
MiniRISC™ CW4010
Superscalar

Microprocessor Core
Technical Manual

A CoreWare ® Product

Order Number C14032



ii

This document is preliminary. As such, it contains data derived from functional
simulations and performance estimates. LSI Logic has not verified either the
functional descriptions, or the electrical and mechanical specifications using pro-
duction parts.

Document DB14-000027-00, First Edition (July 1996)
This document describes revision A of LSI Logic Corporation’s CW4010 Super-
scalar Microprocessor Core and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

To receive product literature, call us at 1-800-574-4286 (or 415-940-6877
outside the U.S. and Canada) and ask for Department JDS; or visit us at
http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or lia-
bility arising out of the application or use of any product described herein, except
as expressly agreed to in writing by LSI Logic; nor does the purchase or use of
a product from LSI Logic convey a license under any patent rights, copyrights,
trademark rights, or any other of the intellectual property rights of LSI Logic or
third parties.

Copyright © 1996 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
LSI Logic logo design and CoreWare are registered trademarks and MiniRISC
and MiniSIM are trademarks of LSI Logic Corporation. Sun and SPARCstation
are trademarks of Sun Microsystems, Inc. SPARC is a registered trademark of
SPARC International, Inc. Products bearing the SPARC trademarks are based on
an architecture developed by Sun Microsystems, Inc. MIPS is a trademark of
MIPS Technologies, Inc. Verilog is a registered trademark of Cadence Design
Systems, Inc. All other brand and product names may be trademarks of their
respective companies.



Preface iii

Preface

This book is the primary reference and technical manual for the
MiniRISC™ CW4010 Superscalar Microprocessor Core, referred to in
this document as the CW4010 core, the CW4010, or the core. The book
contains a complete functional description of the CW4010.

Audience The book is intended for use by engineers and managers who are
evaluating the CW4010 core, or for engineers who are designing with the
core. The book assumes that this audience is familiar with the concepts
of microprocessors and related support devices.

Organization The book has the following chapters and a glossary of terms.

♦ Chapter 1, Introduction , provides an overview of the CW4010 core
and describes the features of the LSI Logic CoreWare® program.

♦ Chapter 2, Architectural Overview , describes the CPU pipeline and
microarchitecture, the instructions set architecture, the system
coprocessor (CP0), memory management, exception processing,
and cache maintenance.

♦ Chapter 3, Instruction Set Summary , describes the MIPS R-series
instructions and the instruction set extensions supported in the
CW4010 core.

♦ Chapter 4, CW4010 Exception Processing , describes how the
CW4010 handles exception processing.

♦ Chapter 5, CW4010 Memory Management , provides detailed
information about CP0 and the CW4010 memory management
system.

♦ Chapter 6, CW4010 Caches , provides detailed information about the
CW4010 caches and cache maintenance.



iv Preface

♦ Chapter 7, Signals , describes the CW4010 core I/O signals.

♦ Chapter 8, Interface Operation , describes the main timing scenarios
for CW4010 transactions.

♦ Chapter 9, Specifications , refers you to an addendum that contains
specifications for the CW4010 core.

♦ Appendix A, Programmer’s Notes , provides information that is
useful if you are writing software for the CW4010 core.

Related
Publications

CW33300 Enhanced Self-Embedding Processor Core User’s Manual,
Order No. C14014

Conventions
Used in This
Manual

Terms that appear in the glossary are shown in boldface the first time
they are mentioned in the text.

The term “word” is used to define a 32-bit quantity, either signed or
unsigned. This means that in the CW4010 core a word consists of four
8-bit bytes; a doubleword has 64 bits, or eight 8-bit bytes; and a halfword
has 16 bits, or two 8-bit bytes.

Hexadecimal numbers are indicated by the prefix 0x before the number,
for example, 0x32CF. Binary numbers are indicated by a subscript “2”
following the number, for example 000.0010.1100.11112.

The following signal conventions are used throughout the manual:

♦ Signals that are inputs have a lower case “i” as part of the signal
name, for example, SCDip. Signals that are outputs have a lower
case “o”, for example, SCDop. Lowercase characters are used to
avoid confusion between uppercase “I” and “1”, and uppercase “O”
and “0.”

♦ Active-LOW signals have a lowercase “n” at the end of the signal
name, for example RESETn. Active-HIGH signals have a lowercase
“p” at the end of the signal name, for example SCAop.

♦ The term “assert” means to drive a signal true or active. The term
“deassert” means to drive a signal false or inactive.



Contents v

Contents

Chapter 1 Introduction
1.1 CW4010 Overview 1-1

1.1.1 Core and Shell 1-2
1.1.2 Interfaces 1-3
1.1.3 Related Modules 1-3

1.2 Features 1-4
1.3 CoreWare Program 1-5

1.3.1 CoreWare Building Blocks 1-5
1.3.2 Design Environment 1-6
1.3.3 Expert Support 1-6

Chapter 2 Architectural Overview
2.1 Architectural Overview 2-1
2.2 Cache and External Interface 2-5
2.3 Clocking and Power Management 2-6
2.4 Pipeline Architecture (ISA) 2-6

2.4.1 Instruction Fetch and Scheduling: IF, Q, and
RD Stages 2-7

2.4.2 Execute Stage 2-9
2.4.3 CR and WB Stages 2-9

2.5 Instruction Set Summary 2-9
2.6 Configurability and Options 2-13

2.6.1 Cache Sizes 2-14
2.6.2 Standard vs High-Performance Multiply

Accumulate Unit 2-14
2.6.3 64-bit vs 32-bit Memory Interface 2-14
2.6.4 Memory Management Unit 2-14

2.7 Supporting Models and Tools 2-14



vi Contents

Chapter 3 Instruction Set Summary
3.1 Instruction Set Formats 3-1
3.2 Load and Store Instructions 3-2
3.3 Computational Instructions 3-5
3.4 Jump and Branch Instructions 3-11
3.5 Trap Instructions 3-15
3.6 Special Instructions 3-16
3.7 Coprocessor Instructions 3-17
3.8 System Control Coprocessor (CP0) Instructions 3-18
3.9 Cache Maintenance Instructions 3-19
3.10 CW4010 Instruction Set Extensions 3-20
3.11 CPU Instruction Opcode Bit Encoding 3-36

Chapter 4 CW4010 Exception Processing
4.1 Overview 4-1
4.2 R3000 Exception Compatibility Mode 4-3
4.3 Exception Handling Registers 4-4

4.3.1 Context Register (4) 4-5
4.3.2 Debug Control and Status (DCS) Register (7) 4-6
4.3.3 Bad Virtual Address (BadVAddr) Register (8) 4-8
4.3.4 Count Register (9) 4-8
4.3.5 Compare Register (11) 4-8
4.3.6 Status Register (12) 4-9
4.3.7 Cause Register (13) 4-16
4.3.8 Exception Program Counter Register (14) 4-18
4.3.9 Processor Revision Identifier Register (15) 4-19
4.3.10 Configuration and Cache Control (CCC)

Register (16) 4-20
4.3.11 Load Linked Address (LLAddr) Register (17) 4-23
4.3.12 Breakpoint Program Counter (BPC) Register (18) 4-24
4.3.13 Breakpoint Data Address (BDA) Register (19) 4-24
4.3.14 Breakpoint PC Mask (BPCM) Register (20) 4-25
4.3.15 Breakpoint Data Address Mask (BDAM)

Register (21) 4-25
4.3.16 Rotate Register (23) 4-26
4.3.17 Circular Mask (CMask) Register (24) 4-26
4.3.18 Error Exception Program Counter (Error EPC)



Contents vii

Register (30) 4-27
4.4 Exception Description Details 4-28

4.4.1 Exception Operation 4-28
4.4.2 Precision of Exceptions 4-31
4.4.3 Exception Vector Locations 4-31
4.4.4 Priority of Exceptions 4-32
4.4.5 Cold Reset Exception 4-32
4.4.6 Warm Reset Exception 4-33
4.4.7 Non-Maskable Interrupt (NMI) Exception 4-34
4.4.8 Address Error Exception 4-35
4.4.9 TLB Refill Exception 4-36
4.4.10 TLB Invalid Exception 4-38
4.4.11 TLB Modified Exception 4-39
4.4.12 Bus Error Exception 4-40
4.4.13 Integer Overflow Exception 4-41
4.4.14 Trap Exception 4-41
4.4.15 System Call Exception 4-42
4.4.16 Breakpoint Exception 4-43
4.4.17 Reserved Instruction Exception 4-44
4.4.18 Floating-Point Exception 4-45
4.4.19 Coprocessor Unusable Exception 4-45
4.4.20 Debug Exception 4-46
4.4.21 Interrupt Exception 4-47
4.4.22 External Vectored Interrupt Exception 4-48

Chapter 5 CW4010 Memory Management
5.1 TLB Physical Organization 5-1
5.2 Memory Management System 5-3

5.2.1 Operating Modes 5-3
5.2.2 User Mode Virtual Addressing 5-4
5.2.3 Kernel Mode Virtual Addressing 5-5

5.3 Virtual Memory and the TLB 5-5
5.3.1 TLB Entry Format 5-7
5.3.2 TLB Support Registers 5-9
5.3.3 Virtual Address Translation 5-15
5.3.4 TLB Instructions 5-16



viii Contents

Chapter 6 CW4010 Caches
6.1 Cache Memory Organization 6-1
6.2 Cache States 6-2

6.2.1 Icache and WriteThrough Dcache 6-2
6.2.2 WriteBack Dcache 6-3

6.3 Address and Cache Tag 6-4
6.4 Dcache Scratch Pad RAM Mode 6-5
6.5 External Invalidation 6-6
6.6 Cache Instructions 6-6

6.6.1 Flush (All Cache Invalidation) 6-6
6.6.2 WriteBack 6-7
6.6.3 Cache Maintenance by CCC Register 6-7

Chapter 7 Signals
7.1 Signal Conventions 7-1
7.2 Signal Synchronization 7-2
7.3 CW4010 Modularity 7-2
7.4 CW4010 Shell Interface Signal Definitions 7-3

7.4.1 Reset Signals 7-5
7.4.2 Interrupt Signals 7-5
7.4.3 SCbus Interface Signals 7-6
7.4.4 Cache Invalidation Interface Signals 7-10
7.4.5 Coprocessor Interface Signals 7-11
7.4.6 OCAbus Interface Signals 7-16
7.4.7 Miscellaneous Signals 7-20

Chapter 8 Interface Operation
8.1 Reset and Exception Signals 8-1

8.1.1 Cold Reset (CRESETn) 8-2
8.1.2 Handling Cold Resets 8-3
8.1.3 Warm Reset (WRESETn) 8-3
8.1.4 Non-Maskable Interrupt (NMin) 8-5
8.1.5 Bus Error (SCBERRn) 8-7
8.1.6 Floating-Point Unit (FPERRXn) Exceptions 8-11
8.1.7 External Interrupts (EXTiNTn) 8-14
8.1.8 External Vectored Interrupt (EXViNTn) 8-16



Contents ix

8.1.9 WAITI Instruction and WSTALLp 8-18
8.2 SCbus Interface Behavior 8-19

8.2.1 SCbus Basic Transaction 8-20
8.2.2 SCbus Burst Transaction 8-22
8.2.3 SCbus In-Page Write Transaction 8-27
8.2.4 SCbus Bus Hold 8-29
8.2.5 SCbus Bus Retry 8-30
8.2.6 SCbus Bus Error 8-30
8.2.7 SCbus Bus Sizing 8-31
8.2.8 SCbus Bus Lock 8-34
8.2.9 Big Endian Configuration 8-35

8.3 OCAbus Interface Behavior 8-36
8.3.1 Basic OCAbus Transaction 8-37
8.3.2 OCAbus Transaction Rejected 8-39
8.3.3 OCAbus Access with Stall at EX Stage 8-40
8.3.4 OCAbus Access with Stall at CR Stage 8-41
8.3.5 OCAbus Access with Stall Request 8-42
8.3.6 OCAbus Access with Pipeline Cancel 8-43

8.4 Cache Interface Behavior 8-44
8.5 Coprocessor Interface Behavior 8-46

8.5.1 Coprocessor Functional Instruction 8-48
8.5.2 Data Movement to and from CPU General

Purpose Register Instructions 8-48
8.5.3 Instructions Moving Data from or to Memory 8-49
8.5.4 Branch on Coprocessor Condition Instructions 8-50
8.5.5 Coprocessor Operation (COPz) 8-51
8.5.6 Data Movement to and from CPU Registers 8-52
8.5.7 Data Movement to or from Memories 8-55
8.5.8 Coprocessor Conditions 8-58
8.5.9 Even/Odd Slot and Pipeline Cancel 8-58
8.5.10 BranchLikely in Even Slot is False 8-60
8.5.11 EX Stage Suspension 8-61
8.5.12 Floating-Point Unit Exception 8-63

Chapter 9 Specifications

Appendix A Programmer’s Notes
A.1 Instruction Related A-1



x Contents

A.2 CP0 or TLB Related A-1
A.3 Cache Related A-2
A.4 CW33300 Compatible Debug Extensions A-2

Glossary

Customer Feedback

Figures 1.1 CW4010 Core Interface to External Building Blocks 1-2
2.1 CW4010 Block Diagram 2-3
2.2 CW4010 Instruction Pipeline 2-6
3.1 Instruction Format 3-2
3.2 Byte Specifications for Loads/Stores 3-3
4.1 Context Register 4-5
4.2 DCS Register 4-6
4.3 BadVAddr Register 4-8
4.4 Count Register 4-8
4.5 Compare Register 4-9
4.6 Status Register (R4000 Mode) 4-9
4.7 Status Register (R3000 Mode) 4-12
4.8 Status Register and Exception Recognition 4-16
4.9 Cause Register 4-16
4.10 EPC Register 4-18
4.11 PRId Register 4-19
4.12 CCC Register 4-20
4.13 LLAddr Register 4-24
4.14 BPC Register 4-24
4.15 BDA Register 4-24
4.16 BPCM Register 4-25
4.17 BDAM Register 4-25
4.18 Rotate Register 4-26
4.19 CMask Register 4-27
4.20 Error EPC Register 4-27
4.21 Cold Reset Exception 4-29
4.22 Warm Reset, NMI Exceptions 4-29
4.23 Common Exceptions 4-30
4.24 Debug Exception 4-30



Contents xi

4.25 External Vectored Interrupt Exception 4-30
5.1 TLB Block Diagram 5-2
5.2 CW4010 Virtual Memory Map 5-4
5.3 CW4010 Virtual Address Format 5-6
5.4 Format of CW4010 TLB Entry 5-7
5.5 EntryHi Register 5-9
5.6 EntryLo Register 5-10
5.7 PageMask Register 5-11
5.8 Index Register 5-12
5.9 Random Register 5-13
5.10 Wired Register Location 5-13
5.11 Wired Register 5-14
5.12 CW4010 TLB Address Translation Process 5-15
6.1 Cache State Diagram—Icache and WriteThrough Dcache 6-3
6.2 Cache State Diagram—Dcache WriteBack 6-3
6.3 Address to Cache Tag and Line Number 6-5
6.4 Cache Instruction Format 6-6
6.5 Tag Test Mode Loaded Data Format 6-9
7.1 CW4010 Module 7-2
7.2 CW4010 Interface Signals 7-4
8.1 Cold Reset and Pipeline 8-2
8.2 NMin and Pipeline (NMin is Detected Immediately) 8-5
8.3 NMin and Pipeline (NMin is not Detected Immediately

Due to Stall) 8-6
8.4 Bus Error and Pipeline (Detected Immediately) 8-8
8.5 Bus Error and Pipeline (With Stall Cycles) 8-9
8.6 FPU Exception and Pipeline (Detected Immediately) 8-11
8.7 FPU Exception and Pipeline (With Stall Cycles) 8-12
8.8 FPU Exception and Pipeline (Cancel, then not Serviced) 8-13
8.9 Interrupt And Pipeline (Interrupt Is Detected Immediately) 8-15
8.10 Fastest Accepted Case of External Vectored Interrupt 8-17
8.11 WAITI and Pipeline Stall (WSTALLp) 8-18
8.12 SCbus Basic Transaction 8-21
8.13 SCbus Eight-Word Burst Transaction Timing Chart 8-23
8.14 SCbus Eight-Word Burst Transaction 8-25
8.15 SCbus Eight-Word Burst Transaction Timing Chart 8-26
8.16 SCbus In-Page Write Transaction Timing Chart (four words) 8-2
8.17 SCbus Hold Request and Grant 8-30



xii Contents

8.18 Sampled Bytes of First and Second Transaction SCbus
Data 8-31

8.19 Read Bytes to ISU and LSU with Sizing 8-32
8.20 Write Bytes to the SCbus with Sizing 8-33
8.21 Write Data Bytes from LSU 8-33
8.22 SCbus Locked Transaction 8-35
8.23 Typical OCAbus Transaction 8-38
8.24 OCAbus Transaction Rejected by Address Decoder 8-39
8.25 OCAbus with Stall at EX Stage 8-40
8.26 OCAbus Access with Stall at CR Stage 8-41
8.27 OCAbus Access with Stall Request 8-42
8.28 OCAbus Access with Pipeline Cancel 8-43
8.29 Dcache Invalidation by Snooping 8-45
8.30 Icache Invalidation by Snooping 8-46
8.31 Coprocessor Functional Instruction 8-48
8.32 CPU General Purpose Register Data Movement

Instructions 8-48
8.33 Memory Data Movement Instructions 8-49
8.34 Branch on Coprocessor Condition Instructions 8-50
8.35 COPz Execution 8-51
8.36 Data Movement to/from CPU Registers Without Stall Cycles8-53
8.37 Data Movement to/from CPU Registers With Stall Cycles

at EX Stage 8-54
8.38 Data Movement to/from CPU Registers With Stall Cycles

at CR Stage 8-55
8.39 LWCz Dcache-Hit and Miss 8-57
8.40 SWCz Timing 8-58
8.41 Even/Odd Slot and Pipeline Cancel 8-59
8.42 BranchLikely in Even Slot is False 8-61
8.43 EX Stage Suspension 8-62
8.44 EX Stage Suspension (cancelled) 8-62
8.45 FPU Exception and Pipeline Cancel Timing 8-64

Tables 2.1 CW4010 Instruction Set Summary 2-10
2.2 Instruction Set Extensions 2-13
3.1 Load and Store Instruction Summary 3-4
3.2 Load and Store Instruction Summary

(MIPS-II ISA Extensions) 3-5



Contents xiii

3.3 ALU Immediate Instruction Summary 3-6
3.4 3-Operand, Register-Type Instruction Summary 3-7
3.5 Shift Instruction Summary 3-8
3.6 Multiply/Divide Instruction Summary 3-9
3.7 Computation Instruction Extensions Summary

(CW4010 ISA) 3-10
3.8 Execution Time of Multiply and Divide Instructions 3-11
3.9 Jump Instruction Summary 3-12
3.10 Branch Instruction Summary 3-13
3.11 BranchLikely Instruction Summary (MIPS-II ISA Extensions) 3-14
3.12 Trap Instruction Summary (MIPS-II ISA Extensions) 3-15
3.13 Special Instruction Summary 3-16
3.14 Coprocessor Instruction Summary 3-17
3.15 CP0 Instruction Summary 3-18
3.16 CP0 Instruction Extension Summary 3-19
3.17 Cache Maintenance Instruction Summary 3-19
3.18 CW4010 Opcode Bit Encoding 3-37
3.19 SPECIAL Opcode Bit Encoding 3-37
3.20 REGIMM Opcode rt Bit Encoding 3-38
3.21 CACHEx2 Opcode rt Bit Encoding 3-38
3.22 COPz rs Opcode Bit Encoding 3-38
3.23 COPz rt Opcode Bit Encoding 3-39
3.24 CP0 Opcode Bit Encoding 3-39
4.1 CW4010 Exceptions 4-2
4.2 CP0 Exception Processing Registers 4-4
4.3 Cause Register ExcCode Field 4-17
4.4 Current Processor Mode 4-28
4.5 Exception Vector Base Addresses 4-32
4.6 Exception Vector Offset Addresses 4-32
4.7 Exception Priority Order 4-32
5.1 Caching Algorithm Criteria 5-3
5.2 Cache Algorithm Bit Values 5-8
5.3 TLB Instruction 5-16
6.1 Dcache WriteBack Mode 6-3
6.2 Setting Cache Size 6-5
6.3 CCC Bits Related to Cache Configuration 6-7
6.4 TAG and INV Encoding 6-8
6.5 TAG and INV Encoding 6-8



xiv Contents

8.1 Common Exception Vector 8-10
8.2 SCbus Transaction Types 8-20
8.3 SCTBEn and Valid SCDp 8-36



1-1

Chapter 1
Introduction

This chapter introduces the LSI Logic CoreWare program and describes
its features. It also provides an overview of the CW4010 core. This
chapter contains the following sections:

♦ Section 1.1, “CW4010 Overview,” on page 1-1

♦ Section 1.2, “Features,” on page 1-4

♦ Section 1.3, “CoreWare Program,” on page 1-5

1.1
CW4010
Overview

LSI Logic Corporation has developed the MiniRISC CW4010 Superscalar
Core, the world’s first MIPS-II compatible superscalar core, using LSI
Logic’s CoreWare system-on-a-chip methodology. The CW4010 is a
member of LSI Logic’s MiniRISC family, the next generation of MIPS
RISC products.

You can use the CW4010 as a microprocessor core in products that
require higher performance than that of the CW4001 microprocessor
core. The CW4010 is available as a CoreWare product for use in
customer ASIC designs, and is also used in LSI Logic’s ASSPs
(Application Specific Standard Products).



1-2 Introduction

1.1.1
Core and Shell

As shown in Figure 1.1, the CW4010 is implemented at two levels: the
core and the shell.

Figure 1.1
CW4010 Core
Interface to
External Building
Blocks

The CW4010 superscalar microprocessor core is an encrypted
synthesizable Verilog model . It is process independent and made up of
the following units:

♦ An arithmetic logic unit (ALU)

♦ A system control coprocessor (CP0)

♦ A bus interface unit (BIU)

♦ A load store unit (LSU)

♦ An instruction scheduler unit (ISU)

The following microprocessor building blocks are available with the basic
microprocessor core and are shown as part of the shell. The shell is an
unencrypted Verilog model that contains:

♦ A direct-mapped or two-way set associative instruction cache with
cache sizes selectable up to 16 Kbytes

♦ A direct-mapped or two-way set associative data cache

Reset, Interrupts

SCbus

WriteBack
Buffer

Coprocessor
Interface

Cache
Invalidation

CW4010 Core

Interface

OCA
Interface

CW4010 Shell

ALU

ISU

CP0  MMU

Dcache
 Set-0

Dcache
 Set-1

LSU

BIU

Icache
 Set-0

Icache
 Set-1

Multiplier

Interface
MD96.72



CW4010 Overview 1-3

♦ A memory management unit (MMU) with an up to 64-entry
translation lookaside buffer (TLB)

♦ A standard multiply/divide unit or a high-performance
multiply/accumulate unit

♦ A WriteBack Buffer for writeback cache mode

1.1.2
Interfaces

The CW4010 has four on-chip interfaces:

♦ The coprocessor interface connects the core with up to three
coprocessors (CP1, CP2, and CP3), as well as the internal
coprocessor (CP0).

♦ The cache invalidation interface connects the core with optional
cache coherency logic. The core uses this bus to communicate only
with the on-chip caches.

♦ The SCbus, the bidirectional system bus, allows the CW4010 to
communicate with system elements outside the core.

♦ The OCA (On-Chip Access Bus) allows access to on-chip modules
at the CR stage without going through the SCbus.

1.1.3
Related
Modules

In addition to the core, the MiniRlSC product family includes a variety of
other modules including:

♦ LSI Logic’s MiniSlM™ architectural simulator

♦ Verilog and VHDL models

♦ A system verification environment

♦ A PROM monitor

♦ Third party software support

♦ Core bond-out chip for emulation

♦ Evaluation boards for concurrent software development

♦ LSI Logic’s CoreWare, described in Section 1.3, “CoreWare
Program,” on page 1-5



1-4 Introduction

1.2
Features

The CW4010 core has the following features:

♦ Full MIPS-II instruction set implementation (R4000 32-bit mode
compatible)

♦ Instruction set extensions to support embedded applications

♦ Superscalar execution with up to two instructions issued per clock
cycle

♦ 64-bit on-chip system interface

♦ High-performance coprocessor interface for user definable coprocessors
and high performance hardware floating-point unit (FPU)

♦ 3.3 Volt operation

♦ 80-MHz worst-case commercial maximum clock rate using standard
cell ASIC

♦ 150 Dhrystone MIPS at 80 MHz

♦ 160 native MIPS peak, 110 native MIPS sustained with standard
compiled MIPS code at 80 MHz

♦ Core Power—5 mW/MHz with power management

♦ Configurable modular design to meet customer requirements

♦ Integrated cache controllers with separate instruction and data
caches—sizes selectable from 2 Kbytes to 16 Kbytes each

♦ Optional, modifiable building blocks, such as a Multiplier with or
without Accumulator and a Memory Management Unit (MMU)

♦ Fully testable in embedded ASIC designs

♦ Models available:

– Performance and software development model

– Verilog and VHDL models (referred to in this manual as HDL
models)

– Gate-level, timing-accurate model in various third party
simulation environments

♦ Compatible with the full range of MIPS and third party software
development tools

♦ Compact basic microprocessor core size—3 mm by 3 mm including
BIU, cache controllers, and write buffer



CoreWare Program 1-5

1.3
CoreWare
Program

The CoreWare program offers a new approach to system design.
Through the CoreWare program, LSI Logic gives you the ability to
combine the MiniRISC CW4010 Superscalar Microprocessor Core with
other cores (such as microprocessors, floating-point processors, and
peripheral building blocks) on a single chip, and to create products
uniquely suited to your applications. This approach—combining high-
performance building blocks, sophisticated design software, and expert
support—gives you unparalleled design flexibility and allows you to
create high-quality, leading-edge products for a wide range of markets.

CoreWare is LSI Logic’s proprietary approach to creating custom, single-
chip systems with more complex high-level logic blocks than those
provided by standard gate arrays. It provides a new paradigm that allows
you to use applications-optimized engineering.

CoreWare elements allow you to produce silicon that meets your specific
application requirements. Complex systems-on-a-chip can be fabricated
with unprecedented time-to-market and low cost compared with the gate
array approach or full custom design.

The CoreWare program provides three major design components:

♦ CoreWare building blocks

♦ A design environment

♦ Expert technical support

1.3.1
CoreWare
Building Blocks

CoreWare building blocks include elements based on LSI Logic’s high-
performance standard products as well as other, industry-standard
products. These blocks are fully supported library elements for use in the
LSI Logic hardware development environment.

The CoreWare library contains a wide range of complex cores based on
accepted and emerging industry standards for networking, system logic, dig-
ital video, and other applications. These cores can be combined with your
own unique logic to create a wide variety of single-chip applications such as
network routers, RAID disk controllers, and PC I/O docking stations. Note
that the building blocks include gate-level simulation models with timing infor-
mation, so you can accurately simulate device performance and trade off
various implementation options. In addition to gate-level simulation models,
some building blocks also include behavioral simulation models.



1-6 Introduction

1.3.2
Design
Environment

The CoreWare building blocks, which include embedded MIPS and
SPARC processors, bus interface controllers, and a family of floating-
point processors, are fully supported library elements for use in the LSI
Logic hardware development environment.

1.3.3
Expert Support

LSI Logic’s in-house experts support the CoreWare program with high-
level design and market experience in a wide variety of application areas.
These experts provide design support from system architecture definition
through chip layout and test vector generation. They help determine how
many functions to integrate on a single chip, trading off functionality
versus cost to find the most cost-effective solution. When the trade-offs
are complete, working with LSI Logic’s applications engineers, you can
implement and test the design.



2-1

Chapter 2
Architectural Overview

This chapter discusses the CPU pipeline and microarchitecture, the
instruction set architecture, the System Coprocessor (Coprocessor-0),
Memory Management, Exception Processing, and Cache Maintenance.
This chapter contains the following sections:

♦ Section 2.1, “Architectural Overview,” on page 2-1

♦ Section 2.2, “Cache and External Interface,” on page 2-5

♦ Section 2.3, “Clocking and Power Management,” on page 2-6

♦ Section 2.4, “Pipeline Architecture (ISA),” on page 2-6

♦ Section 2.5, “Instruction Set Summary,” on page 2-9

♦ Section 2.6, “Configurability and Options,” on page 2-13

♦ Section 2.7, “Supporting Models and Tools,” on page 2-14

2.1
Architectural
Overview

The CW4010 is fully compatible with the R3000 and R4000 32-bit
instruction sets (MIPS-I and MIPS-II), but uses an updated hardware
architecture to provide higher absolute performance than any other
available MIPS core. The CW4010 also provides substantially better
instructions-per-clock performance than other MIPS processors. At the
same time, the hardware design remains compact in comparison with
other superscalar architectures.

The CW4010 implements a 32-bit virtual address space. Individual
memory locations are byte-addressed. Up to 2 Gbytes of virtual address
space is available to each user-level process.

The CW4010 implements a 32-bit physical address space. Individual
memory locations are byte-addressed, and, combined with the virtual
address space, provide a total of 4 Gbytes of addressable physical
memory.



2-2 Architectural Overview

The CW4010 can issue and complete two instructions per cycle using a
combination of five independent execution units:

♦ Arithmetic Logic Unit (ALU)

♦ Load/Store/Add Unit (LSU)

LSU executes load and store instructions. It also executes add and
load immediate instructions, allowing an add instruction to be issued
with another add or logical instruction.

♦ Branch Unit

♦ Multiply/Shift Unit

♦ Coprocessor Interface

Coprocessor Interface can feed an instruction to an LSI or customer-
defined CoProcessor Unit

All instructions, except multiply and divide, can be completed in a single
cycle.

Load instructions have a single hardware delay slot for loads that hit in
the cache, but the hardware activates an interlock on register conflicts so
that no NOP (no operation) is required in the delay slot. On a load miss,
the CW4010 extends the hardware conflict detection so that if the load
data is not required by subsequent instructions in the pipeline, the CPU
is not stalled. The operation is called load scheduling.

The CW4010 has an instruction pre-fetch queue and branch prediction
logic to boost branch performance. This means that correctly predicted
branches are completed with no penalty and incorrectly predicted
branches normally have a penalty of just one cycle. The CW4010
accomplishes branch prediction with a simple hardware algorithm that
more than 90% accurate for most application code.

Figure 2.1 shows a simplified block diagram of the basic CPU core.



Architectural Overview 2-3

Figure 2.1
CW4010 Block Diagram

Three units handle instructions:

♦ The IFetch Queue optimizes the supply of instructions to the
microprocessor, even across breaks in the sequential flow of
execution (jumps and branches).

♦ The IDecode Unit decodes the instructions from the IFetch Queue,
determines the actions required for the instruction execution, and
manages the Register File, LSU, ALU, and Multiply/Divide Units
accordingly.

♦ The Branch Unit is used when branch and jump instructions are
recognized within the instruction stream.

The Register File contains the core’s general purpose registers. (There
are 32 general purpose registers located in CP0. Of these registers 31
are read/write registers and one is the zero register.) The Register File

Coprocessor-0

IFetch Queue Icache

Coprocessor
Interface

Register File

Load/Store/Add Unit (LSU)

Arithmetic Multiply/Shift

Dcache

Write

Bus Interface Unit (BIU)

Address Data

IDecode Unit Branch Unit

Control

SCbus Interface

Internal Instruction Execution Bus x 2

32 64

64

Logic Unit Interface

Cache
Invalidation

Interface

Multiply/Divide
Unit

OCAbus
Interface

64

MD96.73

Instruction Schedule
Unit (ISU)

(ALU)

Buffer

Unit



2-4 Architectural Overview

supplies source operands to the execution units and handles the storage
of results to target registers.

Three units perform logical, arithmetic, and data-movement operations:

♦ The Load/Store/Add Unit (LSU) manages loads and stores of data
values. Data values are loaded from either the Dcache or from the
SCbus Interface in the event of a Dcache miss. Stores pass to the
Dcache and the SCbus Interface through the Write Buffer. The LSU
is also able to perform a restricted set of arithmetic operations,
including the addition of an immediate offset as required in address
calculations.

♦ The Arithmetic Logic Unit (ALU) calculates the result of an arithmetic
or logical operation.

♦ The Multiply/Shift Interface Unit performs multiply and divide
operations. You can select a number of modular options for this unit,
including an option with full multiply/accumulate capability.

The CW4010 core has four interfaces:

♦ The Bus Interface Unit (BIU) manages the flow of instructions and
data between the core and the system by means of the SCbus
Interface. This interface provides the main channel for
communication between the CW4010 core and the other functional
blocks in the system. Some blocks may be implemented as
CoreWare library functions integrated on the same die as the
Microprocessor Core; others may be implemented in separate
devices connected by means of I/O pins at the board level.

♦ The Coprocessor Interface allows tightly coupled special-purpose
processing units to be attached to the core, enhancing the
microprocessor’s general-purpose computational power. This
approach allows high-performance application-specific hardware to
be made directly accessible to the programmer at the instruction set
level. For example, a coprocessor might offer accelerated bit-mapped
graphics operations or real-time video decompression.

♦ The Cache Invalidation Interface allows supporting hardware outside
the Microprocessor Core to maintain the coherency of on-board
cache contents for systems that include multiple main-bus masters.

♦ The OCAbus Interface allows on-chip modules to be accessed at the
CR (Cache Read) stage of the pipeline without going through an



Cache and External Interface 2-5

SCbus transaction. This improves performance since it reduces
traffic on the SCbus and therefore reduces latency.

2.2
Cache and
External
Interface

Instruction cache (Icache) control is performed by the ISU (Instruction
Scheduling Unit). Data cache (Dcache) control is performed by the LSU
(Load/Store Unit).

A Write Buffer is also implemented within the LSU, so that CPU
execution need not stall if a number of stores are performed in quick
succession. The Write Buffer accepts the store addresses and data
values, and passes them on to main memory as rapidly as it can accept
them. During this time, the CPU proceeds with execution.

The BIU provides the interface to on-chip peripherals. One or more
peripherals will typically provide a path to off-chip resources, including
main memory.

The on-chip system interface presented by the BIU is the SCbus. This
bus has a 64-bit data bus and a 32-bit address bus. Address and data
are not multiplexed.

Refills for both the Icache and Dcache exploit the 64-bit width of the data
bus to achieve the highest possible performance.

In its standard form, the BIU does not include any support for dynamic
bus sizing. That is, it provides no mechanism to subdivide transactions
between the CPU core and the on-chip peripherals, which can directly
support the requested data transfer width. However, such functionality
can be accommodated through simple supporting logic interposed
between the BIU and the on-chip peripherals.

Again, the standard version BIU does not contain support for WriteBack
data cache management. It implements only a WriteThrough policy.
However, an additional supporting unit, the WriteBack Buffer, may be
attached to provide WriteBack control in those applications which
require it.

Excluding features such as dynamic bus sizing and WriteBack cache
management from the standard BIU keeps it small and simple. Designs
that do not need these features are not compelled to implement them.



2-6 Architectural Overview

2.3
Clocking and
Power
Management

The CPU core is clocked by a single phase, 1x clock with a 40–60% duty
cycle requirement. Applications that require a slower system clock
interface may use a phase-locked loop (PLL) available as a cell in
LSI Logic’s ASIC libraries and logic to implement a clock multiplier circuit
for the CPU.

Power management is provided by the CPU by WAITI (Wait for Interrupt)
instruction and by gating the clock separately for each functional unit.
Units are clocked only when needed. In addition, the core and cache
RAMs are completely static, so that the clock may be slowed or turned
off by the user logic to save power.

2.4
Pipeline
Architecture
(ISA)

This section describes the CPU pipelines, instruction fetching and
scheduling. It also contains an instruction set summary.

As shown in Figure 2.2, the CW4010 core has two identical concurrent
six-stage pipelines that provide the core with its superscalar capabilities.
One pipeline is known as the even pipeline or even slot, and the other
as the odd pipeline or odd slot.

Figure 2.2
CW4010 Instruction
Pipeline

The first three pipeline stages are used during instruction fetch and the
last three stages during instruction execution. Once a stage has
accepted an instruction from the previous stage it must hold the

EX CRRDQIF

Instruction Fetch Instruction Execution

WB

EX CRRDQIF WB

Even Slot,

Odd Slot,

Pipeline 0

Pipeline 1

1. Branch instruction encountered.
2. Q state bypassed. MD96.74



Pipeline Architecture (ISA) 2-7

instruction for re-execution in case the pipeline stalls. The function of
each pipeline stage is summarized below.

1. IF (Instruction Fetch)—the CW4010 fetches the instruction during the
first stage.

2. Q (Queuing)—instructions may enter this conditional stage if they
deal with branches or register conflicts. An instruction that does not
cause a branch or register conflict is fed directly to the RD stage.

3. RD (Read)—during this stage, any required operands are read from
the Register File while the instruction is decoded.

4. EX (Execute)—all instructions are executed in this stage. Conditional
branches are resolved in this cycle. The address calculation for load
and store instructions is performed in this stage.

5. CR (Cache Read)—this stage is used to read the cache for load and
store instructions. Data is returned to the register bypass logic at the
end of this stage.

6. WB (WriteBack)—results are written into the Register File during this
stage.

Sections 2.4.1, 2.4.2, and 2.4.3 provide more detailed information about
pipeline transactions.

2.4.1
Instruction
Fetch and
Scheduling: IF,
Q, and RD
Stages

The IF, Q, and RD stages fetch two instructions per cycle and issue them
to the EX (execute) stage. The CW4010 fetches instructions as
doubleword aligned pairs (slot 0 and slot 1). There is a two-instruction
window in the RD stage during the instruction decode operation. When
only slot 0 can be scheduled because slot 1 has a dependency, the
window slides down one instruction. In other words, although instructions
are always fetched as doubleword pairs, they are scheduled on single-
word boundaries.

The primary purpose of the Q stage is the execution of branch
instructions with minimal penalty. The CW4010 generally fills the Q stage
whenever the RD stage has to stall. This occurs fairly frequently on
typical compiled code, because of register conflicts, cache misses, and
resource conflicts. Filling the Q stage in these cases allows the IF stage
to work ahead one cycle.

If a branch instruction is encountered when the Q stage is already active,
it is predicted that the branch will be taken. The IF stage does not bring



2-8 Architectural Overview

in any more instructions following from the current address, but instead
begins fetching those instructions starting at the branch target address.
At this point, the Q stage still holds the pair of instructions immediately
following the pair that contained the branch.

