pads command. Controlling pull-up and pull-down

insertion and slew rate control are performed as previously described
for the XC4000 IOB.

The XC5200 IOB also contains a delay element so that an input signal
that is directly registered or latched can have a guaranteed zero hold
time at the expense of a longer setup time. You can disable this
(equivalent to NODELAY in XC4000) by instantiating an IBUF_F
buffer for that input port. This only needs to be done for ports that
connect directly to the D input of a register in which a hold time can
be tolerated.

Bi-directional I/O

You can create bi-directional I/0O with one or a combination of the
following methods.

* Behaviorally describe the 1/O path
» Structurally instantiate appropriate IOB primitives
* Create the I/0 using LogiBLOX

Xilinx FPGA I0OBs consist of a direct input path into the FPGA
through an input buffer (IBUF) and an output path to the FPGA pad
through a tri-stated buffer (OBUFT). The input path can be registered
or latched; the output path can be registered. If you instantiate or
behaviorally describe the 1/0, you must describe this bi-directional
path in two steps. First, describe an input path from the declared
INOUT port to a logic function or register. Second, describe an output
path from an internal signal or function in your code to a tri-stated
output with a tri-state control signal that can be mapped to an
OBUFT.

You should always describe the 1/O path at the top level of your
code. If the I/0O path is described in a lower level module, the FPGA
Compiler may incorrectly create the 1/O structure.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-71

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Inferring Bi-directional I/0

This section includes VHDL and Verilog examples that show how to
infer a bi-directional I/0. In these examples, the input path is latched
by a CLB latch that is gated by the active high READ_WRITE signal.

The output consists of two latched outputs with an AND and OR,
and connected to a described tri-state buffer. The active low
READ_WRITE signal enables the tri-state gate.

* VHDL - Inferring a Bi-directional Pin

—— BIDIR_INFER.VHD ——
—— Example of inferring a Bi-directional pin ——
—-— August 1997 ——

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_infer is

port (DATA : inout STD_LOGIC_VECTOR (1l downto 0);
READ _WRITE : in STD_LOGIC) ;

end bidir _infer;

architecture XILINX of bidir_ infer is
signal LATCH_OUT : STD_LOGIC_VECTOR(1l downto 0);
begin

process (READ_WRITE)

begin
if (READ_WRITE = 'l') then
LATCH _OUT <= DATA;
end if;

end process;

process (READ_WRITE)
begin

4-72 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Designing FPGAs with HDL

if (READ_WRITE = '0') then
DATA (0) <= LATCH_OUT (0) and LATCH OUT(1l);
DATA (1) <= LATCH_OUT (0) or LATCH_OUT (1) ;
else
DATA(0) <= 'Z';
DATA (1) <= 'Z';
end if;

end process;

end XILINX;
* Verilog - Inferring a Bi-directional Pin

II1777 777777777777 777 7777777777777 777777777777777777777777777/777777
// BIDIR_INFER.V /7
// This is an example of an inference of a bi-directional signal. //
// Note: Logic description of port should always be on top-level //
// code when using Synopsys Compiler and verilog. //
// BAugust 1997 //
JILT707777 77777777777 777

module bidir infer (DATA, READ_WRITE);

input READ_WRITE ;
inout [1:0] DATA ;

reg [1:0] LATCH_OUT ;

always @ (READ_WRITE)

begin
if (READ_WRITE == 1'bl)
LATCH _OUT <= DATA;
end
assign DATA[O] = READ_WRITE ? 1'bz : (LATCH_OUT[0] & LATCH OUTI[1]);
assign DATA[1l] = READ_WRITE ? 1'bZ : (LATCH_OUT[0] | LATCH_OUTI[1]);
endmodule
Instantiating Bi-directional I/O
Instantiating the bi-directional 1/0 gives the you more control over
the implementation of the circuit; however, as a result, your code is
more architecture-specific and usually more verbose. The VHDL and
Synopsys (XSI) Synthesis and Simulation Design Guide 4-73

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Verilog examples in this section are identical to the examples in the
“Inferring Bi-directional I/O” section; however, since there is more
control over the implementation, an input latch is specified rather
than the CLB latch inferred in the previous examples. The following
examples are a more efficient implementation of the same circuit.

