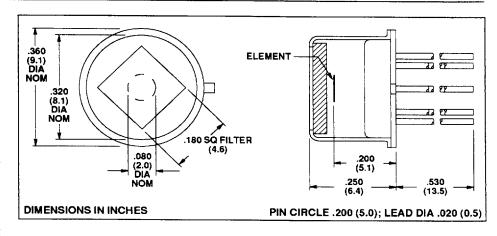
Model 404CM High Performance Pyroelectric IR Detector with Current Mode Amplifier

Manufactured under one or more of the following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 - 4,437,003 - 4,441,023 - 4,523,095

Model 404CM consists of a single lithium tantalate sensing element and current mode amplifier sealed into a modified TO-99 transistor housing with optical filter (optional).

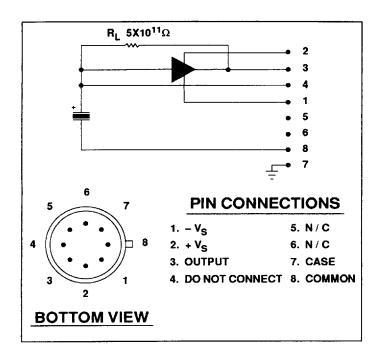

The internal circuit functions as a current-to-voltage converter and provides an exceptional high output signal.

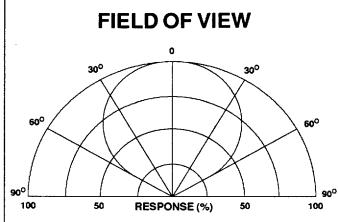
Model 404CM has a higher value feedback resistor (RF) which provides higher gain, improved signal to noise ratio and, consequently, a higher D* than the Model 404 in the current mode.

Model 404CM has a spectral response of 0.0001 to 1000 μm wavelength. An optical filter may be used to select spectral response and to protect the sensing element from physical damage, drafts and electrical noise.

Applications

- Pyrometry
- FT Spectroscopy
- Gas Analysis
- Materials' Transmission/ Reflectance Studies
- UV Curing Instrumentation
- Total Energy Plasma Studies




Characteristics		404CM	Test Unit	Conditions	ELTECdata Reference
Detector Type		Single			
Element Size		2.0	mm, Dia	Nominal	
		0.0001		Without	
Optical Bandwidth		to 1000	μm	Optical Filter	101
Responsivity	typ	275,000	V/W	8-14µm@1Hz	
Responsivity	typ	55,000	V/W	8-14μm@10Hz	
				8-14µm	
NEP	typ	4.5x10 ⁻¹⁰	W /√Hz	1-100Hz, BW 1Hz	100
	ĺ			8-14μm	
D*	typ	3.8x10 ⁸	cm√Hz/W	1-100Hz, BW 1Hz	100
	min	±5			
Operating Voltage	max	±15	V		
Operating Current	max	5.0	mA	@V _S ±15 V	
Offset Voltage	max	0.1	V		
Output Impedance		10	Ω	F≤100Hz	
Minimum					
Load Resistance		1K	Ω		
Thermal Breakpoint ft typ		0.25	Hz		102
Electrical Breakpoint fe typ		0.011	Hz	$R_{F}=5x10^{11}\Omega$	102
Recommended					
Operating Temperature		-40 to +70	°C		
Storage Temperature		-55 to +125	°C	ΔT<5°C/minute	

Characteristics at 25° C, with no filter, $V_{s} = \pm 10 \text{VDC}$.

Data is established on a sample basis and is believed to be representative.

🖿 3294041 0000682 566 🖿

For -3 window only. For other windows, consider refractive index and thickness.

Symmetrical crystal gives same FOV in vertical and horizontal planes.

Field of View: Approximately 110° (50% power points).

Mounting: Avoid mechanical stresses on case and leads.

Soldering: Use minimum heat and use a heat sink between case and leads. Leave minimum lead length of .250 inch (6.0 mm). DO NOT MACHINE SOLDER.

Static Discharge: Protect detectors from electrostatic discharges

Thermal Shock: Temperature changes and rate of change must be kept to a minimum (<5°C/min.) to prevent damage.

Power Polarity: Carefully note power supply polarity connections to avoid damage to internal op amp.

Output Protection: Output is short circuit protected.

Current Mode Output: Output in the current mode is inverting (negative output for positive temperature change input).

Optical Design: Use of a detector with a window in an optical system may require consideration of the image displacement toward the window. This displacement (= s) caused by the insertion of a planoparallel plate (window thickness = t; refractive index = N) is given by s=(t/N)(N-1).

Light Leakage: Slight sensitivity to visible light leaking through the glass-to-metal seal on the base may be observed.

Optical Filter (Window): This Model can be used with any standard ELTEC detector window or used without a window. For more information, please refer to ELTECdata # 101.

Noise: As a resolution or lower detectivity limit, noise is not established only by the detector. Other noise sources are:

- Radiated and conducted RF signals
- Subsequent amplification or signal conditioning stages
- Power supply noise
- Components such as high value resistors and tantalum or electrolytic capacitors
- Mechanical contacts and weak solder joints
- · Microphonics or vibration
- Outside thermal influences on the detector other than the desired infrared input, i.e. drafts.

All these noise sources should be considered carefully when the information signal is <20mV.

Power Supply: Model 404CM requires a split voltage power supply. ELTEC Model 610 Detector Controller provides a compatible power supply.

Calculations: When calculating response from basic formulae, (see ELTECdata # 100) use crystal thickness as 0.002 inch (0.05 mm) and 30pF capacitance for crystal.

ELTEC Instruments, Inc. P.O. Box 9610 Daytona Beach, Florida 32120- 9610 U.S.A. Telephone: (800)874-7780 Fax: (904)258-3791

© ELTEC INSTRUMENTS, INC. 10/95 Printed in U.S.A. Form DS404CM

■ 3294041 0000683 4T2 ■

2