The branch target enters the RD stage, bypassing the Q stage, as shown
in Figure 2.2 on page 2-6. The branch prediction logic in the ISU
(Instruction Scheduler Unit) resolves the branch condition when the
branch instruction enters the EX stage. If the branch prediction logic
predicts the branch correctly, the instructions in the Q stage are
cancelled. If it predicts the branch incorrectly, the ISU cancels the branch
target. In this case, it takes non-branch sequential instructions from the
Q stage and restarts the IF stage at the non-branch sequential stream.
The process is different when the branch instruction is in the odd
instruction slot.

If the branch prediction logic correctly predicts a branch in the even
instruction slot when the Q stage is full, there is generally no cycle
penalty associated with it. If the branch prediction logic predicts the
branch incorrectly, the branch has a one cycle penalty.

If the branch instruction was in the odd instruction slot, the branch delay
slot instruction always executes by itself and has no chance to fill the
other execution slot. There may be some advantage to a software
assembler that can attempt to place branches in even word addresses.

The branch prediction logic must be able to look at two instructions at
the same time, from either the Q latches or the RD latches, depending
on whether the Q stage is active. When it looks at the two instructions,
if one is a branch, it passes the offset in that instruction into a dedicated
adder to calculate the branch address for the IF stage of the instruction
fetch. Because this is done speculatively, it also saves the non-branch
value of the PC (Program Counter) for the possible restart of the
sequential instructions from the Q stage.

After the ISU has allowed an instruction pair to pass into the RD stage,
the instruction is decoded, and at the same time the register source
addresses are passed to the register file so that the operands can be
read. Register dependencies and resource dependencies are checked in
this stage. If the instruction in slot 0 has no dependency on a register or
resource currently tied up by a previous instruction, it is passed
immediately into the EX stage where it forks to the appropriate execution



Instruction Set Summary 2-9

unit. The instruction in slot 1 may also be dependent on a resource or
register in slot 0, so it must be checked for dependencies against both
slot 0 and any previous unretired instruction. If either instruction must be
held in the RD stage and the Q stage is not full, the IF stage is allowed
to continue to fill the Q stage. If the Q stage is full, then the Q and IF
stages are frozen (stalled).

In the RD stage, register bypass opportunities are considered and the
bypass multiplexer control signals are set for potential bypass cases from
a previous instruction still in the pipeline.

2.4.2
Execute Stage

During instruction execution, a pair of instructions (or a single instruction
when there was a previous block) are individually passed to independent
execution units. Each execution unit receives its operands from the
register bypass logic and an instruction from the instruction scheduler.
Each instruction spends one RUN cycle in an execution unit. For ALU
and other single cycle instructions, the result is then fed to the
register/bypass unit for the CR stage.

2.4.3
CR and WB
Stages

For load and store instructions, the cache lookup occurs during the CR
stage. For load instructions, data is returned to the register/bypass unit
during the CR stage, including loads to coprocessors.

For all other instructions, CR and WB are holding stages used to hold
the result of the execute stage for writeback to the register file.

2.5
Instruction Set
Summary

Table 2.1 summarizes the instruction set for the CW4010. The CW4010
supports both MIPS-I and MIPS-II instructions, and also implements
some additional CW4010-specific instructions. If the design includes the
optional MMU, the CW4010 supports the TLB instructions. All
instructions are 32 bits long. Table 2.1 includes only the MIPS-II,
CW4010-specific, and TLB instructions. With the exception of RFE,
MIPS-I instructions are not shown.



2-10 Architectural Overview

Table 2.1
CW4010 Instruction Set
Summary

Op Description Op Description

Arithmetic Instructions: ALU Immediate

ADDI Add Immediate ANDI AND Immediate

ADDIU Add Immediate Unsigned ORI OR Immediate

SLTI Set on Less Than Immediate XORI Exclusive OR Immediate

SLTIU Set on Less Than Immediate
Unsigned

LUI Load Upper Immediate

Arithmetic Instructions: Three-Operand, Register-Type

ADD Add SLTU Set on Less Than Unsigned

ADDU Add Unsigned AND AND

SUB Subtract OR OR

SUBU Subtract Unsigned XOR Exclusive OR

SLT Set on Less Than NOR NOR

Branch Likely Instructions

BEQL1 Branch on Equal Likely BGEZL1 Branch on Greater than or Equal to
Zero Likely

BNEL1 Branch on Not Equal Likely BLTZALL1 Branch on Less Than Zero And Link
Likely

BLEZL1 Branch on Less than or
Equal to Zero Likely

BGEZALL1 Branch on Greater than or Equal to
Zero and Link Likely

BGTZL1 Branch on Greater Than
Zero Likely

BCzTL1 Branch on Coprocessor z True
Likely

BLTZL1 Branch on Less Than
Zero Likely

BCzFL1 Branch on Coprocessor z False
Likely

Coprocessor Instructions

LWCz Load Word to Coprocessor z CFCz Move Control from Coprocessor z

SWCz Store Word from
Coprocessor z

COPz Coprocessor Operation

MTCz Move to Coprocessor z BCzT Branch on Coprocessor z True

MFCz Move From Coprocessor z BCzF Branch on Coprocessor z False

CTCz Move Control to
Coprocessor z

(Sheet 1 of 3)



Instruction Set Summary 2-11

Jump and Branch Instructions

J Jump BLEZ Branch on Less than or Equal to
Zero

JAL Jump And Link BGTZ Branch on Greater than Zero

JR Jump Register BGEZ Branch on Greater than or Equal to
Zero

JALR Jump And Link Register BLTZAL Branch on Less than Zero and Link

BEQ Branch on Equal BGEZAL Branch on Greater than or Equal to
Zero and Link

BNE Branch on Note Equal

Load/Store Instructions

LB Load Byte SH Store Halfword

LBU Load Byte Unsigned SW Store Word

LH Load Halfword SWL Store Word Left

LHU Load Halfword Unsigned SWR Store Word Right

LW Load Word LL1 Load Linked

LWL Load Word Left SC1 Store Conditional

LWR Load Word Right SYNC1 Sync

SB Store Byte

Multiply/Divide Instructions

MULT Multiply MTHI Move To HI

MULTU Multiply Unsigned MFLO Move From LO

DIV Divide MTLO Move To LO

DIVU Divide Unsigned MIN Select minimum value

MFHI Move From HI MAX Select maximum value

Table 2.1 (Cont.)
CW4010 Instruction Set
Summary

Op Description Op Description

(Sheet 2 of 3)



2-12 Architectural Overview

In addition to the standard MIPS-II instruction set, the CW4010
implements certain instruction set extensions, shown in Table 2.2, that
provide greater application code performance for typical embedded
applications. Instruction set extensions are included only if they
significantly improve performance, have no impact on clock cycle rate,
and have minimal impact on the size and complexity of the hardware.

Other Computational Instructions

ADDCIU2 Add Circular Immediate SELSR2 Select and Shift Right

FFS2 Find First Set SELSL2 Select and Shift Left

FFC2 Find First Clear MADD2 Multiply/Add

FLUSHD2, 3 Flush Data Cache MADDU2 Multiply/Add Unsigned

FLUSHI2, 3 Flush Instruction Cache MSUB2 Multiply/Subtract

FLUSHID2, 3 Flush Instruction and Data
Cache

MSUBU2 Multiply/Subtract Unsigned

Special Instructions

SYSCALL System Call BREAK Breakpoint

System Control Coprocessor (CP0) Instructions

MTC0 Move To CP0 TLBWI4 Write Indexed TLB Entry

MFC0 Move From CP0 TLBWR4 Write Random TLB Entry

RFE Restore From Exception
(R3000 mode only)

TLBP4 Probe TLB for Matching Entry

ERET Exception Return (R4000
mode only)

WAITI2 Wait for Interrupt

TLBR4 Read Indexed TLB Entry

1. MIPS II instruction
2. CW4010-specific instruction
3. Do not confuse these instructions with the FLUSH instruction in R6000 processors
4. Valid only with implemented MMU (Memory Management Unit) building block

Table 2.1 (Cont.)
CW4010 Instruction Set
Summary

Op Description Op Description

(Sheet 3 of 3)



Configurability and Options 2-13

2.6
Configurability
and Options

The CW4010 is implemented using Verilog HDL (Hardware Description
Language) as the design source, and the LSI Logic Standard Cell Library
and layout tools for physical design. You can easily modify and configure
the CW4010 core to meet specific design requirements. The options
available in the basic core are shown in the following sections.

Note: VHDL models are also available.

Table 2.2
Instruction Set
Extensions

Extension Format and Description

Find First Set,
Find First Clear

ffs, ffc
These instructions, respectively, find the first set bit and the first clear bit in
the source register, and return the bit number to the destination register.
They are useful for many applications such as interrupt handlers, floating
point emulation, and graphics.

Select and Rotate Left,
Select and Rotate
Right

selsl, selsr
These instructions select 32 bits from the 64-bit source register pair and
rotate the selected data left or right by the number of bits specified in the
new CP0 Rotate register. They are useful for data alignment operation in
graphics and in bit-field selection routines for data transmission and com-
pression applications.

Add Circular
Immediate

addciu
This instruction does an immediate add, modified according to the value in
the new CP0 CMask register. It is useful in addressing circular buffers. This
instruction is important in DSP (Digital Signal Processing) and other applica-
tions that use circular buffers.

Multiply/ADD,
Multiply/SUB
Instructions

madd, msub
These instructions are useful in many signal processing and graphics trans-
form algorithms. Only implemented with the high-performance
multiply/accumulate unit, these instructions do a 32 x 32 multiply and then
either add or subtract the result to the 64-bit HI/LO register pair.

Wait for Interrupt waiti
This instruction halts the CPU in a power saving mode until one of the hard-
ware interrupt lines becomes active. Upon interrupt, normal execution is
resumed starting at the interrupt vector address.

Minimum rd, rs, rt. min rd, rs, rt
The source operands rs and rt are compared as two’s complement values.
The smaller value is stored in the rd register.

Maximum rd, rs, rt. max rd, rst, rt
The source operands rs and rt are compared as two’s complement values.
The larger value is stored in the rd register.



2-14 Architectural Overview

2.6.1
Cache Sizes

The instruction cache sizes available are 0 Kbytes to 16 Kbytes, direct
mapped or two-way set associative. The data cache sizes available are
0 Kbytes to 16 Kbytes, direct mapped or two-way set associative.

2.6.2
Standard vs
High-
Performance
Multiply
Accumulate
Unit

Each project may choose either a standard multiply unit that provides the
base R3000 and R4000 multiply instructions (with similar performance),
or a high-performance unit that also implements the madd and msub
instructions. In the standard unit, multiples are executed by retiring two
bits per clock cycle, with early termination that depends on the size of
the multiplican (8 x 32 bit multiply = 4 cycles, 16 x 32 = 8 cycles, 32 x
32 = 16 cycles).

The high-performance unit is intended for applications with substantial
multiply/accumulate performance needs. It includes a 32 x 32 pipelined
array multiplier and a 64-bit accumulator that can retire a multiply or
multiply/accumulate instruction every two clock cycles with a latency of
three clock cycles per result. The highest multiply/accumulate unit can
retire a multiply/accumulate instruction every single clock cycle, with a
latency of two clock cycles per result.

2.6.3
64-bit vs 32-bit
Memory
Interface

For cost-sensitive designs or applications with low memory bandwidth,
the BIU can be modified to present a 32-bit data bus instead of 64-bit.
The CW4010 BIU supports sizing for a 32-bit interface.

2.6.4
Memory
Management
Unit

The CW4010 is designed to support the 32-bit addressing mode of the
R4000 MMU. The TLB that is available in the base processor design
contains up to 64 single-page entries. Each page can be individually
specified to be 4 Kbytes or 16 Mbytes. For designs with no TLB
requirements, the TLB can be removed to save silicon.

2.7
Supporting
Models and
Tools

A software model, MiniSIM, is available for software development and
performance modeling. The model is a stand-alone C program. It
provides a software level model and the LSI Logic PMON and C runtime
library that is supplied with LSI Logic’s hardware evaluation boards. You
can run R3000 or R4000 compiled code on the model, using the PMON
debugging environment. You can obtain performance data for benchmarks
and code tuning. Currently, MiniSIM is available for Sun SPARCstation.
Contact LSI Logic for versions supporting other platforms.



Supporting Models and Tools 2-15

For use later in the development cycle, but before production of silicon,
LSI Logic provides a behavioral Verilog model that is pin compatible and
cycle accurate with the real design without the timing. You can use the
model for behavioral modeling of your system design. A VHDL version of
the model is also available.

The gate level model is available in a variety of simulation environments
for timing accurate simulations. For faster synthesis of logic surrounding
the CPU core, LSI Logic provides a “synthesis shell.” This includes all
drive capability, input loading, and timing information. It excludes the
considerable complexity of the core internals, since these are of no
relevance to synthesis tools.

As the design nears completion, timing analysis may be performed using
a “timing shell.” This includes the same set of information as the
synthesis shell, provided in a format directly usable with supported static
Timing Analysis tools. Again, the core internals are of no relevance to
this process, and would only reduce its efficiency.

Structural core models are provided for final versions of the design in
various supported simulation tools. Contact LSI Logic for availability of
the version supporting your preferred simulator.

You can use the full range of MIPS and third party software development
tools for the R3000 and R4000 on the CW4010 product. The CPU is
compatible with both MIPS-I and MIPS-II compilers and assemblers.



2-16 Architectural Overview



3-1

Chapter 3
Instruction Set
Summary

This chapter presents an overview of the MIPS R-series instructions and
the instruction set extensions supported in the CW4010. This chapter
contains the following sections:

♦ Section 3.1, “Instruction Set Formats,” on page 3-1

♦ Section 3.2, “Load and Store Instructions,” on page 3-2

♦ Section 3.3, “Computational Instructions,” on page 3-5

♦ Section 3.4, “Jump and Branch Instructions,” on page 3-11

♦ Section 3.5, “Trap Instructions,” page 3-15

♦ Section 3.6, “Special Instructions,” on page 3-16

♦ Section 3.7, “Coprocessor Instructions,” on page 3-17

♦ Section 3.8, “System Control Coprocessor (CP0) Instructions,” on
page 3-18

♦ Section 3.9, “Cache Maintenance Instructions,” on page 3-19

♦ Section 3.10, “CW4010 Instruction Set Extensions,” on page 3-20

♦ Section 3.11, “CPU Instruction Opcode Bit Encoding,” on page 3-36

3.1
Instruction Set
Formats

Every R-Series instruction consists of a single word (32 bits) aligned on
a word boundary. As shown in Figure 3.1, there are three instruction
formats: I-type (immediate), J-type (jump), and R-type (register). The
restricted format approach simplifies instruction decoding. The compiler
and assembler can synthesize more complicated (and less frequently
used) operations and addressing modes.



3-2 Instruction Set Summary

Figure 3.1
Instruction Format

3.2
Load and Store
Instructions

Load and store instructions are all I-type instructions and move data
between memory and general purpose registers. The only addressing
mode directly supported in the base R-Series architecture is base
register plus 16-bit signed immediate offset .

The MIPS-II extensions add the Load-Linked and Store-Conditional
instructions, which support multiple processors, and the SYNC
instruction, which synchronizes loads and stores. The CW4010 supports
these instructions.

The load/store instruction operation code (opcode) determines the
access type, which in turn indicates the size of the data item to be loaded
or stored. Regardless of access type or byte-numbering order (big-
endian or little-endian ), the address specifies the byte that has the
smallest byte address of all the bytes in the addressed field. For a big-
endian machine, the smallest byte is the leftmost byte; for a little-endian
machine, it is the rightmost byte.

The bytes used within the addressed word can be determined directly
from the access type and the two low-order bits of the address, as shown

0

op

I-Type (Immediate)

immediateop rs rt

J-Type (Jump)

31 26 25 21 20 16 15

031 26 25

target

R-Type (Register)

031 26 25 21 20 16 15 11 10 6 5

op rs rt rd shamt funct

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination register)

immediate 16-bit immediate, branch displacement, or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
shamt 5-bit shift amount
funct 6-bit function field MD96.75



Load and Store Instructions 3-3

in Figure 3.2. Note that certain combinations of access type and
low-order address bits can never occur; only the combinations shown in
Figure 3.2 are allowed.

Figure 3.2
Byte Specifications for
Loads/Stores

1 1 1

1 1 0

Data Bus

63 0 63 0

MSB LSBLSB MSB

Byte Numbers Byte Numbers
Low-Order

Address Bits

A2 A1 A0

Access
Type

Doubleword

Word

Tribyte

Halfword

Byte

Bytes Accessed Bytes Accessed

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

0 0 0

0 1 0

1 0 0

1 1 0

0 0 0

0 0 1

1 0 0

1 0 1

0 0 0

0 0 0

Little-EndianBig-Endian

7 6 5 4 3 2 1 0

MD96.76

1 0 0

76543210



3-4 Instruction Set Summary

Table 3.1 and Table 3.2 describe the load and store instructions
supported by the CW4010. Instruction format is shown in courier, for
example, LB rt, offset(base) .

Table 3.1
Load and Store
Instruction Summary

Instruction Format and Description

Load Byte LB rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Sign-extend the contents of addressed byte and load into rt .

Load Byte
Unsigned

LBU rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Zero-extend the contents of addressed byte and load into rt .

Load Halfword LH rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Sign-extend contents of addressed halfword and load into rt .

Load Halfword
Unsigned

LHU rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Zero-extend contents of addressed halfword and load into rt .

Load Word LW rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address, and load the addressed word into rt .

Load Word
Left

LWL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register rt .

Load Word
Right

LWR rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register rt .

Store Byte SB rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store least-significant byte of register rt at addressed location.

Store Halfword SH rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store least-significant halfword of register rt at addressed location.

Store Word SW rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store contents of register rt at addressed location.

Store Word
Left

SWL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form address.
Shift contents of register rt left so that the leftmost byte of the word is in the position of
the addressed byte. Store word containing shifted bytes into word at addressed byte.



Computational Instructions 3-5

3.3
Computational
Instructions

Computational instructions perform arithmetic, logical, and shift
operations on values in registers. Computational instructions occur in
both R-type (both operands are registers) and I-type (one operand is a
16-bit immediate) formats. There are five categories of computational
instructions:

♦ Table 3.3 summarizes the ALU Immediate instructions

♦ Table 3.4 summarizes the 3-Operand, Register-Type instructions

♦ Table 3.5 summarizes the Shift instructions

♦ Table 3.6 summarizes the Multiply/Divide instructions

♦ Table 3.7 summarizes the Computational CW4010 Instruction
Extensions (CW4010 ISA)

Store Word
Right

SWR rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift contents of register rt right so that the rightmost byte of the word is
in the position of the addressed byte. Store word containing shifted bytes into word
at addressed byte.

Table 3.1
Load and Store
Instruction Summary

Instruction Format and Description

Table 3.2
Load and Store
Instruction Summary
(MIPS-II ISA
Extensions)

Instruction Format and Description

Load Linked LL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address, and load the addressed word into register rt .

Store Conditional SC rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Conditionally store register rt at address, based on whether the load-link
has been “broken.”

Sync SYNC
Complete all outstanding load and store instructions before allowing any new load
or store instruction to start.



3-6 Instruction Set Summary

Table 3.3
ALU Immediate
Instruction Summary

Instruction Format and Description

Add Immediate ADDI rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt . Trap on two’s complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt . Do not trap on overflow.

Set on Less Than
Immediate

SLTI rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as signed 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt .

Set on Less Than
Immediate Unsigned

SLTIU rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt .

AND Immediate ANDI rt, rs, immediate
Zero-extend 16-bit immediate , AND with contents of register rs , and place result
in register rt .

OR Immediate ORI rt, rs, immediate
Zero-extend 16-bit immediate , OR with contents of register rs , and place result
in register rt .

Exclusive OR
Immediate

XORI rt, rs, immediate
Zero-extend 16-bit immediate , exclusive OR with contents of register rs , and
place result in register rt .

Load Upper
Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least-significant 16 bits of word to zeros.
Store result in register rt .



Computational Instructions 3-7

Table 3.4
3-Operand, Register-
Type Instruction
Summary

Instruction Format and Description

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd . Trap on
two’s complement overflow.

Add Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd . Do not
trap on overflow.

Subtract SUB rd, rs, rt
Subtract contents of register rt from rs and place 32-bit result in register rd . Trap
on two’s complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of register rt from rs and place 32-bit result in register rd . Do
not trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed, 32-bit integers). If
register rs is less than rt , rd = 1; otherwise, rd = 0.

Set on Less Than
Unsigned

SLTU rd, rs, rt
Compare contents of register rt to register rs (as unsigned, 32-bit integers). If
register rs is less than rt , rd = 1; otherwise, rd = 0.

AND AND rd, rs, rt
Bitwise AND contents of registers rs and rt and place result in register rd .

OR OR rd, rs, rt
Bitwise OR contents of registers rs and rt and place result in register rd .

Exclusive OR XOR rd, rs, rt
Bitwise exclusive OR contents of registers rs and rt and place result in register rd .

NOR NOR rd, rs, rt
Bitwise NOR contents of registers rs and rt and place result in register rd .



3-8 Instruction Set Summary

Table 3.5
Shift Instruction
Summary

Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeros into low-order
bits. Place 32-bit result in register rd .

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeros into high-order
bits. Place 32-bit result in register rd .

Shift Right Arithmetic SRA, rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high-order
bits. Place 32-bit result in register rd .

Shift Left Logical
Variable

SLLV rd, rt, rs
Shift contents of register rt left. Low-order 5 bits of register rs specify the
number of bits to shift. Insert zeros into low-order bits of rt and place 32-bit
result in register rd .

Shift Right Logical
Variable

SRLV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify the
number of bits to shift. Insert zeros into high-order bits of rt and place 32-bit
result in register rd .

Shift Right Arithmetic
Variable

SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify the
number of bits to shift. Sign-extend the high-order bits of rt and place 32-bit
result in register rd .



Computational Instructions 3-9

Table 3.6
Multiply/Divide
Instruction Summary

Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as two’s complement values. Place 64-bit
results in special registers HI and LO.

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit results
in special registers HI and LO.

Divide DIV rs, rt
Divide contents of register rs by the contents of rt as two’s complement values.
Place 32-bit quotient in special register LO and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt
Divide contents of register rs by the contents of rt as unsigned values. Place
32-bit quotient in special register LO and 32-bit remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd .

Move From LO MFLO rd
Move contents of register rs to special register LO.

Move To HI MTHI rs
Move contents of register rs to special register HI.

Move To LO MTLO rs
Move contents of register rd to special register LO.

Minimum MIN rd, rs, rt
Compare the contents of registers rs and rt as two’s complement values. The
smaller value is stored in register rd .

Maximum Max rd, rs, rt
Compare the contents of registers rs and rt as two’s complement values. The
larger value is stored in register rd .



3-10 Instruction Set Summary

Table 3.7
Computation Instruction
Extensions Summary
(CW4010 ISA)

Instruction Format and Description

Add Circular
Immediate

ADDCIU rt, rs, immediate
The 16-bit immediate is sign-extended and added to the contents of general
register rs , with the result masked by the value in CP0 register CMASK according
to the formula: rt = (rs 31...cmask ||(rs+signextended_imed) cmask-1...0 ) .

Find First Set Bit FFS rd, rs
Starting at the most significant bit in register rs , find the first bit that is set to a one,
and return the bit number in register rd . If no bit is set, return with all bits of rd set
to 1.

Find First Clear Bit FFC rd, rs
Starting at the most significant bit in register rs , find the first bit that is set to a zero,
and return the bit number in register rd . If no bit is set, return with all bits of rd set
to 1.

Select and Shift
Right

SELSR rd, rs, rt
Using register rs and rt as a 64-bit register pair and the CP0 register ROTATE as
the shift count, shift the register pair rs ||rt right the number of bits specified in
ROTATE, and place the least significant 32-bit value in result register rd .

Select and Shift
Left

SELSL rd, rs, rt
Using register rs and rt as a 64-bit register pair and the CP0 register ROTATE as
the shift count, shift the register pair rs ||rt left the number of bits specified in
ROTATE, and place the most significant 32-bit value in result register rd .

Multiply/Add MADD rs, rt
Multiply contents of registers rs and rt as two’s complement values. Add 64-bit
results to contents in special register pair HI/LO, and place results in HI and LO.

Multiply/Add
Unsigned

MADDU rs, rt
Multiply contents of registers rs and rt as unsigned values. Add 64-bit results to
contents in special register pair HI/LO, and place results in HI and LO.

Multiply/Subtract MSUB rs, rt
Multiply contents of registers rs and rt as two’s complement values. Subtract 64-bit
results from contents in special register pair HI/LO, and place results in HI and LO.

Multiply/Subtract
Unsigned

MSUBU rs, rt
Multiply contents of registers rs and rt as unsigned values. Subtract 64-bit results
from contents in special register pair HI/LO, and place results in HI and LO.



Jump and Branch Instructions 3-11

Table 3.8 shows the execution time of the multiply/divide/accumulate type
instructions.

Table 3.8
Execution Time of
Multiply and Divide
Instructions

3.4
Jump and
Branch
Instructions

Jump and branch instructions change the control flow of a program.
MIPS-I jump and branch instructions always occur with a one-instruction
delay. The instruction immediately following the jump or branch is always
executed while the target instruction is being fetched from storage. There
may be additional cycle penalties, depending on circumstances and
implementation, but the penalties are interlocked in hardware. The
MIPS-II ISA extensions add the branch likely class of instructions that
operate exactly like their non-likely counterparts, except that when the
branch is not taken, the instruction following the branch is cancelled.

The J-type instruction format is used for both jump and jump-and-link
instructions for subroutine calls. In the J-type format, the 26-bit target
address is shifted left two bits and combined with the 4 high-order bits
of the current program counter to form a 32-bit absolute address.

The R-type instruction format, which takes a 32-bit byte address
contained in a register, is used for returns, dispatches, and cross-page
jumps.

Branches have 16-bit signed offsets relative to the program counter
(I-type). Jump-and-link and branch-and-link instructions save a return
address in register 31.

Operation R3000 CW33300 R4000
CW4010

High Speed
CW4010

Basic

Multiply 12 1 + (bits/3) 10 3 1 + (bits/2)

Multiply/Add na na na 31 1 + (bits/2)

Divide 34 34 69 34/172 35

1. For high-speed CW4010 multiply/add instructions, instructions can be pipe-
lined for a throughput of one operation every clock cycle while the latency is
three cycles. Pipelining the instructions accelerates calculations such as dot
products and FIR filters that perform a series of multiplies/adds to compute a
single result.

2. The divide time is shortened to 17 cycles if the divisor has less than 16 sig-
nificant bits.



3-12 Instruction Set Summary

Table 3.9 summarizes the R-Series jump instructions, Table 3.10
summarizes the branch instructions, and Table 3.11 summarizes the
BranchLikely instructions.

Table 3.9
Jump Instruction
Summary

Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with four high-order bits of PC, and
jump to address with a one-instruction delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with four high-order bits of PC, and
jump to address with a one-instruction delay. Place address of instruction following
delay slot in register 31 (link register).

Jump Register JR rs
Jump to address contained in register rs with a one-instruction delay.

Jump and Link
Register

JALR rs, rd
Jump to address contained in register rs with a one-instruction delay. Place address
of instruction following delay slot in rd .



Jump and Branch Instructions 3-13

Table 3.10
Branch Instruction
Summary

Instruction Format and Description

Branch on Equal BEQ rs, rt, offset
Branch to target address1 if register rs is equal to register rt .

Branch on Not Equal BNE rs, rt, offset
Branch to target address if register rs does not equal register rt .

Branch on Less than
or Equal to Zero

BLEZ rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero

BGTZ rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less Than
Zero

BLTZ rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero

BGEZ rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero
and Link

BGEZAL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is greater than or equal to 0.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits). All branches occur
with a delay of one instruction.



3-14 Instruction Set Summary

Table 3.11
BranchLikely Instruction
Summary (MIPS-II ISA
Extensions)

Instruction Format and Description

Branch on Equal
Likely

BEQL rs, rt, offset
Branch to target address1 if register rs is equal to register rt .

Branch on Not
Equal Likely

BNEL rs, rt, offset
Branch to target address if register rs does not equal register rt .

Branch on Less
than or Equal to
Zero Likely

BLEZL rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero Likely

BGTZL rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less
Than Zero Likely

BLTZL rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to
Zero Likely

BGEZL rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less
Than Zero And
Link Likely

BLTZALL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is less than 0.

Branch on
Greater than
or Equal to Zero
and Link Likely

BGEZALL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is greater than or equal to 0.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits). All branches occur
with a delay of one instruction.



Trap Instructions 3-15

3.5
Trap
Instructions

Trap instructions are part of the MIPS-II instruction set and provide
instructions that conditionally create an exception, based on the same
conditions tested in the branch instructions. Table 3.12 provides a
summary of MIPS-II ISA extensions.

Table 3.12
Trap Instruction
Summary (MIPS-II ISA
Extensions)

Instruction Format and Description

Trap on Equal TEQ rs, rt
Trap if register rs is equal to register rt .

Trap on Equal
Immediate

TEQI rs, immediate
Trap if register rs is equal to the immediate value.

Trap on Greater
than or Equal

TGE rs, rt
Trap if register rs is greater than or equal to register rt .

Trap on Greater
Than or Equal
Immediate

TGEI rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Greater
than or Equal
Unsigned

TGEU rs, rt
Trap if register rs is greater than or equal to register rt .

Trap on Greater
Than or Equal
Immediate Unsigned

TGEIU rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Less
Than

TLT rs, rt
Trap if register rs is less than register rt .

Trap on Less
Than Immediate

TLTI rs, immediate
Trap if register rs is less than the immediate value.

Trap on Less
Than Unsigned

TLTU rs, rt
Trap if register rs is less than register rt .

Trap on Less
Than Immediate
Unsigned

TLTIU rs, immediate
Trap if register rs is less than the immediate value.

Trap If Not Equal TNE rs, rt
Trap if register rs is not equal to rt .

Trap If Not Equal
Immediate

TNEI rs, immediate
Trap if register rs is not equal the immediate value.



3-16 Instruction Set Summary

3.6
Special
Instructions

Special instructions cause an unconditional branch to the general
exception-handling vector. Special instructions are always R-type and are
summarized in Table 3.13.

Table 3.13
Special Instruction
Summary

Instruction Format and Description

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.



Coprocessor Instructions 3-17

3.7
Coprocessor
Instructions

The CW4010 supports external (on-chip) coprocessors and implements
the coprocessor instruction set. Coprocessor branch instructions are
J-type. Table 3.14 summarizes the different coprocessor instructions.

Table 3.14
Coprocessor Instruction
Summary

Instruction Format and Description

Load Word to
Coprocessor

LWCz rt, offset(base)
Extends the sign of the 16-bit offset and adds the offset to the contents of the
general register base to form a 32-bit unsigned effective address. The word at the
memory location specified is loaded into coprocessor register rt of the coprocessor
unit z.

Store Word
from Coprocessor

SWCz rt, offset(base)
Extends the sign of the 16-bit offset and adds the offset to the contents of the
general register base to form a 32-bit unsigned effective address. The contents of
coprocessor register rt of the coprocessor unit z are stored at the address
specified by the 32-bit unsigned effective address.

Move To
Coprocessor

MTCz rt, rd
Loads the contents of general register rt into the rd register of coprocessor unit z.

Move From
Coprocessor

MFCz rt , rd
Loads the contents of the rd register of coprocessor unit z into general register rt .

Move Control
to Coprocessor

CTCz rt, rd
Loads the contents of general register rt into the control register rd of coprocessor
unit z.

Move Control
From Coprocessor

CFCz rt, rd
Loads the contents of the control register rd of coprocessor unit z into general
register rt .

Coprocessor
Operation

COPz cofun
Initiates a coprocessor operation that may specify and reference the coprocessor’s
internal registers or change the state of the coprocessor’s condition line, but does
not change the state within the processor or the cache memory.

Branch on
Coprocessor z
True (Likely)

BCzT offset, (BCzTL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is true. In
the case of BranchLikely, the delay slot instruction is not executed when the branch
is not taken.

Branch on
Coprocessor z
False (Likely)

BCzF offset, (BCzFL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is false. In
the case of BranchLikely, the delay slot instruction is not executed when the branch
is not taken.



3-18 Instruction Set Summary

3.8
System Control
Coprocessor
(CP0)
Instructions

Coprocessor-0 instructions perform operations on the system control
coprocessor (CP0) registers to manipulate the memory management and
exception-handling facilities of the processor. Table 3.15 summarizes the
CP0 instructions and Table 3.16 shows the extensions.

If the TLB is removed, the TLB instructions (TLBR, TLBWI, TLBWRm
TLBP) cause an RI (Reserved Instruction) exception. If the CW4010 is
in R3000 compatibility mode, the ERET (Exception Returned) instruction
is unavailable and this causes an RI exception. Conversely, if the
CW4010 is in R4000 mode, the RFE (Restore From Exception)
instruction is unavailable and this causes an RI exception.

Table 3.15
CP0 Instruction
Summary

Instruction Format and Description

Move To CP0 MTC0 rt, rd
Loads contents of CPU register rt into CP0 register rd .

Move From CP0 MFC0 rt, rd
Loads contents of CP0 register rd into CPU register rt .

Read Indexed
TLB Entry1

TLBR
Loads EntryHi and EntryLo with the TLB entry pointed to by the Index register.

Write Indexed
TLB Entry1

TLBWI
Loads TLB entry pointed to by the Index register with the contents of the
EntryHi and EntryLo registers.

Write Random
TLB Entry1

TLBWR
Loads TLB entry pointed to by the Random register with the contents of the
EntryHi and EntryLo registers.

Probe TLB for
Matching Entry1

TLBP
Loads the Index register with the address of the TLB entry whose contents
match the EntryHi and EntryLo registers. If no TLB entry matches, set the high-
order bit of the Index register.

Exception Return2 ERET(R4000 Mode)
Loads the PC from ErrorEPC (SR2 = 1: Error Exception) or EPC (SR2 = 0:
Exception) and clear ERL bit (SR2 = 1) or EXL bit (SR2 = 0) in the Status
Register. SR2 is Status register bit 2.

Restore From
Exception2

RFE(R3000 Mode)
Restores previous interrupt mask and mode bits of the Status register into
current status bits. Restore old status bits into previous status bits.

1. If there is no MMU (Memory Management Unit) installed, any of these instructions can cause a
reserved instruction exception.

2. Only one of these instructions is legal at any one time. The one that is not legal causes a reserved
instruction exception.



Cache Maintenance Instructions 3-19

3.9
Cache
Maintenance
Instructions

Cache Maintenance instructions are always I-type. Table 3.17
summarizes these instructions.

Table 3.16
CP0 Instruction
Extension Summary

Instruction Format and Description

Wait for Interrupt WAITI
Stops execution of instructions and places the processor into a power save (stall)
condition until a hardware interrupt, NMI, or reset is received.

Table 3.17
Cache Maintenance
Instruction Summary

Instruction Format and Description

Flush Icache FLUSHI
Flush Icache needs 256 stall cycles.

Flush Dcache FLUSHD
Flush Dcache needs 256 stall cycles.

Flush Icache & Dcache FLUSHID
Flush both Icache and Dcache in 256 stall cycles.

WriteBack WB offset(base)
Write back a Dcache line addressed by offset+GPR[base] .



3-20 Instruction Set Summary

3.10
CW4010
Instruction Set
Extensions

This section defines the CW4010 instruction set extensions.

ADDCIU Add with Circular Mask Immediate

Format

Syntax ADDCIU   rt, rs, immediate

Description The immediate field of the instruction is sign-extended and added to the
contents of general register rs , the result of which is masked with the
expanded value in special register CMask according to the equation
shown below. The CMask register is CP0 register number 24, whose
valid bits are [4:0].

The carries resulting from the addition of the sign-extended offset are
not propagated into the final result beyond bit [CMask-1].

Operation T: sign_extend_immed = (immediate 15) 16 || immediate 15..0
GPR[rt] = GPR[rs] 31..cmask  || (GPR[rs] +
sign_extend_immed) cmask-1..0

Exceptions None

31 26 25 21 20 16 15 0

ADDCIU rs rt immediate

011100 rs rt immediate



CW4010 Instruction Set Extensions 3-21

FFC Find First Clear Bit

Format

Syntax FFC rd, rs

Description The contents of general register rs are examined starting with the most
significant bit. The bit number of the first clear bit is returned in general
register rd . If no bit is set, all ones are returned in rd .

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFC

000000 rs 0 rd 00000 001011



3-22 Instruction Set Summary

FFS Find First Set Bit

Format

Syntax FFS rd, rs

Description The contents of general register rs are examined starting with the most
significant bit. The bit number of the first set bit is returned in general
register rd . If no bit is set, all ones are returned in rd .

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFS

000000 rs 0 rd 00000 001010



CW4010 Instruction Set Extensions 3-23

FLUSHD FLUSH Data Cache

Format

Syntax FLUSHD

Description FLUSHD flushes all Data Cache lines and causes stall cycles for 256
clocks, regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHD 0

101111 00000 00010 0



3-24 Instruction Set Summary

FLUSHI FLUSH Instruction Cache

Format

Syntax FLUSHI

Description FLUSHI flushes all Instruction Cache lines and causes stall cycles for
256 clocks, regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHI 0

101111 00000 00001 0



CW4010 Instruction Set Extensions 3-25

FLUSHID FLUSH Instruction and Data Cache

Format

Syntax FLUSHID

Description FLUSHID flushes all Data and Instruction Cache lines and causes stall
cycles for 256 clocks, regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHID 0

101111 00000 00011 0



3-26 Instruction Set Summary

MADD Multiply Add

Format

Syntax MADD rs, rt

Description The contents of general register rs and the contents of general register
rt are multiplied. Both operands are treated as 32-bit two’s complement
values. When the operation is completed, the doubleword result is added
to special register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the Cache
Configuration and Control (CCC) register.

MADD executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.19 on page 3-37.

Operation T: t <- (HI || LO) + (GPR[rs] * GPR[rt])
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MADD

000000 rs rt 0 00000 011100



CW4010 Instruction Set Extensions 3-27

MADDU Multiply Add Unsigned

Format

Syntax MADDU rs, rt

Description The contents of general register rs and the contents of general register
rt are multiplied with both operands treated as 32-bit unsigned values.
When the operation is completed, the doubleword result is added to
special register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.19 on page 3-37.