When instantiating 1/0 primitives, do not specify the Set Port Is Pad
command on the instantiated ports to prevent the 1/0 buffers from
being inferred by Synopsys. This precaution also prevents the
creation of an illegal structure.

e VHDL - Instantiation of a Bi-directional Pin

—— BIDIR_INSTANTIATE.VHD -
—-— Example of an instantiation --
—-— of a Bi-directional pin —=
—-— August 1997 —=

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_ instantiate is

port (DATA : inout STD_LOGIC_VECTOR (1l downto 0);
READ_WRITE : in STD_LOGIC) ;

end bidir instantiate;
architecture XILINX of bidir instantiate is

signal LATCH_OUT : STD_LOGIC_VECTOR(1l downto 0);
signal DATA_OUT : STD_LOGIC_VECTOR (1l downto 0);
signal GATE : STD_LOGIC;

component ILD_1
port (D, G
Q

end component;

in STD_LOGIC;
out STD_LOGIC) ;

component OBUFT_S
port (I, T : in STD_LOGIC;
o : out STD_LOGIC) ;
end component;

4-74 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

begin

DATA_OUT (0) <= LATCH_OUT (0) and LATCH_OUT (1) ;
DATA_OUT (1) <= LATCH OUT (0) or LATCH_OUT(1);

GATE <= not READ_WRITE;

INPUT PATH 0 : ILD_ 1
port map (D => DATA(0), G => GATE,
Q => LATCH_OUT (0)) ;

INPUT_PATH 1 : ILD_1
port map (D => DATA(l), G => GATE,
Q0 => LATCH OUT (1)) ;

OUPUT_PATH_O0 : OBUFT_S
port map (I => DATA OUT(0), T => READ_WRITE,
O => DATA(0));

OUPUT_PATH 1 : OBUFT_S
port map (I => DATA_OUT (1), T => READ_WRITE,
O => DATA(1));

end XILINX;
* Verilog - Instantiation of a Bi-directional Pin

[11777177777777777777777777777777777777777777

// BIDIR_INSTANTIATE.V //

// This is an example of an instantiation //
// of a bi-directional port. //
// August 1997 /7

1777777777777 77707777777777077777777777777777
module bidir_instantiate (DATA, READ _WRITE);

input READ_WRITE ;
inout [1:0] DATA ;

reg [1:0] LATCH_OUT ;
wire [1:0] DATA_OUT ;
wire GATE ;

assign GATE = ~READ_WRITE;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-75

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

assign DATA_OUTI[O0]
assign DATA_OUTI[1]

LATCH_OUT[0] & LATCH OUT[1];
LATCH_OUT[0] | LATCH OUT[1];

// I/0 primitive instantiation

ILD_1 INPUT_PATH_O (.Q(LATCH_OUT[O]), .D(DATA[O]), .G(GATE));

ILD_1 INPUT_PATH_1 (.Q(LATCH_OUT[1]), .D(DATA[1l]), .G(GATE)):;
OBUFT_S OUPUT_PATH_O (.O(DATA[O]), .I(DATA_OUTI[O0]), .T(READ_WRITE));
OBUFT_S OUPUT_PATH_1 (.O(DATA[1l]), .I(DATA_OUTI[1l]), .T(READ_WRITE));

endmodule

Using LogiBLOX to Create Bi-directional I/0

You can use LogiBLOX to create 1/0 structures in an FPGA. Logi-
BLOX gives you the same control as instantiating [/ O primitives, and
is usually less verbose. LogiBLOX is especially useful for bused 1/0
ports.

Note: Refer to the “Using LogiBLOX in HDL Designs” section

section, for details on creating, instantiating, and compiling Logi-
BLOX modules.

