

PI3A4627

3.0V, SOTINYTM Single-Supply 0.4Ω SPST (NC) CMOS Analog Switch

Features

- Low On-Resistance: 0.4Ω Max (+2.7V Supply)
- 0.16Ω Max. On-Resistance Flatness at +25°C
- Fast Switching: 10ns Max.
- +1.1V to +3.6V Single-Supply Operation
- TTL/CMOS-Logic Compatible
- -25dB Off-Isolation at 100KHz
- 1nA Max. Off-Leakage at +25°C
- Packaging (available Pb-free):
 - 5-pin Small Compact SOT-23
 - 6-pin Ultra Compact Thin Dual in-line Flat No Lead TDFN

Applications

- Cellular Phones
 Communications Circuits
- Battery-Operated Equipment DSL Modems
- Audio and Video Signal Routing PCMCIA Cards

Pin Description

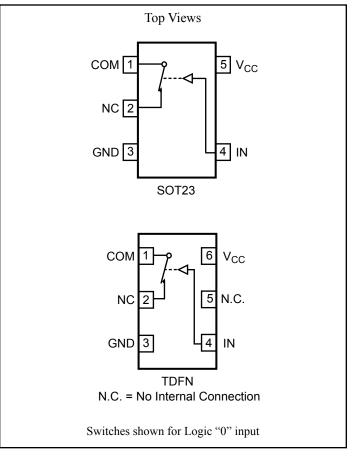
TDFN	SOT-23	Name	Function
1	1	COM	Analog Switch, Common
2	2	NC	Analog Switch, Normally Closed
3	3	GND	Ground
4	4	IN	Digital Control Input
6	5	V _{CC}	Positive Supply Voltage
5	-	N.C.	No Internal Connection

Note:

NC and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass.

Truth Table

Input	Switch State
LOW	ON
HIGH	OFF


Description

PI3A4627 is a single-pole/single-throw (SPST) normally closed (NC) analog switch that operates from a single +1.5V to +3.6V supply.

The switch has 0.4 Ω Max On-Resistance (R_{ON}), with 0.1 Ω Max R_{ON} flatness over the analog signal range when powered from a +3.0V supply. Leakage currents are less than 2nA and fast switching times are less than 10ns.

To minimize PC board area use, the device is available in the ultra compact TDFN, and the small compact SOT-23 packages.

Functional Block Diagrams/Pin Configurations

Absolute Maximum Ratings

Voltages Referenced to GND V _{CC} 0.5V to +3.6V	(
$V_{IN}, V_{COM}, V_{NC}, V_{NO}$ (Note 1) –0.5V to V_{CC} +0.3V or 30mA, whichever occurs first	S
Current (any terminal)±200mA	I
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)±400mA	

Thermal Information

Continuous Power Dissipation	
SOT-23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature65°C to	+150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	-	-					
Analog Signal Range ⁽³⁾	VANALOG		Full	0		V _{CC}	V
On Resistance	R _{ON}		25			0.4	
On Resistance	KON	$V_{CC} = 2.7V, I_{COM} = 100mA,$	Full			0.4	
On-Resistance Match Be-	ADour	$V_{\rm NO} \text{ or } V_{\rm NC} = 1.5 V$	25			0.05	Ω
tween Channels ⁽⁴⁾	ΔKON		Full			0.06	
On-Resistance	D	$V_{CC} = 2.7V, I_{COM} = 100mA,$	25			0.1	
Flatness ⁽⁵⁾	R _{FLAT(ON)}	$V_{\rm NO}$ or $V_{\rm NC}$ = 0.8V, 2.0V	Full			0.1	
NO or NC Off Leakage	I _{COM(OFF)} or	$V_{CC} = 3.3 V, V_{COM} = 0 V,$	25	-1		1	
Current ⁽⁶⁾	I _{NC(OFF})	V_{NO} or $V_{NC} = +2.0V$	Full	-20		10	A
COM On Loshage Comment(6)	т	$V_{CC} = 3.3 V, V_{COM} = +2.0 V$	25	-2		2	nA
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	V_{NO} or $V_{NC} = +2.0V$	Full	-20		20	

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, \text{GND} = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level	Full	1.4			V
Input Low Voltage	V _{IL}	Guaranteed logic Low Level				0.5	
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{\rm IN} = 0.5 V$, all other = 1.4V		-1		1	μA
Dynamic	-						
т. о. т.	4		25			10	
Turn-On Time	t _{ON}	$V_{\rm CC} = 3.3 V, V_{\rm NO} \text{ or}$			10	ng	
	4	$V_{\rm NC}$ = 2.0V, Figure 1	25			10	ns
Turn-Off Time	t _{OFF}		Full			10	
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V, R_{GEN} = 0\Omega, Figure 2$	25		50		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3			-25		dB
NC or NO Capacitance	C _(OFF)	f = 1 MHz, Figure 4			130		
COM Off Capacitance	C _{COM(OFF)}				130		pF
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 4			270		
Supply							
Power-Supply Range	V _{CC}		Full	1.5		3.6	V
Positve Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}				100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} Max. - R_{ON} Min.$