Operation T: t <- (HI || LO) + ((0||GPR[rs]) * (0||GPR[rt]))
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MADDU

000000 rs rt 0 00000 011101



3-28 Instruction Set Summary

MAX Maximum

Format

Syntax MAX rd, rs, rt

Description The source operands rs and rt are compared as two’s complement
values. The larger value is stored in the rd register.

Operation T: if GPR[rs]>GPR[rt] then
GPR[rd]<-GPR[rs]

else
GPR[rd]<-GPR[rt]

endif

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MAX

000000 rs rt rd 00000 101001



CW4010 Instruction Set Extensions 3-29

MIN Minimum

Format

Syntax MIN rd, rs, rt

Description The source operands rs and rt are compared as two’s complement
values. The smaller value is stored in the rd register.

Operation T: if GPR[rs]<GPR[rt] then
GPR[rd]<-GPR[rs]

else
GPR[rd]<-GPR[rt]

endif

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MIN

000000 rs rt rd 00000 101000



3-30 Instruction Set Summary

MSUB Multiply Subtract

Format

Syntax MSUB rs, rt

Description The contents of general register rs and rt are multiplied and both
operands are treated as 32-bit two’s complement values. When the
operation is complete, the doubleword result is subtracted from special
register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.19 on page 3-37.

Operation T: t <- (HI || LO) - (GPR[rs] * GPR[rt])
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MSUB

000000 rs rt 0 00000 011110



CW4010 Instruction Set Extensions 3-31

MSUBU Multiply Subtract Unsigned

Format

Syntax MSUBU rs, rt

Description The contents of general register rs and rt are multiplied and both
operands are treated as 32-bit unsigned values. When the operation is
completed, the doubleword result is subtracted from special register pair
HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.19 on page 3-37.

Operation T: t <- (HI || LO) - ((0||GPR[rs]) * (0||GPR[rt]))
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MSUBU

000000 rs rt 0 00000 011111



3-32 Instruction Set Summary

SELSL Select and Shift Left

Format

Syntax SELSL rd, rs, rt

Description The contents of general register rs and rt are combined to form a 64-bit
doubleword. The doubleword is shifted left the number of bits specified
in the CP0 register ROTATE, and the upper 32 bits of the result are
placed in general register rd . This ROTATE register is CP0 register
number 23, with valid bits [4:0].

Operation T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] 31-s..0  || GPR[rt] 31..32-s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSL

000000 rs rt rd 00000 000101



CW4010 Instruction Set Extensions 3-33

SELSR Select and Shift Right

Format

Syntax SELSR rd, rs, rt

Description The contents of general register rs and rt are combined to form a 64-bit
doubleword. The doubleword is shifted right the number of bits specified
in CP0 register ROTATE, and the lower 32 bits of the result are placed
in general register rd . This ROTATE register is CP0 register number 23.
Valid bits are [4:0].

Operation T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] s-1..0  || GPR[rt] 31..s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSR

000000 rs rt rd 00000 000001



3-34 Instruction Set Summary

WAITI Wait for Interrupt

Format

Syntax WAITI

Description When this instruction is executed, the main processor clock stops and
execution of instructions is halted. Execution resumes when a hardware
interrupt, NMI, or reset exception is received. While it is in wait mode,
the processor is in a power saving mode, using very little current
because the clock is turned off to most of the circuitry.

WAITI must be followed by two or more No-Operation instructions,
otherwise, the results may be undefined. Refer to Appendix A,
“Programmer’s Notes,” for further information.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

COP0 0 0 0 WAITI

010000 10000 00000 00000 00000 100000



CW4010 Instruction Set Extensions 3-35

WB WriteBack Data Cache

Format

Syntax WB offset( base )

Description Eight words of the Data cache line addressed by offset +GPR[base] are
written back to memory if the line is dirty. Upper bits of offset
+GPR[base ] are ignored.

Exceptions None

31 26 25 21 20 16 15 0

CACHE base WB offset

101111 base 00100 offset



3-36 Instruction Set Summary

3.11
CPU Instruction
Opcode Bit
Encoding

Tables 3.18 through 3.24 show the opcode bit encoding for CW4010
instructions. The following keys are referenced in the table:

*rxf1 Operation codes marked with *rxf1 cause reserved instruction excep-
tions in all current implementations and are reserved for future versions
of the architecture.

*rxf2 Operation codes marked with *rxf2 cause reserved instruction excep-
tions in all current implementations and are reserved for future versions
of the architecture. *rxf2 is separated from other reserved instructions
for COPz. These are not detected as reserved instruction codes that
cause an exception on the R3000. The R4000 detects them.

*rx40 An operation code marked with *rx40 causes a reserved instruction
exception on R4000 and CW4010 processors (when in R4000 mode).
It is used as a Restore From Exception (RFE) instruction on the R3000,
LR33000, LR33300, and CW4010 in R3000 mode.

*rx64 Operation codes marked with *rx64 cause a reserved instruction excep-
tion. They are 64-bit instructions on R4000.

*nrx Operation codes marked with *nrx are invalid but do not cause reserved
instruction exceptions in CW4010 implementations.

x1 Operation codes marked with x1 are originally extended instructions in
CW4010 implementations. They are reserved instructions that cause an
exception on R4000.

x2 The operation code CACHE marked with x2 is valid only for CW4010 pro-
cessors with CP0 enabled and causes a reserved instruction exception
with CP0 disabled. Bits [20:16] are sub-opcodes. They are instructions for
cache maintenance, and the functions are not compatible with R4000.
Recommended mnemonics are FLUSHI, FLUSHD, FLUSHID, and WB
offset (base ). Undefined opcodes of CACHE instruction do not cause
reserved instruction exception in CW4010 implementations.

x3 Operation codes marked with x3 are originally extended instructions in
CW4010 implementations. They are used for 64-bit multiply and divide
instructions on R4000. If the MUL bit or MAD bit in the CCC register is
zero, they cause a reserved instruction exception. The CCC register is
described in detail in Section 4.3.10, “Configuration and Cache Control
(CCC) Register (16),” on page 4-20.

x4 Operation codes marked with x4 cause a reserved instruction exception
if the MUL bit in the CCC register is zero.

x5 The operation code ERET marked with x5 is valid only on the R4000
and CW4010 in R4000 mode.



CPU Instruction Opcode Bit Encoding 3-37

x6 Operation codes marked with x6 are coprocessor-3 instructions, which are
not available on R4000. These are available on the R3000 and CW4010.

Table 3.18
CW4010 Opcode Bit
Encoding

[28:26] Opcode
[31:29] 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 COP1 COP2 COP3x6 BEQL BNEL BLEZL BGTZL

3 *rx64 *rx64 *rx64 *rx64 ADDCIUx1 *rxf1 *rxf1 *rxf1

4 LB LH LWL LW LBU LHU LWR *rx64

5 SB SH SWL SW *rx64 *rx64 SWR CACHEx2

6 LL LWC1 LWC2 LWC3x6 *rx64 *rx64 *rx64 *rx64

7 SC SWC1 SWC2 SWC3x6 *rx64 *rx64 *rx64 *rx64

Table 3.19
SPECIAL Opcode Bit
Encoding

[2:0] SPECIAL Function
[5:3] 0 1 2 3 4 5 6 7

0 SLL SELSRx1 SRL SRA SLLV SELSLx1 SRLV SRAV

1 JR JALR FFSx1 FFCx1 SYSCALL BREAK *rxf1 SYNC

2 MFHIx4 MTHIx4 MFLOx4 MTLOx4 *rx64 *rxf1 *rx64 *rx64

3 MULTx4 MULTUx4 DIVx4 DIVUx4 MADDx3 MADDUx3 MSUBx3 MSUBUx3

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 MINx1 MAXx1 SLT SLTU *rx64 *rx64 *rx64 *rx64

6 TGE TGEU TLT TLTU TEQ *rxf1 TNE *rxf1

7 *rx64 *rxf1 *rx64 *rx64 *rx64 *rxf1 *rx64 *rx64



3-38 Instruction Set Summary

Table 3.20
REGIMM Opcode rt Bit
Encoding

[18:16] REGIMM rt
[20:19] 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL *rxf1 *rxf1 *rxf1 *rxf1

1 TGEI TGEIU TLTI TLTIU TEQI *rxf1 TNEI *rxf1

2 BLTZAL BGEZAL BLTZALL BGEZALL *rxf1 *rxf1 *rxf1 *rxf1

3 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1

Table 3.21
CACHEx2 Opcode rt Bit
Encoding

[18:16] CACHE x2 rt
[20:19] 0 1 2 3 4 5 6 7

0 *nrx FLUSHIx2 FLUSHDx2 FLUSHIDx2 WBx2 *nrx *nrx *nrx

1 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

2 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

3 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

Table 3.22
COPz rs Opcode Bit
Encoding

[23:21] COPz rs
[25:24] 0 1 2 3 4 5 6 7

0 MFCz *rx64 CFCz *rxf2 MTCz *rx64 CTCz *rxf2

1 BC *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

2
COPz (Coprocessor defined instructions)

3



CPU Instruction Opcode Bit Encoding 3-39

Table 3.23
COPz rt Opcode Bit
Encoding

[18:16] COPz rt
[20:19] 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL *rxf2 *rxf2 *rxf2 *rxf2

1 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

3 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

Table 3.24
CP0 Opcode Bit
Encoding

[2:0] CP0 Function
[5:3] 0 1 2 3 4 5 6 7

0 *nrx TLBR TLBWI *nrx *nrx *nrx TLBWR *nrx

1 TLBP *nrx *nrx *nrx *nrx *nrx *nrx *nrx

2 RFErx40 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

3 ERETx5 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

4 WAITIx1 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

5 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

6 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

7 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx



3-40 Instruction Set Summary



4-1

Chapter 4
CW4010 Exception
Processing

This chapter describes the CW4010’s system coprocessor,
Coprocessor-0 (CP0), and explains how the CW4010 handles exception
processing. The chapter contains the following sections:

♦ Section 4.1, “Overview,” on page 4-1

♦ Section 4.2, “R3000 Exception Compatibility Mode,” on page 4-3

♦ Section 4.3, “Exception Handling Registers,” on page 4-4

♦ Section 4.4, “Exception Description Details,” on page 4-28

4.1
Overview

When the CW4010 detects an exception, it suspends the normal
sequence of instruction execution, exits from User mode, and enters
Kernel mode where it can handle exceptions. The CW4010 reverts to
Kernel mode, regardless of the mode at the time of the exception. The
processor then disables interrupts and forces a software handler located
at a fixed address in memory to be executed. The handler saves the
context of the processor. The context must be restored when the
exception has been handled. Section 5.2.1, “Operating Modes,”
beginning on page 5-3 provides more information on this subject.

When an exception occurs, the CP0 loads the Exception Program
Counter (EPC) with a restart location where execution may resume after
the exception has been serviced. The restart location in the EPC is the
address of the instruction that caused the exception or, if the instruction
was executing in a Branch Delay slot, the address of the branch
instruction immediately preceding the delay slot. The instruction causing
the exception and all the instructions following in the pipeline are
aborted. They will be refetched after return from the exception.



4-2 CW4010 Exception Processing

This chapter describes the events that can initiate exception processing.
Table 4.1 summarizes the events.

Table 4.1
CW4010 Exceptions

Exception Cause

Cold Reset Deassertion of the CW4010 cold reset signal, CRESETn.

Warm Reset Deassertion of the CW4010 warm reset signal, WRESETn.

Non-Maskable Interrupt Assertion of the non-maskable interrupt signal, NMIn.

Debug Detection of a program counter breakpoint, data address breakpoint,
or trace event. Not supported in standard R3000 and R4000
processors.

Address Error Attempt to load, fetch, or store an unaligned word—that is a word that
is at an address not evenly divisible by four, or a halfword that is at an
address not evenly divisible by two. References to an address for which
the most significant bit was set while in the CW4010 was in User mode
may also cause an address error.

TLB Refill There is no TLB entry to match a reference to a mapped address
space.

TLB Entry Invalid A virtual address reference matches a TLB entry that is marked invalid.

TLB Modified A store operation’s virtual address reference matches a TLB entry that
is marked valid but is not dirty/writable.

Bus Error Assertion of the CW4010 external bus error signal, SCBERRn.

Integer Overflow Two’s complement overflow during an add or subtract.

Trap One of the Trap instructions results in a “true” condition.

System Call An attempt to execute the SYSCALL instruction.

Breakpoint An attempt to execute the BREAK instruction.

Reserved Instruction Execution of an instruction with an undefined or reserved major
operation code (bits [31:26]), or a SPECIAL instruction whose minor
operation code (bits [5:0]) is undefined.

Coprocessor Unusable Execution of a coprocessor instruction where the Cu (coprocessor
usable) bit is not set for the target coprocessor.

Floating Point Available for use by an external floating-point coprocessor.

Interrupt Assertion of one of the CW4010’s six hardware interrupt inputs, or the
setting of one of the two software interrupt bits in the Cause register.
Interrupts must be enabled.

External Vectored
Interrupt

Assertion of the CW4010 EXViNTn input. Not supported in R3000 and
R4000 processors.



R3000 Exception Compatibility Mode 4-3

4.2
R3000
Exception
Compatibility
Mode

Although the CW4010 processor is based on the MIPS R4000
architecture, an R3000 style exception processing capability has been
added. This facility allows you to configure CP0 exception processing in
such a way that existing R3000 exception handling code can be run on
the CW4010 processor with little or no modification to the code.

R3000 compatibility mode is under the control of the compatibility bit
(bit 24) of the Configuration and Cache Control (CCC) Register,
discussed in Section 4.3.10, “Configuration and Cache Control (CCC)
Register (16),” on page 4-20. The compatibility bit is reset to 0 (R4000
mode) when a cold reset exception occurs. If R3000 mode operation is
desired, bit 24 should be set to 1 as part of the cold reset handler. Once
it has been placed in R3000 mode, the processor should only be
switched back to R4000 mode by another cold reset. When R3000 mode
is enabled, the behavior of the following areas is affected:

♦ Status Register

The lower six bits of the Status register are redefined to implement
the Kernel/User mode and interrupt enable stack as defined by the
R3000 architecture. The Status Register is discussed in detail in
Section 4.3.6, “Status Register (12),” on page 4-9.

♦ Exception Handling Vectors

The exception handling vectors (base and offset) are remapped to
those specified by the R3000 architecture. The Exception Vectors
are discussed in detail in Section 4.4.3, “Exception Vector Locations,”
on page 4-31.

♦ Exception Return (RFE vs. ERET)

When operating in R3000 compatibility mode, exception return is
accomplished using the RFE instruction. If an attempt is made to use
the ERET instruction, a Reserved Instruction exception will be
recognized.

The following sections provide more detail on CW4010 exception
handling. Where appropriate, the differences between standard operation
R4000 and R3000 compatibility mode are noted. In all other cases,
operation is identical.



4-4 CW4010 Exception Processing

4.3
Exception
Handling
Registers

This section describes the CP0 registers used in exception processing.
Software examines these registers during exception processing to
determine the cause of an exception and the state of the CPU at the time
of the exception. Each of the registers is listed and described in detail
in the sections that follow.

Two other CP0 registers that are part of the virtual memory management
system and contain important information about exception handling are
the Index register (CP0 register 0), described in Section 5.3.2.4, “Index
Register (0),” on page 5-12, and the Random register (CP0 register 1),
described in Section 5.3.2.5, “Random Register (1),” on page 5-12.

You can use the MTC0 (Move to Coprocessor-0) instruction to set the
bits in the registers, and MTF0 (Move from Coprocessor-0) to read the
contents of the registers.

Table 4.2
CP0 Exception
Processing
Registers

Register Name
CP0 Register

Number

Context 4

DCS (Debug Control and Status) 7

BadVAddr (Bad Virtual Address) 8

Count 9

Compare 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

PRId (Processor Revision Identifier) 15

CCC (Configuration and Cache Control) 16

LLAdr (Load Linked Address) 17

BPC (Breakpoint Program Counter) 18

BDA (Breakpoint Data Address) 19

BPCM (Breakpoint PC Mask) 20

BDAM (Breakpoint Data Addr Mask) 21

ErrorPC 30



Exception Handling Registers 4-5

4.3.1
Context
Register (4)

The Context register is a read/write register containing a pointer to an
entry in the Page Table Entry (PTE) array. This array is an operating
system data structure that stores virtual to physical address translations.
When there is a TLB miss, operating system software handles the miss
by loading the TLB with the missing translation from the PTE array.

The BadVPN field is not writable. It contains the VPN of the most
recently translated virtual address that did not have a valid translation
(TLBL or TLBS). The PTEBase field is both writable and readable, and
indicates the base address of the PTE table of the current user address
space.

The Context register duplicates some of the information provided in the
BadVAddr register, but the information is in a form that is more useful for
a software TLB exception handler.

The Context register can be used by the operating system to hold a
pointer into the PTE array. The operating system sets the PTE base field
register, as needed. Normally, the operating system uses the Context
register to address the current page map, which resides in the kernel-
mapped segment kseg2. The register is included solely for the use of the
operating system. Figure 4.1 shows the format of the Context register.

Figure 4.1
Context Register

PTEBase Page Table Entry Base [31:22]
This field is the Operating System Pointer. It points to the
Page Table Entry in memory.

BadVPN Bad Virtual Page Number [21:2]
This field contains the most recently translated virtual
address that did not have a valid translation. Bits [31:12]
of this field contain the virtual address that caused the
TLB miss. This format provides a table of four-byte PTEs
for a page size of 4 Kbytes. For other PTE and page
sizes, shifting and masking bits [31:12] produces an
appropriate address.

31 22 21 2 1 0

PTEBase BadVPN R



4-6 CW4010 Exception Processing

R Reserved [1:0]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

4.3.2
Debug Control
and Status
(DCS) Register
(7)

The Debug Control and Status (DCS) register contains the enable and
status bits for the CW4010 debug facility. All bits have read/write access.
Figure 4.2 shows the format of the DCS register.

Figure 4.2
DCS Register

TR Trap 31
This is the trap enable bit. Setting it to 1 traps debug
events to the debug exception vector. Clearing it to 0
disables the trap. However, the status bits are updated
with status debug event information when the bit is
cleared.

UD User Mode Debug Event 30
This bit is set to 1 to detect a debug event when the
CW4010 is operating in User mode.

KD Kernel Mode Debug Event 29
This bit is set to 1 to detect a debug event when the
CW4010 is operating in Kernel mode.

TE Trace Event 28
This bit is set to 1 to detect a trace event (non-sequential
fetch operation).

DW Data Write 27
This bit is set to 1 to detect a Data Write at BDA
(Breakpoint Data Address) event. The bit is used in
conjunction with DAE.

31 30 29 28 27 26 25 24 23 22 6 5 4 3 2 1 0

TR UD KD TE DW DR DAE PCE DE R T W RD DA PC DB



Exception Handling Registers 4-7

DR Data Read 26
This bit is set to 1 to detect a Data Read at BDA event.
The bit is used in conjunction with DAE.

DAE Detect BDA Event 25
This bit is set to 1 to detect BDA debug events.

PCE Program Counter Breakpoint Event 24
This bit is set to 1 to detect Program Counter Breakpoint
events.

DE Debug Enable 23
This bit is set to 1 to enable the debug facility. Clearing
the bit disables the debug facility.

R Reserved [22:6]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

T Trace 5
The setting of this bit indicates the trace event status. It
is set to 1 to indicate that a trace event has been
detected.

W Write 4
This bit is the write reference bit and its setting matches
the DW bit setting.

RD Read 3
This bit is the read reference bit and its setting matches
the DR bit setting.

DA DAE Debug Condition 2
This bit indicates the status of the DAE debug condition.

PC PCE Debug Condition 1
This bit indicates the status of the PCE debug condition.

DB Debug Detected 0
This bit is set whenever any debug condition is detected.



4-8 CW4010 Exception Processing

4.3.3
Bad Virtual
Address
(BadVAddr)
Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that
holds the 32-bit failing virtual address for address error (AdEL, AdES)
and TLB translation (TLBL, TLBS, Mod) exceptions. Figure 4.3 shows the
format of the BadVAddr register.

Figure 4.3
BadVAddr Register

4.3.4
Count Register
(9)

The Count register acts as a timer. It increments at a constant rate
regardless of whether an instruction is executed, retried, or any forward
progress is made. The Count register increments at half the maximum
instruction issue rate.

The Count register is a read/write register—it can be written for
diagnostic purposes or for system initialization to synchronize two
processors operating in lock step.

Figure 4.4 shows the format of the Count register.

Figure 4.4
Count Register

4.3.5
Compare
Register (11)

The Compare register implements a timer service (see also the Count
register) that maintains a stable value and does not change on its own.
When the timer facility is enabled and the value of the Count register
equals the value of the Compare register, interrupt bit IP7 in the Cause
register is set. This causes an interrupt on the next execution cycle when
the interrupt is enabled. Writing a value to the Compare register clears
the timer interrupt.

31 0

Bad Virtual Address

MD96.141

31 0

Count

MD96.142



Exception Handling Registers 4-9

For diagnostic purposes, the Compare register is a read/write register. In
normal operation, the Compare register is only written. Figure 4.5 shows
the format of the Compare register.

Figure 4.5
Compare Register

4.3.6
Status Register
(12)

The Status register is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor. The
format of the Status register is slightly different when the CW4010 is
operating in R4000 mode and R3000 mode. “R4000 Mode Operation”
below, describes the format for R4000 mode operation. Section 4.3.6.2,
“R3000 Mode Operation” on page 4-29 describes the format for R3000
mode operation.

4.3.6.1 R4000 Mode Operation

The format of the R4000 version of the Status register (CCC24 = 0) is
shown in Figure 4.6.

Figure 4.6
Status Register
(R4000 Mode)

CU[3:0] Coprocessor Usability Bits [31:28]
The software uses this field to control accesses to the
coprocessors. When the bit is set to 1 the corresponding
coprocessor is usable, as shown below:

CU3 = 1 enables coprocessor 3
CU2 = 1 enables coprocessor 2
CU1 = 1 enables coprocessor 1
CU0 = 1 enables coprocessor 0

31 0

Compare

31 28 27 23 22 21 20 19 16 15 10 9 8 7 5 4 3 2 1 0

CU[3:0] R BEV R SR R Int[5:0] SW[1:0] R KSU[1:0] ERL EXL IE



4-10 CW4010 Exception Processing

R Reserved [27:23, 21, 19:16, 7:5]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

BEV Bootstrap Exception Vector 22
This bit controls the location of the TLB refill and the
general exception vectors. Setting the bit to 1 implements
a bootstrap operation and bootstrap vector locations are
used. When the bit is cleared to 0, normal exception
vectors are used.

Refer to the following subsections for further information:
“Cold Reset” on page 4-12; “Warm Reset” on page 4-12.

SR Soft Reset 20
This bit indicates whether a warm reset or a non-
maskable interrupt has occurred. When the bit is set to 1,
it indicates a warm reset. When it is cleared to 0, it
indicates a non-maskable interrupt.

Refer to the subsection “Warm Reset” on page 4-12, for
further information.

INT[5:0] Interrupt Mask [15:10]
This field is a six-bit [5:0] hardware interrupt mask.
Setting a bit to 1 enables the corresponding hardware
interrupt. For example, setting bit 5 enables hardware
interrupt 5.

SW[1:0] Software Interrupt Mask [9:8]
This field is a two-bit [1:0] software interrupt mask.
Setting a bit to 1 enables the corresponding software
interrupt.

KSU Kernel/User Mode [4:3]
This field determines the base operating mode of the
CW4010 core as follows:

[1:0] = 00, base mode is Kernel
[1:0] = 10, base mode is User
All other settings are reserved.

Refer to the following subsections for further information:
“Processor Modes” on page 4-11; “Kernel Address Space
Accesses” on page 4-12; “Warm Reset” on page 4-12.



Exception Handling Registers 4-11

ERL Error Level 2
This bit determines the error level of the CW4010. When
it is set to 1, the level is Error. When it is cleared to 0,
the level is Normal.

Refer to the following subsections for further information:
“Interrupt Enable” on page 4-11; “Processor Modes” on
page 4-11; “Kernel Address Space Accesses” on page 4-
12; “Cold Reset” on page 4-12.

EXL Exception Level 1
This bit determines the exception level of the CW4010.
When it is set to 1, the level is Exception. When it is
cleared to 0, the level is Normal.

Refer to the following subsections for further information:
“Interrupt Enable” on page 4-11; “Processor Modes” on
page 4-11; “Kernel Address Space Accesses” on page 4-
12.

IE Interrupt Enable 0
Setting this bit to 1 enables interrupts. Clearing it to 0
disables interrupts.

Refer to subsection “Interrupt Enable” below for further
information.

Interrupt Enable – Interrupts are enabled when the following field
conditions are true:

♦ IE is set to 1.

♦ EXL is cleared to 0.

♦ ERL is cleared to 0.

If these conditions are met, interrupts are recognized according to the
setting of the INT and SW mask bits.

Processor Modes – The setting of the KSU bit, in conjunction with the
settings of the EXL and ERL bits, defines the CW4010 processor modes
as follows:

♦ The processor is in User mode when KSU is equal to 10b, and EXL
and ERL are cleared to 0.



4-12 CW4010 Exception Processing

♦ The processor is in Kernel mode under any one of the following
conditions:

– KSU is equal to 00b.

– EXL is set to 1.

– ERL is set to 1.

Kernel Address Space Accesses – Access to the Kernel address
space is allowed only when the processor is in Kernel mode, that is
under any one of the following conditions:

♦ KSU is equal to 00b.

♦ EXL is set to 1.

♦ ERL is set to 1.

User Address Space Accesses – Access to the User address space is
always allowed.

Cold Reset – The contents of the Status register are undefined after a
cold reset, except for the following bits:

♦ ERL and BEV are set to 1.

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for the following bits:

♦ ERL, BEV, and SR bits are set to 1.

4.3.6.2 R3000 Mode Operation

The format of the R3000 version of the Status register (CCC24 = 1) is
shown in Figure 4.7.

Figure 4.7
Status Register
(R3000 Mode)

31 28 27 23 22 21 20 19 16 15 10 9 8 7 6 5 4 3 2 1 0

CU[3:0] R BEV R SR R INT[5:0] SW[1:0] R KUo IEo KUp IEp KUc IEc



Exception Handling Registers 4-13

CU[3:0] Coprocessor Usability Bits [31:28]
The software uses this field to control accesses to the
coprocessors. When the bit is set to 1 the corresponding
coprocessor is usable, as shown below:

CU3 = 1 enables coprocessor 3
CU2 = 1 enables coprocessor 2
CU1 = 1 enables coprocessor 1
CU0 = 1 enables coprocessor 0

R Reserved [27:23, 21, 19:16, 7:6]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

BEV Bootstrap Exception Vector 22
This bit controls the location of the TLB refill and the
general exception vectors. Setting the bit to 1 implements
a bootstrap operation and bootstrap vector locations are
used. When the bit is cleared to 0, normal exception
vectors are used.

Refer to the subsection “Warm Reset” on page 4-15 for
further information.

SR Soft Reset 20
This bit indicates whether a warm reset or a non-
maskable interrupt has occurred. When the bit is set to
1, it indicates a warm reset. When it is cleared to 0, it
indicates a non-maskable interrupt.

Refer to the subsection “Warm Reset” on page 4-12 for
further information.

INT[5:0] Interrupt Mask [15:10]
This field is a six-bit [5:0] hardware interrupt mask.
Setting a bit to 1 enables the corresponding hardware
interrupt. For example, setting bit 5 to 1 enables
hardware interrupt 5.

SW[1:0] Software Interrupt Mask [9:8]
This field is a two-bit [1:0] software interrupt mask.
Setting a bit to 1 enables the corresponding software
interrupt.



4-14 CW4010 Exception Processing

KUo Kernel/User Mode, Old 5
This bit shows the old base operating mode of the
CW4010 core. Setting it to 1 indicates User mode.
Clearing the bit to 0 indicates Kernel mode. The bit is part
of a three-bit stack that indicates old, previous, and
current modes.

Refer to the subsection “Warm Reset” on page 4-15 for
further information.

IEo Interrupt Enable, Old 4
This bit shows the old interrupt enable setting. Setting it
to 1 indicates that interrupts are enabled. Clearing the bit
to 0 indicates that interrupts are disabled. The bit is part
of a three-bit stack that indicates old, previous, and
current interrupt enable settings.

Refer to the subsection “Interrupt Enable” on page 4-11
for further information.

KUp Kernel/User Mode, Previous 3
This bit shows the previous base operating mode of the
CW4010 core. Setting it to 1 indicates User mode.
Clearing the bit to 0 indicates Kernel mode. The bit is part
of a three-bit stack that indicates old, previous, and
current modes.

Refer to the following subsections for further information:
“Warm Reset” on page 4-15; “Processor Modes” on page
4-11.

IEp Interrupt Enable, Previous 2
This bit shows the previous interrupt enable setting.
Setting it to 1 indicates that interrupts are enabled.
Clearing the bit to 0 indicates that interrupts are disabled.
The bit is part of a three-bit stack that indicates old,
previous, and current interrupt enable settings.

Refer to the subsection “Interrupt Enable” on page 4-11
for further information.

KUc Kernel/User Mode, Current 1
This bit shows the current base operating mode of the
CW4010 core. Setting it to 1 indicates User mode.
Clearing the bit to 0 indicates Kernel mode. The bit is part
of a three-bit stack that indicates old, previous, and
current modes.



Exception Handling Registers 4-15

Refer to the following subsections for further information:
“Warm Reset” on page 4-15; “Processor Modes” on page
4-11.

IEc Interrupt Enable, Current 0
This bit shows the old interrupt enable setting. Setting it
to 1 indicates that interrupts are enabled. Clearing the bit
to 0 indicates that interrupts are disabled. The bit is part
of a three-bit stack that indicates old, previous, and
current interrupt enable settings.

Refer to subsection “Interrupt Enable” on page 4-11 for
further information.

Interrupt Enable – Interrupts are enabled when IEc is set to 1. In this
case, interrupts are recognized according to the setting of the INT and
SW masks.

Processor Modes – CW4010 processor modes are defined by the
setting of the KUc bit:

♦ The processor is in User mode when KUc is set to 1.

♦ The processor is in Kernel mode when KUc is cleared to 0.

Kernel Address Space Accesses – Access to the Kernel address
space is allowed only when the processor is in Kernel mode.

User Address Space Accesses – Access to the User address space is
always allowed.

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for the following bits:

♦ The BEV and SR bits are set to 1.

♦ The KU and IE bits are pushed deeper into the stack and KUc and IEc
are cleared to 0, for example: KUo/IEo ← KUp/IEp ←KUc/IEc ← 0/0.

Figure 4.8 shows how the CW4010 core manipulates the Status register
during exception recognition.



4-16 CW4010 Exception Processing

Figure 4.8
Status Register
and Exception
Recognition

When the CW4010 recognizes an exception, it saves the current
Kernel/User mode bit (KUc) and the current interrupt enable bit (IEc) in
the previous Kernel/User mode bit (KUp) and previous interrupt enable
bit (IEp), respectively. The previous bits are saved in the old bits, and the
current bits are cleared to 0. The process is shown in the following
example: KUo/IEo ← KUp/IEp ← KUc/IEc ← 0.

When the CW4010 executes a Return From Exception (RFE) instruction,
the values are popped off the stack, KUc and IEc are reset to their
previous values, for example: KUc/IEc ← KUp/IEp ← KUo/IEo.

4.3.7
Cause Register
(13)

The Cause register is a read/write register. The contents of this register
provide information about the most recent exception. The format of the
register is shown in Figure 4.9. All bits in the register, with the exception
of IP[1:0], are read-only bits.

Figure 4.9
Cause Register

BD Branch Delay 31
This bit indicates whether or not the last exception was
taken while the CW4010 was executing an instruction in
the Branch Delay slot. Setting the bit to 1 indicates that
the exception was taken. Clearing the bit to 0 indicates
that the exception was not taken.

5 4 3 2 1 0

KUo IEo KUp IEp KUc IEc

KUo IEo KUp IEp KUc IEc

0 0Exception Recognition

KUc Current Kernel/User mode bit
IEc Current Interrupt Enable mode bit
KUp Previous Kernel/User mode bit
IEp Previous Interrupt Enable mode bit
KUo Old Kernel mode bit
IEo Old Interrupt Enable mode bit MD96.146

31 30 29 28 27 16 15 8 7 6 2 1 0

BD BT CE[1:0] R IP[7:0] R ExcCode[4:0] R



Exception Handling Registers 4-17

BT BD Set 30
If the BD bit is set, setting this bit to 1 indicates that the
branch was taken.

CE[1:0] Coprocessor Error [29:28]
The value in the coprocessor error field indicates the
coprocessor unit referenced when a Coprocessor
Unusable exception is taken:

R Reserved [27:16, 7, 1:0]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

IP[7:0] Interrupt Pending [15:8]
This field indicates if an interrupt is pending. There is a
direct correlation between the bit set and the interrupt
pending. So, if IP7 (bit 15) is set, interrupt 7 is pending.

ExcCode[4:0] Exception Code [6:2]
This field defines the exception code. Table 4.3 lists the
valid exception code values.

CE1 CE0 Coprocessor Referenced

1 1 Coprocessor 3

1 0 Coprocessor 2

0 1 Coprocessor 1

0 0 Coprocessor 0

Table 4.3
Cause Register
ExcCode Field

Exception
Code Value Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction
fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or
instruction fetch)

5 AdES Address error exception (store)

6 Bus Bus error exception

(Sheet 1 of 2)



4-18 CW4010 Exception Processing

4.3.8
Exception
Program
Counter
Register (14)

The Exception Program Counter (EPC) is a read-write register that
contains the address where processing resumes after an exception has
been serviced. For synchronous exceptions, the EPC register contains
either:

♦ The virtual address of the instruction that was the direct cause of the
exception

♦ The virtual address of the immediately preceding branch or jump
instruction (when the instruction is in a Branch Delay slot, and the
Branch Delay bit in the Cause register is set).

Figure 4.10 shows the format of the EPC register. Bits [31:2] make up
the program counter. Bits [1:0] are not used and are read as 0. The
CW4010 ignores attempts to set these bits; however, software should
write these bits as 0 to ensure compatibility with future versions of the
software.

Figure 4.10
EPC Register

7 — Reserved

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic overflow exception

13 Tr Trap exception

14 — Reserved

15 FPE Floating-point exception

16-31 — Reserved

Table 4.3 (Cont.)
Cause Register
ExcCode Field

Exception
Code Value Mnemonic Description

(Sheet 2 of 2)

31 2 1 0

Exception Program Counter R



Exception Handling Registers 4-19

4.3.9
Processor
Revision
Identifier
Register (15)

The Processor Revision Identifier (PRId) is a 32-bit, read-only register
that contains information identifying the implementation and revision level
of the CW4010 core, as shown in Figure 4.11.

Figure 4.11
PRId Register

R Reserved [31:16]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

IMP Implementation Number [15:8]
The value in this field represents the core’s
implementation number. This field can be programmed at
the core interface using the iMPLop[3:0] lines.

REV Revision Number [7:0]
The value of this field is interpreted as a processor unit
revision number. The revision number is a value of the
form y.x, where y is a major revision number in bits [7:4]
and x is a minor revision number in bits [3:0]. This field
can be programmed at the core interface using the
REVLop[3:0] lines.

The revision number can distinguish between some chip
revisions. However, LSI Logic does not guarantee that
changes to this core will necessarily be reflected in the
PRId register, or that changes to the revision number
necessarily reflect real core changes. For this reason,
these values are not listed and software should not rely
on the revision number in the PRId register to
characterize the core.

31 16 15 8 7 0

R IMP REV



4-20 CW4010 Exception Processing

4.3.10
Configuration
and Cache
Control (CCC)
Register (16)

The Configuration and Cache Control (CCC) register allows software to
configure various pieces of the CW4010 design (for example, BIU, TLB,
and Cache Controllers). Figure 4.12 shows the format of the CCC
register.

Figure 4.12
CCC Register

R Reserved [31:28]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

SDB Scan Debug Mode 27
This bit enables the Scan Debug mode. The bit is set to
1 to enable the mode and cleared to 0 to disable the
mode.

ISR1 Icache Scratchpad RAM 26
This bit enables the Icache to be used as a scratchpad
RAM. Setting the bit to 1 enables scratchpad RAM mode.
Clearing it to 0 disables scratchpad RAM mode.

EVI External Vectored Interrupt 25
This bit enables and disables external vectored interrupt.
Setting the bit to 1 enables the interrupt and clearing it
to 0 disables the interrupt.

CMP R3000 Compatibility 24
This bit enables and disables R3000 Compatibility mode.
Setting the bit to 1 enable the mode and clearing it
disables the mode.

IIE Icache Invalidate Enable 23
This bit enables and disables the Icache invalidate
request. Setting the bit to 1 enables the request and
clearing it to 0 disables the request.

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
D
B

I
S
R
1

E
V
I

C
M
P

I
I
E

D
I
E

M
U
L

M
A
D

T
M
R

B
G
E

I
E
0

I
E
1

I
S

[1:0]

D
E
0

D
E
1

DS
[1:0]

I
P
W
E

IPWS
[1:0]

T
E

W
B

S
R
0

S
R
1

I
s
C

T
A
G

I
N
V

MD96.150



Exception Handling Registers 4-21

DIE Dcache Invalidate Enable 22
This bit enables and disables the Dcache invalidate
request. Setting the bit to 1 enables the request and
clearing it to 0 disables the request.

MUL Multiplier Enable 21
This bit enables and disables the hardware multiplier.
Setting the bit to 1 enables the multiplier and clearing it
disables the multiplier.

MAD Multiplier Accumulate Extensions 20
This bit allows the multiplier to support accumulate
extensions. Setting the bit to 1 enables the feature and
clearing the bit disables the feature. When this bit is set,
MUL must also be set.

TMR Timer 19
Setting this bit to 1 enables the timer facility,
Count = Compare → P7.

BEG BIU Bus Enable Grant 18
This bit enables and disables the BIU bus grant. Setting
this bit to 1 enables the external bus master. Clearing it
to 0 allows the CW4010 core to ignore the external bus
master.

IE0 Icache Set-0 Enable 17
This bit enables and disables Set-0 of the Icache. Setting
the bit to 1 enables Set-0 and clearing it to 0 disables
Set-0.

IE1 Icache Set-1 Enable 16
This bit enables and disables Set-1 of the Icache. Setting
the bit to 1 enables Set-1 and clearing it to 0 disables
Set-1.