Do not use the Set Port Is Pad command on LogiBLOX-created ports.
Also, when designing with Verilog, you must issue a Remove Design
command before writing out the .sxnf files from Synopsys.

The following VHDL and Verilog examples show how to instantiate
bi-directional 1/0O created with LogiBLOX. These examples produce
the same results as the examples in the “Instantiating Bi-directional
1/0” section.

4-76 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

* VHDL - Using LogiBLOX to Create a Bi-directional Port

—— BIDIR_LOGIBLOX.VHD -
—-— Example of using LogiBLOX —=
-— to create a Bi-directional port -—-—
—-— August 1997 —-=

—— LogiBLOX BIDI Module "bidir_io_from_ lb"
—-— Created by LogiBLOX version M1.3.7

- on Mon Sep 8 13:14:02 1997

—-— Attributes

—— MODTYPE = BIDI

—— BUS_WIDTH = 2

—— IN_TYPE = LATCH

—— OUT_TYPE = TRI

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;
entity bidir_ logiblox is

port (DATA : inout STD_LOGIC_VECTOR (1l downto 0);
READ_WRITE : in STD_LOGIC) ;

end bidir_logiblox;
architecture XILINX of bidir_logiblox is

signal LATCH_OUT : STD_LOGIC_VECTOR(1l downto 0);
signal DATA_OUT : STD_LOGIC_VECTOR (1l downto 0);

component bidir_io_from_lb

PORT (O: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
OE: IN STD_LOGIC;
IGATE: IN STD_LOGIC;
10: ouT STD_LOGIC_VECTOR (1 DOWNTO 0);
P: INOUT STD_LOGIC_VECTOR(1l DOWNTO 0)) ;

end component;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-77

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

begin

DATA_OUT (0) <= LATCH_OUT (0) and LATCH_OUT (1) ;
DATA_OUT (1) <= LATCH_OUT(0) or LATCH_OUT (1) ;

BIDIR BUSSED_PORT : bidir io_from 1lb
port map (O => DATA_OUT, OE => READ_WRITE,
IGATE => READ_WRITE, IQ => LATCH_OUT, P => DATA);

end XILINX;
* Verilog - Using LogiBLOX to Create a Bi-directional Port
L1777 7777077777777770777777777777777777777

// BIDIR_LOGIBLOX.V //

// This is an example of using LogiBLOX //

// to create a bi-directional port. //
// BAugust 1997 //

LI r 77777777 77770777777777

// LogiBLOX BIDI Module "bidir_ io_from_lb"
// Created by LogiBLOX version M1.3.7

// on Mon Sep 8 17:10:15 1997

// Attributes

// MODTYPE = BIDI

// BUS_WIDTH = 2

// IN_TYPE = LATCH

// OUT_TYPE = TRI

/) -

module bidir_logiblox (DATA, READ_WRITE);

input READ_WRITE ;
inout [1:0] DATA ;

reg [1:0] LATCH_OUT ;
wire [1:0] DATA_OUT ;

assign DATA_OUT[0] = LATCH_OUT[0] & LATCH_OUT[1];
assign DATA OUT[1] = LATCH_OUT[0] | LATCH_OUT[1];
4-78 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

// LogiBLOX instantiation

bidir_io_from_lb BIDIR_BUSSED_PORT
(.O(DATA_OUT), .OE(READ_WRITE), .P(DATA),
.IQ(LATCH OUT), .IGATE (READ WRITE));

endmodule

module bidir io_from 1b (O, OE, P, IQ, IGATE);
input [1:0] ©O;
input OE;
input IGATE;
inout [1:0] P;
output [1:0] IQ;
endmodule

Specifying Pad Locations

Although Xilinx recommends allowing the software to select pin
locations to ensure the best possible pin placement in terms of design
timing and routing resources, sometimes you must define the pad
locations prior to placement and routing. You can assign pad loca-
tions either from a Synopsys script prior to writing out the netlist file
or from a User Constraints File (UCF), as follows.

