32-Channel Serial to Parallel Converter With Open Drain Outputs

Features

- Processed with HVCMOS ${ }^{\text {® }}$ technology
- Sink current minimum 100 mA
- Shift register speed 8.0 MHz
- Polarity and Blanking inputs
- CMOS compatible inputs
- Forward and reverse shifting options
- Diode to VPP allows efficient power recovery

General Description

The HV5530 is a low-voltage serial to high-voltage parallel converter with open drain outputs. This device has been designed for use as a driver for AC-electroluminescent displays. It can also be used in any application requiring multiple output high voltage current sinking capabilities such as driving inkjet and electrostatic print heads, plasma panels, vacuum fluorescent, or large matrix LCD displays.

This device consists of a 32-bit shift register, 32 latches, and control logic to perform the polarity select and blanking of the outputs. Data is shifted through the shift register on the high to low transition of the clock. The HV5530 shifts in the counter clockwise direction when viewed from the top of the package. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register. Operation of the shift register is not affected by the $\overline{\mathrm{LE}}$ (latch enable), $\overline{\mathrm{BL}}$ (blanking), or the $\overline{\mathrm{POL}}$ (polarity) inputs. Transfer of data from the shift register to the latch occurs when the $\overline{L E}$ (latch enable) input is high. The data in the latch is stored when LE is low.

Functional Block Diagram

Ordering Information

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{1}$	-0.5 V to +15 V
Output voltage, $\mathrm{V}_{\mathrm{PP}}{ }^{1}$	-0.5 V to +315 V
Logic input levels ${ }^{1}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{2}$	1.5 A
Continuous total power dissipation ${ }^{3}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature ${ }^{4}$	$260^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Notes:

1. All voltages are referenced to $V_{\text {ss }}$
2. Duty cycle is limited by the total power dissipated in the package
3. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to maximum operating temperature at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
4. 1.6 mm (1/16inch) from case for 10 seconds
Recommended Operating Conditions

Sym	Parameter	Min	Max	Units
V_{DD}	Logic voltage supply	10.8	13.2	V
$\mathrm{HV} \mathrm{V}_{\text {OUT }}$	High voltage output	-0.3	+300	V
$\mathrm{~V}_{\text {IH }}$	Input high voltage	$\mathrm{V}_{\mathrm{DD}}-2.0$	$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IL }}$	Input low voltage	0	2.0	V
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	8.0	MHz
T_{A}	Operating free-air temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Power-Up Sequence

Power-up sequence should be the following:

1. Connect ground
2. Apply V_{DD}
3. Set all inputs to a known state

Pin Configurations

Product Marking

Top Marking

Bottom Marking

YY = Year Sealed WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID*
\qquad = "Green" Packaging
*May be part of top marking
44-Lead PQFP (PG)
Top Marking

Bottom Marking

YY = Year Sealed
WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID*
___ = "Green" Packaging
*May be part of top marking

Power-down sequence should be the reverse of the above.
44-Lead PLCC (PJ)

Electrical Characteristics (over recommended operating conditions unless otherwise noted) DC Characteristics

Sym	Parameter		Min	Max	Units	Conditions
I_{DD}	$\mathrm{V}_{\text {DD }}$ supply current		-	15	mA	$\mathrm{f}_{\text {CLK }}=8.0 \mathrm{MHz}, \mathrm{F}_{\text {DATA }}=4.0 \mathrm{MHz}$
$\mathrm{I}_{\text {DDQ }}$	V_{DD} supply current (quiescent)		-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {O(OFF) }}$	Off state output current		-	10	$\mu \mathrm{A}$	All outputs high, all SWS parallel
I_{H}	High-level logic input current		-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{I H}=\mathrm{V}_{\text {DD }}$
IL	Low-level logic input current		-	-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
V_{OH}	High-level output data out		$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	-	V	$\mathrm{I}_{\text {DOUT }}=-100 \mu \mathrm{~A}$
V_{oL}	Low-level output voltage	HV ${ }_{\text {out }}$	-	15	V	$\mathrm{I}_{\text {Hvout }}=+100 \mathrm{~mA}$
		Data out	-	1.0	V	$\mathrm{I}_{\text {DOUT }}=+100 \mu \mathrm{~A}$
$V_{\text {oc }}$	$\mathrm{HV}_{\text {out }}$ clamp voltage		-	-1.5	V	$\mathrm{I}_{\mathrm{OL}}=-100 \mathrm{~mA}$

AC Characteristics $\left(V_{D D}=12 \mathrm{~V}, T_{C}=25^{\circ} \mathrm{C}\right)$