IS[1:0] Icache Size [15:14]
The IS[1:0] field determines the size of the Icache set.
The field is set as follows:

IS1 IS0 Cache Size

0 0 1K

0 1 2K

1 0 4K

1 1 8K



4-22 CW4010 Exception Processing

DE0 Dcache Set-0 Enable 13
This bit enables and disables Set-0 of the Dcache.
Setting the bit to 1 enables Set-0 and clearing it to 0
disables Set-0.

DE1 Dcache Set-1 Enable 12
This bit enables and disables Set-1 of the Dcache.
Setting the bit to 1 enables Set-1 and clearing it to 0
disables Set-1.

DS[1:0] Dcache Size [11:10]
The DS[1:0] field determines the size of the Dcache set.
The field is set as follows:

IPWE In-Page Write Enable 9
This bit enables and disables in-page write operations.
Setting the bit to 1 enables in-page write and clearing it
to 0 disables in-page write.

IPWS[1:0] In-Page Write Size [8:7]
The IPWS[1:0] field determines the size of the Icache for
in-page write operations. The field is set as follows:

TE TLB Enable 6
This bit enables and disables the TLB. Setting the bit to 1
enables the TLB and clearing the bit to 0 disables the
TLB.

IDS1 DS0 Cache Size

0 0 1K

0 1 2K

1 0 4K

1 1 8K

IPWS1 IPWS0 In-Page Write Size

0 0 1K

0 1 2K

1 0 4K

1 1 8K



Exception Handling Registers 4-23

WB WriteBack 5
This bit defines operation for addresses not mapped by
the TLB. Setting the bit to 1 enables a WriteBack
operation and clearing it to 0 enables a WriteThrough
operation.

SR0 Scratchpad RAM Mode Set-0 4
This bit enables and disables scratchpad RAM mode for
Set-0 of the Dcache. Setting the bit to 1 enables
scratchpad mode and clearing it to 0 disables scratchpad
mode.

SR1 Scratchpad RAM Mode Set-1 3
This bit enables and disables scratchpad RAM mode for
Set-1 of the Dcache. Setting the bit to 1 enable
scratchpad mode and clearing it to 0 disables scratchpad
mode.

IsC Isolate Cache 2
This bit enables isolate cache mode. This means that
stores to the cache are not propagated to external
memory. Setting the bit to 1 enables the mode and
clearing it to 0 disables the mode.

TAG Tag Test Mode 1
This bit enables and disables tag test mode, which is
used for cache maintenance. Setting the bit to 1 enables
the mode and clearing it to 0 disables the mode.

INV Invalidate Cache Mode 0
This bit enables and disables cache invalidate mode,
which is used for cache maintenance. Setting the bit to 1
enables the mode and clearing it to 0 disables the mode.

4.3.11
Load Linked
Address
(LLAddr)
Register (17)

The Load Linked Address (LLAddr) register is a read/write register that
contains the physical address (PAddr[31:2]) read by the most recent
Load Linked instruction. This register is used for diagnostic purposes
only, and serves no function during normal operation. The LLAddr
register is physically located in the LSU. The CP0 must send read/write
signals to the LSU when the value of the register is to be read or written.



4-24 CW4010 Exception Processing

Figure 4.13 shows the format of the LLAddr register. Bits [31:2] contain
the PAddr[31:2]. Bits [1:0] are reserved and cleared to 0.

Figure 4.13
LLAddr Register

4.3.12
Breakpoint
Program
Counter (BPC)
Register (18)

The Breakpoint Program Counter (BPC) register is a read/write register
that software uses to specify a program counter breakpoint. The BPC
register is used in conjunction with the Breakpoint PC Mask register,
described in Section 4.3.14, “Breakpoint PC Mask (BPCM) Register (20)”
on page 4-25.

Figure 4.14 shows the format of the 32-bit BPC register. Bits [31:2] make
up the Breakpoint Program Counter. Bits [1:0] are reserved and cleared
to 0.

Figure 4.14
BPC Register

4.3.13
Breakpoint Data
Address (BDA)
Register (19)

The Breakpoint Data Address (BDA) register is a read/write register that
software uses to specify a virtual data address breakpoint. The BDA
register is used in conjunction with the Breakpoint Data Address Mask
register described in Section 4.3.15, “Breakpoint Data Address Mask
(BDAM) Register (21)” on page 4-25.

Figure 4.15 shows the format of the 32-bit BDA register. Bits [31:0] make
up the BDA.

Figure 4.15
BDA Register

31 2 1 0

PAddr[31:2] R

31 2 1 0

Breakpoint Program Counter R

31 0

Breakpoint Data Address



Exception Handling Registers 4-25

4.3.14
Breakpoint PC
Mask (BPCM)
Register (20)

The Breakpoint Program Counter Mask (BPCM) register is a read/write
register that masks bits in the BPC register. A 1 in any bit in the BPCM
register indicates that the CW4010 compares the value of the bit with the
corresponding bit in the BPC register for program counter (debug)
exceptions. Values of 0 in the mask indicate that the CW4010 does not
check the corresponding bits in the BPC register.

Figure 4.16 shows the format of the 32-bit BPCM register. Bits [31:2]
make up the mask. Bits [1:0] are reserved and cleared to 0.

Figure 4.16
BPCM Register

4.3.15
Breakpoint Data
Address Mask
(BDAM)
Register (21)

The Breakpoint Data Address Mask (BDAM) register is a read/write
register that masks bits in the BDA register. A 1 in any bit in the BDAM
register indicates that the CW4010 compares the value of the bit with the
corresponding bit in the BDA register for data address (debug)
exceptions. Values of 0 in the mask indicate that the CW4010 does not
check the corresponding bits in the BDA register.

Figure 4.17 shows the format of the 32-bit BDAM register. Bits [31:0]
make up the BDAM.

Figure 4.17
BDAM Register

31 2 1 0

Breakpoint Program Counter Mask R

31 0

Breakpoint Data Address Mask



4-26 CW4010 Exception Processing

4.3.16
Rotate Register
(23)

The Rotate register is used by the CW4010 instruction set extensions.
Select and rotate left (SELSL), and select and rotate right (SELSR) use
the lower five bits of the register [4:0] as the shift count. This is useful
for data alignment operations in graphics and in bit-field selection
routines for data transmission and compression applications.

Even though the Rotate register resides in the CP0, User-mode access
to the register is always granted, regardless of the value contained in the
Cu0 bit of the Status register.

Figure 4.18 shows the format of the Rotate register.

Figure 4.18
Rotate Register

R Reserved [31:5]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

Rotate Rotate [4:0]
This field determines the shift count.

4.3.17
Circular Mask
(CMask)
Register (24)

The Circular Mask (CMask) register is used by the CW4010 instruction
set extensions. The Load/Store word/halfword/byte with update circular
instructions store a value in the destination register and update the base
address register with the addition of base + offset, which is modified
according to the value of bits [4:0]. This feature is important in DSP
(Digital Signal Processing) and other applications that use circular
buffers.

Even though the Circular Mask register resides within the CP0, User-
mode access is always granted to the register, regardless of the value
contained in Status[Cu0].

Figure 4.19 shows the format of the CMask register.

31 5 4 0

R Rotate



Exception Handling Registers 4-27

Figure 4.19
CMask Register

R Reserved [31:5]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

CMask Circular Mask [4:0]
This field contains the circular mask.

4.3.18
Error Exception
Program
Counter (Error
EPC) Register
(30)

The Error Exception Program Counter (Error EPC) register is similar to
the EPC. It stores the PC (Program Counter) on cold reset, warm reset,
and NMI exceptions. The read/write Error EPC register contains the
virtual address at which instruction processing can resume after the
interrupt has been serviced. The address may be either:

♦ The virtual address of the first instruction terminated by the exception

♦ The virtual address of the immediately preceding branch or jump
instruction when the terminated instruction is in a Branch Delay slot.

Figure 4.20 shows the format of the Error EPC register. Bits [31:2] make
up the Error EPC. Bits [1:0] are reserved and cleared to 0. There is no
Branch Delay slot indication for the Error EPC register.

Figure 4.20
Error EPC Register

31 5 4 0

R CMask

31 2 1 0

Error EPC R



4-28 CW4010 Exception Processing

4.4
Exception
Description
Details

This section describes each of the CW4010 exceptions, what causes
them, and how they are handled and serviced.

4.4.1
Exception
Operation

To handle an exception, the processor saves the current operating state,
enters Kernel mode, disables interrupts, and forces execution of a
handler at a fixed address. To resume normal operation, the operating
state must be restored and interrupts enabled.

When an exception occurs, the EPC register is loaded with the restart
location at which execution can resume after the exception has been
serviced. The EPC register contains the address of the instruction
associated with the exception, or, if the instruction was executing in a
Branch Delay slot, the EPC register contains the address of the branch
instruction immediately preceding.

4.4.1.1 R4000 Mode Operation (Default After Cold Reset)

The CW4010 processor uses the following mechanisms for saving and
restoring the operating mode and interrupt status:

♦ A single interrupt enable bit (IE) located in the Status register.

♦ A base operating mode (User, Kernel) located in the KSU field of the
Status register.

♦ An exception level (normal, exception) located in the EXL field of the
Status register.

♦ An error level (normal, error) located in the ERL field of the Status
register.

Interrupts are enabled by setting the IE bit to 1 and both levels (EXL,
ERL) to normal.

Table 4.4 shows how the current processor operating mode is defined.

Table 4.4
Current Processor
Mode

Current Mode Status KSU[1:0] Status EXL Status ERL

User
Kernel
Kernel
Kernel

10
00
xx
xx

0
0
1
0

0
0
0
1



Exception Description Details 4-29

Exceptions set the exception level to exception (EXL = 1). The exception
handler typically resets the exception level to normal (EXL = 0) after
saving the appropriate state. It sets it back to exception while restoring
that state. Returning from an exception (ERET instruction) resets the
exception level to normal.

4.4.1.2 R3000 Mode Operation

The R3000 mode of operation is much simpler than the R4000 mode.
The current processor operating state is always defined by the KUc bit
(0 –> Kernel, 1 –> User). The basic mechanism for saving and restoring
the operating state of the processor is the Kernel/User (KU) and Interrupt
Enable (IE) stack located in the bottom six bits of the Status register.

When responding to an exception, the current mode bits (KUc/IEc) are
saved into the previous mode bits (KUp/IEp); the previous mode bits are
saved into the old mode bits (KUo/IEo); and the current mode bits
(KUc/IEc) are both cleared to 0.

After exception processing has been completed, the saved state is
restored using the RFE instruction, which causes the previous mode bits
to be copied back into the current mode bits and the old mode bits to be
copied back into the previous mode bits. The old mode bits are left
unchanged.

4.4.1.3 Exception Processing Diagrams

Figures 4.21 through 4.25 show the basic set of actions taken for each
of the major CW4010 exception classes: Cold Reset, Warm Reset, Non-
Maskable Interrupt, Common, Debug, and External Vectored Interrupt.

Figure 4.21
Cold Reset
Exception

Figure 4.22
Warm Reset, NMI
Exceptions

Random ←TLBENTRIES - 1
Wired ←0
CCC←032
DCS ←032
ErrorPC ←PC
SR ←04 || SR[27:23] || 1 || 0 || 0 || SR[19:3] || 1 || SR[1:0]
PC ←0xBFC0 0000

ErrorPC ←PC
if (CCC24 = 0) then
    SR ←SR[31:23] || 1 || 0 || 1 || SR[19:3] || 1 || SR[1:0]
else
    SR ←SR[31:23] || 1 || 0 || 1 || SR[19:6] || SR[3:0] || 02
endif
PC ←0xBFC0 0000



4-30 CW4010 Exception Processing

Figure 4.23
Common
Exceptions

Figure 4.24
Debug Exception

Figure 4.25
External Vectored
Interrupt Exception

Cause ←BD || BT || CE || 012 || Cause[15:8] || 0 || ExcCode || 02
if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR{31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 02
endif
if (SR22 = 1) then
    if (CCC24 = 0) then
         PC ←0xBFC0 0200 + vector offset
    else
         PC ←0xBFC0 0100 + vector offset
    endif
else
    PC ←0x8000 0000 + vector offset
endif

DCS ←DCS[31:6] || T || W || R || DA || PC || DB
Cause ←BD || BT || Cause[29:0]
if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR[31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 02
endif
if (SR22 = 1) then
    if (CCC24 = 0) then
         PC ←0xBFC0 0200 + vector offset
    else
         PC ←0xBFC0 0100 + vector offset
    endif
else
    PC ←0x8000 0000 + vector offset
endif

Cause ←BD || BT || Cause[29:0]
if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR[31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 02
endif
PC ←EXVAp[31:2] || 02



Exception Description Details 4-31

4.4.2
Precision of
Exceptions

Exceptions are logically precise. This means that the instruction that
causes an exception and all those that follow it are aborted, generally
before committing to any state; execution picks up where it left off before
the exception; and the instruction can be re-executed after the exception
has been serviced. When following instructions are killed, exceptions
associated with those instructions are also killed, so that exceptions are
not taken in the order detected, but in the instruction fetch order.

Interrupts generated by external devices attached to the processor have
a variety of meanings, depending on the system environment into which
the CW4010 core is designed. Variations in memory system design can
affect the meaning of bus error exceptions and the location and means
of accessing relevant parameters to service them. As far as possible, this
architectural description of the exception handling system details which
state information is reliable and which is unreliable.

In some cases, however, the characteristics of the pipeline staging
cannot guarantee that all states in the processor and associated system
will remain completely unchanged. This is because it is possibly the
incomplete execution of instructions immediately following an instruction
that has caused an exception. State changes that may occur include the
following:

♦ Instructions may be read from memory and loaded into the
instruction cache.

♦ The multiply/divide registers (HI and LO) may have been altered by
a MULT/MULTU, DIV/DIVU, or MTHI/MTLO instruction.

These changes can normally be ignored because the state of the
machine is sufficiently restored, allowing execution to resume after the
exception has been serviced.

4.4.3
Exception
Vector
Locations

The Cold Reset, Warm Reset, and NMI exceptions are always vectored
to location 0xBFC00000. Addresses for other exceptions are a
combination of a vector offset and a base address, and they are
determined by the BEV bit of the Status register. Table 4.5 shows the
vector base addresses and Table 4.6 shows the vector offsets.



4-32 CW4010 Exception Processing

Table 4.5
Exception Vector
Base Addresses

Table 4.6
Exception Vector
Offset Addresses

4.4.4
Priority of
Exceptions

While more than one exception can occur for a single instruction, only
one exception is reported. Table 4.7 shows the priority order given to the
exception, with Cold Reset having the highest priority.

Table 4.7
Exception Priority
Order

4.4.5
Cold Reset
Exception

The primary purpose of a cold reset is to initialize the CW4010 core at
power up. This section describes the cause of and response to a Cold
Reset exception.

BEV
R4000 Mode
(CCC24 = 0)

R3000 Mode
(CCC24 = 1)

0 0x80000000 0x80000000

1 0xBFC00200 0xBFC0100

Exception
R4000 Mode
(CCC24 = 0)

R3000 Mode
(CCC24 = 1)

TLB refill 0x000
(EXL = 0)

0x000
(kuseg access)

Debug 0x040 0x040

All Others 0x180 0x080

Priority

Cold Reset
Warm Reset
NMI
Address Error - Instruction Fetch
TLB Refill - Instruction Fetch
TLB Invalid - Instruction Fetch
Bus Error
Integer Overflow, Trap, System Call, Breakpoint,
Reserved Instruction, CoProcessor Unusable, Floating-Point Error
Address Error - Data Access
TLB Refill - Data Access
TLB Invalid - Data Access
TLB Modified - Data Write
Interrupt
External Vectored Interrupt
Debug



Exception Description Details 4-33

4.4.5.1 Cause

The Cold Reset exception occurs when the CRESETn signal is asserted
and then deasserted. This exception is not maskable.

4.4.5.2 Handling

The CPU provides a special interrupt vector (0xBFC00000) for the Cold
Reset exception. The reset vector resides in unmapped and uncached
CPU address space, so the hardware need not initialize the TLB or the
cache to handle the exception. The processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the CPU are undefined when the Cold
Reset exception occurs except for the following:

♦ In the Status register, the CU[3:0] and SR bits are cleared to 0 and
the ERL and BEV bits are set to 1. Other bits are undefined

♦ The Random register is initialized to the value of its upper bound

♦ The Wired register is initialized to 0

4.4.5.3 Servicing

The Cold Reset exception is serviced by initializing all processor
registers, coprocessor registers, caches, and the memory system.
Servicing is accomplished by performing diagnostic tests, and by
bootstrapping the operating system.

4.4.6
Warm Reset
Exception

The primary purpose of the Warm Reset exception is to reinitialize the
processor after a fatal error. Unlike non-maskable interrupts, all cache
and bus state machines are reset by this exception. Like Cold Reset, it
can be used on the processor in any state. The caches, TLB, and normal
exception vectors need not be properly initialized. This section describes
the cause of and response to a Warm Reset exception.

4.4.6.1 Cause

The Warm Reset exception occurs when the WRESETn signal is
asserted and then deasserted. This exception is not maskable.



4-34 CW4010 Exception Processing

4.4.6.2 Handling

The reset exception vector (0xBFC00000) is used for this exception. The
vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to handle the
exception. The SR bit of the Status register is set to distinguish between
a Warm Reset exception and a Cold Reset exception.

The contents of all registers are preserved when the Warm Reset
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC (Program
Counter

♦ The BEV and SR bits of the Status register, which are set to 1

♦ R4000 mode, in which the ERL bit is set to 1

♦ R3000 mode, in which KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0

Because Warm Reset can abort cache and bus operations, cache and
memory state is undefined when the Warm Reset exception occurs.
Refer to Figure 4.8, on page 4-16 for further information.

4.4.6.3 Servicing

The Warm Reset exception is serviced by saving the current processor
state for diagnostic purposes, and reinitializing in a manner similar to that
for the Cold Reset exception.

4.4.7
Non-Maskable
Interrupt (NMI)
Exception

Non-Maskable interrupts cannot be disabled. They occur when a
catastrophic event, such as power failure, requires immediate attention
to maintain system integrity.

4.4.7.1 Cause

The Non-Maskable Interrupt exception occurs in response to the falling
edge of the NMI pin. As the name implies, the NMI exception is not
maskable, and occurs regardless of the settings of the EXL, ERL, and IE
Status register bits.

4.4.7.2 Handling

The reset exception vector (0xBFC00000) is also used for this exception.
The reset vector resides in unmapped and uncached CPU address



Exception Description Details 4-35

space, so the hardware need not initialize the TLB or the cache to handle
the NMI interrupt. The SR bit of the Status register is set to differentiate
the NMI exception from a Cold Reset exception.

Because an NMI could occur in the middle of another exception, it is
generally not possible to continue program execution after servicing an
NMI.

Unlike Cold and Warm Reset, but in common with other exceptions, NMI
is taken only at instruction boundaries. The states of the caches and
memory system are preserved by this exception.

The contents of all registers in the CPU are preserved when this
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC

♦ The BEV and SR bits of the Status register, which are set to 1

♦ R4000 mode, in which the ERL bit is set to 1

♦ R3000 mode, in which KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0

4.4.7.3 Servicing

The NMI exception is serviced by saving the current processor state for
diagnostic purposes and reinitializing the system in a manner similar to
that for the Cold Reset exception.

4.4.8
Address Error
Exception

This section describes the cause of and response to an Address Error
exception.

4.4.8.1 Cause

The Address Error exception occurs when an attempt is made to:

♦ Load, fetch, or store a word that is not aligned on a word boundary

♦ Load or store a halfword that is not aligned on a halfword boundary

♦ Reference the Kernel address space from User mode

The Address Error exception is not maskable.



4-36 CW4010 Exception Processing

4.4.8.2 Handling

The common exception vector is used for this exception. The Cause
register ExcCode is set based on the type of reference that caused the
exception: AdEL for a data load or instruction fetch, AdES for a data
store operation.

When the Address Error exception occurs, the BadVAddr register retains
the virtual address that was not properly aligned or that referenced
protected address space. The contents of the VPN field of the Context
and EntryHi registers are undefined, as are the contents of the EntryLo
register.

The EPC register points at the instruction that caused the exception
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

4.4.8.3 Servicing

The process executing at the time should be handed a “segmentation
violation” signal. This error is usually fatal to the process incurring the
exception.

4.4.9
TLB Refill
Exception

This section describes the cause of and response to a TLB Refill
exception.

4.4.9.1 Cause

The TLB Refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

4.4.9.2 Handling

A special TLB Refill exception vector is for this exception. The Cause
register ExcCode is set based on the type of reference that caused the
exception: TLBL for a data load or instruction fetch and TLBS for a data
store operation.

When the TLB refill exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in



Exception Description Details 4-37

which to place the replacement TLB entry. The contents of the EntryLo
register are undefined.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

R4000 mode – This special exception vector is used when the exception
level (at the time of TLB miss detection) is set to normal
(EXL = 0). If the exception level is exception (EXL = 1), the common
exception vector is used.

R3000 mode – This special exception vector is used when User or
Kernel mode references to user memory space (kuseg) do not find a
matching entry in the TLB. If the reference is to kernel memory space
(kseg0:2), the common exception vector is used.

4.4.9.3 Servicing

To service this exception, the contents of the Context register are used
as a virtual address to fetch memory locations containing the physical
page frame and access control bits for a TLB entry. This information is
placed in the EntryHi and EntryLo registers and written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the
TLB. In this case, a TLB refill exception is allowed inside the TLB Refill
handler. While the first exception goes to a special exception vector
offset (0x000), the second exception goes to the common exception
vector offset (0x180).

The second TLB refill exception obscures the contents of the BadVAddr,
Context, and EntryHi registers within the TLB Refill handler. As a result,
the exact virtual address whose translation caused the first fault is not
known unless the TLB Refill handler specifically saved this address. It is
possible to observe only the failing PTE virtual address. The BadVAddr
register now contains the original contents of the Context register within
the TLB Refill handler, which is the PTE address for the original failing
address.

The operating system can determine the original virtual page number
that caused the fault, but not the complete address. The operating



4-38 CW4010 Exception Processing

system uses this information to fetch the PTE that contains the physical
address and to access control information. It also writes the entry into
the TLB and returns to the original user program.

Returning to the TLB Refill handler at this point should be avoided.

R4000 mode – When the EXL bit is set, it prevents the EPC from the
first TLB refill exception from being overwritten by the second TLB refill
exception. Consequently, the appropriate return address can be
determined from the values of the current EPC and the BD bit of the
Status register.

R3000 mode – The TLB Refill handler must save the first refill EPC and
Status[BD] information in a way that allows the second refill to find it.
Using this “saved” EPC register and Status[BD] information, the
appropriate return address can be determined.

4.4.10
TLB Invalid
Exception

This section describes the cause of and response to a TLB Invalid
exception.

4.4.10.1 Cause

The TLB Invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid. This exception is not
maskable.

4.4.10.2 Handling

The common exception vector is used for this exception. The Cause
register ExcCode is set based on the type of reference that caused the
exception: TLBL for a data load or instruction fetch, TLBS for a data store
operation.

When the TLB Invalid exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a Branch Delay slot. If the instruction is in a



Exception Description Details 4-39

Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

4.4.10.3 Servicing

The valid bit of the TLB entry is typically cleared when:

♦ A virtual address does not exist

♦ The virtual address exists, but is not in main memory (a page fault)

♦ A trap is desired on any reference to the page (for example, to
maintain a reference bit)

After servicing the cause of this exception, the TLB entry is located with
the TLB Probe (TLBP) instruction, and replaced by an entry with the valid
bit set.

4.4.11
TLB Modified
Exception

This section describes the cause of and response to a TLB Modified
exception.

4.4.11.1 Cause

The TLB Modified exception occurs during a store operation when the
virtual address reference to memory matches a TLB entry that is marked
valid but is not dirty or writable. This exception is not maskable.

4.4.11.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to the Mod.

When the TLB Modified exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction, and the BD bit of the Cause register is set.



4-40 CW4010 Exception Processing

4.4.11.3 Servicing

The Kernel uses the failed virtual address and virtual page number to
identify the corresponding access control information. The page identified
may or may not permit write access. If writes are not permitted, a Write
Protection Violation has occurred.

If write access is permitted, the Kernel marks the page frame as
dirty/writable in the Kernel’s own data structures. The TLBP instruction is
used to place the index of the TLB entry that must be altered in the Index
register. The EntryLo registers are loaded with physical page frame and
access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

4.4.12
Bus Error
Exception

This section describes the cause of and response to a Bus Error
exception.

4.4.12.1 Cause

The Bus Error exception occurs when signaled by board-level circuitry for
events such as bus time-out, bus parity errors, and invalid physical
memory accesses. This exception is not maskable.

In the CW4010, Bus Errors are asynchronous events with respect to
CPU instruction processing (much like the NMI interrupt). This means
that there is no attempt to identify the instruction that was the root source
of the error.

4.4.12.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to Bus.

The EPC register points at the first instruction for which processing did
not complete unless the instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

4.4.12.3 Servicing

The physical address at which the fault occurred is not available to the
exception handler. The process executing at the time of the exception
must be handed a “bus error” signal, which is usually fatal.



Exception Description Details 4-41

4.4.13
Integer
Overflow
Exception

This section describes the cause of and response to an Integer Overflow
exception.

4.4.13.1 Cause

The Integer Overflow exception occurs when an ADD, ADDI, SUB,
DADD, DADDI, or DSUBI instruction results in a two’s complement
overflow. This exception is not maskable.

4.4.13.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to OV.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

4.4.13.3 Servicing

The process executing at the time of the exception should be handed an
“integer overflow” signal. This error is usually fatal to the current process.

4.4.14
Trap Exception

This section describes the cause of and response to a Trap exception.

4.4.14.1 Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE
condition. This exception is not maskable.

4.4.14.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to TR.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.



4-42 CW4010 Exception Processing

4.4.14.3 Servicing

The process executing at the time of the exception should be handed a
“trap” signal. This error is usually fatal.

4.4.15
System Call
Exception

This section describes the cause of and response to a System Call
exception.

4.4.15.1 Cause

The System Call exception occurs when an attempt is made to execute
the SYSCALL instruction. This exception is not maskable.

4.4.15.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to Sys.

The EPC register points at the SYSCALL instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in the Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

4.4.15.3 Servicing

When this exception occurs, control is transferred to the applicable
system routine. To resume execution, the routine must restart instruction
execution after the SYSCALL instruction. This restart address can be
computed using the EPC register along with the BD and BT bits in the
Cause register.

♦ If (BD = 0) then Restart_PC = EPC + 4

♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

It is up to the exception handler to obtain the Branch Target Address from
the prior branch when the SYSCALL instruction resides in a Branch
Delay slot.



Exception Description Details 4-43

4.4.16
Breakpoint
Exception

This section describes the cause of and response to a Breakpoint
exception.

4.4.16.1 Cause

The Breakpoint exception occurs when an attempt is made to execute
the BREAK instruction. This exception is not maskable.

4.4.16.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to BP.

The EPC register points at the BREAK instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

4.4.16.3 Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made from the
unused bits of the BREAK instruction (bits [25:6]), by loading the
contents of the instruction at which the EPC register points. (A value of
four must be added to the EPC register to locate the instruction if it
resides in a Branch Delay slot).

To resume execution, the routine must start executing the instruction
again after the BREAK instruction. The restart address can be computed
using the EPC register along with the BD and BT bits held in the Cause
register.

♦ If (BD = 0) then Restart_PC = EPC + 4

♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

When the BREAK instruction resides in a Branch Delay slot, it is up to
the exception handler to obtain the Branch Target Address from the prior
branch.



4-44 CW4010 Exception Processing

4.4.17
Reserved
Instruction
Exception

This section describes the cause of and response to a Reserved
Instruction exception.

4.4.17.1 Cause

The Reserved Instruction exception occurs when an attempt is made to
execute an instruction whose major opcode (bits [31:26]) are undefined,
or a SPECIAL instruction whose minor opcode (bits [5:0]) are undefined.
This exception also occurs on a REGIMM instruction whose minor
opcode (bits [20:16]) are undefined. This exception is not maskable.

4.4.17.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to RI.

The EPC register points at the BREAK instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

4.4.17.3 Servicing

The Reserved Instruction exception can be used to trap to emulation
routines for instructions not supported in the CW4010 instruction set.
Once emulation has been completed, execution can be resumed using
the EPC register along with the BD and BT bits in the Cause register.

♦ If (BD = 0) then Restart_PC = EPC + 4

♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

When the instruction receiving a Reserved Instruction exception resides
in a Branch Delay slot, it is up to the exception handler to obtain the
Branch Target Address from the prior branch.

If there is no emulation routine, the process executing at the time of the
exception should be given an “illegal instruction” signal. This error is
usually fatal.



Exception Description Details 4-45

4.4.18
Floating-Point
Exception

This section describes the cause of and response to a floating-point
exception.

4.4.18.1 Cause

The Floating-Point exception is used by the floating-point coprocessor (if
installed). The contents of the Floating-Point Control Status register
(inside CP1) indicate the cause of the exception.

4.4.18.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to FPE.

The EPC register points at the first instruction for which processing was
not completed unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

4.4.18.3 Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control Status register. For an unimplemented instruction
exception, the Kernel should emulate the instruction. For other
exceptions, the Kernel should pass the exception to the user process that
caused the exception.

4.4.19
Coprocessor
Unusable
Exception

This section describes the cause of and response to a Coprocessor
Unusable exception.

4.4.19.1 Cause

The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either a corresponding
coprocessor unit that has not been marked usable, or for CP0
instructions, when the unit has not been marked usable and the process
is executing in User mode.

This exception is not maskable.



4-46 CW4010 Exception Processing

4.4.19.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to CPU. The contents of the CE field in
the Cause register indicate the coprocessor to which an attempted
reference has been made.

The EPC register points at the instruction that caused the exception
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

4.4.19.3 Servicing

The coprocessor unit to which an attempted reference was made is
identified by the CE field of the Cause register. The result is one of the
following:

♦ If the process is entitled to access, the coprocessor is marked usable
and the corresponding user state is restored.

♦ If the process is entitled to access the coprocessor, but the
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

♦ If the process is not entitled to access the coprocessor, the process
executing at the time should be given some sort of “Illegal/Privileged
Instruction” signal. This error is usually fatal.

4.4.20
Debug
Exception

This section describes the cause of and response to a Debug exception.

4.4.20.1 Cause

The Debug exception occurs when a debug condition (read/write access
at Breakpoint Data Address, read access at Breakpoint Program
Counter, Trace) is detected by the CP0. The Debug Control and Status
(DCS) register specifies which event was detected.

R4000 mode – In R4000 mode, the debug exception can be masked by
setting the EXL bit in the Status register. When this bit is set, a debug event
does not cause an exception trap even if the DCS[TE] bit is set to 1.
However, the status bits of the DCS register are updated to indicate that
an event was recognized.



Exception Description Details 4-47

R3000 mode – In R3000 mode, the debug exception is not maskable.

4.4.20.2 Handling

The Debug exception vector handles this exception.

4.4.20.3 Servicing

The Debug exception is a debugging aid. Typically the exception handler
transfers control to a debugger, allowing you to examine the situation.
The debug exception condition must be disabled to execute the failing
instruction and then re-enabled.

Notes:

1. The Trace status bit (DCS5) is set whenever a branch instruction is
encountered regardless of whether the branch is actually taken.
However, if the debug exception trap is enabled (DCS31 = 1), an
exception is recognized only if the branch is taken and the target
instruction executed.

2. The Program Counter debug status bit (DCS1) is set whenever the
target address of a branch falls within the specified PC address
range (BPC, BPCM) regardless of whether the branch is actually
taken. However, if the debug exception trap is enabled (DCS31 = 1),
an exception is recognized only if the branch is taken and the target
instruction executed.

4.4.21
Interrupt
Exception

This section describes the cause of and response to an Interrupt
exception.

4.4.21.1 Cause

The Interrupt exception occurs when one of the eight interrupt conditions
is asserted. The significance of these interrupts depends on the specific
system implementation. Each of the eight interrupts can be masked by
clearing the corresponding bit in the Int-Mask field of the Status register.
All eight interrupts can be masked at once by clearing the IE bit of the
Status register.

4.4.21.2 Handling

The common exception vector is used for this exception. The ExcCode
field in the Cause register is set to INT.



4-48 CW4010 Exception Processing

The IP field of the Cause register indicates the current interrupt requests.
It is possible that more than one of the bits will be set at the same time,
or that no bits will be set if an interrupt is asserted and then deasserted
before the Cause register is read.

The EPC register points at the first instruction for which processing was
not completed unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

4.4.21.3 Servicing

If the interrupt is caused by one of the two software generated
exceptions, the interrupt condition is cleared by setting the corresponding
Cause register bit to 0.

If the interrupt is hardware generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

4.4.22
External
Vectored
Interrupt
Exception

The CW4010 implements an external vectored interrupt interface, which
consists of an interrupt input (EXViNTn), interrupt vector virtual address
input (EXVAp[31:2]), and interrupt accepted output (EXVAEn). The
signals must be asserted and deasserted on the rising edge of the
system clock. This interrupt class can be enabled or disabled using the
EVI bit in the CCC register (enabled when CCC24 = 1). This section
describes the cause of and response to an external vectored interrupt
exception.

4.4.22.1 Cause

An external vectored interrupt occurs when the EXViNTn is asserted.
The significance of this interrupt depends on the specific system
implementation. The interrupt can be masked by clearing the IE
(R3000 = IEc) bit of the Status register.

4.4.22.2 Handling

The virtual address specified by the EXVAp[31:2] interface is used to
specify the target exception handling routine. The EXVAp[31:2] address
must be provided by a user-defined interrupt controller. The EXViNTn
and EXVAp[31:2] inputs must be held stable and valid until the exception



Exception Description Details 4-49

is accepted. This is indicated by the assertion of the EXVAEn output for
one cycle.

The EPC register points at the first instruction for which processing was
not completed unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set
as an indicator.

4.4.22.3 Servicing

The interrupt condition can be cleared in the user-defined interrupt
controller in one of two ways: by detecting the assertion of the interrupt
accepted output (EXVAEn), or by correcting the condition causing the
interrupt pin (EXViNTn) to be asserted.



4-50 CW4010 Exception Processing



5-1

Chapter 5
CW4010 Memory
Management

This chapter describes the System Coprocessor (Coprocessor-0) and
Memory Management. It contains the following sections:

♦ Section 5.1, “TLB Physical Organization,” on page 5-1

♦ Section 5.2, “Memory Management System,” on page 5-3

♦ Section 5.3, “Virtual Memory and the TLB,” on page 5-5

5.1
TLB Physical
Organization

The physical implementation of the TLB consists of two main parts:

1. A two-entry instruction TLB (iTLB).

2. A 64-entry joint TLB (jTLB) that holds both instruction fetch and data
access page translations.

The CP0 can receive virtual address translation requests from both the
ISU (instruction fetch unit) and the LSU (operand data access) during the
same cycle. For maximum performance, address translations must occur
in parallel. The two-piece TLB structure shown in Figure 5.4 addresses
this problem by creating a separate two-entry TLB to be used for
instruction fetch translations. With this structure, ISU and LSU fetches
can be independently processed.



5-2 CW4010 Memory Management

Figure 5.1
TLB Block Diagram

The iTLB holds the two most recently used instruction fetch page
translations. If a valid translation cannot be found in the iTLB, the CP0
must stall the pipeline for two cycles and search the jTLB for a valid entry.
If the CP0 finds a valid entry in the jTLB, it copies it into the less recently
used iTLB entry and processing continues. If a valid entry cannot be
found, a TLB exception must be posted (see Chapter 4, “CW4010
Exception Processing,” for details.)

The entries in the iTLB are purged when the EntryHi register is written
(for example, during a task switch). Consequently, the iTLB does not
need to keep an eight-bit ASID for each entry. This reduces storage and
match circuitry. This simplification should cause little or not performance
penalty, because the entries probably need to be replaced anyway.

When no TLB is present in the system, the TE field of the Configuration
and Cache Control (CCC) register is cleared to 0. This is transparent to
the other modules in the CW4010 core. The CP0 modifies its translation
behavior in the following manner:

♦ Physical Address[31:12] = Virtual Address[31:12]

ISU

LSU

iTLB

jTLB

VAdr[31:12]

PAdr[31:12]

VAdr[31:12]

PAdr[31:12]

Stall Pipe

iT
LB

 M
is

s

V
A

dr
[3

1:
12

]

T
LB

 e
nt

ry

CP0

S
ta

ll 
P

ip
e

(2 entries)

(64 entries)

MMU

1. VAdr = Virtual address
2. PAdr = Physical address

MD96.88



Memory Management System 5-3

(For kseg0 and kseg1, Physical Address [31:29] = 0); the same is
true with TLB present

♦ The caching algorithm used for each access is based on the address
segment being accessed (kuseg, kseg0, and kseg2 = cached;
kseg1 = uncached), and the CCC register fields (IE0, IE1, DE0, DE1,
and WB). Table 5.1 shows the caching algorithm criteria.

5.2
Memory
Management
System

The memory model used for the CW4010 processor is based on the
R3000. To extend the CPU’s address space, the virtual memory
translates addresses composed in a large virtual address space into the
physical memory system.

The CW4010 physical address space is 4 Gbytes and uses a 32-bit
address. The virtual address is also 32 bits wide, and the maximum user
process size is 2 Gbytes (231).

The virtual address is extended with an Address Space Identifier (ASID)
to reduce the frequency of the Translation Lookaside Buffer (TLB)
flushing when switching context. The size of the ASID is 8 bits. The ASID
is contained in the CP0 EntryHi register and is described in the
subsection entitled “EntryHi Register (10)” on page 5-9.

5.2.1
Operating
Modes

This section describes the two modes for 32-bit CW4010 operation:

♦ User mode, where non-supervisory programs are executed

♦ Kernel mode, which is analogous to the “supervisory” mode provided
by many machines

The CW4010 usually operates in User mode until an exception forces it
into Kernel mode. It remains in Kernel mode until a Restore From

Table 5.1
Caching Algorithm
Criteria

Address
Segment

Icache
Enabled

Ifetch
Cache Algorithm

Dcache
Enabled WB Dcache Algorithm

kuseg
kseg0
kseg2

0
1

Uncached
Cached

0
1
1

X
0
1

Uncached
Cached, WriteThrough
Cached, WriteBack

kseg1 X Uncached X X Uncached



5-4 CW4010 Memory Management

Exception instruction (R3000 mode), or Exception Return (R4000 mode)
instruction is executed to restore the processor to the mode existing prior
to the exception.