* Assigning Pad Location with a Synopsys Script

set_attribute port name “pad location” -type string
pad_location

* Assigning Pad Location with a UCF
NET port_name LOC = pad_location;

Use one or the other method, but not both. Refer to the Xilinx Data
Book or the Xilinx Web site for the pad locations for your device and
package.

Moving Registers into the IOB
Note: XC5200 devices do not have input and output flip-flops.

IOBs contain an input register or latch and an output register. [OB
inputs can be register or latch inputs as well as direct inputs to the
device array. Registers without a direct reset or set function can be
moved into IOBs. Moving registers or latches into IOBs may reduce

Synopsys (XSI) Synthesis and Simulation Design Guide 4-79

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

the number of CLBs used and decreases the routing congestion. In
addition, moving input registers and latches into the IOB reduces the
external setup time, as shown in the following figure.

Input Register

BEFORE AFTER
108
IED
[>—|p Q
IN. SIG
—bc
Routing Delay
Output Register
BEFORE AFTER
CLB 0B 0B
EDE OFD F
OBUF F
—ID Q \{>—|:> S O
OuT sIG OUT SIG
e Routing Delay Rauting °
. (No additional Deley ¢+ —
setuptime)

X4974

Figure 4-9 Moving Registers into the IOB

Although moving output registers into the IOB may increase the
internal setup time, it may reduce the clock-to-output delay, as shown
in this figure. The Synopsys Compiler automatically moves registers
into IOBs if the Preset, Clear, and Clock Enable pins are not used.

4-80 Xilinx Development System

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

Use -pr Option with Map

Use the -pr (pack registers) option when running MAP. The -pr{i | o
| b} (input | output | both) option specifies to the MAP program to
move registers into IOBs under the following circumstances.

1. The input of the register must be connected to an input port, or
the Q pin must be connected to an output port. For the
XC4000EX/XL/XV this applies to non-1/0 latches, as well as
flip-flops.

2. 10Bs must have input or output flip-flops. XC5200 devices do not
have IOB {flip-flops.

3. The flip-flop does not use an asynchronous set or reset signal.

4. In XC4000, Spartan, and XC3000 devices, a flop/latch is not
added to an IOB if it has a BLKNM or LOC conflict with the IOB.

5. In XC4000 or Spartan devices, a flop/latch is not added to an
IOB if its control signals (clock or clock enable) are not compat-
ible with those already defined in the IOB. This occurs when a
flip-flop (latch) is already in the IOB with different clock or clock
enable signals, or when the XC4000EX/XL/XV output MUX is
used in the same 1OB.

6. In XC4000EX/XV devices, if a constant 0 or 1 is driven on the
IOPAD, a flip-flop/latch with a CE is not added to the input side
of the IOB.

Using Unbonded I0Bs (XC4000E/EX/XL/XV and
Spartan Only)

In some package/device pairs, not all pads are bonded to a package
pin. You can use these unbonded IOBs and the flip-flops inside them
in your design by instantiating them in the HDL code. You can imple-
ment shift registers with these unbonded 10Bs. The VHDL and
Verilog examples in this section show how to instantiate unbonded
IOB flip-flops in a 4-bit shift register in an XC4000 device.

Note: The Synopsys compilers cannot infer unbonded primitives.
Refer to the Synopsys (XSI) Interface/Tutorial Guide for a list of library
primitives that can be used for instantiations.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-81

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

VHDL - 4-bit Shift Register Using Unbonded I/0

—— UNBONDED_TIO.VHD Version 1.0

—— XC4000 LCA has unbonded IOBs which have

—— storage elements that can be used to build
—-— shift registers.