Sym	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	8.0	MHz	---
t_{w}	Clock width, high or low	62	-	ns	---
$t_{\text {su }}$	Data set-up time before CLK falls	25	-	ns	---
t_{H}	Data hold time after CLK falls	10	-	ns	---
t_{ON}	Turn-on time, $\mathrm{HV}_{\text {OUt }}$ from enable	-	500	ns	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~K} \Omega$ to V_{PP} max.
$\mathrm{t}_{\text {DHL }}$	Delay time clock to data high to low	-	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time clock to data low to high	-	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLE }}$	Delay time clock to $\overline{\mathrm{LE}}$ low to high	50	-	ns	---
$\mathrm{t}_{\text {WLE }}$	Width of $\overline{\mathrm{LE}}$ pulse	50	-	ns	---
$\mathrm{t}_{\text {sLE }}$	$\overline{\mathrm{LE}}$ setup time before clock falls	50	-	ns	---

Input and Output Equivalent Circuits

Logic Inputs

Logic Data Output

High Voltage Outputs

Switching Waveforms

Functional Table

Function	Inputs					Outputs				
	Data	CLK	$\overline{E E}$	$\overline{B L}$	$\overline{\text { POL }}$	Shift Reg		HV Outputs		Data Out
	Data	CLK	LE	BL	POL	1	2... 32	1	2... 32	
All on	X	X	X	L	L	*	*...*	On	On...On	*
All off	X	X	X	L	H	*	*...*	Off	Off...Off	*
Invert mode	X	X	L	H	L	*	*...*	*	*...*	*
Load S/R	H or L	\downarrow	L	H	H	H or L	*...*	*	*...*	*
Load latches	X	H or L	\uparrow	H	H	*	*...*	*	*...*	*
	X	H or L	\uparrow	H	L	*	*...*	*	*...*	*
Transparent latch mode	L	\downarrow	H	H	H	L	*...*	Off	*...*	*
	H	\downarrow	H	H	H	H	*...*	On	*...*	*

Notes:

$H=$ high level, $L=$ low level, $X=$ irrelevant, $\downarrow=$ high-to-low transition, $\uparrow=$ low-to-high transistion.

* dependent on previous stage's state before the last CLK \downarrow or last $\overline{L E}$ high.

44-Lead PQFP Pin Assignment (PG)

Pin \#	Function	Description
1	HV ${ }_{\text {out }} 11$	High voltage outputs.
2	$\mathrm{HV}_{\text {OUT }} 12$	
3	$\mathrm{HV}_{\text {OUT }} 13$	
4	$\mathrm{HV}_{\text {OUT }} 14$	
5	$\mathrm{HV}_{\text {Out }} 15$	
6	$\mathrm{HV}_{\text {OUT }} 16$	
7	$\mathrm{HV}_{\text {Out }} 17$	
8	$\mathrm{HV}_{\text {OUT }} 18$	
9	$\mathrm{HV}_{\text {OUT }} 19$	
10	$\mathrm{HV}_{\text {Out }} 20$	
11	$\mathrm{HV}_{\text {out }} 21$	
12	$\mathrm{HV}_{\text {OUT }} 22$	
13	$\mathrm{HV}_{\text {Out }} 23$	
14	$\mathrm{HV}_{\text {Out }} 24$	
15	$\mathrm{HV}_{\text {Out }} 25$	
16	$\mathrm{HV}_{\text {OUT }} 26$	
17	$\mathrm{HV}_{\text {OUT }} 27$	
18	$\mathrm{HV}_{\text {Out }} 28$	
19	$\mathrm{HV}_{\text {OUT }} 29$	
20	$\mathrm{HV}_{\text {OUT }} 30$	
21	$\mathrm{HV}_{\text {OUT }} 31$	
22	$\mathrm{HV}_{\text {Out }} 32$	
23	Data Out	Data output pin.
24	N/C	No connect.
25	N/C	
26	N/C	
27	$\overline{\mathrm{POL}}$	Inverts the polarity of the $\mathrm{HV}_{\text {OUT }}$ pins
28	CLK	Clock pin, shift registers shifts data on falling edge of input clock.
29	VSS	Reference voltage, usually ground.
30	VDD	Logic supply voltage.
31	$\overline{\text { LE }}$	Latch enable pin, data is shifted from shift register to latches on logic input high.
32	Data In	Data input pin.
33	$\overline{\text { Blanking }}$	Blanking pin sets all $\mathrm{HV}_{\text {OUT }}$ pins low or high depending upon state of polarity. See function table.
34	N/C	No connect.
35	$\mathrm{HV}_{\text {out }} 1$	High voltage outputs.
36	$\mathrm{HV}_{\text {OUT }}{ }^{2}$	
37	$\mathrm{HV}_{\text {out }} 3$	
38	$\mathrm{HV}_{\text {OUT }} 4$	
39	$\mathrm{HV}_{\text {OUT }} 5$	
40	$\mathrm{HV}_{\text {OUT }}{ }^{6}$	
41	$\mathrm{HV}_{\text {OUT }}{ }^{7}$	
42	$\mathrm{HV}_{\text {OUT }} 8$	
43	$\mathrm{HV}_{\text {OUT }} 9$	
44	$\mathrm{HV}_{\text {OUT }} 10$	