Address mapping is different for Kernel and User modes. To simplify the
management of user state from within the Kernel, the user-mode address
space is a subset of the Kernel-mode address space. Figure 5.2 shows
the virtual-to-physical memory map for both the User mode and Kernel
mode segments.

Figure 5.2
CW4010 Virtual
Memory Map

5.2.2
User Mode
Virtual
Addressing

In User mode, a single, uniform virtual address space (kuseg) of
2 Gbytes (231 bytes) is available. The User segment starts at address
0x0000 0000, and all valid accesses have the most-significant bit cleared
to zero. Referencing an address with the most significant bit set while in
User mode causes an Address Error exception. The TLB maps all
references to kuseg identically for either mode, and controls cache
accessibility. Kuseg is typically used to hold user code and data, as well

ffff ffff

c0000000
bfff ffff

a0000000
9fff ffff

80000000
7fff ffff

0000 0000

Kernel
Unmapped
Uncached

Kernel
Unmapped

Cached

Kernel
Mapped

Cacheable

User
Mapped

Cacheable

kuseg

kseg0

kseg1

kseg2

00000000

1fff ffff
20000000

Memory

ffff ffff

(4 Gbytes)

512 Mbytes

512 Mbytes

Virtual Physical

Any

Any

MD96.77



Virtual Memory and the TLB 5-5

as the current user process. The processor state definition of User and
Kernel modes description can be found in Section 4.3.6, “Status Register
(12)” on page 4-9.

5.2.3
Kernel Mode
Virtual
Addressing

The virtual address space is divided into regions, differentiated by the
high-order bits of the address, as shown in Figure 5.2 on page 5-4 and
as listed below.

5.3
Virtual Memory
and the TLB

Mapped virtual addresses are translated into physical addresses using
an on-chip Translation Lookaside Buffer (TLB). The TLB is a fully-
associative memory that holds 64 entries that provide mapping to 64
physical page frames. The address range mapped by a page can be
either 4 Kbytes or 16 Mbytes in size. When address mapping is
indicated, each TLB entry is simultaneously matched against the virtual
address extended by the current ASID stored in the EntryHi register.

If there is a match (hit), the physical page number is extracted from the
TLB and concatenated with the offset to form the physical address, as
shown in Figure 5.3.

kuseg Starts at virtual address 0x00000000 and is 2 Gbytes long. It allows
selective caching and mapping on a per-page basis, rather than requir-
ing an all or nothing approach. This segment overlaps Kernel memory
accesses with User memory accesses as described above.

kseg0 Starts at virtual address 0x80000000 and is 512 Mbytes long. CW4010
direct maps references within kseg0 onto the first 512 Mbytes of phys-
ical memory. These references use cache memory, but do not use the
TLB for address translation. Thus, kseg0 is typically used for kernel
executable code and some kernel data.

kseg1 Starts at virtual address 0xA0000000 and is 512 Mbytes long. CW4010
direct maps references within kseg1 onto the first 512 Mbytes of phys-
ical memory. These references do not use cache memory or the TLB
for address translation. Thus, kseg1 is typically used by operating sys-
tems for I/O registers, ROM code and disk buffers.

kseg2 Starts at virtual address 0xC0000000 and is 1024 Mbytes long. Like
kuseg, it uses TLB entries to map virtual addresses to arbitrary phys-
ical ones, with or without caching. An operating system typically uses
kseg2 for stacks and per-process data that must remap on context
switches. The operating system also uses kseg2 for user page tables
and some dynamically allocated data areas.



5-6 CW4010 Memory Management

Figure 5.3
CW4010 Virtual
Address Format

If no match occurs (a page miss), an exception is taken. Typically,
software refills the TLB from a page table maintained by the system.
Software can write over a selected TLB entry or use a hardware
mechanism to write into a random location.

The CW4010 does not support the TLB-shutdown (TS) bit in the Status
register, which indicates that more than one entry in the TLB matches
the virtual address being translated. If more than one TLB entry matches
the virtual address, the virtual address may be translated to an incorrect
physical address. System software must ensure that this situation is
never created.

Offset

OffsetASID

ASID

0

0

31

3139 32 28 1112

8 1217

8 8 24

Offset passed
unchanged

Offset passed
unchanged

Virtual to
physical

translation

Bits 31:29 select
User or Kernel
address spaces

Virtual address

Virtual address
039 32 24 23

32-bit Physical Address

VPN

VPN

with 4-Kbyte
page size

with 16-Mbyte
page size

MD96.78

Virtual to
physical

translation

29

3

31 29 28



Virtual Memory and the TLB 5-7

5.3.1
TLB Entry
Format

Figure 5.4 shows the 32-bit addressing TLB entry format the CW4010
uses. Each field of an entry has a corresponding field in the EntryHi,
EntryLo, or PageMask registers described in sections 5.3.2.1, 5.3.2.2,
and 5.3.2.3, beginning on page 5-9.

Figure 5.4
Format of CW4010 TLB
Entry

R Reserved [95:78, 76:64, 43:40, 31:26]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

M Mask 77
This bit is the Page Mask bit. It is set to 1 for a 16M page
and cleared to 0 for a 4K page.

VPN Virtual Page Number [63:44]
This field contains the Virtual Page Number.

ASID Address Space ID Field [39:32]
This field contains the Address Space ID.

PFN Page Frame Number [25:6]
This field contains the Page Frame Number. This is the
upper bits of the physical address.

C Cache [5:3]
This field contains the Cache algorithm, which specifies
whether references to the page should be cached. If the
references are to be cached, you can select one of two

95 78 77 76 64

63

31

MR R

R

VPN R ASID

PFN DC V G

18

44

13

20

43 40 39 32

4 8

1

6

26 25

20

6 5 2 1 0

3 1 1 1
MD96.79

3



5-8 CW4010 Memory Management

algorithms: WriteBack or WriteThrough. Table 5.2 shows
how the Cache bits are decoded.

Table 5.2
Cache Algorithm
Bit Values

D Dirty 2
If this bit is set to 1, it indicates that the page marked is
dirty and writable.

V Valid 1
If this bit is set to 1, it indicates that the TLB entry is valid.

G Global 0
If this bit is set to 1, you can ignore the contents of the
ASID field during TLB lookup.

CBit Settings Value Algorithm

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable—WriteThrough
Reserved
Reserved
Reserved
Cacheable—WriteBack



Virtual Memory and the TLB 5-9

5.3.2
TLB Support
Registers

The registers described in the following subsections are used in
association with the CP0 TLB.

♦ EntryHi Register (10)

♦ EntryLo Register (2)

♦ PageMask Register (5)

♦ Index Register (0)

♦ Random Register (1)

♦ Wired Register (6)

5.3.2.1 EntryHi Register (10)

The EntryHi register is a read/write register used to access the TLB. In
addition, this register contains the current ASID value for the processor.
The ASID value is used to match the virtual address with a TLB entry
during virtual address translation. Typically, the operating system assigns
a unique ASID value to each known process. In this way, mappings held
in the TLB are made unique to the process whose ASID they match.

The EntryHi register holds the high-order bits of a TLB entry when
performing TLB read and write operations. When either a TLB refill, TLB
invalid, or TLB modified exception occurs, the EntryHi register is loaded
with the Virtual Page Number (VPN) and the ASID of the virtual address
that failed to have a matching TLB entry.

EntryHi is accessed by the TLBP, TLBW, TLBWI, and TLBR instructions.
Figure 5.5 shows the format of this register.

Figure 5.5
EntryHi Register

VPN Virtual Page Number [31:12]
This field contains the Virtual Page Number.

R Reserved [11:8]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software

31 12 11 8 7 0

VPN R ASID



5-10 CW4010 Memory Management

should write these bits as 0 to ensure compatibility with
future versions of the software.

ASID Address Space ID [7:0]
This field contains the Address Space ID.

5.3.2.2 EntryLo Register (2)

The EntryLo register is a read/write register used to access the TLB.
When performing read and write operations, the register contains a
physical page frame number, cache algorithm, page dirty, translation
valid, and global entry information. Figure 5.6 shows the format of this
register.

Figure 5.6
EntryLo Register

R Reserved [31:26]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

PFN Physical Page Frame Number [25:6]
This field contains the Physical Page Frame Number.

C Cache [5:3]
This field contains the Cache algorithm, which specifies
whether references to the page should be cached. If the
references are to be cached, you can select one of two
algorithms: write-back or write-through. Table 5.2 shows
how the Cache bits are decoded.

D Dirty 2
If this bit is set to 1, it indicates that the page marked is
dirty and writable.

V Valid 1
If this bit is set to 1, it indicates that the TLB entry is valid.

31 26 25 6 5 3 2 1 0

R PFN C D V G



Virtual Memory and the TLB 5-11

G Global 0
If this bit is set to 1, you can ignore the contents of the
ASID field during TLB lookup. Mapping is globally
available to all ASIDs.

5.3.2.3 PageMask Register (5)

The PageMask register is a read/write register used to access the TLB.
It implements a variable page size by holding a per-entry comparison
mask. When virtual addresses are presented for translation, the
corresponding PageMask bit in the TLB specifies whether or not virtual
address bits [23:12] participate in the comparison. Figure 5.7 shows the
format of the PageMask register.

Figure 5.7
PageMask Register

R Reserved [31:14, 12:0]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

M Mask 13
This field contains the PageMask. If it is set to 1, the
page size is 16 Mbytes, the Physical Address [31:0] is
PFN[31:24] and the Virtual Address is [23:0]. If the bit is
cleared to 0, page size is 4 Kbytes, the Physical Address
[31:0] is PFN[31:12] and the Virtual Address is [11:0].

31 14 13 12 0

R M R



5-12 CW4010 Memory Management

5.3.2.4 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits that
are used to index an entry in the TLB. The high-order bit indicates the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry that is affected by the
TLB Read (TLBR) and TLB Write Index (TLBWI) instructions. Figure 5.8
shows the format of the Index register.

Figure 5.8
Index Register

P Probe 31
If this bit is set to 1, it indicates that the last TLBP
instruction failed to find a match.

R Reserved [30:6]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

Index Index [5:0]
This field contains the index to the TLB entry. The TLBR
and TLBWI instructions use this index.

5.3.2.5 Random Register (1)

The Random register is a 32-bit read-only register that contains six bits
that are used to index an entry in the TLB. The register decrements for
each clock cycle. The values range between a lower bound set by the
number of TLB entries reserved for exclusive use by the operating
system (defined in the Wired register), and an upper bound set by the
total number of TLB entries (64 maximum).

The Random register specifies the entry in the TLB affected by the TLB
Write Random (TLBWR) instruction. The register does not need to be
read for this purpose, but the register can be read to verify proper
operation.

31 30 6 5 0

P R Index



Virtual Memory and the TLB 5-13

To simplify testing, the Random Register is set to the value of the upper
bound when the system is reset. It is also set to its upper bound when
the Wired register is written. The format of this register is shown in
Figure 5.9.

Figure 5.9
Random Register

R Reserved [31:6]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

Random Random [5:0]
This field contains the index to the TLB entry affected by
the TLBWR instruction.

5.3.2.6 Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired (fixed, non-replaceable entries that cannot be over-
written by a TLBWR operation) and random entries of the TLB.
Figure 5.10 shows the location of the wired register.

Figure 5.10
Wired Register
Location

31 6 5 0

R Random

TLB

63

0

Wired
Register

Range of

MD96.85

Random Entries

Range of
Wired Entries



5-14 CW4010 Memory Management

When the system is reset, the Wired register is set to zero. Writing the
register also sets the Random register to the value of its upper bound.
Figure 5.11 shows the format of the Wired register.

Figure 5.11
Wired Register

R Reserved [31:6]
These bits are not used and are read as 0. The CW4010
ignores attempts to set these bits; however, software
should write these bits as 0 to ensure compatibility with
future versions of the software.

Wired Wired [5:0]
This field defines the lower boundary of Random TLB
entries.

31 6 5 0

R Wired



Virtual Memory and the TLB 5-15

5.3.3
Virtual Address
Translation

During virtual-to-physical address translation, the CPU compares the
ASID and, depending upon the page size, the highest 7 to 20 bits of the
virtual address to the contents of the TLB. Figure 5.12 illustrates the TLB
address translation process.

Figure 5.12
CW4010 TLB Address
Translation Process

Yes Yes

No
No

Yes

Yes

Yes

Yes

No No

Yes

Yes

Yes

No

No

No

No

No

Output
Physical
Address

Indicates
an exception

MD96.87

Input
Virtual

Address

User
Mode? MSB=1?

Address
Error

VPN
Match?

G = 1?
ASID

Match?

V = 1?

Write? D = 1?

TLB
Mod C =

010?

Access
Main

Memory

Access
Cache

TLB
Invalid

TLB
Refill

Bits A, V, D, and C are bits in the TLB entry



5-16 CW4010 Memory Management

A virtual address matches a TLB entry when:

♦ VPN field of the virtual address equals the VPN field of the entry

♦ G bit of the TLB entry is set

♦ ASID held in the EntryHi register matches the ASID field in the TLB
entry

Although the V bit of the TLB entry must be set for a valid translation to
take place, it is not involved in the determination of a matching TLB entry.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the entry. If no match is found, a TLB miss
exception occurs. If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exceptions occurs,
respectively. If the C bits equal 010b, the physical address that is
retrieved is used to access main memory, bypassing the cache.

5.3.4
TLB
Instructions

The instructions that the CW4010 provides for working with the TLB are
listed in Table 5.3.

Table 5.3
TLB Instruction Instruction Description

Translation Lookaside
Buffer Probe (TLBP)

The Index register is loaded with the address of the
TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the highest
order bit of the Index register is set. Results are unde-
fined if a TLB reference encounters more than one
matching TLB entry.

Translation Lookaside
Buffer Read (TLBR)

This instruction loads the EntryHi, EntryLo, and Page-
Mask registers with the contents of the TLB entry
specified by the Index register.

Translation Lookaside
Buffer Write Index
(TLBWI)

This instruction loads the TLB entry specified by the
Index register with the contents of the EntryHi,
EntryLo, and PageMask registers.

Translation Lookaside
Buffer Write Random
(TLBWR)

This instruction loads the TLB entry specified by the
Random register with the contents of the EntryHi,
EntryLo, and PageMask registers.



Virtual Memory and the TLB 5-17

Notes:

1. If the TLB is not present or not enabled in the system, the CP0 reg-
ister reflects a Coprocessor Unusable exception if an attempt is
made to execute any of the TLB instructions.

2. TLB instructions (TLBP, TLBR, TLBWI, and TLBWR) cannot be
immediately preceded or followed by a data load instruction that
requires target address translation (that is, kuseg and kseg2).

3. The instruction prior to a TLBW instruction must not generate an
exception. You are recommended to use an NOP to make sure this
restriction is met.

4. Three instructions are needed between MTC0 (EntryHI, EntryLo,
PageMask, or Index) and subsequent TLBWI or TLBWR instructions
to affect the result of the MTC0 operation.



5-18 CW4010 Memory Management



6-1

Chapter 6
CW4010 Caches

This chapter describes the CW4010 cache and cache maintenance. It
contains the following sections:

♦ Section 6.1, “Cache Memory Organization,” on page 6-1

♦ Section 6.2, “Cache States,” on page 6-2

♦ Section 6.3, “Address and Cache Tag,” on page 6-4

♦ Section 6.4, “Dcache Scratch Pad RAM Mode,” on page 6-5

♦ Section 6.5, “External Invalidation,” on page 6-6

♦ Section 6.6, “Cache Instructions,” on page 6-6

6.1
Cache Memory
Organization

The CW4010 has separate caches for instructions and data. These are
the Icache and Dcache, respectively. Cache maintenance features
include:

♦ External invalidation for snooping

♦ Initialization

♦ WriteBack to Dcache

♦ Testing

The CW4010 Icache and Dcache are organized as follows:

1. The Icache and Dcache can be organized as direct-mapped or two-
way set associative caches. A Least Recently Used (LRU) algorithm
is used for two-way set associative cache replacement for the Icache.
The Dcache is replaced randomly.

2. The cache controllers support configurations of 1, 2, 4 or 8 Kbyte for
each set. Thus, the smallest supported configuration is a 1 Kbyte
direct-mapped cache, and the largest is a 16 Kbyte two-way set
associative cache, with 8 Kbyte per set.



6-2 CW4010 Caches

3. The caches are indexed with a virtual address.

4. They are tagged with a physical address tag.

5. One cache line is 8 words. A single word consists of four 8-bit bytes.
The cache line consists of four doublewords (32 bytes or 256 bits).
Refill address ordering is wrap-around from the missing address.

6. You can select between WriteBack and WriteThrough modes. If the
system has no Memory Management Unit (MMU), the WB bit in the
CCC register defines the mode for all cacheable regions of memory.
When the WB bit is set to 0, the mode is WriteThrough. When it is
set to 1, the mode is WriteBack. If the system has an MMU system,
the Translation Lookaside Buffer (TLB) entry determines the mode
on a per-page basis.

7. Scratch Pad RAM mode is available, and works in a similar way to
the Scratch Pad RAM in the in the LR33300. This is discussed in
more detail in Section 6.4, “Dcache Scratch Pad RAM Mode,” on
page 6-5.

6.2
Cache States

This section describes cache states for the Icache, WriteThrough
Dcache, and WriteBack Dcache.

6.2.1
Icache and
WriteThrough
Dcache

When the Icache and Dcache are operating in WriteThrough mode, only
two states are used: Invalid and Valid Clear. Initialization sets all cache
lines to the Invalid state. This is done using the Cache Invalidate mode
described in Section 6.6.3, “Cache Maintenance by CCC Register,”
starting on page 6-7, or the Cache Flush instructions described in
Section 6.6.1, “Flush (All Cache Invalidation),” starting on page 6-6.

The first time a cache line is refilled because of a cache miss, its state
goes from Invalid to Valid Clear. The cache remains in the Valid Clear
state unless and until it is forced back to Invalid. This occurs in one of
the following events:

♦ An external invalidate

♦ Another cache instruction

♦ Modification of the CCC register settings (see Section 4.3.10, “Con-
figuration and Cache Control (CCC) Register (16)” on page 4-20)



Cache States 6-3

The V bit of each cache line indicates the state. V = 0 is Invalid and V = 1
is Valid Clean. Figure 6.1 shows the state diagram for Icache and
WriteThrough Dcache.

Figure 6.1
Cache State
Diagram—Icache
and WriteThrough
Dcache

6.2.2
WriteBack
Dcache

When the Dcache operates in WriteBack mode, three cache line states
are required: Invalid, Valid Clean, and Valid Dirty. Figure 6.2 shows the
state diagram for WriteBack Dcache. The V bit and WB bit of each line
indicate the state, as shown in Table 6.1.

Figure 6.2
Cache State
Diagram—Dcache
WriteBack

Table 6.1
Dcache WriteBack
Mode

Valid
CleanInvalid

Load-Miss, then Refill

Invalidation Load-Misrecital
Load-Hit
Store-Miss
Store-Hit MD96.89

Valid
Clean

Load-Miss, Refill
Load-Hit

Store-Miss

Load-Miss, then RefillInvalidation

Store-Hit

Load-Miss, then WriteBack and Refill

Invalidation

Store-Hit

Valid
Dirty

Invalid

Load-Hit
Store-Miss

MD96.90

State V Bit WB Bit Condition

Invalid 0 X(0) The cache line does not contain valid
information.

Valid Clean 1 0 The cache line includes valid information
consistent with memory.

Valid Dirty 1 1 The cache line includes valid information,
but it is not consistent with memory.



6-4 CW4010 Caches

A store operation is considered to be a Dcache hit when the Tag is
coincident with the physical address and the V bit is set. Of course, the
physical address must be in a cached area.

When a Store-Miss occurs, the state condition of the cache line is not
changed, and the store data is not written into Dcache. Instead, the store
data is written to the four-word-deep write buffers, which pass it to the
system’s main memory.

Some lines, known as Dirty lines, contain more recent information than
the main memory. Occasionally you may need to force the writing of dirty
lines to main memory. You can do this using the WriteBack Cache
instruction.

In WriteBack mode, data stored in the Dcache may not be passed on to
the External Write Controller immediately. Because of this, the WriteBack
cache instruction writes back each line of both sets in a two-way set
associative configuration. The instruction does not check whether the
address specified by the instruction would hit or miss at the cache line
to which it pages. If the WB bit is set, the line data is written back and
causes several stall cycles to read data from the Dcache. The actual
number of stall cycles depends on the speed of memory access.

Cache lines can be invalidated by an external bus master. A cache line
is invalidated when the Invalidate Address matches the Cache Tag ID,
and the Cache Invalidation signal(s) are asserted.

6.3
Address and
Cache Tag

Figure 6.3 illustrates the relationship between instruction and data
address and cache memory location, for both direct map and two-way
set associative cache configurations. The Word Offset field addresses a
word in a line. The Line Number field addresses a line in the cache
memory. The Cache Tag ID field serves as the tag for the address line.

If the system has a MMU, the cache access is indexed by the virtual
address and tagged by the physical address. Because the minimum
memory page size is 4 Kbyte, there is no virtual/physical address issue
if the cache set size is 4 Kbyte or less. If the cache set size is 8 Kbyte
and the page size is 4 Kbyte, address bit 12 of the virtual and physical
address must be coincident.



Dcache Scratch Pad RAM Mode 6-5

Figure 6.3
Address to Cache Tag
and Line Number

Table 6.2 shows how the value of n sets different cache sizes.

6.4
Dcache Scratch
Pad RAM Mode

The CW4010 Dcache Set-0 or Set-1 can be configured as a Scratch Pad
RAM. You can do this by setting the SR0 bit of the CCC register for
Set-0 and the SR1 bit for Set-1. When SR0 is set to 1, Set-0 is enabled
as a Scratch Pad RAM. When the SR1 bit is set to 1, Set-1 is enabled
as a Scratch Pad RAM.

The Scratch Pad RAM must be located in one specific physical address
space like a local data memory. If the CW4010 ASIC device has Dcache
Tag RAM, tag must be programmed by isolating the cache before setting
SR bit(s). You do this by programming the CCC register as follows:
IsC = 1, TAG = 1, InV = 0; and by setting either DE0 or DE1.

If the Dcache RAM is used as only a Scratch Pad RAM in the ASIC
device, the Dcache Tag RAM can be removed physically from the device.
In this case, the Dcache Tag inputs of the CW4010 core must be set
HIGH or LOW according to the address of the Scratch Pad RAM area.
The SR bit(s) should all be set to 1.

When the Dcache Scratch Pad RAM is enabled, an access to the
Scratch Pad RAM area is a local memory access without any stall cycle.

31 9 + n 8 + n 5 4 2 1 0

Cache Tag ID Line Number Word Offset R

MD96.91

Table 6.2
Setting Cache Size Setting Cache Size Value of n

1 Kbyte 1

2 Kbyte 2

4 Kbyte 3

8 Kbyte 4



6-6 CW4010 Caches

6.5
External
Invalidation

Icache and Dcache lines can be invalidated by external hardware for bus
snooping. The CW4010 has an invalidate strobe and invalidate address
bus input. WriteBack by external hardware is not supported. Details are
described in Chapter 7, “Signals.”

6.6
Cache
Instructions

The CW4010 has two types of cache instructions for initialization and
WriteBack. The cache instruction must be followed by three No
Operation (NOP) instructions. Figure 6.4 shows the cache instruction
format.

Figure 6.4
Cache Instruction
Format

6.6.1
Flush (All
Cache
Invalidation)

One execution of a cache instruction can invalidate all lines of the
Dcache or the Icache, or of both. Bit 17 of the instruction defines effect
and non-effect for the Dcache, and Bit 16 defines effect and non-effect
for the Icache. If both of bits are 0, this is a No Operation (NOP), and
the base register and the offset have no meaning.

One cache line of one or more cache sets is invalidated during one clock
cycle. Invalidation starts from the WB stage of the execution pipeline, and
the pipeline stall request signal is asserted during the time that the cache
lines are invalidated. If the pipeline cancel signal is asserted, the
invalidation is not executed. The number of the invalidation clock cycles

1 0 1 1 1 1
Cache

31 26 25 21

op

 20 16 15 0
Cache op, offset(base)

0 0 0 0 0 Valid for WB only
Base Offset

bit[20:18] 000 Flush (All Cache Invalidation)
001 WriteBack (Dcache Only)

bit17 Dcache Effect (1)/Non-effect (0)

bit16 lcache Effect (1)/Non-effect (0)

FLUSHI (op = 00001) Flush lcache
FLUSHD (op = 00010) Flush Dcache
FLUSHID (op = 00011) Flush Icache & Dcache
WB, offset(base) (op = 00100) WriteBack Dcache addressed by offset+[r0]

MD96.92



Cache Instructions 6-7

is always 256, regardless of the cache size actually implemented. During
this time, the CPU does not respond to interrupts.

6.6.2
WriteBack

WriteBack is effective for the Dcache only, so bits 17 and 16 are ignored.
Bits [12:5] of the effective address, which is offset+GPR[base] , specify
the Dcache line. Cache size is also a factor. For example, if the cache
size is 1 Kbyte direct mapped or 2 Kbyte two-way set associative, only
bits [9:5] are used. Upper bits of the effective address are ignored. Note
that the Tag is not checked.

One WriteBack instruction writes back both lines of the two-way set
associative cache if the WB bit is set. If WB is cleared, there is no
operation. WB is executed at the WB stage and causes four stall cycles
to read data from a dirty line. WB bits are cleared after the cache lines
are written back.

6.6.3
Cache
Maintenance by
CCC Register

Certain CCC register bits support Dcache and Icache maintenance and
testing. Table 6.3 lists the bits of the CCC register related to the cache.

Table 6.3
CCC Bits Related
to Cache
Configuration

The CW4010 has three maintenance modes that allow you to maintain
and test the internal Icache and Dcache. The three modes are Data Test,
Tag Test, and Invalidate. Before entering any of these modes, the

Bit(s) Function

IE0 Icache Set-0 Enable(1)/Disable(0)

IE1 Icache Set-1 Enable(1)/Disable(0)

IS[1:0] Icache Size (00:1 Kbyte, 01:2 Kbytes, 10:4 Kbytes, 11:8 Kbytes)

DE0 Dcache Set-0 Enable(1)/Disable(0)

DE1 Dcache Set-1 Enable(1)/Disable(0)

DS[1:0] Dcache Size (00:1 Kbyte, 01:2 Kbytes, 10:4 Kbytes, 11:8 Kbytes)

WB Dcache WriteBack (1)/WriteThrough (0) if TEbit = 1

SR0 Dcache Set-0 Scratch Pad RAM Enable(1)/Disable(0)

SR1 Dcache Set-1 Scratch Pad RAM Enable(1)/Disable(0)

IsC Dcache/Icache Isolate Cache Mode Enable(1)/Disable(0)

TAG Dcache/Icache Tag Test Mode Enable (1)/Disable (0)

INV Dcache/Icache Invalidate Mode Enable(1)/Disable(0)



6-8 CW4010 Caches

processor must be executing in kseg1 (non-cacheable address space0),
interrupts must be disabled, and the caches must be isolated (IsCbit = 1).
When the caches are isolated, load and store instructions access the
Icache and Dcache. The system’s external main memory is not affected
by these load and store accesses.

To enable the cache maintenance mode, use the following procedure:

1. Set the appropriate bits in the CCC register with IsCbit = 1. You can
do this by executing the MTC0 instruction, which has one delay slot.
The three instructions immediately following the MTC0 instruction
should not be load or store instructions.

The IE0, IE1, DE0, and DE1 bits in the CCC register select the
cache set that is to be accessed, as shown in Table 6.4. Only one
cache set should be enabled when performing a load operation. Mul-
tiple caches may be enabled when performing a store operation.

Table 6.4
TAG and INV
Encoding

The TAG and INV bits in the CCC register select the Cache
Maintenance function. Table 6.5 shows the encoding for the two bits.

Table 6.5
TAG and INV
Encoding

2. Clear the IE bit in the Status register to disable all interrupts. This
operation is usually done automatically because Cache Maintenance
operations are done in an exception handler (most commonly the
reset handler).

– Data Test Mode

In this mode, all loads and stores access the data RAMs
selected by IE0, IE1, DE0, and DE1 bits. Effective lower address

Bit Set Bit Number Cache Set Accessed

IE0 17 Icache Set-0

IE1 16 Icache Set-1

DE0 13 Dcache Set-0

DE1 12 Dcache Set-1

TAG Bit 1 INV Bit 0 Cache Maintenance Mode

0 0 Data Test

1 0 Tag Test

x 1 Invalidate



Cache Instructions 6-9

bits specify the cache address. The precise bit field depends on
the cache size and configuration actually implemented.

– Tag Test Mode

When TAG bit is set to 1, the CW4010 is in Tag Test Mode. Load
and store operations access the Tag RAMs. The tag bits available
for testing in the Tag Test Mode are the Tag Data, Hit, WriteBack
(Dcache only), and Valid bits. Note that the WriteBack bit is
present only in Dcache. The Hit bit is ignored during a store oper-
ation. For a load operation, the Hit bit is set if a match occurs.

The Cache Tag ID bits are written from or compared to the most
significant bits of the effective address (offset + GPR[base]) .

A load operation from the Tag RAM returns the information
shown in Figure 6.5. Bits [31:10] are the Tag Data; bit 2 is the
Hit bit; bit 1 is the Validate bit which reflects the setting of the
INV bit in the CCC register; bit 0 is the WriteBack bit which
reflects the setting of the WB bit in the CCC register. You can
ignore bits [9:3].

Figure 6.5
Tag Test Mode Loaded
Data Format

– Invalidate Mode

When the INV bit in the CCC register is set to 1, the CW4010 is
in Invalidate mode. Because the caches contain random data on
both warm and cold starts, software must invalidate all lines in
the ICache and Dcache. Executing store word instructions inval-
idates the addressed cache line in the enabled cache(s). After
reset, 0 must be written into all Tags for both sets of Dcache and
Icache. Cache Flush instructions can perform the same function.

31 10 9 3 2 1 0

TAG DATA X HIT V WB

MD96.93



6-10 CW4010 Caches



7-1

Chapter 7
Signals

This chapter describes the CW4010 core I/O signals. You will find this
chapter useful if you are interfacing the CW4010 with other core logic or
external logic. This chapter contains the following sections:

♦ Section 7.1, “Signal Conventions,” on page 7-1

♦ Section 7.2, “Signal Synchronization,” on page 7-2

♦ Section 7.3, “CW4010 Modularity,” on page 7-2

♦ Section 7.4, “CW4010 Shell Interface Signal Definitions,” on page 7-3

7.1
Signal
Conventions

The following signal conventions are used in this chapter:

♦ Signals that are inputs have a lowercase i as part of the signal name,
for example, SCDip. Signals that are outputs have a lower case o,
for example, SCDop. Lowercase characters are used to avoid
confusion between uppercase alpha character I and the number 1,
and uppercase alpha character O and the number 0.

♦ Active-LOW signals have a lowercase n at the end of the signal
name, for example RESETn. Active-HIGH signals have a lowercase
p at the end of the signal name, for example SCAop.

♦ The term assert means to drive a signal true or active. The term
deassert means to drive a signal false or inactive.

♦ You can use the CW4010 core in a variety of designs and with a
variety of peripheral logic. For this reason, it is not always possible
to identify the agent that asserts and deasserts the I/O signals. The
signal descriptions in this manual indicate the states to which the
core’s I/O signals must be driven. You may then select the design
components needed to meet the signal requirements of the core.

♦ All interface signals are input to or output from the CW4010 core.



7-2 Signals

7.2
Signal
Synchronization

All input signals must be synchronized to the rising edge of the system
clock outside the CW4010. Asynchronous signals, such as resets or
interrupts, must be synchronized by at least two sequential flipflops. All
output signals are synchronized to the rising edge of the system clock
inside the CW4010.

7.3
CW4010
Modularity

The CW4010 has two module levels, CW4010 Core and CW4010 Shell,
as shown in Figure 7.1.

Figure 7.1
CW4010 Module

The CW4010 Core module is a process-independent encrypted
synthesizable HDL (High-level Design Language) model. It includes the
following internal base units:

♦ CP0 (System Coprocessor, Coprocessor-0)

♦ ALU (Arithmetic and Logic Unit)

♦ ISU (Instruction Scheduler Unit)

♦ LSU (Load Store Unit)

♦ BIU (Bus Interface Unit)

Reset, Interrupts

SCbus

WriteBack
Buffer

Coprocessor
Interface

Cache
Invalidation

CW4010 Core

Interface

OCAbus
Interface

CW4010 Shell

ALU

ISU

CP0  MMU

DCache
 Set-0

DCache
 Set-1

LSU

BIU

ICache
 Set-0

ICache
 Set-1

Multiplier

Interface
MD96.159



CW4010 Shell Interface Signal Definitions 7-3

The CW4010 Shell is a decrypted HDL model that includes some
process dependent models and provides the following options:

♦ Icache configuration (direct map or two-way set associative) and
Icache size (0, 1, 2, 4, and 8 Kbyte for each set)

♦ Dcache configuration (direct map or two-way set associative) and
Dcache size (0, 1, 2, 4, and 8 Kbyte for each set)

♦ Optional WriteBack Buffer, which can be removed for WriteThrough
Dcache configuration

♦ Optional TLB for MMU (TLB or dummy TLB)

♦ High/Low performance Multiplier or Non-Multiplier configuration with
optional Multiply/Addition function

The CW4010 Shell HDL model is open. You can change modules
individually in the shell to design different configurations. Internal models
of the CW4010 Core are not changed by these configuration changes.
The optional modules are provided by LSI Logic Corporation.

7.4
CW4010 Shell
Interface Signal
Definitions

The CW4010 Shell interface signals are divided into seven categories,
as follows.

1. Reset signals, which interface to the CP0 unit (see Section 7.4.1,
“Reset Signals,” on page 7-5)

2. Interrupt signals, which interface to the CP0 (see Section 7.4.2,
“Interrupt Signals,” on page 7-5

3. SCbus Interface signals, which interface to the BIU (see Section
7.4.3, “SCbus Interface Signals,” on page 7-6)

4. Cache Invalidation Interface signals, which interface to the ISU and
LSU (see Section 7.4.4, “Cache Invalidation Interface Signals,” on
page 7-10)

5. Coprocessor Interface signals, which interface to the ISU and LSU
(see Section 7.4.5, “Coprocessor Interface Signals,” on page 7-11)

6. OCAbus Interface signals, which interface to the LSU (see Section
7.4.6, “OCAbus Interface Signals,” on page 7-16)

7. Miscellaneous signals, such as system clock input and endian input
(see Section 7.4.7, “Miscellaneous Signals,” on page 7-20)

Figure 7.2 shows the CW4010 core’s interface signals arranged in
functional groups.



7-4 Signals

Figure 7.2
CW4010 Interface
Signals

MD96.223

CW4010 Core

CRESETn

WRESETn

NMln

EXiNTn[5:0]

EXViNTn

EXVAp[31:2]

EXVApEn

CPBUSYn[3:1]

CPSREQn[3:1]

CPCoNDp[3:0]

FPEoDDn

FPERRXn

CPRSTn[3:1]

CPCoDEp[31:0]

CPXSTBn[3:1]

CPXoDDn

PSTALLn

PCANCRn

PCANoDDn

BRLiKFn

SUSPEXn

CPFRCDp[31:0]

CPToCEn

CPToCDp[31:0]

CPFRCEn

CPMISSn

CPFiXUPn

SCLKp

FRCMn

BENDn

WSTALLp

SCANREQp

TESTMp

SCDoEn

SCDop[63:0]

SCHGTn

SCiFETn

SCLoCKn

SCTBEn[7:0]

SCTBLn

SCTBSTn

SCTPWn

SCTSSn

SCB32n

SCBERRn

SCBPWAn

SCBRDYn

SCBRTYn

SCDip[63:0]

SCHRQn

SCTSEn

SCAoEn

SCAop[31:0]

CiNVAp[31:5]

ICiNVSn

DCiNVSn

CPFRCDp[31:0]

OCAcceptp

CPSREQn[3:1]

DVAddrp[31:0]

AccSize[1:0]

CPToCDp[31:0]

CPToCEn

CPFRCEn

EXLoadp

AccStorep

CRValidp

PSTALLn

Resets

Interrupts

Coprocessor
Interface

Miscellaneous
Signals

SCbus
Interface

Cache
Invalidation

OCAbus
Interface

Interface



CW4010 Shell Interface Signal Definitions 7-5

7.4.1
Reset Signals

This section describes the Reset signals which interface to the CP0.

CRESETn Cold System Reset Input
The CW4010 is reset asynchronously when CRESETn is
asserted. CRESETn must be deasserted synchronously
on the rising edge of SCLKp. All internal states are
initialized by asserting CRESETn. Of all exception inputs,
CRESETn has the highest priority. When it is deasserted,
the CP0 generates a cold reset exception (0xBFC00000).

WRESETn Warm System Reset Input
WRESETn must be asserted and deasserted
synchronously on the rising edge of the SCLKp. While it
is asserted, internal states are initialized. When it is
deasserted, the CP0 generates a warm reset exception
(0xBFC00000).

7.4.2
Interrupt
Signals

This section describes the Interrupt signals which interface to the CP0.

EXVAp[31:2] External Vectored Interrupt Address Input Input
This is the interrupt vector address. It is accepted by the
CW4010 when EXVApEn is asserted and is written
directly into the program counter. EXVAp[31:2] must
remain stable until EXVApEn is asserted. A virtual
address for the exception handler can be provided
directly.

EXVApEn EXVAp Enable Output
This is the enable signal for the interrupt vector address,
EXVAp[31:2]. The CW4010 asserts EXVApEn to enable
the address.

EXiNTn[5:0] External Interrupts Input
External logic asserts the EXiNTn[5:0] signals to cause
the CP0 in the CW4010 to generate an interrupt
exception. Assertion of these inputs is indicated in the
IP[7:0] field of the Cause register. Consequently, the
interrupting logic should continue to assert the external
interrupt input until the exception routine has serviced the
interrupt.

The interrupt inputs can be individually disabled or
masked by setting the appropriate bit in the Status
register.



7-6 Signals

External interrupts are not recognized if the interrupt
enable bit in the Status Register is cleared. However, the
inputs conditions are shown in the IP bits of the Status
register.

EXViNTn External Vectored Interrupt Input Input
EXViNTn is an external interrupt input that is driven by an
external interrupt controller. This feature was not present
in previous LSI Logic cores. Refer to Section 4.4.22,
“External Vectored Interrupt Exception” on page 4-48 for
further information.

NMin Non Maskable Interrupt Input
NMin is a non-maskable interrupt. When the CW4010
detects that NMin is asserted, the CP0 generates a non-
maskable interrupt exception (0xBFC00000).