—— Below is a 4-bit Shift Register using

—— Unbonded IOB Flip Flops

—— Xilinx HDL Synthesis Design Guide for FPGAs
-— May 1997

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity unbonded_io is

(A, B: in STD_LOGIC;
CLK: in STD_LOGIC;
Q_OUT: out STD_LOGIC) ;

end unbonded_io;

port

architecture XILINX of unbonded io is

component IFD_U
port (Q: out std_logic;
D, C: in std_logic);
end component;

—— Unbonded Input FF with INIT=Reset

component IFDI_U —-- Unbonded Input FF with INIT=Set

port (Q: out std_logic;
D, C: in std_logic);
end component;

component OFD_U —-- Unbonded Output FF with INIT=Reset

port (Q: out std_logic;
D, C: in std_logic);
end component;

component OFDI_U —-- Unbonded Output FF with INIT=Set

port (Q: out std_logic;

D, C: in std_logic);
end component;

——— Internal Signal Declarations

4-82

Power ed by I Criner.com El ectronic-Library Service CopyRi ght

Xilinx Development System

2003

Designing FPGAs with HDL

signal U_Q : STD_LOGIC_VECTOR (3 downto 0);
signal U_D : STD_LOGIC;

begin
U_D <= A and B;
Q_OUT <= U_0Q(0);
U3: OFD_U port map (Q => U_Q(3),
D => U_D,
C => CLK);

U2: IFDI_U port map (Q => U (2),
I

Ul: OFDI_U port map (Q => U_Q(1)

U0: IFD_U port map (Q => U_Q(0),
D => U_Q(1),
C => CLK);

end XILINX;

Verilog - 4-bit Shift Register Using Unbonded I/O
LIIII00110077770077707717007777771770077777711777717

// UNBONDED.V /7
// XC4000 family has unbonded IOBs which have //
// storage elements that can be used to build //
// functions lie shift registers. //
// Below is a 4-bit Shift Register using Unbonded //
// IOB Flip Flops /7
// HDL Synthesis Design Guide for FPGAs //
// May 1997 //

[7777710777777777777777777777077777777707777777777777
module unbonded_io (A, B, CLK, Q_OUT);

input A, B, CLK;
output Q_OUT;

wire[3:0] U_Q;
wire U_D;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-83

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

assign U_D = A & B;
assign Q_OUT = U_Q[O0];

OFD_U U3 (.Q(U_Q[3]), .D(U_D), .C(CLK));

IFDI_U U2 (.Q(U_Q[2]), .D(U_QI[3]), -C(CLK));
OFDI_U Ul (.Q(U_Q[1]), .D(U_Q[2]), -C(CLK));
IFD_U U0 (.Q(U_Q[0]), .D(U_Q[1]), -C(CLK));

endmodule

Implementing Multiplexers with Tristate Buffers

A 4-to-1 multiplexer is efficiently implemented in a single XC4000 or
Spartan family CLB. The six input signals (four inputs, two select
lines) use the F, G, and H function generators. Multiplexers that are
larger than 4-to-1 exceed the capacity of one CLB. For example, a 16-
to-1 multiplexer requires five CLBs and has two logic levels. These
additional CLBs increase area and delay. Xilinx recommends that you
use internal tristate buffers (BUFTSs) to implement large multiplexers.

Large multiplexers built with BUFTs have the following advantages.
* Can vary in width with only minimal impact on area and delay

* Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

* Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog
designs of a 5-to-1 multiplexer built with gates. Typically, the gate
version of this multiplexer has binary encoded selector inputs and
requires three select inputs (SEL<2:0>). The schematic representation
of this design is shown in the “5-to-1 MUX Implemented with Gates”
figure.

The VHDL and Verilog designs provided at the end of this section
show a 5-to-1 multiplexer built with tristate buffers. The tristate
buffer version of this multiplexer has one-hot encoded selector inputs
and requires five select inputs (SEL<4:0>). The schematic representa-
tion of these designs is shown in the “5-to-1 MUX Implemented with
BUFTs” figure.

