GaAlAs Hermetic Infrared Emitting Diodes Type OP235W

Features

- · High Speed
- Enhanced temperature range
- Wide irradiance pattern
- Mechanically and spectrally matched to the OP800WSL and OP830SL
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package
- Case is electrically connected to the cathode

Description

The OP235W device is an 850 nm gallium aluminum arsenide infrared emitting diode mounted in a hermetically sealed package. The broad irradiance pattern provides relatively even ilumination over a large area.

Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle) 10.0 A
Storage Temperature Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
 (2) Derate linearly 2.0 mW/° C above 25° C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity emitted by the IRED within a cone formed from the IRED chip to an aperture. The aperture of diameter 0.250" is located a distance of 0.466" from the flange (measurement plane) to the aperture plane (parallel to the measurement plane) along the optical and mechanical axis. The cone formed is a 30° cone. The radiant intensity is not necessarily uniform within the measure area.
- (4) Measurement made with 100µs pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an $I_F = 100 \text{ mÅ}$.

Type OP235W

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	6.0			mW/cm ²	$I_F = 100 \text{ mA}^{(3)(4)}$
Po	Power Output		14		mW	I _F = 100 mA
VF	Forward Voltage			2.0	V	$I_F = 100 \text{ mA}^{(4)}$
I _R	Reverse Current			100	μΑ	V _R = 2 V
λр	Wavelength at Peak Emission		850		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		40		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/º C	I _F = Constant
θнр	Emission Angle at Half Power Points		55		Deg.	I _F = 100 mA
t _r	Rise Time		55		ns	I _{F(PK)} = 100 mA,
t _f	Fall Time		40		ns	PW = 10 μs, D.C. = 10%