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 3.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, \text{GND} = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
On Resistance	R _{ON}	$V_{\rm CC} = 2.5 V, I_{\rm COM} = -8 m A,$	25			0.4	
On Resistance	KON	$V_{\rm NO}$ or $V_{\rm NC} = 1.8 V$	Full			0.4	
On-Resistance Match	ΔR_{ON}		25			0.05	Ω
Between Channels ⁽⁴⁾	Διζον	$V_{\rm CC} = 2.5 V, I_{\rm COM} = -8 m A,$	Full			0.06	52
On-Resistance Flatness ⁽⁵⁾	Day interve	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{ V} \ 1.8 \text{ V}$	25			0.1	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.1	
Dynamic			25			10	
Turn-On Time	t _{ON}	$V_{CC} = 2.5V, V_{NO} \text{ or } V_{NC} =$	Full			15	
Turn-Off Time	t _{OFF}	1.8V, Figure 1	25			10	ns
			Full			10	
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V, R_{GEN}$ $= 0V, Figure 2$	25		42		pC
Logic Input			-				
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
	Dava	$V_{CC} = 1.8V, I_{COM} = -4mA, V_{NO}$	25			0.4	
On-Resistance	R _{ON}	or $V_{NC} = 1.5V$	Full			0.8	
On-Resistance Match	ADour	$V_{CC} = 1.8V, I_{COM} = -4mA, V_{NO}$ or $V_{NC} = 0.8V, 1.5V$	25			0.05	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}		Full			0.06	52
On-Resistance Flat-	D		25			0.4	
ness ⁽⁵⁾			Full			0.6	
Dynamic			25			15	
Turn-On Time	t _{ON}		Full			15	
		$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$, Figure 1	25			10	ns
Turn-Off Time	t _{OFF}		Full			15	
Charge Injection(3)	Q	$C_L = 1nF$, $V_{GEN} = 0V$, $R_{GEN} = 0V$, Figure 2	25		29		pC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5	v
Input HIGH Current	I _{INH}	$V_{IN} = 1.4 V$, all others = $0.5 V$	Full	-1		1	
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others $= 1.4V$	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

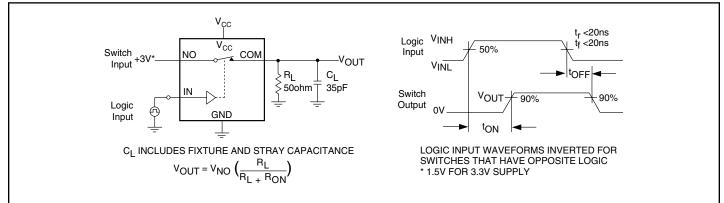


Figure 1. Switching Time

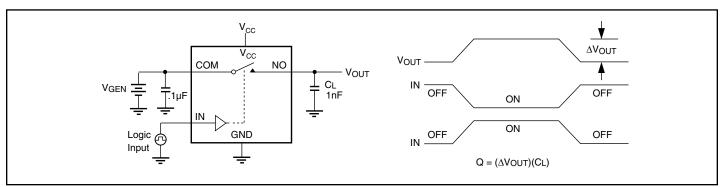
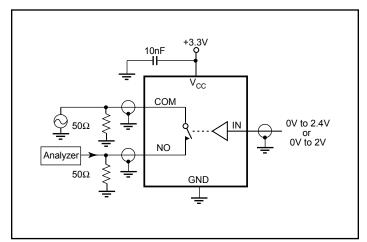
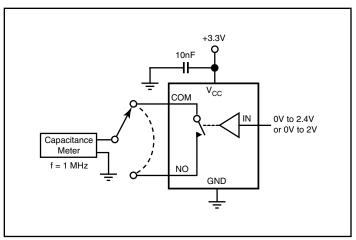
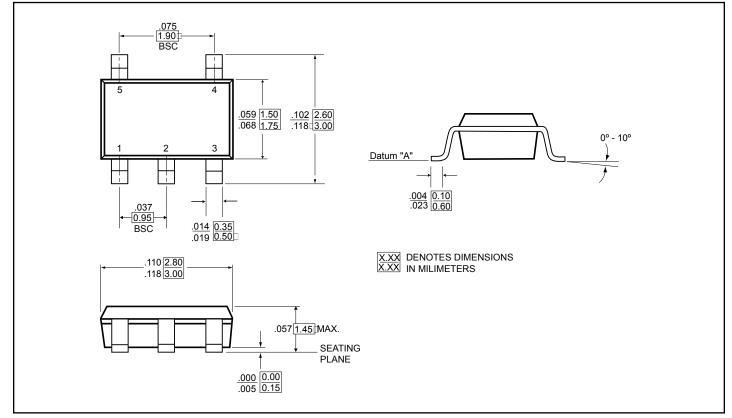
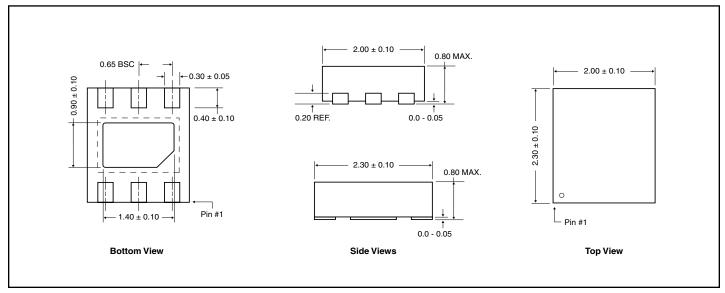



Figure 2. Charge Injection

Figure 3. Off Isolation


Figure 4. Channel On/Off Capacitance

Packaging Mechanical: 5-Pin SOT-23 (T) Package

Packaging Mechanical: 6-Pin TDFN (ZC) Package

Ordering Information

Ordering Code	Package Code	РаскадеТуре	Package Top Mark
PI3A4627TX	Т	5-pin Small Compact SOT-23	ZC
PI3A4627TEX	Т	Pb-free & Green, 5-pin Small Compact SOT-23	ZC
PI3A4627ZCEX	ZC	Pb-free & Green, 6-pin Ultra Compact TDFN	ZC

Notes:

1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/

2. X = Tape/Reel