4-84 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

VHDL - Mux Implemented with Gates

—— MUX_GATE.VHD

—-— 5-to-1 Mux Implemented in Gates

—— Xilinx HDL Synthesis Design Guide for FPGAs
-— May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is
port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC;
SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is

begin
SEL_PROCESS: process (SEL,A,B,C,D,E)
begin
case SEL is

when "000" => SIG <= A;
when "001l" => SIG <= B;
when "010" => SIG <= C;
when "011" => SIG <= D;

when others => SIG <= E;
end case;
end process SEL_PROCESS;
end RTL;

Verilog - Mux Implemented with Gates

/* MUX_GATE.V
* Synopsys HDL Synthesis Design Guide for FPGAs
* May 1997 */

module mux_gate (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;

input [2:0] SEL;

output SIG;

reqg SIG;

always @ (A or B or C or D or SEL)

Synopsys (XSI) Synthesis and Simulation Design Guide

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

4-85

Power ed

Synopsys (XSI) Synthesis and Simulation Design Guide

case (SEL)
3'b000:
SIG=A;
3'b001:
SIG=B;
3'b010:
SIG=C;
3'b011:
SIG=D;
3'b100:
SIG=E;
default: SIG=A;
endcase

endmodule

SIG

moo w>»

SEL<0>
SEL<1>
SEL<2>

X6229

Figure 4-10 5-to-1 MUX Implemented with Gates

VHDL - Mux Implemented with BUFTs

—— MUX_TBUF.VHD

—— 5-to-1 Mux Implemented in 3-State Buffers
—— Xilinx HDL Synthesis Design Guide for FPGAs
-— May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC;

SIG: out STD_LOGIC);

end mux_tbuf;

architecture RTL of mux_tbuf is

4-86 Xilinx Development System

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

begin
SIG <= A when (SEL(0)='0"') else 'Z"';
SIG <= B when (SEL(1)='0') else 'Z2"';
SIG <= C when (SEL(2)='0") else 'Z'";
SIG <= D when (SEL(3)='0") else 'Z2'";
SIG <= E when (SEL(4)='0") else 'Z'";
end RTL;

Verilog - Mux Implemented with BUFTs

/* MUX_TBUF.V
* Synopsys HDL Synthesis Design Guide for FPGAs
* May 1997 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);
input A,B,C,D,E;

input [4:0] SEL;

output SIG;

reqg SIG;

always @ (SEL or A)

begin
if (SEL[0]==1'DbO)
SIG=A;
else
SIG=1"bz;
end

always @ (SEL or B)

begin
if (SEL[1]==1'b0)
SIG=B;
else
SIG=1"'bz;
end

always @ (SEL or C)
begin
if (SEL[2]==1'bO0)
SIG=C;
else
SIG=1"bz;

Synopsys (XSI) Synthesis and Simulation Design Guide 4-87

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

end

always @ (SEL or D)

begin
if (SEL[3]==1'b0)
SIG=D;
else
SIG=1"'bz;
end

always @ (SEL or E)
begin
if (SEL[4]==1'bO0)
SIG=E;
else
SIG=1"bz;
end

endmodule

o Q;

SEL<1> Q—

SEL<2> ¢+——— SIG
C ::::; >—¢

o i

SEL<4>

X6228

Figure 4-11 5-to-1 MUX Implemented with BUFTs

4-88 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

A comparison of timing and area for a 5-to-1 multiplexer built with
gates and tristate buffers in an XC4005EPC84-2 device is provided in
the following table. When the multiplexer is implemented with
tristate buffers, no CLBs are used and the delay is smaller.

Table 4-5 Timing/Area for 5-to-1 MUX (XC4005EPC84-2)

Timing/Area Using BUFTs Using Gates
Timing 15.31 ns (1 block level) 17.56 ns (2 block levels)
Area 0 CLBs, 5 BUFTs 3 CLBs

Using Pipelining

You can use pipelining to dramatically improve device performance.
Pipelining increases performance by restructuring long data paths
with several levels of logic and breaking it up over multiple clock
cycles. This method allows a faster clock cycle and, as a result, an
increased data throughput at the expense of added data latency.
Because the Xilinx FPGA devices are register-rich, this is usually an
advantageous structure for FPGA designs since the pipeline is
created at no cost in terms of device resources. Because data is now
on a multi-cycle path, special considerations must be used for the rest
of your design to account for the added path latency. You must also
be careful when defining timing specifications for these paths.