44-Lead PLCC Pin Assignment (PJ)

Pin \#	Function	Description
1	HV ${ }_{\text {out }} 16$	High voltage outputs.
2	$\mathrm{HV}_{\text {OUT }} 17$	
3	$\mathrm{HV}_{\text {OUT }} 18$	
4	$\mathrm{HV}_{\text {OUT }} 19$	
5	$\mathrm{HV}_{\text {OUT }} 20$	
6	$\mathrm{HV}_{\text {OUT }} 21$	
7	$\mathrm{HV}_{\text {OUT }} 22$	
8	$\mathrm{HV}_{\text {OUT }} 23$	
9	$\mathrm{HV}_{\text {OUT }} 24$	
10	$\mathrm{HV}_{\text {OUT }} 25$	
11	$\mathrm{HV}_{\text {OUT }} 26$	
12	$\mathrm{HV}_{\text {out }} 27$	
13	$\mathrm{HV}_{\text {OUT }} 28$	
14	$\mathrm{HV}_{\text {out }} 29$	
15	$\mathrm{HV}_{\text {OUT }} 30$	
16	$\mathrm{HV}_{\text {OUT }} 31$	
17	$\mathrm{HV}_{\text {OUT }} 32$	
18	Data Out	Data output pin.
19	N/C	No connect.
20	N/C	
21	N/C	
22	$\overline{\text { POL }}$	Inverts the polarity of the $\mathrm{HV}_{\text {OUT }}$ pins
23	CLK	Clock pin, shift registers shifts data on falling edge of input clock.
24	VSS	Reference voltage, usually ground.
25	VDD	Logic supply voltage.
26	$\overline{\text { LE }}$	Latch enable pin, data is shifted from shift register to latches on logic input high.
27	Data In	Data input pin.
28	$\overline{\text { Blanking }}$	Blanking pin sets all $\mathrm{HV}_{\text {OUT }}$ pins low or high depending upon state of polarity. See function table.
29	N/C	No connect.
30	$\mathrm{HV}_{\text {OUT }} 1$	High voltage outputs.
31	$\mathrm{HV}_{\text {out }}{ }^{2}$	
32	$\mathrm{HV}_{\text {OUT }} 3$	
33	$\mathrm{HV}_{\text {OUT }} 4$	
34	$\mathrm{HV}_{\text {OUT }} 5$	
35	$\mathrm{HV}_{\text {OUT }} 6$	
36	$\mathrm{HV}_{\text {OUT }} 7$	
37	$\mathrm{HV}_{\text {OUT }} 8$	
38	$\mathrm{HV}_{\text {OUT }} 9$	
39	$\mathrm{HV}_{\text {OUT }} 10$	
40	$\mathrm{HV}_{\text {OUT }} 11$	
41	$\mathrm{HV}_{\text {OUT }} 12$	
42	$\mathrm{HV}_{\text {OUT }} 13$	
43	$\mathrm{HV}_{\text {OUT }} 14$	
44	$\mathrm{HV}_{\text {OUT }} 15$	

44-Lead PQFP Package Outline (PG)

$10.00 \times 10.00 \mathrm{~mm}$ body, 2.35 mm height (max), 0.80 mm pitch

Top View

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.95*	0.00	1.95	0.30	13.65*	9.80*	13.65*	9.80*	$\begin{aligned} & 0.80 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	2.00	-	13.90	10.00	13.90	10.00		0.88			$3.5{ }^{\circ}$
	MAX	2.35	0.25	2.10	0.45	14.15*	10.20*	14.15*	10.20*		1.03			7°

[^0]
44-Lead PLCC Package Outline (PJ) .653x.653in body, .180in height (max), .050in pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 685	. 650	. 685	. 650	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 690	. 653	. 690	. 653	
	MAX	. 180	. 120	. 083	. 021	.036 ${ }^{+}$. 695	. 656	. 695	. 656	

[^1][^2]
[^0]: JEDEC Registration MO-112, Variation AA-2, Issue B, Sep. 1995.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

 Drawings not to scale.
 Supertex Doc. \#: DSPD-44PQFPPG, Version B101708.

[^1]: JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.
 \dagger This dimension is a non-JEDEC dimension.
 Drawings not to scale.
 Supertex Doc. \#: DSPD-44PLCCPJ, Version D092408

[^2]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com