7.4.3
SCbus Interface
Signals

This section describes the SCbus interface signals, which interface to the
BIU.

SCAoEn Address Output Enable Output
When asserted, SCAoEn indicates that the address
output bus SCAop[31:0] lines are valid. The CW4010
asserts the signal when the BIU is performing an SCbus
transaction, and the signal remains active throughout the
operation. SCAoEn also enables SCTBSTn, SCTBEn,
and SCTPWn.

SCAop[31:0] Address Output Bus Output
SCAop[31:0] is the address output bus for instruction
fetch and data read/write operations. The SCAop[31:0]
bus is valid only when the address output enable signal
SCAoEn is asserted. It remains valid throughout the
operation until SCBRDYn, SCBRTYn, or SCBERRn is
asserted.

SCB32n 32-bit Bus Width Sizing Input
SCB32n indicates that the external bus slave on the
SCbus needs 32-bit bus sizing. The CW4010 samples
this signal on the rising edge of the clock that
synchronizes SCBRDYn. If the signal is asserted for a
64-bit transaction, which is a doubleword or a part of a
burst transaction, the BIU generates a subsequent 32-bit
word transaction and packs data to 64 bits for a read



CW4010 Shell Interface Signal Definitions 7-7

transaction or unpacks data to 32 bits for a write
transaction.

SCBERRn Bus Error Input
SCBERRn is asserted to terminate the current
transaction when a bus error occurs. If SCBRDYn or
SCBRTYn is asserted at the same time as SCBERRn,
SCBERRn has higher priority. SCBERRn is reported to
the CP0 and the CP0 generates an exception.

SCBPWAn Bus In-Page Write Accept Input
SCBPWAn indicates that the external bus slave on the
SCbus accepts In-Page write transactions. External logic
asserts the signal and the CW4010 samples it on the
rising edge of the clock that synchronizes SCBRDYn. If
the SCTPWn signal is not asserted, asserting or
deasserting SCBPWAn has no significance.

SCBRDYn Bus Ready Input
The system asserts SCBRDYn when the current
transaction is terminated. When asserted, it indicates that
the SCbus is available. The signal remains active (LOW)
until the next transaction starts. The system then
deasserts the signal to indicate that the SCbus is not
available.

SCBRTYn Bus Retry Input
SCBRTYn is asserted when the current transaction is
terminated unsuccessfully and must be retried later. The
control state goes back once to the idle state, then all bus
requests are arbitrated again. If there are no other higher
priority requests and SCTSEn is asserted, there is one
idle state between the first transaction and a retry
transaction. If SCBRDYn and SCBRTYn are asserted at
the same time, SCBRTYn has the higher priority.

SCDip[63:0] Data Input Bus Input
SCDip[63:0] are data bus input signals for instruction
fetch and data read transactions. The CW4010 samples
SCDip[63:0] on the rising edge of the clock when
SCBRDYn is asserted. Byte ordering is little endian. If
you are designing a big endian system, the higher order
bits, SCDip[31:0], must be swapped with the lower order
bits, SCDiP[63:32], outside the CW4010 shell.



7-8 Signals

SCDoEn Data Output Enable Output
SCDoEn indicates that the data output signals
SCDop[63:0] are valid. the CW4010 asserts the signal
throughout the write transaction to indicate that the
current transaction is a write transaction and to enable
data output.

SCDop[63:0] Data Output Bus Output
SCDop[63:0] are the data output bus signals for data
write operations and for data WriteBack to the Dcache.
The signals are valid throughout the write transaction.
Byte ordering is little endian. If you are designing a big
endian system, the higher order bits, SCDop[31:0], must
be swapped with the lower order bits, SCDoP[63:32],
outside the CW4010 Shell.

SCHGTn Bus Hold Grant Output
The BIU enters the hold state and asserts the grant
signal SCHGTn to indicate that it is releasing SCbus
ownership in response to a bus hold request, SCHRQn.

SCHRQn Bus Hold Request Input
SCHRQn indicates that an external bus master is
requesting ownership of the SCbus. The bus hold request
has the highest priority during bus arbitration. A bus hold
request cannot break continuous transactions of In-Page
writes and burst read/write transactions if those
transactions are supported by an asserted SCTSEn
signal, but must wait until SCTSEn is deasserted.

SCiFETn Instruction Fetch Output
SCiFETn indicates that the BIU is fetching an instruction
for monitoring purposes. The CW4010 drives it LOW at
this time and outputs it to external logic.

SCLoCKn Bus Lock Output
When the CW4010 asserts SCLoCKn, it indicates that
the processor wishes to lock the SCbus to restrict bus
ownership. The CW4010 asserts the signal when a read
transaction is started by executing a LoadLink instruction
in an uncached area or a WriteThrough cached area. It
deasserts the signal just before a write transaction is
started by executing a StoreConditional instruction.
During the read and write transactions, it asserts the
signal continuously, preventing bus ownership from



CW4010 Shell Interface Signal Definitions 7-9

changing during one of these transactions. If a
StoreConditional transaction hits the Dcache in a
WriteBack cached area while SCLoCKn is asserted, an
incorrect condition exists, and the CW4010 deasserts
SCLoCKn without completing any bus transactions.

SCTBEn[7:0] Byte Enables Output
SCTBEn[7:0] indicates which byte positions are valid for
a transaction. The CW4010 asserts only one of the
signals for a byte read or a byte write transaction. It
asserts all the signals for a doubleword or a burst
transaction. The SCTBEn[7:0] signals are valid when the
CW4010 asserts SCAoEn.

SCTBLn Burst Last Doubleword Output
The CW4010 deasserts SCTBLn while the first, second,
and third doubleword of a burst transaction is being read
or written. Otherwise, it asserts the signal, which is valid
on the rising edge of the system clock.

SCTBSTn Burst Transaction Output
When the CW4010 asserts SCTBSTn, it indicates that a
transaction is taking place during which four doublewords
will be moved, and that currently the first doubleword is
being moved. It deasserts the signal after the first word
has been transferred and during singleword transactions.

SCTPWn Next Transaction is In-Page Write Output
When the CW4010 asserts SCTPWn, it indicates that the
next transaction is in the same DRAM page, as defined
in the Configuration register. When the CW4010 asserts
this signal, a maximum of four write transactions take
place one after the other, even if there is an instruction
fetch request or data read request. If four write
transactions are performed continuously, the CW4010
asserts SCTPWn from the first through the third
transaction and deasserts it for the last (fourth)
transaction. The CW4010 asserts SCTPWn from the
beginning of one In-Page write transaction to the end of
that transaction. The write buffer in the LSU checks to
see if the subsequent write request is in the same page.

SCTSEn Transaction Start Enable Input
SCTSEn enables or disables a new SCbus transaction.
Transaction requests are arbitrated only when SCTSEn is



7-10 Signals

asserted. The signal must be deasserted and then
asserted when SCBRDYn is asserted to allow an idle
cycle between two transactions. During the time SCTSEn
is deasserted, the BIU repeats the idle state.

SCTSSn Transaction Start Strobe Output
When the CW4010 asserts SCTSSn, it indicates that a
transaction has started. The CW4010 asserts the signal
for one clock cycle at the beginning of a transaction. If the
transaction lasts through one cycle and the next
transaction begins immediately, it asserts SCTSSn
continuously.

7.4.4
Cache
Invalidation
Interface
Signals

This section describes the cache invalidation interface signals, which
interface to the ISU, LSU, and CP0.

CiNVAp[31:5] Cache Invalidation Address Bus Input
The CiNVAp[31:5] input bus is the address input bus for
Dcache and Icache invalidation. When an external bus
master writes data into the main memory, the address
must be checked in the Dcache and the Icache. If the
address is cached, the line must be invalidated. The
CW4010 samples the bus when DCiNVSn or ICiNVSn is
asserted.

DCiNVSn Dcache Invalidation Strobe Input
When asserted, DCiNVSn indicates the Cache
Invalidation Address Bus is valid and that there is need
for a snooping sequence. If the cache tag is not
coincident with higher address bits, the line is not
invalidated.

ICiNVSn Icache Invalidation Strobe Input
When asserted, ICiNVSn indicates the Cache
Invalidation Address Bus is valid and that there is need
for a snooping sequence. If the cache tag is not
coincident with higher address bits, the line is not
invalidated.



CW4010 Shell Interface Signal Definitions 7-11

7.4.5
Coprocessor
Interface
Signals

This section describes the coprocessor interface signals, which interface
with the ISU and LSU.

BRLiKFn BranchLikely of Even Slot is False Output
The CW4010 asserts BRLiKFn when the BranchLikely
instruction is in an even slot and it is false. If, at this time,
a coprocessor has a valid instruction in the EX stage, the
instruction must be cancelled. It is not necessary to
check whether the instruction in the EX stage is in an
even or odd slot, since the CW4010 asserts BRLiKFn
only when the BranchLikely instruction is in the even slot.
If the BranchLikely instruction in the even slot is not
taken, the instruction in the odd slot must be nullified
although it has already been started.

This signal is valid at the EX stage of the pipeline.

CPBUSYn[3:1]
Coprocessor Busy Input
These inputs are asserted when the external
coprocessors are busy and cannot accept any
coprocessor operations. CPBUSYn3 is associated with
the CP3, CPBUSYn2 with CP2, and CPBUSYn1 with
CP1. The ISU does not assert the execution strobe,
CPXSTBn[3:1], when the related CPBUSYn signal is
asserted, and the CW4010 stalls until the busy signal is
deasserted. Each coprocessor is independent and
asserts its busy signal from the EX stage. The CW4010
examines the CPBUSYn signal at the RD stage of the
pipeline, on the rising edge of the clock.

This signal is sampled at the RD stage of the pipeline.

CPCoDEp[31:0]
CP Instruction Code Bus Output
This bus outputs the entire instruction bit field at the RD
stage. It is valid when the CW4010 asserts one of the
CPXSTBn[3:1] lines. Although the CW4010 can execute
two instructions per cycle, only one coprocessor
instruction can be issued in one cycle. CPCoDEp[31:0]
are the selected outputs of the even and odd instruction
slot. External logic must sample the bus on the rising
edge of the system clock when the CW4010 asserts
strobe CPXSTBn.



7-12 Signals

It is not necessary to decode all bits of an instruction
because the execution strobe signal is a partial decoding
signal.

CPCoDEp[31:0] are valid at the RD stage of the pipeline.

CPCoNDp[3:0]
Coprocessor Condition Input
These inputs are used for the coprocessor condition
branch instruction. The CW4010 samples the inputs in
the ISU at the EX stage of a conditional branch
instruction. The four inputs are associated with the four
possible coprocessors (CP0-CP3). CPCoNDp0 is for
CP0. However, CP0 does not need it, and CPCoNDp0 is
therefore used as a general purpose condition input.

These signals are valid at the EX stage of the pipeline.

CPFiXUPn Data Fixup Cycle Strobe for LWCz Cache Miss
Output

The CW4010 asserts CPFiXUPn when correct data is
output on CPToCDp[31:0] during a fixup cycle. It asserts
the signal during stall cycles because LWCz cache
misses cause the pipeline to stall until the data is read.

CPFRCDp[31:0]
Data from Coprocessor Input
This bus inputs data from a coprocessor register to a
CW4010 CPU general purpose register or to memory.
Data on the bus is valid when CW4010 asserts the data
enable signal, CPFRCEn. If there are several external
coprocessors, the data bus must be multiplexed outside
the CW4010 shell.

This signal is sampled at the CR stage of the pipeline.

CPFRCEn Data from Coprocessor Enable Output
The CW4010 asserts this signal to enable the data input
bus CPFRCDp[31:0]. Coprocessors can generate the
same information from the instruction code, CPCoDEp,
by tracking the pipeline stage. External logic must decode
the coprocessor number from CPCoDEp[31:0]. If the
pipeline enters a stall condition when there is a
coprocessor data movement instruction in the CR stage,
the CW4010 asserts CPToCEn continuously until the stall
condition is resolved.

This signal is valid at the CR stage of the pipeline.



CW4010 Shell Interface Signal Definitions 7-13

CPMiSSn Data Cache Miss Strobe for LWCz Output
The CW4010 asserts CPMiSSn at the CR stage of an
LWCz instruction when a Dcache miss occurs. Data at
the CR stage is not correct and the correct data is put on
CPToCDp[31:0] during a later fixup cycle. The CW4010
asserts PSTALLn from the WB stage of the LWCz
instruction.

This signal is valid at the CR stage of the pipeline.

CPRSTn[3:1] Coprocessor Reset Output
These outputs indicate the condition of CU bit [3:1] in
CP0’s status register. If the CU bit is 0, the CW4010
asserts the corresponding CPRSTn[3:1] output. The
CW4010 asserts the CPRSTn[3:1] signals when a cold
reset is asserted. At this time, the CU bits are cleared.
The CU bits are not cleared when a warm reset is
asserted. The CPRSTn[3:1] outputs allow the system
designer to use software resets for external
coprocessors.

CPSREQn[3:1]
Coprocessor Stall Request Input
The external coprocessors assert these signals when
they need to request a pipeline stall. Coprocessors can
assert CPSREQn[3:1] while a previous coprocessor
instruction is being executed, after decoding a
coprocessor instruction, and after the RD stage. The
CW4010 asserts PSTALLn immediately when in
response to one of these signals.

CPToCDp[31:0]
Data to Coprocessor Output
This bus outputs data to a coprocessor register from a
CW4010 CPU general purpose register or from memory.
Data on the bus is valid when the CW4010 asserts the
data enable signal, CPToCEn.

These signals are valid at the CR stage of the pipeline.

CPToCEn Data to Coprocessor Enable Output
The CW4010 asserts this signal to indicate when the
data output bus, CPToCDp[31:0], is valid. Coprocessors
can generate the same information from the instruction
code, CPCoDEp, by tracking the pipeline stage. The
coprocessor number must be decoded from



7-14 Signals

CPCoDEp[31:0]. If the pipeline enters a stall condition
when there is a coprocessor data movement instruction
in the CR stage, the CW4010 asserts CPToCEn
continuously until the stall condition is resolved.

This signal is valid at the CR stage of the pipeline.

CPXoDDn Coprocessor Instruction at Odd Slot Output
When the CW4010 asserts an execution strobe, it also
asserts CPXoDDn to indicate that the coprocessor
instruction is in the odd slot. This information must be
kept in the coprocessor pipeline until the CR stage. It is
used to determine whether or not the instruction should
be cancelled when the cancellation signal is asserted.

This signal is valid at the RD stage of the pipeline.

CPXSTBn[3:1]
Coprocessor Instruction Execution Strobe Output
These strobe signals indicate the start of a coprocessor
operation that involves data movement. The CW4010
asserts only one of the signals during a clock cycle.
CPXSTBn[3:1] are partial decoding signals for an
instruction. For example, when the CW4010 asserts
CPXSTBn1, CP1 turns on, and so forth. The ISU also
uses the signals to check for resource conflicts, including
coprocessor busy signals.

CPXSTBn[3:1] are valid at the RD stage of the pipeline.

FPEoDDn FPU Error Exception in Odd Slot Input
FPEoDDn indicates whether the instruction that caused
an FPU exception (FPERRXn assertion) is in an even
slot (FPEoDDn = HIGH) or odd slot (FPEoDDn = LOW)
when it started at the RD stage. The CW4010 ignores the
FPEoDDn signal when FPERRXn is deasserted.

When the instruction is started at an RD stage, the
CPXoDDn signal informs the coprocessor that the
instruction is in an even or odd slot. To handle a pipeline
cancel correctly, the coprocessor must keep the
instruction in its pipeline registers. To execute an FPU
exception precisely, the coprocessor that asserts
FPERRXn at the EX stage must drive FPEoDDn correctly
according to the even/odd status of the EX pipeline
stage.



CW4010 Shell Interface Signal Definitions 7-15

If the FPERRXn exception does not need to be treated
precisely, the FPEoDDn input must be strapped HIGH to
cancel the pipeline, in the same way as an interrupt
exception.

FPERRXn Floating Point Unit Error Exception Input
FPERRXn is an exception input, used specifically with an
FPU coprocessor. The CW4010 samples the signal at
any time in the EX stage and issues a pipeline cancel
signal at the CR stage, in the same way as EXiNTn. In
the Cause Register, exception code 15 is shown for the
exception if it is the highest priority. FPERRXn can be
used as a user-defined coprocessor exception input.

FPERRXn must be treated precisely . The FPU asserts
FPERRXn at the EX stage of the instruction with the
FPEoDDn signal assertion/deassertion. The CW4010
asserts the pipeline cancel signal at the CR stage with
the correct even/odd cancel signal.

PCANCRn Pipeline Cancel at CR stage Output
When one or more exceptions occurs, the pipeline is
cancelled at the CR stage and the CW4010 asserts
PCANCRn. Coprocessor pipelines must be cancelled to
prevent a second execution of the coprocessor instruction
under either one of the following conditions: when the
coprocessor returns from an exception handler; or when
the coprocessor has finished executing an LWCz
instruction that caused a TLB miss. The WB stage is not
cancelled when PCANCRn is asserted.

This signal is valid at the CR stage of the pipeline.

PCANoDDn Pipeline Cancel is for Odd Slot Output
PCANoDDn is valid only when PCANCRn is asserted.
The signal informs coprocessors whether the cancellation
is for an odd or even slot. When the CW4010 asserts the
signal, cancellation applies to the odd slot. When it is
deasserts the signal, cancellation applies to both even
and odd slots.

The coprocessor must track which slot it is executing in
based on the CPXoDDn signal. When the CW4010
asserts both PCANCRn and PCANoDDn and the
coprocessor instruction is in the odd slot, the instruction
must be cancelled. When the CW4010 asserts



7-16 Signals

PCANCRn and deasserts PCANoDDn, the coprocessor
instruction must be cancelled regardless of which slot it
is operating in.

This signal is valid at the CR stage of the pipeline.

PSTALLn Pipeline Stall Broadcasting Signal Output
The CW4010 asserts this signal to indicate that the entire
CW4010 pipeline is stalled. Coprocessor pipelines must
be stalled when they are executing instructions. The
CW4010 asserts PSTALLn for all pipeline stalls and for
an LWCz instruction Dcache miss.

SUSPEXn Suspend EX stage Output
The CW4010 Instruction Scheduler Unit (ISU) asserts
SUSPEXn to request coprocessors to suspend the
instruction in the EX stage. The instruction in the EX
stage must be held until the ISU deasserts SUSPEXn.
Instructions in the CR and WB stages must be
completed.

This signal is valid at the EX stage of the pipeline.

7.4.6
OCAbus
Interface
Signals

The CW4010 core has an On-Chip Access (OCA) interface that allows
on-chip modules to be accessed at the CR stage of the pipeline without
going through an SCbus transaction. This improves performance since it
reduces traffic on the SCbus and therefore, reduces latency.

If the module that is the target of the transaction can respond in one
clock cycle, there is no penalty for a read or write cycle. A read access
on the SCbus has at least a four-clock penalty, and a write access is
done through a four-deep write buffer. The on-chip modules can be
accessed from the SCbus.

The CW4010 is the only bus master for the OCAbus. Instructions cannot
be fetched through the OCAbus.

This section describes the OCAbus interface signals.



CW4010 Shell Interface Signal Definitions 7-17

AccSize[1:0] OCAbus Transaction Size Output
These signals indicate the transaction size of an OCAbus
transaction. The signals are valid when the CW4010
asserts either EXLoadp or AccStorep.

These signals are valid at the EX stage of the pipeline.

AccStorep OCAbus EX Stage Store Operation Output
The CW4010 asserts this signal when a store instruction
is being executed in the EX stage of the CW4010
pipeline. The CW4010 asserts the signal when
DVAddrp[31:0] and AccSizep[1:0] are valid.
DVAddrp[31:0] is decoded when the CW4010 asserts
AccStorep. If the resulting address is for a device on the
OCAbus, OCAcceptp is asserted.

This signal is valid at the EX stage of the pipeline.

CPFRCDp[31:0]
Data from Coprocessor Input
This bus inputs data from a coprocessor register to a
CW4010 CPU general purpose register or to memory. It
is valid when the CW4010 asserts the data enable signal,
CPFRCEn. If there are several coprocessors, the data
bus must be multiplexed.

These signals are valid at the CR stage of the pipeline.

CPFRCEn Data from Coprocessor Enable Output
The CW4010 asserts this signal to indicate when data on
the input bus, CPFRCDp[31:0], is valid. Coprocessors can
generate the same information from the instruction code,
CPCoDEp[31:0], by tracking the pipeline stage, and
decode the coprocessor number from CPCoDEp[31:0]. If
the pipeline enters a stall condition when there is a
coprocessor data movement instruction in the CR stage,
the CW4010 asserts CPToCEn continuously until the stall
condition is resolved.

This signal is valid at the CR stage of the pipeline.

AccSize[1:0] Transaction Size

00 One byte

01 Halfword

10 Tribyte

11 One word



7-18 Signals

CPSREQn[3:1]
Coprocessor Stall Request Input
The coprocessors assert these signals inputs when they
coprocessors need to request a pipeline stall.
Coprocessors can assert CPSREQn[3:1] while a
previous coprocessor instruction is being executed, after
decoding a coprocessor instruction, and after the RD
stage. The CW4010 asserts PSTALLn immediately when
one of these signals is asserted.

This signals are issued at the CR stage of the pipeline.

CPToCDp[31:0]
Data to Coprocessor Output
This bus outputs data to a coprocessor register from a
CW4010 CPU general purpose register or from memory.
The bus is valid when the CW4010 asserts the data
enable signal, CPToCEn.

These signals are valid at the CR stage of the pipeline.

CPToCEn Data to Coprocessor Enable Output
The CW4010 asserts this signal to indicate when the
data output bus, CPToCDp[31:0], is valid. Coprocessors
can generate the same information from the instruction
code, CPCoDEp[31:0], by tracking the pipeline stage,
decode the coprocessor number from CPCoDEp[31:0]. If
the pipeline enters a stall condition when there is a
coprocessor data movement instruction in the CR stage,
The CW4010 asserts CPToCEn continuously until the
stall condition is resolved.

This signal is valid at the CR stage of the pipeline.

CRValidp OCAbus CR Stage Valid Output
The CW4010 asserts this signal when the CR stage of a
load or store instruction is valid after it has asserted
EXLoadp or AccStorep. If the load or store instruction is
cancelled, the CW4010 deasserts CRValidp and the
load/store operation must be cancelled.

This signal is valid at the CR stage of the pipeline.



CW4010 Shell Interface Signal Definitions 7-19

DVAddrp[31:0]
OCAbus Virtual Address Output
This is the output bus for the OCAbus virtual address. It
is used for a load or store instruction being executed at
the EX stage for the OCAbus. The signal is valid when
the CW4010 asserts either EXLoadp or AccStorep.

These signals are valid at the EX stage of the pipeline.

EXLoadp OCAbus EX State Load Operation Output
The CW4010 asserts this signal when a load instruction
is being executed in the EX stage of the CW4010
pipeline. It asserts the signal when DVAddrp[31:0] and
AccSize[1:0] are valid. DVAddrp[31:0] is decoded when
the CW4010 asserts EXLoadp. If the resulting address is
for a device on the OCAbus, OCAcceptp is asserted.

This signal is valid at the EX stage of the pipeline.

OCAcceptp OCAbus Transaction Accepted Input
When the OCA module can accept an OCA transaction,
it asserts this signal. The signal is an output from the
DVAddrp address decoder and it is asserted at the CR
stage. When it is asserted for a read operation, the LSU
selects CPFRCDp[31:0] as the data input. When it is
asserted for a write operation, the data CPToCDp[31:0] is
written into an OCA device at the CR stage. The data is
therefore not written into the Dcache and an SCbus
transaction is not requested.

This signal is valid at the CR stage of the pipeline.

PSTALLn Pipeline Stall Broadcasting Signal Output
The CW4010 asserts this signal to indicate that all stages
of the CW4010 pipelines are stalled. Pipelines must be
stalled when they are executing instructions.

This signal is valid at any stage of the pipeline.



7-20 Signals

7.4.7
Miscellaneous
Signals

This section describes the miscellaneous signals used by the CW4010.

BENDn Big Endian Input
BENDn is a static input and must be tied LOW for big
endian addressing and HIGH for little endian addressing.
BENDn affects the byte positions for sizing and
Load/Store data alignment.

For big endian mode, the upper 32 bits of SCDip must be
swapped with the lower 32 bits, and the upper 32 bits of
SCDop must be swapped with the lower 32 bits.

FRCMn Force Cache Miss Input
Asserting FRCMn forces a cache miss for both the
Icache and Dcache. The CW4010 treats the transaction
as an access to an uncached area. FRCMn is useful for
debugging the system.

This is a static input. It is tied LOW for software
debugging.

SCANREQp Scan Debug Event Output
The CW4010 asserts this signal to indicate that the CP0
has detected a scan debug event. Clock circuitry external
to the core uses this information to determine when to
drop out of a normal operating mode into scan debug
mode.

SCLKp System Clock Input
SCLKp is the processor system clock input. It provides
basic timing for the CW4010 core and determines the
instruction cycle times. Internal core logic operates
synchronously with the rising edge of SCLKp. Since the
core processor operates at 80 MHz, you must supply an
80 MHz clock.

This clock input is used for all core modules.

TESTMp Test Mode Enable Input
TESTMp is used for testing. It is a static input and must
be tied LOW during normal operation.

WSTALLp Wait Interrupt Stall Output
WSTALLp indicates that internal pipeline stages have
entered a stall condition by executing a WAITI (Wait
Interrupt) instruction. The CW4010 asserts WSTALLp
when the instruction is at the WB stage of the CW4010
pipeline, and the signal remains active until the CW4010
receives an external exception (enabled external
interrupt, NMIn, cold reset, or warm reset).



8-1

Chapter 8
Interface Operation

This chapter examines various CW4010 functional timing scenarios. It
does not deal with all timing cases, however, it covers the main timing
related to CW4010 transactions. For details of the operation of each of
the signals discussed, refer to Chapter 7, “Signals.”

This chapter has the following sections:

♦ Section 8.1, “Reset and Exception Signals,” on page 8-1

♦ Section 8.2, “SCbus Interface Behavior,” on page 8-19

♦ Section 8.3, “OCAbus Interface Behavior,” on page 8-36

♦ Section 8.4, “Cache Interface Behavior,” on page 8-44

♦ Section 8.5, “Coprocessor Interface Behavior,” on page 8-46

In the timing diagrams shown in this chapter, all inputs and all outputs
must be synchronized to the rising edge of the system clock. All inputs
require setup and hold time and all outputs have valid delay times from
the clock edge to the appearance of a valid level.

8.1
Reset and
Exception
Signals

The CW4010 has the following reset and exception inputs that connect
to Coprocessor-0:

♦ Cold Reset

♦ Warm Reset

♦ Non-Maskable Interrupt

♦ Bus Error

♦ Floating Point Unit Exception

♦ Interrupts

The above inputs must be synchronized to the rising edge of the system
clock.



8-2 Interface Operation

8.1.1
Cold Reset
(CRESETn)

The primary purpose of a cold reset is to initialize the CW4010 core at
power up.

When asserted, CRESETn initializes the internal states and control
registers in the CW4010. CRESETn does not initialize general purpose
registers, Icache, Dcache, or the MMU TLB.

CRESETn can be asserted asynchronously, but it must be active for at
least two system clock cycles and be deasserted on the rising edge of
the system clock. The CW4010 considers CRESETn a non-maskable
exception and is in idle mode during the period that CRESETn is
asserted. Figure 8.1 shows the timing for a Cold Reset and the start of
an instruction fetch after CRESETn is deasserted.

Figure 8.1
Cold Reset and
Pipeline

SCLKp

CRESETn

Instruction 1

Instruction 0

Reset Instruction 0

Reset Instruction 1

IF

IF

RD

RD

Cancelled

Cancelled

IF

IF

Stall due to Icache miss

Stall due to Icache miss

T1 T2 T3 T4 T5 T6 T7

Clock Cycles

MD96.94



Reset and Exception Signals 8-3

8.1.2
Handling Cold
Resets

The CPU provides a special interrupt vector (0xBFC00000) for the
CRESETn exception. The reset vector resides in unmapped and
uncached CPU virtual address space, so the hardware does not need to
initialize the TLB or the cache to handle the exception. The processor
can fetch and execute instructions while the caches and virtual memory
are in an undefined state. For further information on this subject refer to
Section 4.4.5, “Cold Reset Exception” on page 4-32.

The contents of all registers in the CPU are undefined when the
CRESETn exception occurs except for the following:

♦ In the Status register, the CU[3:0] and SR bits are cleared to zero,
and the ERL and BEV bits are set to one. The other bits in the
register are undefined.

♦ The Random register is initialized to the value of its upper bound.

♦ The Wired register is initialized to zero.

8.1.2.1 Servicing Cold Resets

To service the CRESETn exception, you should initialize all processor
registers, coprocessor registers, caches, and the memory system. You
can do this by performing diagnostic tests and by bootstrapping the
operating system.

8.1.3
Warm Reset
(WRESETn)

The primary purpose of the WRESETn exception is to reinitialize the
processor after a fatal error.

When asserted, WRESETn initializes the CW4010 internal states and
control registers. WRESETn does not initialize general purpose registers,
Icache, Dcache, or the MMU TLB.

WRESETn must be asserted and deasserted on the rising edge of the
system clock. It must remain active for at least two system clock cycles.
WRESETn is a non-maskable exception and the CW4010 is in idle mode
during the period it is asserted. The start of the instruction fetch after
WRESETn is deasserted is the same as that of CRESETn, as shown in
Figure 8.1.



8-4 Interface Operation

8.1.3.1 Handling Warm Resets

The reset exception vector (0xBFC00000) is used for the WRESETn
exception. The reset vector resides in unmapped and uncached CPU
virtual address space, so the hardware does not need to initialize the
TLB or the cache to handle the exception. The SR bit of the Status
register is set to distinguish the WRESETn exception from the CRESETn
exception.

Unlike a non-maskable interrupt, WRESETn resets bus state machines.
Like CRESETn, it can be used on the processor in any state.

The contents of all registers are preserved when WRESETn occurs,
except for the following:

♦ ErrorPC register, which contains the restart PC.

♦ ERL and BEV bits of the Status register, which are set to 1.

♦ SR bit of the Status register, which is set to 1.

Because WRESETn can abort cache and bus operations, cache and
memory contents are undefined after the WRESETn exception occurs.
For further information on this subject refer to Section 4.4.6, “Warm
Reset Exception” on page 4-33.

8.1.3.2 Servicing Warm Resets

To service the WRESETn, you should save the current processor state
to use for diagnostic purposes, and also to reinitialize all processor
registers, the coprocessor and the memory system.



Reset and Exception Signals 8-5

8.1.4
Non-Maskable
Interrupt (NMin)

The Non-Maskable Interrupt input NMin must be asserted and
deasserted on the rising edge of the system clock. When NMin is
sampled and found to be active on the rising edge of the clock, the CP0
provides an non-maskable exception vector (0xBFC00000). Figure 8.2
shows the timing diagram for the fastest detected case. Figure 8.3 shows
the case in which NMin is not serviced immediately because of a pipeline
stall. The CW4010 detects the falling edge of NMin and latches the
signal until it is ready to service it.

Figure 8.2
NMin and Pipeline
(NMin is Detected
Immediately) SCLKp

NMin

PCANCRn

PCANoDDn

Instruction 0, 1 IF RD EX CR

IF RD EX

IF RD

IF

Instruction 2, 3

Instruction 4, 5

Instruction 6, 7

Exception IF

Cancelled

Cancelled

Cancelled

Cancelled

Latched

PSTALLn

T1 T2 T3 T4 T5
Clock Cycles

MD96.95

T6

Internal NMI

Instruction 0, 1



8-6 Interface Operation

Figure 8.3
NMin and Pipeline
(NMin is not Detected
Immediately Due to
Stall)

8.1.4.1 Handling a Non-Maskable Interrupt

The reset exception vector (0xBFC00000) is also used for the NMin
exception. The reset vector resides in unmapped and uncached CPU
address space so that the hardware does not need to initialize the TLB
or the cache to handle NMin. The SR bit of the Status register is set to
differentiate this exception from a CRESETn exception.

Because an NMin could occur in the middle of another exception,
program execution cannot continue after NMin has been serviced.

Unlike Cold and Warm Reset, but like other exceptions, a Non-Maskable
Interrupt is taken only at instruction boundaries. The NMin exception
preserves the state of the caches and memory system. For further

SCLKp

NMin

Latched

PCANCRn

PCANoDDn

PSTALLn

Instruction 0, 1

Instruction 2, 3

EX EX EX EX EX EX CR Cancelled

RD RD RD RD RD RD EX Cancelled

IF RD Cancelled

IF Cancelled

IF

Instruction 4, 5

Instruction 6, 7

Exception

T1 T2 T3 T4 T5 T6 T7 T8 T9
Clock Cycles

MD96.96

Internal NMin

Instruction 0, 1



Reset and Exception Signals 8-7

information on this subject refer to Section 4.4.6, “Warm Reset
Exception” on page 4-33.

The contents of all registers in the CPU are preserved when this
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC.

♦ The ERL and BEV bits of the Status register, which are set to one.

♦ The SR bit of the Status register, which is set to one.

8.1.4.2 Servicing a Non-Maskable Interrupt

To service the NMin exception save the current processor state for
diagnostic purposes, and for reinitializing the system, including all
processor registers, coprocessor registers, caches, and the memory
system.

8.1.5
Bus Error
(SCBERRn)

A Bus Error exception occurs when board-level circuitry detects events
such as bus time-outs, bus parity errors, and invalid physical memory
accesses. The SCBERRn exception is not maskable.

In the CW4010, Bus Errors are asynchronous events with respect to
CPU instruction processing (much like the NMin interrupt), which means
that there is no attempt to identify the instruction that was the root source
of the error.

The SCBERRn input from the SCbus interface terminates a transaction
and generates an exception to inform the CW4010 that an SCbus
transaction has not been successfully completed. When the CW4010 is
driving the SCbus, it detects the assertion of SCBERRn. SCBERRn
assertion should be a synchronous one clock cycle strobe, which is
latched in CW4010 until it is serviced. Figure 8.4 shows the timing
diagram in which SCBERRn is serviced immediately and Figure 8.5
shows how the exception is serviced later because of stall cycles.



8-8 Interface Operation

Figure 8.4
Bus Error and
Pipeline (Detected
Immediately) SCLKp

SCTSSn

SCAoEn

SCBERRn

PCANCRn

PSTALLn

Instruction 0, 1 EX CR CancelledIF RD

IF RD EX Cancelled

IF RD Cancelled

IF Cancelled

Instruction 2, 3

Instruction 4, 5

Instruction 6, 7

Exception

T1 T2 T3 T4 T5

IF

Latched Internal
Bus Error

T6
Clock Cycles

MD96.97
Instruction 0, 1



Reset and Exception Signals 8-9

Figure 8.5
Bus Error and Pipeline
(With Stall Cycles)

8.1.5.1 Handling Bus Errors

The common exception vector, shown in Table 8.1, is used for the
SCBERRn exception. The ExcCode field in the Cause register is set to
Bus.

SCLKp

SCTSSn

SCAoEn

SCBERRn

PCANCRn

PSTALLn

Instruction 0, 1 EX CR CR CR CR WB

RD EX EX EX EX CR Cancelled

EX

RD

Cancelled

Cancelled

Instruction 2, 3

Instruction 4, 5

Instruction 6, 7

RD

Latched Internal
Bus Error

Clock Cycles
T1 T2 T3 T4 T5 T6 T7 T8

MD96.98

Exception IF
Instruction 0, 1



8-10 Interface Operation

Table8.1
C
o
m
m
o
n
E
x
c
e
p
ti
o
n
V
e
c
t
o
r

Status Register CCC Register
DEV R3000 Mode R4000 Mode

0 0x80000080 0x80000180

1 0xBFC00180 0xBFC00380



Reset and Exception Signals 8-11

The EPC register points at the first instruction for which processing was
not completed, unless this instruction is in a branch delay slot. If the
instruction is in a branch delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set.

8.1.5.2 Servicing Bus Errors

The physical address at which the fault occurred is not available to the
exception handler. The process executing at the time of the exception
must be handed a bus error signal, which is usually fatal.

8.1.6
Floating-Point
Unit (FPERRXn)
Exceptions

The CW4010 coprocessor interface uses the FPERRXn input to detect
a Floating-Point Unit (FPU) exception. Refer to Section 8.5,
“Coprocessor Interface Behavior” on page 8-46, for more details about
the FPERRXn. Figure 8.6 shows the case where FPERRXn is serviced
immediately.

Figure 8.6
FPU Exception and
Pipeline (Detected
Immediately) SCLKp

CPCoDEp

CPXSTBn

FPERRXn

PCANCRn

PSTALLn

CP Instruction 1

Instruction 2, 3

RD EX CR

RD EX

RD

IF

IF

IF

Cancelled

Cancelled

Cancelled

Cancelled

Instruction 4, 5

Instruction 6, 7

Exception

T1 T2 T3 T4

IF

Clock Cycles
T5

MD96.99
Instruction 0, 1



8-12 Interface Operation

If the CW4010 enters a stall condition at the EX stage and FPERRXn is
asserted, it should be asserted continuously until the stall condition is
resolved. FPERRXn is not latched in the CW4010. This condition is
shown in Figure 8.7.

Figure 8.7
FPU Exception and
Pipeline (With Stall
Cycles)

CP Instruction 1

Instruction 2, 3

RD EX EX

RD RDIF

Instruction 4, 5

Instruction 6, 7

Exception

SCLKp

CPCoDEp

CPXSTBn

FPERRXn

PCANCRn

PSTALLn

EX EX CR Cancelled

RD RD EX Cancelled

IF RD

IF

Cancelled

Cancelled

IF

T1 T2 T3 T4 T5 T6 T7
Clock Cycles

MD96.100

Instruction 0, 1



Reset and Exception Signals 8-13

If the previous instruction cancels the pipeline (the pipeline cancel signal
is asserted at the same time as FPERRXn), FPERRXn is ignored and
must be deasserted. FPERRXn should be asserted later when the
coprocessor instruction is re-executed. This condition is shown in
Figure 8.8.

Figure 8.8
FPU Exception and
Pipeline (Cancel,
then not Serviced)

8.1.6.1 Handling FPU Exceptions

The common exception vector is used for the FPERRXn exception. The
ExcCode field in the Cause register is set to FPE (15).

The coprocessor asserts FPERRXn at the CR stage and the CW4010
samples it at the end of the EX stage. The coprocessor instruction in this
slot causes the FPERRXn exception.