Before Pipelining

In the following example, the clock speed is limited by the clock-to
out-time of the source flip-flop; the logic delay through four levels of
logic; the routing associated with the four function generators; and
the setup time of the destination register.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-89

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

—>D Q —> —> —>
—»| Function Function Function Function D Qr—>»
> —» Generator |] Generator|] Generator| .| Generator
—> —> —> —> l7>
Slow_Clock

X8339

Figure 4-12 Before Pipelining

After Pipelining

This is an example of the same data path in the previous example
after pipelining. Since the flip-flop is contained in the same CLB as
the function generator, the clock speed is limited by the clock-to-out
time of the source flip-flop; the logic delay through one level of logic;
one routing delay; and the setup time of the destination register. In
this example, the system clock runs faster than in the previous

example.
—»|D Qf—> —> —> —>
—{ Function |—>D Q |—{ Function —1p Q }——{ Function |—{D Q }—{ Function |—>1p al—>
—a] Generator —]Generator —»|Generator —|Generator

Fast_Clock X8340
Figure 4-13 After Pipelining

Design Hierarchy

HDL Designs can either be synthesized as a flat module or as many
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.
* Easier and faster verification/simulation

* Allows several engineers to work on one design at the same time

4-90 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

* Speeds up design compilation

* Reduces design time by allowing design module re-use for this
and future designs.

* Allows you to produce design that are easier to understand
* Allows you to efficiently manage the design flow
Disadvantages to building hierarchical designs are as follows.

* Design mapping into the FPGA may not be as optimal across
hierarchical boundaries; this can cause lesser device utilization
and decreased design performance

* Design file revision control becomes more difficult
* Designs become more verbose

Most of the disadvantages listed above can be overcome with careful
design consideration when choosing the design hierarchy.
Using Synopsys with Hierarchical Designs

By effectively partitioning your designs, you can significantly reduce
compile time and improve synthesis results. This section provides
recommendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance
together to reduce the gate count. However, to increase design speed,
do not compile a module in a critical path with other instances.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-91

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Synopsys (XSI) Synthesis and Simulation Design Guide

Restrict Related Combinatorial Logic to Same
Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to
allow the synthesis tool to optimize an entire critical path in a single
operation. Boolean optimization does not operate across hierarchical
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining
modules is difficult if combinatorial logic is not restricted to the same
level of hierarchy:.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with
different functions at different levels of the hierarchy. Design speed is
the first priority of optimization algorithms. To achieve a design that
efficiently utilizes device area, remove timing constraints from design
modules.

Restrict Combinatorial Logic that Drives a Register to
Same Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that
drives a register to the same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on
your computer configuration; the time required to complete each
optimization run; if the design is worked on by a design team; and
the target FPGA routing resources. Although smaller blocks give you
more control, you may not always obtain the most efficient design.

Register All Outputs

Arrange your design hierarchy so that registers drive the module
output in each hierarchical block. Registering outputs makes your
design easier to constrain because you only need to constrain the
clock period and the ClockToSetup of the previous module. If you
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also,
registering the outputs of your design hierarchy can eliminate any

4-92 Xilinx Development System

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Designing FPGAs with HDL

possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire
Design

By restricting one clock to each module, you only need to describe the
relationship between the clock at the top level of the design hierarchy
and each module clock. By restricting one clock to the entire design,
you only need to describe the clock at the top level of the design hier-
archy.

Note: See the Synopsys (XSI) Interface/Tutorial Guide for more informa-
tion on optimizing logic across hierarchical boundaries and
compiling hierarchical designs.

Synopsys (XSI) Synthesis and Simulation Design Guide 4-93

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