The EPC register points at the coprocessor instruction, which starts at
the RD stage just before the coprocessor asserts FPERRXn. If the
instruction is in a branch delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set.

SCLKp

CPCoDEp

CPXSTBn

FPERRXn

PCANCRn

PSTALLn

CP Instruction 1

 Instruction 2, 3

RD EX Cancelled

RD CancelledIF

IF Cancelled

IF

 Instruction 4, 5

Exception

T1 T2 T3 T4

(Not an FPU

T5
Clock Cycles

MD96.101

Instruction 0, 1 Exception)



8-14 Interface Operation

Refer to Section 4.4.18, “Floating-Point Exception” on page 4-45 for
further information on this subject.

8.1.6.2 Servicing FPU Exceptions

Coprocessor interface signals indicate whether the coprocessor
instruction is in an even or odd slot. The coprocessor must control these
signals correctly to synchronize the exception and the pipeline flow.

The FPERRXn exception input can be used as a general purpose
exception input.

8.1.7
External
Interrupts
(EXTiNTn)

The CW4010 has six external interrupt inputs, EXiNTn[5:0], which must
be asserted and deasserted on the rising edge of the system clock. To
mask all six external interrupts at once, you can clear the IE bit of the
Status register. To mask each interrupt individually, program the INT bits
in the Status register (Refer to Section 4.3.6, “Status Register (12)” on
page 4-9 for further information about this register.) The instruction fetch
for the exception procedure starts two clocks after an external interrupt
has been detected, provided that the pipeline is not in a stall state and
there is no higher priority exception. Figure 8.9 shows the timing diagram
where an interrupt is immediately detected.



Reset and Exception Signals 8-15

Figure 8.9
Interrupt And
Pipeline (Interrupt
Is Detected
Immediately)

An EXTiNTn exception is similar to an NMin exception, except that
external interrupts are not latched internally, and must be asserted until
they are serviced. If the pipeline is in a stall cycle, the CW4010 does not
service interrupts until the stall condition is resolved.

8.1.7.1 Handling External Interrupts

The common exception vector is used for the EXTiNTn exception. The
ExcCode field in the Cause register is set to INT0.

The IP field of the Cause register indicates the current interrupt requests.
More than one of the bits may be set at the same time. None of the bits
may be set, if an interrupt is asserted and then deasserted before the
CW4010 reads the Cause register.

The EPC register points at the first instruction for which processing was
not completed, unless this instruction is in a branch delay slot. If the
instruction is in a branch delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set.
Refer to Section 4.4.21, “Interrupt Exception” on page 4-47 for further
information on this subject.

SCLKp

EXiNTn

PCANCRn

PCANoDDn

PSTALLn

T1 T2 T3 T4 T5

Instruction 0, 1 IF RD EX CR

IF RD EX

IF RD

IF

Instruction 2, 3

Instruction 4, 5

Instruction 6, 7

Exception IF

Cancelled

Cancelled

Cancelled

Cancelled

T6
Clock Cycles

MD96.102

Instruction 0, 1



8-16 Interface Operation

8.1.7.2 Servicing External Interrupts

If one of two software generated exceptions causes the interrupt, clear
the corresponding Cause register bit to zero to clear the interrupt
condition.

If the interrupt is hardware generated, correct the condition that caused
the assertion of the interrupt pin to clear the interrupt condition.

8.1.8
External
Vectored
Interrupt
(EXViNTn)

The CW4010 has an External Vectored Interrupt input, EXViNTn. The
EXVAp[31:2] inputs provide the interrupt vector virtual address, so the
common exception vector base and offset are not used.

EXViNTn must be asserted and deasserted on the rising edge of the
system clock. When the EXViNTn has been sampled and found active
on the rising edge of the clock, CP0 samples an exception vector from
EXVAp[31:2], which is available when the enable bit EVI in the CCC is
set. To mask the EXViNTn interrupt at once, you can clear the IE bit of
the Status register. Figure 8.10 shows the fastest accepted case of
EXViNTn. If the pipeline is stalled, it requires more clock cycles. When
EXVApEn is asserted, the system may drive EXVAp[31:2].



Reset and Exception Signals 8-17

Figure 8.10
Fastest Accepted Case
of External Vectored
Interrupt

8.1.8.1 Handling External Vectored Interrupts

The External Vectored Interrupt feature is available when the EVI bit in
the CCC register is set.

EXViNTn has lower priority than the six external interrupts EXiNTn[5:0],
but higher priority than the debug exception. To mask EXViNTn, you can
use the interrupt enable bit in the Status Register in a similar way to that
used for external interrupts.

If EXViNTn is accepted, the CP0 reads the exception vector address on
EXVAp[31:2] and writes it into the Program Counter directly. A user-
defined interrupt controller provides EXVAp[31:2], so that the CW4010
jumps to the interrupt handler directly when it is requested. EXVAp[31:2]
must be stable until EXVApEn is asserted. EXViNTn does not alter
anything in the Cause Register except the BD bit.

The EPC register points at the first instruction for which processing was
not completed, unless this instruction is in a branch delay slot. If the

SCLKp

EXViNTn

EXVAp[31:2]

EXVApEn

PCANCRn

Instruction 0, 1

Instruction 2, 3

Cancelled

Cancelled

CancelledInstruction 4, 5

Exception

T1 T2 T3 T4 T5 T6 T7

RD EX CR

RD EX

RD

IF RD

Clock Cycles

Exception Address

MD96.103
Instruction



8-18 Interface Operation

instruction is in a branch delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.
Refer to Section 4.4.22, “External Vectored Interrupt Exception” on page
4-48 for further information on this subject.

8.1.9
WAITI
Instruction and
WSTALLp

The CW4010 uses the WAITI instruction, which is one of its extended
instructions, to initiate a wait state. This stalls the pipeline and reduces
power consumption during the period that the CW4010 is inactive. The
CW4010 wakes up when it detects an external exception input (enabled
interrupt, NMin, warm reset, or cold reset). Figure 8.11 shows the timing
diagram for the WAITI instruction.

Figure 8.11
WAITI and Pipeline
Stall (WSTALLp)

T1 T2 T3 T4 T5 T6 T7 T8 T9

Clock Cycles

SCLKp

WAITI Instruction

Instruction 1

Instruction 2

Instruction 3

Instruction 4

EX CR

RD EX

WB

CR

RD EX CR

CR CR CR CR

CR CR CR CR

IF RD EX EX

IF RD EX EX

EX

EX

EX

EX

EX

EX

Cancelled

Cancelled

EXiNTn

PSTALLn

WSTALLp

PCANCRn

Cancelled

Cancelled

MD96.104



SCbus Interface Behavior 8-19

The Coprocessor Interface signal, PSTALLn, is also asserted when the
pipeline stage is in the stall condition.

At T1, the CP0 starts executing a WAITI instruction. At T3 (which occurs
in the WB stage of the pipeline), the CP0 requests pipeline stall and the
CW4010 asserts WSTALLp. At T6, an external interrupt input is asserted
and the CW4010 wakes up from T7. At T8, the instructions in the pipeline
stages are cancelled, and the IF stage for the exception is started
from T9.

8.2
SCbus Interface
Behavior

The CW4010 generates one or more external data read/write
transaction(s) on the SCbus under any of the following conditions:

♦ Uncached area instruction fetch

♦ Icache-miss

♦ Uncached area data read/write

♦ Load Dcache-miss

♦ Any store execution in WriteThrough mode

♦ Dcache WriteBack

The SCbus is a flexible address/data bus. It is demultiplexed and
synchronized to the system clock. It has a data width of 64 bits, but
supports one type of bus sizing from a 64-bit width to a to 32-bit width.
The SCbus has the following transaction data sizes: byte, halfword,
tribyte, 32-bit word, 64-bit doubleword, or 8-word burst (4-doubleword
burst), as shown in Table 8.2



8-20 Interface Operation

.

The CW4010 has a four line depth write buffer for uncached, Dcache
Miss, or WriteThrough store operations. Each line in the buffer contains
32-bits of address and 64-bits of data. If word data is stored to a
continuous same-doubleword alignment address, two words are stored
in one line. The CW4010 then requests a doubleword write transaction
on the SCbus, which the sizing function can separate into two 32-bit write
transactions.

8.2.1
SCbus Basic
Transaction

Figure 8.12 shows a basic SCbus transaction for a single read and write.
It is a three-clock-cycle transaction, which means that the SCBRDYn
assertion is sampled on the rising edge of the third clock edge from the
beginning of the transaction cycle. The number of clock cycles for the
fastest transaction is one clock, in which case SCTSSn is asserted
continuously if the next transaction starts just after the current one. There
is no limit to the maximum number of clock cycles for a transaction. A
bus watch dog timer must be designed outside the core to assert the bus
error signal SCBERRn, if necessary, when the transaction length is
longer than the specification.

Table 8.2
SCbus Transaction
Types

Cause of SCbus Transaction Transaction Type
No. of
Bytes

Uncached Instruction Fetch Doubleword 8

Instruction Cache-Miss 8 words 32

Data Read by Uncached Load Instruction Byte, halfword, tribyte, word 1, 2, 3, 4

Data Read by Dcache-Miss Load
Instruction 8 words 32

Data Write by Uncached Store Instruction Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by Dcache-Miss Store
Instruction Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by WriteThrough Store
Instruction Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by WriteBack 8 words 32



SCbus Interface Behavior 8-21

Figure 8.12
SCbus Basic
Transaction

At the beginning of a transaction, the transaction start strobe SCTSSn is
asserted for one clock cycle. In addition, the address is output on the
SCAop[31:0] lines and the address output enable signal SCAoEn is
asserted to indicate that SCAop[31:0] is valid.

The Byte Enable signals SCTBEn[7:0] are also output. If the transaction
is a four doubleword burst, SCTBSTn is asserted during the first
transaction. If the transaction is an In-Page write, which means that the
next transaction is in the same page, SCTPWn is asserted. It is not
asserted for burst write transactions. The SCTBSTn and SCTPWn status
indication signals are valid by the end of the transaction.

SCLKp

SCAop[31:0]

SCAoEn

SCDip[63:0]1

SCDop[63:0]2

SCDoEn3

SCTSSn4

SCTBSTn,

SCTPWn5

SCTSEn

SCBRDYn

Arbitration
Cycle T1 T2 T3

Clock Cycles

Address

Data

1. Read cycle.
2. Write cycle.
3. High = read, low = write.
4. Asserted at first cycle.
5. Low for In-Page write.

MD96.105

Data

SCTBEn[7:0]



8-22 Interface Operation

If the transaction is a data write, data is output to the SCDop[63:0] lines
and SCDoEn is asserted from the beginning to the end of the
transaction. If the transaction is a data read or instruction fetch, the
SCDip[63:0] signal lines are sampled on the clock edge as the ready
input SCBRDYn is asserted. The data output enable signal SCDoEn then
indicates the read/write direction of the transaction and controls the
three-state buffers external to the CW4010.

Asserting SCBRDYn terminates the transaction. At the same time, the
size input bus signal SCB32n is sampled. According to the input, the Bus
Interface Unit (BIU) of the CW4010 determines the valid byte positions
for the read transaction bus sizing. If SCBRDYn is asserted for a
doubleword transaction, the bus interface generates a subsequent
transaction for bus sizing. The bus In-Page write accept input SCBPWAn
is also sampled in an In-Page write transaction. If SCBPWAn is
deasserted, the bus interface arbitrates bus requests even if the next
transaction is a write transaction in the same memory page. If SCBPWAn
is asserted, the bus interface does not arbitrate bus requests and the
next transaction must be a write transaction in the same memory page.
If SCBPWAn is asserted during the In-Page write transaction but
SCTSEn is deasserted, the next transaction is a write transaction in the
same page.

To perform an instruction fetch transaction, the CW4010 asserts
SCiFETn during the same period as SCAoEn in order to monitor the
transaction.

8.2.2
SCbus Burst
Transaction

When an Icache miss occurs, the Instruction Scheduler Unit (ISU)
requests an 8-word (4-doubleword) block burst read. When a Dcache
miss occurs, the Load Store Unit (LSU) requests an 8-word block burst
read. The LSU also requests an 8-word block burst write for Dcache
WriteBack.

Figure 8.13 shows an eight-word burst read/write transaction that
consists of four continuous transactions.



SCbus Interface Behavior 8-23

Figure 8.13
SCbus Eight-Word
Burst Transaction
Timing Chart

In the first transaction, the burst transaction indicator signal, SCTBSTn,
is asserted to indicate an 8-word burst transaction. Subsequent
transactions are single doublewords transactions. Each transaction is
terminated by an assertion of the bus ready signal, SCBRDYn. The
transaction start signal, SCTSEn, is asserted for each transaction. Burst
transactions can be suspended if SCTSEn is deasserted. The bus hold
request signal, SCHRQn, is not accepted during a burst transaction if
SCTSEn is not deasserted when SCBRDYn is asserted. SCHRQn is
accepted if SCTSEn is asserted to insert one or more idle cycles when
SCBRDYn is asserted.

SCLKp

SCAop[31:0]

SCAoEn

SCDip[63:0]1

SCDop[63:0]2

SCDoEn3

SCTSSn

SCTBSTn

SCTBLn

SCTBEn[7:0]

SCBRDYn

SCTSEn

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

Address Address + 8 Address + 16 Address + 24

Data Data Data Data

Data Data Data Data

1. Read cycle.
2. Write cycle.
3. High = read, low = write.

MD96.106



8-24 Interface Operation

SCTBLn, which indicates whether the last transaction is a burst or a
single transaction, is deasserted (HIGH) at the first, second, and third
transactions of a four doubleword burst transaction.

For a burst read transaction, the first address is the missed address. The
addresses of the subsequent transactions are rotative and wrap around
ordering in the block. For a burst write transaction, the first address is
the beginning of the block and subsequent addresses are incremental.

Bus sizing for a burst transaction is available to allow the SCbus to
accomplish burst transactions to 32-bit width devices. The SCB32n input
must be asserted for each transaction of burst transactions. If 32-bit
sizing is requested for a burst transaction, eight word transactions are
generated. SCTBLn is deasserted from the first to the sixth transaction.
The In-Page write never occurs if the transaction is a burst write.

Figure 8.14 shows a timing diagram for an eight-word burst transaction.
If the bus slave of the transaction is a synchronous DRAM system, there
are some wait cycles for the first data transfer, but not for subsequent
transfers. For a synchronous DRAM system, SCTSSn is asserted
continuously for the second, third, and fourth data transfers. The DRAM
controller generates addresses for these data transfers itself although
SCAop also outputs addresses.



SCbus Interface Behavior 8-25

Figure 8.14
SCbus Eight-Word
Burst Transaction

SCLKp

SCAop[31:0]

SCAoEn

SCDip[63:0]1

SCDop[63:0]2

SCDoEn3

SCTSSn

SCTBSTn

SCTBLn

SCTBEn[7:0]

SCBRDYn

SCTSEn

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

Address1 Address2 Address3 Address4

Data1 Data2 Data3 Data4

Data1 Data2 Data3 Data4

1. Read cycle.
2. Write cycle.
3. High = read, low = write.

MD96.107



8-26 Interface Operation

Figure 8.15 shows the first and second transactions of an eight-word
burst read/write. Transactions are suspended when SCTSEn is
deasserted.

Figure 8.15
SCbus Eight-Word
Burst Transaction
Timing Chart

If an individual transaction of a burst transaction is terminated with the
deassertion of SCTSEn, this means the next transaction cannot proceed
continuously. In that case, a hold request can be inserted. A hold request
can also be inserted if a retry occurs while SCTSEn is deasserted during
a burst transaction.

SCLKp

SCAop [31:0]

SCAoEn

SCDip[63:0]1

SCDop[63:0]2

SCDoEn3

SCTSSn

SCTBSTn

SCTBEn[7:0]

SCTSEn

SCBRDYn

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

Address Address + 8

Data Data

Data Data

1. Read cycle.
2. Write cycle.
3. High = read, low = write. MD96.108



SCbus Interface Behavior 8-27

8.2.3
SCbus In-Page
Write
Transaction

An In-Page write transaction is one in which continuous write accesses
are made to the same row and page in a given address area. Most types
of DRAM support this type of fast access, which is used to perform burst
read/write transactions.

The SCbus supports continuous write transactions that have the same
upper address. The external write buffer in the Load Store Unit compares
upper address bits of the current write request with those of the next
write transaction in the buffer. It provides the bus interface with the result
of the comparison. The address range is defined in the configuration
register of the CW4010. If the two addresses have the same upper
range, the In-Page write output SCTPWn is asserted to inform the
external bus slave.

The In-Page write accept input SCBPWAn must be asserted if the slave
is able to accept In-Page write transactions. If SCBPWAn is asserted, the
interface does not arbitrate bus requests and the next transaction must
be a write transaction. If SCBPWAn is deasserted, the bus interface
performs the next transaction according to the arbitration result.
SCBPWAn is sampled when the bus interface samples an assertion of
the SCBRDYn signal. The bus interface performs a write transaction if
SCBPWAn is deasserted and there are no higher requests. The
SCBPWAn input has no meaning if the transaction is not an In-Page
write, and it is ignored when SCTPWn is deasserted.

The bus interface does not count the number of continuous In-Page write
transactions. It continues In-Page writes until the write buffer is empty, a
write transaction is not in the same page address area, or SCBPWAn is
deasserted.

When the BIU deasserts the transaction start enable signal, SCTSEn,
the CW4010 inserts one or more bus idle states between two In-Page
write transactions. However, the bus interface does not arbitrate requests
during this idle state if the slave accepts the In-Page write transactions.
A hold request is allowed if the BIU deasserts SCTSEn. The bus
interface does not accept the bus hold request during In-Page write
transactions if the BIU receives an asserted SCTSEn continuously.

Figure 8.16 shows an example of In-Page write transactions.



8-28 Interface Operation

Figure 8.16
SCbus In-Page Write
Transaction Timing
Chart (four words)

SCLKp

SCAop[31:0]

SCAoEn

SCDop[63:0]1

SCDoEn

SCTSSn

SCTBEn[7:0]

SCTPWn

SCTSEn

SCBRDYn

SCBPWAn

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

Address1 Address2 Address3 Address4

Data1 Data2 Data3 Data4

1. Write cycle.
MD96.109



SCbus Interface Behavior 8-29

8.2.4
SCbus Bus
Hold

There are two ways to hold SCbus transactions:

♦ External logic asserts the CW4010 bus hold input SCHRQn. The
CW4010 acknowledges the request by issuing the bus hold grant
signal, SCHGTn.

♦ External logic deasserts the transaction start enable signal,
SCTSEn. Because there is no dedicated acknowledge signal
associated with SCTSEn, the CW4010 deasserts the address output
enable signal, SCAoEn, after the BIU deasserts SCTSEn to show
that the bus interface does not own the bus.

The bus hold request signal, SCHRQn, cannot break In-Page write
transactions and read/write burst transactions if SCTSEn is asserted
continuously. The BIU can break the transactions when it deasserts
SCTSEn.

To avoid a bus deadlock, a bus retry is requested with each hold request.
The current SCbus transaction generated by the BIU is then terminated
by the retry and the hold request must be accepted.

Figure 8.17 shows the timing diagram for a bus hold request and the
associated grant signal, SCHGTn. The CW4010 asserts the grant signal
until the BIU deasserts the request. During the period the bus is held,
the CW4010 does not detect bus errors.



8-30 Interface Operation

Figure 8.17
SCbus Hold Request
and Grant

8.2.5
SCbus Bus
Retry

The bus retry signal, SCBRTYn, is an input to the BIU. It is asserted to
abort a transaction and to allow the transaction to be restarted later. The
transaction state control goes to the idle state then restarts a transaction
when SCTSEn is asserted. Bus retry is valid in a burst transaction. If
SCBRDYn and SCBRTYn are asserted at the same time, SCBRTYn has
higher priority. If SCBRTYn is asserted to hold the bus, SCHRQn should
be asserted before or at the same time as SCBRTYn.

8.2.6
SCbus Bus
Error

The external bus controller asserts the BIU bus error signal, SCBERRn,
when the current transaction must be terminated as a bus error. If
SCBRDYn is asserted at the same time, SCBERRn has higher priority.

Assertion of SCBERRn forces the CW4010 to exit the sequential
transactions of In-Page write and read/write burst transactions. The
states of service and transaction control go to the idle state. If the
transaction is a burst (cache refill or WriteBack), the CW4010 invalidates
the cache line.

When a bus error occurs, the CP0 issues a bus error exception. See the
Section 8.1.5, “Bus Error (SCBERRn)” on page 8-7 for more details. A
bus error exception is a fatal error for the CW4010.

SCLKp

SCAoEn

SCTSSn

SCBRDYn

SCHRQn

SCHGTn

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

T9

1. If BIU has next transaction request, SCHRQn must be asserted before this cycle.
2. If BIU has no next transaction request, SCHGTn is asserted immediately.
3. Minimum 1 SCLK.

MD96.110

1 2

3



SCbus Interface Behavior 8-31

8.2.7
SCbus Bus
Sizing

The SCbus supports bus sizing for slaves that need sequential address
access to 32-bit data. When sizing is requested, the SCB32n input to the
CW4010 is asserted to separate a doubleword transaction, including part
of a burst transaction, into two singleword transactions. The bus interface
also selects valid byte positions for a word or a partial word transaction
if SCB32n is asserted. In the case of a word or a partial write transaction,
the bus interface outputs word data to both the upper and lower 32 bits
of the data output bus according to address bit 2. The bus interface then
completely supports a 32-bit bus interface. Although SCB32n is sampled
with the assertion of the ready signal input, the bus interface behaves as
a normal 32-bit data width bus if SCB32n is always asserted.

If 16-bit or 8-bit width bus sizing is needed, it must be supported outside
the CW4010 core.

8.2.7.1 Read Bus Sizing

When sizing occurs at a byte, halfword, tribyte, or word during a read
transaction, the CW4010 BIU can move sampled 32-bit word data to the
valid position according to the setting of address bit 2. If sizing is
requested for a doubleword transaction, the BIU samples 32-bit data at
the first transaction then generates a subsequent transaction and packs
the first 32 bits and the subsequent 32 bits. The packed data is sent to
the Instruction Scheduler Unit or Load Store Unit. Figure 8.18 shows the
relationship between the valid byte positions of the first and subsequent
transactions. In the case of a non-doubleword read, the behavior of a
byte, a halfword, and a tribyte transaction is the same as that of a word
transaction because sizing supports 32-bit mode only. You can assume
that the bus interface samples a doubleword (8 bytes). Figure 8.18 shows
an example in which the bus interface samples a doubleword (8 bytes).

Figure 8.18
Sampled Bytes of
First and Second
Transaction SCbus
Data

If you are reading a doubleword and doing bus sizing, you will need a
second transaction. Figure 8.19 shows the doubleword data that is sent
to the Instruction Scheduler Unit or Load Store Unit.

A1 B1 C1 D1 E1 F1 G1 H1

A2 B2 C2 D2 E2 F2 G2 H2

63 31 0

1st Transaction

2nd Transaction

1. The 2nd transaction is generated when the transaction is a doubleword or a part of a
burst with SCB32n = LOW.

MD96.111



8-32 Interface Operation

Figure 8.19
Read Bytes to ISU
and LSU with
Sizing

1. In Example 1, one transaction is initiated. The eight bytes sampled
are transferred to the ISU and LSU without any change.

2. In Example 2, one transaction is initiated. Four bytes are sampled
(bits [31:0]). They are transferred to bits [63:32] and [31:0] of the ISU
and LSU.

3. In Example 3, two transactions are initiated. Bits [31:0] of the first
transaction are output on bits [31:0], and bits [31:0] of the second
transaction are output on bits [63:32]. This doubleword is transferred
to the ISU or the LSU.

8.2.7.2 Write Bus Sizing

In the case of a non-doubleword write transaction, the bus interface
selects the upper or lower 32 bits of data from the Load Store Unit and
outputs the same 32-bit word data, which are valid bytes, to the SCbus
according to address bit 2. The data is output to the SCbus before the
bus interface detects the sizing input. In the case of a doubleword write
transaction, the bus interface generates a subsequent sizing transaction
if the sizing input is asserted at the first transaction. Figure 8.20 shows
the relationship between the doubleword data from the Load Store Unit
and the SCbus. Bytes shown in the shaded area have no meaning for
the SCbus write transaction.

H1G1F1E1H1G1F1E1Address 2 = 0, 1

2-1) Type = Byte, Half, Tri, Word
63 0

SCB32n = LOW

H1G1F1E1H2G2F2E2Address 2 = 0

2-2) Type = Doubleword
63 0

SCB32n = LOW

H1G1F1E1D1C1B1A1Address 2 = 0, 1

1-1) Type = any
63 0

SCB32n = HIGH

Example 1

Example 2

Example 3

MD96.112



SCbus Interface Behavior 8-33

Figure 8.20
Write Bytes to the
SCbus with Sizing

1. In Example 1, one transaction is initiated. A doubleword from the
LSU is output on the date bus without any changes.

2. In Example 2, one transaction is initiated. Bits [63:0] from the LSU
are output on bits [63:32] and [31:0] of the data bus.

3. In Example 3, one transaction is initiated. A doubleword from the
LSU is output on the data bus without any change.

4. In Example 4, two transactions are initiated. In the first transaction,
a doubleword from the LSU is output on the data bus without any
change. In the second transaction, bits [63:32] from the first
transaction are output to bits [31:0] of the data bus.

As shown in Figure 8.21, you can assume that the LSU sends a
doubleword, regardless of the transaction type.

Figure 8.21
Write Data Bytes
from LSU

 H G F E D C B AAddress 2 = 0

1-1) Type = Byte/Half/Tri/Word

Little Endian

63 0
SCB32n = HIGH/LOW

 H G F E D C B AAddress 2 = 0

2-1) Type = Double
63 0

SCB32n = HIGH

 D C B A D C B AAddress 2 = 1

63 0

 H G F E D C B AAddress 2 = 0

2-2) Type = Double 63 0
SCB32n = LOW

1st

 D C B A D C B AAddress 2 = 1 2nd

Example 1

Example 2

Example 3

Example 4

MD96.113

 A  B  C  D  E  F  G  H

63 31 0

MD96.114



8-34 Interface Operation

8.2.8
SCbus Bus
Lock

The CW4010 SCLoCKn output signal indicates that the SCbus is asking
to lock ownership. The CW4010 asserts SCLoCKn when the CW4010
executes a LoadLink instruction to start a read transaction in an
uncached area or WriteThrough cached area. It deasserts the signal just
before it executes a StoreConditional instruction to start a write
transaction. During the read transaction and the write transaction, the
CW4010 asserts SCLoCKn continuously.

If an effective address for a LoadLink instruction is in the WriteBack
cached area, the CW4010 does not assert SCLoCKn, even if it
experiences a Dcache miss. The subsequent StoreConditional
instruction does not generate a write transaction because it may hit the
Dcache. If a StoreConditional instruction hits the Dcache in a WriteBack
cached area when SCLoCKn is asserted, an incorrect condition occurs,
and SCLoCKn is deasserted without any bus transactions being
executed.

The effective virtual addresses of LoadLink and Store Instructions must
be in kseg1. Additionally, a LoadLink instruction and a StoreConditional
instruction must be used as a pair of instructions to the same address.

While the CW4010 asserts SCLoCKn, the bus interface does not exhibit
any special behavior—for example, it accepts hold requests. If a hold
request is not accepted while the CW4010 is asserting SCLoCKn,
outside user logic must mask the hold request by asserting SCLoCKn.

Figure 8.22 shows the timing behavior for locked transactions. If there
are other transactions between the read transaction of a LoadLink and
write transaction of a StoreConditional, the CW4010 asserts SCLoCKn
continuously.



SCbus Interface Behavior 8-35

Figure 8.22
SCbus Locked
Transaction

8.2.9
Big Endian
Configuration

The CW4010 can support big endian address ordering, although the
default configuration is little endian. To enable the big endian
configuration, the CW4010 straps the BENDn input low. BENDn aligns
byte positions in a 32-bit word in the LSU. Bits [31:0] must be swapped
outside the CW4010 with bits [63:32], for both SCDip and SCDop, as
shown in Table 8.3.

The ISU assumes the first instruction (even slot) is fetched through
SCDip[31:0], and the second instruction (odd slot) is fetched through
SCDip[63:32].

The LSU aligns byte positions in a 32-bit word according to the state of
BENDn input. The LSU assumes the following:

♦ Full word or partial word data is accessed through the input bus bits
SCDip[31:0] when address bit 2 is 0.

♦ Output bus bits SCDop[31:0] are accessed through SCDip[63:32] or
SCDop[63:32], when address 2 is 1, regardless of the state of
BENDn.

The byte enable output lines SCTBEn[7:0] indicate valid bytes according
to the byte address for both big-endian and little-endian address

SCLKp

SCAoEn

SCTSSn

SCDoEn

SCLoCKn

SCBRDYn

LoadLink StoreConditional

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

MD96.115

Read Transaction Write Transaction



8-36 Interface Operation

ordering. Table 8.3 shows the relationship of SCTBEn[7:0] to the SCDip
and SCDop bit positions.

Table 8.3
SCTBEn and Valid
SCDp

8.3
OCAbus
Interface
Behavior

The CW4010 On-Chip Access (OCA) bus enables access to on-chip
modules at the CR stage without going through the SCbus. Section
7.4.6, “OCAbus Interface Signals” on page 7-16 provides additional
information about the bus. This section describes certain OCAbus
transactions and provides timing diagrams for them. These transactions
include:

♦ A basic OCA access

♦ Rejection of an OCA access

♦ An OCAbus access with a stall at the EX stage of the CW4010
pipeline

♦ An OCAbus access with a stall at the CR stage of the CW4010
pipeline

♦ An OCAbus access with a stall request or wait state

♦ An OCAbus access with a pipeline cancellation

Valid SCDp Bits
SCTBEn Little Endian Big Endian

0 [7:0] [63:56]
1 [15:8] [55:48]
2 [23:16] [47:40]
3 [31:24] [39:32]
4 [39:32] [31:24]
5 [47:40] [23:16]
6 [55:48] [15:8]
7 [63:56] [7:0]



OCAbus Interface Behavior 8-37

8.3.1
Basic OCAbus
Transaction

Regardless of the type of load or store execution, address and size are
output at the EX stage of the CW4010 pipeline, and EXLoadp or
AccStorep is asserted. The address bits (DVAddrp[31:0]) need to be
decoded to determine whether or not OCAcceptp is asserted and the
OCA module can accept the OCA transaction.

Typically, OCA modules should be located as uncached devices, so that
the virtual address is in kseg1. This is done by setting address
bits [31:29] to 1 0 1. The address bus must be latched on the rising edge
of the system clock, between the EX and CR stages, as shown in
Figure 8.23. The size information provided by AccSize is also latched at
this time. Refer to subsection entitled “AccSize[1:0] OCAbus Transaction
Size Output” on page 7-17 for more information on this subject.

At the CR stage, write data is output on CPToCDp provided that
CPToCEn is asserted. If a read transaction is being executed, the
CPFRCEn signal is asserted and data on the CPFRCDp bus is sampled
on the rising edge of the system clock between stages CR and WB. The
OCAcceptp signal must be asserted in the CR stage to inform the
CW4010 that an OCA transaction is in progress.

The CRValidp signal is asserted to indicate that the CR stage is valid. If
it is deasserted, write data must not be written and read data must not
be sampled. The transaction is executed again later.



8-38 Interface Operation

Figure 8.23
Typical OCAbus
Transaction

SCLKp

DVAddrp[31:0],
AccSize[1:0]

CPToCDp[31:0]1

CPFrCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

RD EX CR WB
Stages

VA

WD

1. Write cycle.
2. Read cycle. MD96.116

RD



OCAbus Interface Behavior 8-39

8.3.2
OCAbus
Transaction
Rejected

Figure 8.24 shows the timing for an OCAbus transaction that is rejected
because OCAcceptp is deasserted. This occurs when the virtual address
is decoded and found not to be an address for an OCA module. Under
these conditions, the CW4010 reads from the Dcache, requests an
SCbus read transaction, and then writes data to the Dcache Write Buffer
or to a four-deep external write buffer. OCAcceptp is the only signal that
determines whether an OCA transaction will take place.

Figure 8.24
OCAbus
Transaction
Rejected by
Address Decoder

DVAddrp[31:0],
AccSize[1:0] VA

SCLKp

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

RD EX CR WB

Stages

WD

1. Write cycle.
2. Read cycle. MD96.117

RD



8-40 Interface Operation

8.3.3
OCAbus Access
with Stall at EX
Stage

Figure 8.25 shows an example where PSTALLn is asserted at the EX
stage of the CW4010 pipeline, causing all pipeline stages to enter a stall
state. When this happens, DVAddrp[31:0], AccSize[1:o], EXLoadp or
AccStorep are held during the stall cycles.

Figure 8.25
OCAbus with Stall
at EX Stage

SCLKp

DVAddrp[31:0],
AccSize[1:0]

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

RD EX EX EX CR WB

Stages

WD

RD

VA

1. Write cycle.
2. Read cycle. MD96.118



OCAbus Interface Behavior 8-41

8.3.4
OCAbus Access
with Stall at CR
Stage

Figure 8.26 shows an example where PSTALLn is asserted at the CR
stage of the CW4010 pipeline causing all pipeline stages to enter a stall
state. When this happens, data on the CPToCDp bus, CRValidp, and
OCAcceptp are held.

Figure 8.26
OCAbus Access
with Stall at CR
Stage SCLKp

DVAddrp[31:0],
AccSize[1:0]

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

RD EX CR CR CR WB

Stages

RD

VA

WD

1. Write cycle.
2. Read cycle. MD96.119



8-42 Interface Operation

8.3.5
OCAbus Access
with Stall
Request

Figure 8.27 shows an example where the OCA bus device needs to
insert some wait cycles before a read or write operation. To request a
pipeline stall, the processor asserts CPSREQn from the beginning of the
CR stage and this causes PSTALLn to be asserted. CPSREQn must be
asserted and deasserted early in the clock cycle, since it is one of the
critical path signals.

Figure 8.27
OCAbus Access
with Stall Request RD EX CR CR CR WB

RD

WD

VA

RD

SCLKp

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

Stages

DVAddrp[31:0],
AccSize[1:0]

1. Write cycle.
2. Read cycle. MD96.120



OCAbus Interface Behavior 8-43

8.3.6
OCAbus Access
with Pipeline
Cancel

Figure 8.28 shows an example where a load or store instruction is
cancelled by an exception. The exception is indicated when CRValidp is
deasserted. When this happens, the write data must not be written into
the OCA module. The read data being transferred to the CW4010 core
is ignored. The cancelled load or store instruction may be executed later.

Figure 8.28
OCAbus Access
with Pipeline
Cancel SCLKp

DVAddrp[31:0],
AccSize[1:0]

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
AccStorep

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

RD EX CR WB

Stages

VA

WD

RD

1. Write cycle.
2. Read cycle. MD96.121



8-44 Interface Operation

8.4
Cache Interface
Behavior

When an external bus master writes data into main memory, it can
invalidate the Dcache and Icache lines to maintain coherency between
the main memory and the caches. The CW4010 has three signals to
support this function. They are:

♦ CiNVAp[31:5] Cache Invalidate Address Bus bits

♦ DCiNVSn Dcache Invalidate Strobe

♦ ICiNVSn Icache Invalidate Strobe

When DCiNVSn or ICiNVSn is asserted, the address on the CiNVAp bus
is latched and the CW4010 starts an invalidation process. DCiNVSn or
ICiNVSn should be asserted for only one clock cycle. The Dcache or
Icache line is invalidated when the cache physical address tag, whose
line is valid, is coincident with the latched invalidate address. Both the
V bit and the WB bit are cleared.

Figure 8.29 shows the timing diagram for Dcache invalidation
implemented by bus snooping. In the first clock cycle after DCiNVSn is
asserted, the Load Store Unit asserts the stall request signal if the EX
stage is a load/store instruction.

In the second cycle, the Dcache Tag is read from the Dcache and
compared with the address of the latched DCiNVAp bus. If they match
and the EX stage is a load/store instruction, the pipeline stall request is
asserted. To avoid timing problems, PSTALLn may not be deasserted
during the second cycle.

In the third cycle, the V bit and WB bit of the Dcache line are cleared
and the line is invalidated. If the addresses do not match at the third
cycle, the Dcache is not accessed.

The stall cycle signal PSTALLn is asserted at the third clock cycle even
if the address and Dcache tag do not match and the valid bit is not
cleared.



Cache Interface Behavior 8-45

Figure 8.29
Dcache Invalidation by
Snooping

SCLKp

CiNVAp[31:5]

DCiNVSn

PSTALLn

Instruction 1

Instruction 2

RD EX CR WB

RD EX CR WB

Dcache Tag Address  A Inst 1 A

1st 2nd 3rd 4th

Dcache Tag Access Write

Case 2. Two Stall Cycles

Instruction 3 RD EX CR

RD EX CR WB

RD EX CR WB

 A Inst 3 A

1st 2nd 3rd 4th

Read Write

RD EX CR WB

EX

RD

Case 1.  No Stall Cycle

Load/Store

Load/Store

Read Read Read

SCLKp

CiNVAp[31:5]

DCiNVSp

PSTALLn

Instruction 1

Instruction 2

Dcache Tag Address

Dcache  Tag Access

Instruction 3

RD EX CR WB

RD EX CR

 A

1st 2nd 3rd 4th

Read

RD EX CR

Case 3. One Stall Cycle (No Invalidation)

Load/Store

 -

EX

RDLoad/Store WB

EX

RD

Inst 2

Read

A

A A

A

MD96.122



8-46 Interface Operation

The Load Store Unit does not do anything if the external bus master read
data from main memory and the address is dirty-cached by the CW4010.
In this case, you may use WriteThrough mode for the page.

Figure 8.30 shows timing for Icache invalidation brought about by bus
snooping. It needs a two-cycle stall if the invalidation address hits the tag
or a one-cycle stall if it does not hit the tag.

Figure 8.30
Icache Invalidation
by Snooping

8.5
Coprocessor
Interface
Behavior

The CW4010 supports up to four coprocessors, including an internal
system coprocessor assigned as Coprocessor-0 (CP0). Coprocessor-1 is
usually a floating point coprocessor. Coprocessors-2 and -3 are user-
defined options.

The coprocessor interface has three 32-bit buses. The first bus is for an
instruction code, the second one for data movement to a coprocessor,
and the third for data movement from a coprocessor. The buses are
common to all coprocessors.

Other control signals are divided into two categories: Coprocessor
private signals, and Coprocessor common signals.

There are two kinds of coprocessor instructions: coprocessor operation
instructions and data movement instructions. The CW4010 outputs an
instruction code on the instruction code bus and asserts an execution
signal at an RD stage for both types of instructions. The CW4010
executes only one coprocessor instruction even if a pair of instructions
has no conflict. A coprocessor data movement instruction and a
Load/Store instruction are not executed at the same time.

SCLKp

CiNVAp[31:5]

ICiNVSn

PSTALLn

1st 2nd 3rd 4th 1st 2nd 3rd 4th

Case 2.  2 Stall cycle (hit)Case 1.  1 Stall cycle (miss)

MD96.123

A A



Coprocessor Interface Behavior 8-47

A coprocessor receives a data movement instruction at the RD stage, but
data is moved at the CR stage, resulting in a one-delay slot for
coprocessor data movement instructions. Since the NOP code is usually
a SHIFT instruction, a coprocessor and a coprocessor instruction are
executed in the same clock cycle. To have a one-delay slot between two
coprocessor operations, three NOP codes must be inserted. Otherwise,
each coprocessor needs to have data bypassing for the CR to EX stage
or WB to CR stage (WB to CR gives better results).

If a coprocessor needs to support an LWCz (Load Word from
Coprocessor) instruction, a Dcache miss may occur. The coprocessor
cache-miss signal is asserted at the CR stage of the LWCz instruction
and the pipeline enters a stall condition until valid data is read from the
SCbus. During the stall cycles, correct data is placed on the data bus
with the fixup cycle signal assertion. For simple coprocessor register
access, the LWCz should not be used to perform memory data accesses.
An LW (Load Word) instruction and a subsequent MTCz (Move to
Coprocessor) can accomplish the same operation.

Coprocessor pipeline stages must enter a stall state when the CW4010
enters a stall state if the coprocessor is executing an instruction in the
EX or CR stage. After the WB stage cycle of the CW4010 pipeline stage,
the coprocessor does not need to enter stall because it is no longer
cancelled.

Instruction executions must be cancelled if the instructions are in the EX
or CR stage and the pipeline cancel signal is asserted. In this case, the
Even/Odd slot instruction must be issued.

If the coprocessor cannot accept subsequent instructions for a time after
the EX stage, the coprocessor channel CPBUSYn[3:1] signal should be
asserted at the EX stage. The next coprocessor instruction is not started
until CPBUSYn[3:1] is deasserted. If a coprocessor asserts
CPSREQn[3:1] (pipeline stall request), the CW4010 enters the stall
condition immediately until CPSREQn[3:1] is deasserted.

Coprocessor related instructions that include CP0 instructions have
exclusive instruction bits in the opcode field. Bits [31:28] of the opcode
field contain 01002, 11002, or 11102. Bits [27:26] define the coprocessor
number (0 to 3).



8-48 Interface Operation

8.5.1
Coprocessor
Functional
Instruction

There is only one coprocessor operation instruction. As shown in
Figure 8.31, 25 bits of the coprocessor function field define coprocessor
operations.

Figure 8.31
Coprocessor Functional
Instruction

8.5.2
Data Movement
to and from
CPU General
Purpose
Register
Instructions

Each coprocessor (apart from CP0) can have up to 32 general-purpose
registers and 32 control registers. CP0 does not have any control
registers. Data in a CPU general purpose register selected by the rt field
can be moved from or to a coprocessor register selected by the rd field
and by bit 22, which selects between the general purpose and control
register groups. The rt field is always for a CPU register and the rd field
for a coprocessor register, regardless of the direction of data movement.
Figure 8.32 shows the instructions used for data movement.

Figure 8.32
CPU General Purpose
Register Data
Movement Instructions

0  1  0  0  z  z
  COPz

1

31 26  25

cofun

0

Coprocessor-z Operation

COPz
 24

 CO

MD96.124

0  1  0  0  z  z
  COPz MT

0  0  1  0  0

31 26  25 21

r t

 20 16  15 11  10

r d

0

0 0 0   0 0 0 0   0 0 0 0CPR [rd] ← GPR [rt]

MTCz  rt, rd

0  1  0  0  z  z
  COPz MF

0  0  0  0  0

31 26  25 21

r t

 20 16  15 11  10

r d

0

0 0 0   0 0 0 0   0 0 0 0GPR [rt] ← CPR [rd]

MFCz  rt, rd

0  1  0  0  z  z
  COPz CF

0  0  0  1  0

31 26  25 21

r t

 20 16  15 11  10

r d

0

0 0 0   0 0 0 0   0 0 0 0GPR [rt] ← CCR [rd]

CFCz  rt, rd

0  1  0  0  z  z
  COPz CT

0  0  1  1  0

31 26  25 21

r t

 20 16  15 11  10

r d

0

0 0 0   0 0 0 0   0 0 0 0CCR [rd] ← GPR [rt]

CTCz  rt, rd

MD96.125



Coprocessor Interface Behavior 8-49

8.5.3
Instructions
Moving Data
from or to
Memory

Coprocessor general purpose registers (not control registers), can move
data directly to or from memory. The data is accessed through the
Dcache if the address is in a cacheable area and it achieves a cache hit.
In addition, the effective virtual address is translated to a physical
address if the system supports an MMU. Instructions for data movement,
shown in Figure 8.33 are for Coprocessors-1, -2, and -3 (CP1, CP2, and
CP3) only. They are not supported for CP0.

Because the CW4010 Load/Store Unit accesses the Dcache and JTLB,
there is a possibility of a Dcache miss and a JTLB miss. When a Dcache
miss occurs for LWCz, the pipeline enters a stall condition until the data
is available from the SCbus. When a JTLB miss occurs, the pipeline
cancel signal is asserted, and the coprocessor has to cancel the load
operation at the CR stage. The CW4010 cancels the pipeline stages for
other reasons.

Figure 8.33
Memory Data
Movement Instructions

1  1  0  0  z  z
  LWCz base

31 26  25 21

r t

 20 16  15 0

CPR [rt]
LWCz  rt, offset(base)

← mem( offset + GPR[base] )

offset

1  1  1  0  z  z
  SWCz base

31 26  25 21

r t

 20 16  15 0

CPR [rt]
SWCz  rt, offset(base)

→ mem( offset + GPR[base] )

offset

MD96.126



8-50 Interface Operation

8.5.4
Branch on
Coprocessor
Condition
Instructions

The CW4010 can branch to a target address, depending on the
coprocessor condition input. The coprocessor interface has condition
inputs for each coprocessor, and the branch unit examines these inputs.
No coprocessor execution strobes are asserted.

Both false and true condition branch instruction sets are defined. The
MIPS-II instruction set has a non-branch slot type called likely. However,
branching of MIPS-I instructions always requires a branch slot. The
instructions associated with branching on coprocessor conditions are
shown in Figure 8.34.

Figure 8.34
Branch on Coprocessor
Condition Instructions

0  1  0  0  z  z
  COPz BC

0  1  0  0  0

31 26  25 21

BCF

 20 16  15 0

If CPCoNDp = Low (False)
BCzF  offset

    then PC ← PC+offset

offset
0  0  0  0  0

0  1  0  0  z  z
  COPz BC

0  1  0  0  0

31 26  25 21

BCFL

 20 16  15 0

If CPCoNDp = Low (False)
BCzFL  offset

    then PC ← PC+offset

offset
0  0  0  1  0

0  1  0  0  z  z
  COPz BC

0  1  0  0  0

31 26  25 21

BCT

 20 16  15 0

If CPCoNDp = High (True)
BCzT  offset

    then PC ← PC+offset

offset
0  0  0  0  1

0  1  0  0  z  z
  COPz BC

0  1  0  0  0

31 26  25 21

BCTL

 20 16  15 0

If CPCoNDp = High (True)
BCzTL  offset

    then PC ← PC+offset

offset
0  0  0  1  1

MD96.127



Coprocessor Interface Behavior 8-51

8.5.5
Coprocessor
Operation
(COPz)

When a coprocessor instruction is in the RD stage, the CW4010
coprocessor interface asserts one of the execution strobes,
CPXSTBn[3:1], with a valid instruction code on CPCoDEp[31:0]. The
result of the operation must be written at the WB stage or later in the
coprocessor pipeline, because the instruction in the EX and CR stages
may be cancelled by an exception. If the cancel signal, PCANCRn, is
asserted before the WB stage of a coprocessor instruction, the
instruction operation must be cancelled.

The coprocessor busy signal must be asserted if the operating
coprocessor cannot accept another instruction after the first instruction
begins executing. It is not necessary for the coprocessor to enter the stall
condition when PSTALLn is asserted, except to keep the pipeline flow of
the EX, CR, and WB stages. If PSTALLn is asserted before the WB stage
and during data movement, the coprocessor pipeline must enter a stall
cycle.

Figure 8.35 is a timing diagram for a normal COPz instruction execution.
The busy signal may be asserted. The next CPXSTBn[3:1] is not
asserted if the same coprocessor CPBUSYn[3:1] is asserted. If
CPBUSYn[3:1] is not asserted, the execution strobe CPXSTBn[3:1] of
the same coprocessor is asserted continuously to ensure continuous
execution of coprocessor instructions. In the example shown in
Figure 8.35, the second coprocessor instruction is placed in a slip
condition by the busy signal.

Figure 8.35
COPz Execution

Instead of asserting CPBUSYn[3:1], a coprocessor can assert a pipeline
stall request signal, CPSREQn[3:1], when the coprocessor cannot
continue execution according to the results of instruction decoding.

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPBUSYn[3:1]

RD EX CR WB RD EX

MD96.128

COP2-1 COP2-2



8-52 Interface Operation

CPSREQn[3:1] can assert the EX or CR stage, but CW4010 needs
enough setup time for the stall request assertion/deassertion because it
is a critical path. If a coprocessor asserts CPSREQn[3:1] at the CR
stage, there may be another coprocessor instruction in the EX stage.
When CPSREQn[3:1] Is asserted, PSTALLn is also immediately
asserted. Similarly, when CPSREQn[3:1] is deasserted, PSTALLn is also
immediately deasserted. The EX, CR, and WB stages of all execution
units, including all coprocessors, enter a stall condition.

8.5.6
Data Movement
to and from
CPU Registers

The coprocessor interface asserts one of the execution strobe signals,
CPXSTBn[3:1], with a valid instruction code on the CPCoDEp[31:0] lines.
At the CR stage, CPToCEn is asserted with valid data on the
CPToCDp[31:0] bus when a MTCz or CTCz instruction is executed. In
the case of a MFCz or CFCz instruction, CPFRCEn is asserted, then the
coprocessor outputs data on the CPFRCDp[31:0] at the CR stage.

Coprocessor Data movement instructions to or from CPU registers
always have one delay slot even if the busy signal is not asserted at the
EX stage. When moving data from a coprocessor, data is valid at the CR
stage and not valid at the EX stage. When moving data to a coprocessor,
the CW4010 assumes the written data in the coprocessor is valid from
the end of the CR stage, but it must be written into a coprocessor register
at the WB stage.

When the assertion of the PSTALLn signal indicates a stall, the
coprocessor pipeline stage from the EX and CR stages must stall in the
same manner as the CW4010 core pipeline stage.

Figure 8.36 shows timing for a data movement instruction, with data
transferring to and from the coprocessor. One data bus enable signal is
asserted for each cycle.



Coprocessor Interface Behavior 8-53

Figure 8.36
Data Movement
to/from CPU
Registers Without
Stall Cycles

Figure 8.37 shows the timing for the assertion of the stall signal at the
EX stage. The coprocessor pipeline is in a stall state.

SCLKp

CPCoDEp[31:0]

CPXSTBn

CPBUSYn[3:1]

CPToCDp[31:0]

CPToCEn

CPFRCDp[31:0]

CPFRCEn

RD EX CR WB

Stages

MF/TCP

1. Data to coprocessor.
2. Move to coprocessor.
3. Data from coprocessor.
4. Move from coprocessor.

1

2

3

4

MD96.129



8-54 Interface Operation

Figure 8.37
Data Movement
to/from CPU
Registers With
Stall Cycles at EX
Stage

Figure 8.38 shows the timing for a stall signal assertion at the CR stage.
The data to the coprocessor on the CPToCDp[31:0] lines is valid at the
clock edge between the CR and WB stages. The coprocessor must
output valid data at the last CR stage when the stall condition is resolved.

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPBUSYn[3:1]

CPToCDp[31:0]

CPToCEn

CPFRCDp[31:0]

CPFRCEn

RD EX CR WB

PSTALLn

EX EX
Stages

MF/TCP

1. Data to coprocessor.
2. Move to coprocessor.
3. Data from coprocessor.
4. Move from coprocessor.

1

2

3

4

MD96.130



Coprocessor Interface Behavior 8-55

Figure 8.38
Data Movement
to/from CPU
Registers With
Stall Cycles at CR
Stage

8.5.7
Data Movement
to or from
Memories

The LWCz instruction moves data directly from memory to a coprocessor
register. The SWCz instruction moves data from the coprocessor register
to memory. The CW4010 accesses the Dcache if the address is
cacheable. The CW4010 also accesses the JTLB if the address is
mappable.

JTLB hit/miss is checked at the CR stage. In the case of a TLB miss, the
pipeline is cancelled at the CR stage for both LWCz and SWCz. The data
from memory must not be written into a coprocessor register until the WB
stage; the pipeline is cancelled at the CR stage because of a JTLB miss.

In the case of an LWCz instruction, the read data from Dcache is output
on the CPToCDp[31:0] lines when CPToCEn is asserted at the CR stage.
In the same cycle, Dcache hit/miss is examined. If there is a cache hit,
the data is written into the coprocessor register at the WB stage. If there
is a cache miss, the coprocessor cache miss signal, CPMiSSn, is
asserted at the CR stage and the pipeline stall signal, PSTALLn, is
asserted from the WB stage. The pipeline then enters a stall state. When

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPBUSYn[3:1]

CPToCDp[31:0]

CPToCEn

CPFRCDp[31:0]

CPFRCEn

RD EX CR WB

PSTALLn

CR CR
Stages

MF/TCP

1. Data to coprocessor.
2. Move to coprocessor.
3. Data from coprocessor.
4. Move from coprocessor.

1

2

3

4

MD96.131



8-56 Interface Operation

data is read from the memory, the data is output on the data bus
CPToCDp[31:0] lines with the fixup cycle signal CPFiXUPn asserted.

In the case of an SWCz instruction, the coprocessor needs to output
data on the CPFRCDp[31:0] lines at the CR stage. The timing is also
indicated by the assertion of CPFRCEn. Dcache hit/miss is checked at
the same CR stage. If there is a cache hit, data is stored in the Dcache.
If there is a cache miss, data is stored in the external write buffer in the
Load Store Unit. The CW4010 then generates a write transaction on the
SCbus.

Data transferred from the coprocessor interface to a coprocessor at the
CR stage for an LWCz instruction needs at least one delay slot. If the
data is not valid until the WB stage and the coprocessor does not have
register bypassing hardware like the CW4010 CPU, the busy signal
should be asserted to stop the next coprocessor operation.

Figure 8.39 shows timing for the LWCz instruction Dcache hit and miss.
The first LWCz instruction hits the Dcache, but the second instruction
misses.



Coprocessor Interface Behavior 8-57

Figure 8.39
LWCz Dcache-Hit and
Miss

SCLKp

CPCoDEp[31:0]

CPXSTBn 1

CPXSTBn 2

CPToCDp[31:0]

CPToCEn

PSTALLn

Instruction 1

Instruction 2

RD EX CR WB

RD EX CR WB WB WB WB WB

CPMiSSn

CPFiXUPn

LWC1 LWC2

D11 D22 D23

1. Dcache hit.
2. Dcache miss.
3. Valid data for instruction 2.

(LWC1-Hit)

(LWC2-Miss)

MD96.132



8-58 Interface Operation

Figure 8.40 shows the timing diagram for two SWCz instructions. There
is no difference in the coprocessor interface signals for a Dcache Hit or
Dcache Miss.

Figure 8.40
SWCz Timing

8.5.8
Coprocessor
Conditions

Coprocessor conditions are sampled on the rising edge of the clock at
the end of the EX stage. Condition inputs are active-HIGH and must be
synchronized with the system clock.

8.5.9
Even/Odd Slot
and Pipeline
Cancel

When an exception occurs, the CW4010 cancels pipeline stages at the
CR stage. If a cancel occurs, the pipelines of the coprocessors must also
be cancelled. Since the CW4010 executes two instructions in even and
odd slots, it must find out whether the cause of the exception is in an
even slot or odd slot. If the even slot is the cause of the exception, both
even and odd instructions in the CR stage must be cancelled. If the odd
slot is the cause, the even instruction in the CR stage must be completed
and the odd instruction must be cancelled. Instructions in the EX stage
even and odd slots must be cancelled.

Coprocessors must know whether an executing instruction is in an even
or odd slot at the RD stage. At the RD stage, the CW4010 issues only
one coprocessor instruction even if there are two coprocessor
instructions in even and odd slots. When the coprocessor execution
signal, CPXSTBn[3:1], is asserted, the coprocessor interface outputs the
CPXoDDn signal, which indicates that this instruction is in an even or
odd slot. The coprocessor needs to keep this information in the EX and
CR pipeline stages.

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPFRCDp[31:0]

CPFRCEn

Instruction 1 (SWC2)

Instruction 2 (SWC2) RD EX CR WB

SWC2 SWC2

 D1  D2

MD96.133

RD EX CR WB



Coprocessor Interface Behavior 8-59

When the pipeline cancel signal, PCANCRn, is asserted, PCANoDDn is
valid, which indicates that the even instruction at the CR stage is the
cause of the cancellation or that the odd instruction is the cause.
Coprocessors have to compare the PCANoDDn signal and the
information kept at the CR pipeline stage. If the instruction in a
coprocessor CR stage is an even instruction (CPXoDDn HIGH at RD)
and PCANoDDn is asserted LOW (odd slot), the instruction must be
completed (go to the WB stage). Otherwise, the instruction must be
cancelled. Instructions in the EX stage must be cancelled.

The CW4010 does not cancel instructions in the WB stage or later
cycles.

Figure 8.41 shows an example of even/odd slot and pipeline cancellation.
Part (a) shows the case in which the instruction in the CR stage is not
cancelled and part (b) shows the case where the instruction is cancelling.

Figure 8.41
Even/Odd Slot and
Pipeline Cancel

SCLKp

CPXSTBn[3:1]

CPCoDEp[31:0]

CPXoDDn

PCANCRn

PCANoDDn

CP Instruction 1

CP Instruction 2

RD EX CR WB

RD EX Cancelled

T1 T2 T3 T4

RD EX CR

RD EX

Cancelled

Cancelled

T1 T2 T3 T4

Case 1. Instruction in CR stage is not cancelled. Case 2. Instruction in CR stage is cancelled

MD96.134

CP Inst 1 CP Inst 2 CP Inst 2CP Inst 1



8-60 Interface Operation

8.5.10
BranchLikely in
Even Slot is
False

The MIPS-II instruction set adds the BranchLikely instructions. The
instruction in the branch delay slot is executed only when the branch
condition is true. If the branch condition is false, the delay slot instruction
must be nullified. In the case of a normal branch instruction, the
instruction in the branch delay slot is executed regardless of the branch
condition.

Because the CW4010 tries to execute two instructions in one clock cycle,
the instruction in a branch delay slot is executed at the same time as a
BranchLikely instruction, if the BranchLikely instruction is in an even slot.
If the branch condition is false, the delay slot instruction, which is in the
odd slot, must be cancelled.

The coprocessor interface provides a signal, BRLiKFn, to cancel the
instruction that is in a delay slot of a BranchLikely instruction. This type
of instruction resides in an even slot. If BRLiKFn is asserted,
coprocessors need to cancel any instruction in the EX stage. Although
coprocessors keep information about even and odd slots so that they can
cancel the instruction at the CR stage correctly, this information is not
needed to examine the even and odd slots for BRLiKFn.

If a BranchLikely is in an odd slot and it is false, BRLiKFn is not asserted
because the execution strobe of the branch delay slot is not asserted at
the RD stage.

Figure 8.42 shows an example of BFLiKFn assertion. Assuming that CP
Inst1, BranchLikely, and CP Inst2 are fetched continuously and that the
BranchLikely instruction is in an even slot, if the branch is not taken, CP
Inst2 must not be executed, and must be cancelled in the coprocessor
according to the assertion of BFLiKFn.



Coprocessor Interface Behavior 8-61

Figure 8.42
BranchLikely in
Even Slot is False

8.5.11
EX Stage
Suspension

The CW4010 may request that the EX stage of a coprocessor be
suspended when an Icache miss occurs just after a CP instruction is
executed. If the suspension signal, SUSPEXn, is asserted and there is a
valid instruction in the EX stage of the coprocessor, the EX stage must
be suspended until SUSPEXn is deasserted. Instructions in other
pipeline stages should not be stopped. Figure 8.43 shows an example
where two coprocessor instructions are executed continuously, but the
second one is suspended at the EX stage.

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPXoDDn

BRLiKFn

CP Instruction 1

BranchLikely

RD EX CR WB

RD EX

Cancelled

T1 T2 T3 T4

CP Instruction 2 RD EX

(CR)

CP Inst 1 CP Inst 2

MD96.135



8-62 Interface Operation

Figure 8.43
EX Stage Suspension

If the pipeline is cancelled by asserting PCANCRn, the instruction in the
EX stage must be cancelled even if SUSPEXn is asserted on the same
clock cycle, as shown in Figure 8.44.

Figure 8.44
EX Stage Suspension
(cancelled)

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

SUSPEXn

CP Instruction 1

CP Instruction 2

RD EX CR WB

RD EX EX EX EX CR WB

PCANCRn

CP Inst 1 CP Inst 2

MD96.136

RD EX CR

RD EX

Cancelled

Cancelled

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

SUSPEXn

PCANCRn

CP Instruction 1

CP Instruction 2

CP Inst 1 CP Inst 2

MD96.137



Coprocessor Interface Behavior 8-63

8.5.12
Floating-Point
Unit Exception

The coprocessor interface has an exception input, FPERRXn, assigned
as a Floating-Point Unit (FPU) exception. FPERRXn is sampled at the
EX stage and issued at the CR stage. It has its own exception code (15)
in the Cause Register of CP0. It can also be used as a user-defined
coprocessor exception input if necessary. Although an FPU is usually
assigned to CP1, the FPU exception is not related to the coprocessor
number.

FPEoDDn is the coprocessor interface input for the FPU exception and
is issued when FPERRXn is asserted at the EX stage.

When a coprocessor instruction is started at an RD stage, CPXoDDn
indicates whether the instruction is in the even slot (CPXoDDn HIGH) or
the odd slot (CPXoDDn LOW). The signal must be held in the EX and
CR stages of the coprocessor pipeline so that the pipeline may be
cancelled correctly. In addition, if the FPERRXn signal is asserted in the
EX stage of the coprocessor instruction, FPEoDDn must be driven
according to the even/odd status of the EX stage. If FPEoDDn is HIGH
(Even) when FPERRXn is asserted, the CW4010 cancels instructions in
both even and odd slots of the CR stage. If FPEoDDn is LOW (Odd),
only the odd instruction is cancelled.

If FPERRXn is used for an user-defined coprocessor exception and is not
asserted at the EX stage, the pipeline is not cancelled precisely and is
treated in the same way as an interrupt exception if the FPEoDDn is
strapped HIGH.

Figure 8.45 shows timing for a coprocessor instruction start, FPU
exception, and pipeline cancel.



8-64 Interface Operation

Figure 8.45
FPU Exception and
Pipeline Cancel Timing

SCLKp

CPCoDEp[31:0]

CPXSTBn[3:1]

CPXoDDn

FPERRXn

FPEoDDn

PCANCRn

PCANoDDn

RD EX CR (WB) RD EX CR (WB)

1. COP1: Coprocessor instruction is in the Even slot.
2. COP1: Coprocessor instruction is in the Odd slot.

COP11 COP12

MD96.138



9-1

Chapter 9
Specifications

The CW4010 core specifications are available in an addendum entitled
MiniRISC™ CW4010 Superscalar Microprocessor Core Technical
Manual Addendum. The addendum includes information on AC timing,
input and output loading, driver type, and power consumption.



9-2 Specifications



A-1

Appendix A
Programmer’s Notes

This appendix contains information that will be useful if you are writing
software for the CW4010 core. The information is arranged in functional
groups: instruction related, CP0 or TLB related, and cache related.

A.1
Instruction
Related

The following are instruction related notes:

♦ The instruction prior to an ERET must not generate an exception.
You can use a NOP (no operation) to make sure that this restriction
is met.

♦ The WAITI instruction must be followed by at least one NOP.

♦ Trap instructions must not be placed in branch delay slots.

A.2
CP0 or TLB
Related

The following are CP0 or TLB related notes:

♦ When the CW4010 is operating in R3000 exception compatibility
mode, the RFE (Restore From Exception) instruction clears the LL
(load linked) bit. This is consistent with R4000 mode ERET
operation.

♦ If a TLB is not present or enabled in the system, CP0 will reflect a
Coprocessor Unusable exception if an attempt is made to execute
any of the TLB maintenance instructions: TBLP, TLBR, TLBWI,
TLBWR.

♦ TLB instructions (TLBP, TLBR, TLBWI, TLBWR) cannot be preceded
or followed by a data access instruction (load or store) that requires
target address translation, that is kseg, kseg2.

♦ The instruction prior to a TLBWI or TLBWR instruction must not gen-
erate an exception. You can use a NOP to make sure that this
restriction is met.



A-2 Programmer’s Notes

♦ Three instructions are required between a MTC0 instruction that tar-
gets any of the TLB support registers (that is, EntryHi, EntryLo,
PageMask, and Index) and a subsequent TLBWI or TLBWR instruc-
tion. This ensures that the results of the prior MTC0 instruction will
be seen by the TLB write operation

♦ Five instructions are required between a MTC0 Status register oper-
ation that updates the coprocessor usability field (Status[31:28]) and
a subsequent coprocessor instruction that expects to see the
updated value.

♦ Seven instructions are required between a MTC0 EPC register oper-
ation and a subsequent ERET instruction that expects to see the
updated value.

A.3
Cache Related

The following is a Cache related note:

♦ When the CW4010 is operating in Isolate Cache mode, load and
store operations to the cache are not allowed in the delay slot of
BranchLikely instructions.

A.4
CW33300
Compatible
Debug
Extensions

The following is a CW33300 Compatible Debug Extension note:

♦ The existing CW33300 has some extensions to the CP0 that provide
enhanced debugging and exception handler support. The CW4010
core remains compatible with these enhancements. Refer to the
CW33300 Enhanced Self-Embedding Processor Core User’s Manual
for further information.



Glossary

Big-endian This is a method of data formatting in which each field is
addressed by referring to its most significant byte. This means that if you
are accessing a four-byte, singleword, the most significant byte is byte
03, and the most significant bit is bit 31. See also little-endian.

Bus sizing Refers to the ability of the processor to support and
interface with data buses of different sizes.

Bus snooping This is the method used by the cache controller to
monitor memory accesses performed by other bus masters.

Direct-map caching In a direct-mapped cache, each memory location
is mapped to one position in the cache. Direct mapping is useful if you
are storing small loops and sequential operations. You can use this type
of caching for both the Dcache and the Icache.

Encrypted Encrypted files are source code files that have been
processed in a language such as HDL or Verilog so that they are only
machine readable. This process enables you to have access to the
behavior of the files but not to the intellectual property associated with
them.

Fixup cycle This is a clock cycle during which the Load Miss data is
funneled back to the instruction that requires it.

Little-endian This is a method of data formatting in which each field is
addressed by referring to its least significant byte. This means that if you
are accessing a four-byte, singleword, the most significant byte is byte
00, and the most significant bit is bit 00. The CW4010 supports little-
endian format. See also big-endian.

Placement algorithms Information is placed in a cache using
placement algorithms. These algorithms define the positions in the cache
where the information from a particular memory location may be stored.
The CW4010 uses two types of algorithm, direct mapping and two-way
set associative mapping.



Glossary

Slip condition A slip condition occurs when the pipeline stalls after
the EX stage. In this situation, the previous instruction is executed and
clears the pipeline. However, the earlier stages of the pipeline are stalled.

Two-way set associative caching In a two-way set associative cache,
each memory location is stored in one of two possible positions. Two-way
set associative mapping is well-suited for data references, which tend to
be more scattered than instructions. You can use this type of caching for
both the Dcache and the Icache.

Unencrypted Files that are unencrypted have not been subjected to
the processing described in the entry Encrypted. These files are human
readable and can be written using a text editor.

Verilog Model Verilog is an open standard language. A Verilog model
represents a design in the language. It provides no indication of the level
of abstraction.



Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the address on
the following page.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.



Customer Feedback

Reader’s
Comments

Fax your comments to:

LSI Logic Corporation
Technical Publications
M/S F-112
Fax: 408.433.4333

Please tell us how you rate this document: MiniRISC CW4010 Supersca-
lar Microprocessor Core Technical Manual. Place a check mark in the
appropriate blank for each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor
Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations ____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax



U.S. Distributors
by State

Alabama
Huntsville
Hamilton Hallmark
Tel: 800.633.2918

Wyle Electronics
Tel: 800.964.9953

Arizona
Phoenix
Hamilton Hallmark
Tel: 800.528.8471

Wyle Electronics
Tel: 602.804.7000

Tempe
Hamilton Hallmark
Tel: 602.414.7705

California
Culver City
Hamilton Hallmark
Tel: 310.558.2000

Irvine
Hamilton Hallmark
Tel: 714.789.4100

♦Wyle Electronics
Tel: 714.789.9953

Los Angeles
Wyle Electronics
Tel: 818.880.9000

Rocklin
Hamilton Hallmark
Tel: 916.624.9781

Sacramento
Wyle Electronics
Tel: 916.638.5282

San Diego
Hamilton Hallmark
Tel: 619.571.7540

Wyle Electronics
Tel: 619.565.9171

San Jose
♦Hamilton Hallmark

Tel: 408.435.3500

Santa Clara
Wyle Electronics
Tel: 408.727.2500

Woodland Hills
Hamilton Hallmark
Tel: 818.594.0404

Colorado
Colorado Springs
Hamilton Hallmark
Tel: 719.637.0055

Denver
♦Wyle Electronics

Tel: 303.457.9953

Englewood
Hamilton Hallmark
Tel: 303.790.1662

Connecticut
Cheshire
Hamilton Hallmark
Tel: 203.271.2844

Florida
Fort Lauderdale
Hamilton Hallmark
Tel: 305.484.5482

Wyle Electronics
Tel: 305.420.0500

Largo
Hamilton Hallmark
Tel: 800.282.9350

Orlando
Wyle Electronics
Tel: 407.740.7450

Tampa/N. Florida
Wyle Electronics
Tel: 800.395.9953

Winter Park
Hamilton Hallmark
Tel: 407.657.3317

Georgia
Atlanta
Wyle Electronics
Tel: 800.876.9953

Duluth
Hamilton Hallmark
Tel: 800.241.8182

Illinois
Arlington Heights

♦Hamilton Hallmark
Tel: 708.797.7300

Chicago
Wyle Electronics
Tel: 708.620.0969

Iowa
Carmel
Hamilton Hallmark
Tel: 800.829.0146

Kansas
Overland Park
Hamilton Hallmark
Tel: 800.332.4375

Kentucky
Lexington
Hamilton Hallmark
Tel: 800.235.6039

Maryland
Baltimore
Wyle Electronics
Tel: 410.312.4844

Columbia
Hamilton Hallmark
Tel: 800.638.5988

Massachusetts
Boston

♦Wyle Electronics
Tel: 800.444.9953

Peabody
♦Hamilton Hallmark

Tel: 508.532.3701

Michigan
Plymouth
Hamilton Hallmark
Tel: 313.416.5800

Minnesota
Bloomington
Hamilton Hallmark
Tel: 612.881.2600

Minneapolis
Wyle Electronics
Tel: 800.860.9953

Missouri
Earth City
Hamilton Hallmark
Tel: 314.291.5350

New Jersey
Mt. Laurel
Hamilton Hallmark
Tel: 609.222.6400

No. New Jersey
Wyle Electronics
Tel: 201.882.8358

Parsippany
Hamilton Hallmark
Tel: 201.515.1641

New Mexico
Alburquerque
Hamilton Hallmark
Tel: 505293.5119

New York
Hauppauge
Hamilton Hallmark
Tel: 516.737.7400

Long Island
Wyle Electronics
Tel: 516.293.8446

Rochester
Hamilton Hallmark
Tel: 800.462.6440

North Carolina
Raleigh
Hamilton Hallmark
Tel: 919.872.0712

Wyle Electronics
Tel: 919.469.1502

Ohio
Cleveland
Wyle Electronics
Tel: 216.248.9996

Dayton
Hamilton Hallmark
Tel: 800.423.4688

Wyle Electronics
Tel: 513.436.9953

Solon
Hamilton Hallmark
Tel: 216.498.1100

Toledo
Wyle Electronics
Tel: 419.861.2622

Worthington
Hamilton Hallmark
Tel: 614.888.3313

Oklahoma
Tulsa
Hamilton Hallmark
Tel: 918.254.6110

Oregon
Beaverton
Hamilton Hallmark
Tel: 503.526.6200

Portland
Wyle Electronics
Tel: 503.643.7900

Pennsylvania
Philadelphia
Wyle Electronics
Tel: 800.871.9953

Texas
Austin
Hamilton Hallmark
Tel: 512.258.8848

Wyle Electronics
Tel: 800.365.9953

Dallas
Hamilton Hallmark
Tel: 214.553.4302

Wyle Electronics
Tel: 800.955.9953

Houston
Hamilton Hallmark
Tel: 713.787.8300

Wyle Electronics
Tel: 713.784.9953

San Antonio
Wyle Electronics
Tel: 210.697.2816

Utah
Salt Lake City
Hamilton Hallmark
Tel: 801.266.2022

Wyle Electronics
Tel: 801.974.9953

Washington
Redmond
Hamilton Hallmark
Tel: 206.881.6697

Seattle
Wyle Electronics
Tel: 800.248.9953

Wisconsin
Milwaukee
Wyle Electronics
Tel: 800.867.9953

New Berlin
Hamilton Hallmark
Tel: 414.780.7200

♦Dstributors with
Design Resource
Centers



Sales Offices and Design
Resource Centers

Printed in USA
796.1K.TP.G

Printed on
Recycled Paper

ISO 9000 Certified

LSI Logic Corporation
Corporate Headquarters
Tel: 408.433.8000
Fax: 408.433.8989

UNITED STATES

California
Irvine

♦Tel: 714.553.5600
Fax: 714.474.8101

San Diego
Tel: 619.635.1300
Fax: 619.635.1350

Silicon Valley
Sales Office
Tel: 408.433.8000
Fax: 408.433.7783
Design Center

♦Tel: 408.433.8000
Fax: 408.433.2820

Colorado
Boulder
Tel: 303.447.3800
Fax: 303.541.0641

Florida
Boca Raton
Tel: 407.395.6200
Fax: 407.394.2865

Georgia
Atlanta
Tel: 404.395.3800
Fax: 404.395.3811

Illinois
Schaumburg

♦Tel: 708.995.1600
Fax: 708.995.1622

Kentucky
Bowling Green
Tel: 502.793.0010
Fax: 502.793.0040

Maryland
Bethesda

♦Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham

♦Tel: 617.890.0180
Fax: 617.890.6158

Minnesota
Minneapolis

♦Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Edison

♦Tel: 908.549.4500
Fax: 908.549.4802

New York
New York
Tel: 716.223.8820
Fax: 716.223.8822

North Carolina
Raleigh
Tel: 919.783.8833
Fax: 919.783.8909

Oregon
Beaverton
Tel: 503.645.9882
Fax: 503.645.6612

Texas
Austin
Tel: 512.388.7294
Fax: 512.388.4171

Dallas
♦Tel: 214.788.2966

Fax: 214.233.9234

Houston
Tel: 713.379.7800
Fax: 713.379.7818

Washington
Bellevue
Tel: 206.822.4384
Fax: 206.827.2884

INTERNATIONAL

Australia
Reptechnic Pty Ltd
New South Wales
Tel: 612.9953.9844
Fax: 612.9953.9683

Canada
LSI Logic Corporation
of Canada Inc
Alberta
Tel: 403.262.9292
Fax: 403.262.9494

Ontario
Ottawa

♦Tel: 613.592.1263
Fax: 613.592.3253

Toronto
♦Tel: 416.620.7400

Fax: 416.620.5005

Quebec
Pointe Claire

♦Tel: 514.694.2417
Fax: 514.694.2699

France
LSI Logic S.A.
Paris

♦Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
LSI Logic GmbH
Munich

♦Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Hong Kong
AVT Industrial Ltd
Hong Kong
Tel: 852.2428.0888
Fax: 852.2401.2105

India
LogiCAD India
Private Ltd
Bangalore
Tel: 91.80.526.2500
Fax: 91.80.338.6591

Israel
LSI Logic
Ramat Hashron

♦Tel: 972.3.5.403741
Fax: 972.3.5.403747

Netanya
♦Tel: 972.9.657190

Fax: 972.9.657194

Italy
LSI Logic S.P.A.
Milano

♦Tel: 39.39.687371
Fax: 39.39.6057867

Japan
LSI Logic K.K.
Tokyo

♦Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
♦Tel: 81.6.947.5281

Fax: 81.6.947.5287

Korea
LSI Logic Corporation
of Korea Ltd
Seoul

♦Tel: 82.2.561.2921
Fax: 82.2.554.9327

Singapore
Desner Electronics Pte Ltd
Singapore
Tel: 65.285.1566
Fax: 65.284.9466

Electronic Resources Ltd
Tel: 65.298.0888
Fax: 65.298.1111

Spain
LSI Logic S.A.
Madrid

♦Tel: 34.1.3672200
Fax: 34.1.3673151

Sweden
LSI Logic AB
Stockholm

♦Tel: 46.8.7034680
Fax: 46.8.7506647

Switzerland
LSI Logic Sulzer AG
Brugg/Biel
Tel: 41.32.536363
Fax: 41.32.536367

Taiwan
LSI Logic Asia-Pacific
Regional Office
Taipei

♦Tel: 886.2.718.7828
Fax: 886.2.718.8869

Jeilin Technology
Corporation
Tel: 886.2.248.4828
Fax: 886.2.248.9765

United Kingdom
LSI Logic Europe plc
Bracknell

♦Tel: 44.1344.426544
Fax: 44.1344.481039

♦Sales Offices with
Design Resource Centers


