Features

- High Sensitivity and High SNR Performance Linear CCD
- Resolution:
 - 2048 Pixels with 14 µm Square Pixels
 - 6144 or 8192 Pixels with 7 µm Square Pixels
- 100% Aperture, Built-in Antiblooming, No Lag
- CameraLink Data Format (Medium Configuration)
- High Data Rate:
 - 2048 Pixels: 120 Mpixels/s
 - 6144 and 8192 Pixels: 160 Mpixels/s
- Flexible and Easy to Operate Via Serial Control Lines (CameraLink)
 - Integration Time
 - Gain: 0dB to 30 dB by Steps of 0.04dB
 - Output Format: 8 or 10 Bits Data
 - Offset (for Contrast Expansion)
 - Trigger Mode: Free Run or External Trigger Modes
- Multi-camera Synchronization
- Single Power Supply: 12 to 24V DC Provided on Hirose-6 Connector
- Compact Mechanical Design:
 - 2048: 56 x 60 x 54 mm (W, H, L)
- 6144 and 8192: 82 x 60 x 54 mm (W, H, L)
- High Reliability CE and FCC Compliant
- Available Lens Adapter (Lens Not Supplied):
 - F Mount or T2 Mount for 2048 and 6144 Pixels
 - M72 x 0.75 for 8192 Pixels

Description

This camera has been designed with three concepts in mind: compactness, accuracy and versatility.

- Atmel manages the entire process, from the sensor to the camera. The result is a camera able to work in 8 or 10 bits, with dedicated electronics offering an excellent signal to noise ratio.
- The programmable settings let the user work in different illumination conditions: integration time, gain and offset.

Applications

The high speed, high resolution, performance and reliability of this camera make it well suited for the most demanding industrial applications.

- OCR and barcode reading: postal and parcel sorting, document scanning
- Inspection and metrology: PCB, CD, DVD, display, semiconductor and electronics
- Web inspection: ceramic, printing, currency, textile, wood, paper

CameraLink[™] Linescan Camera 120 MHz

AViiVA[™] M4 CL

Preliminary

CE

Rev. 5330A-IMAGE-05/03

Typical Performances

Table 1. 2k Pixel Cameras Typical Performances

Parameter		Value			
Sensor Characteristics at Maximum Pixel	Rate				
Resolution		2048			
Pixel size (square)		14		μm	
Max Line rate		52		kHz	
Peak data rate		4 x 30		MHz	
Antiblooming		x 100		-	
Radiometric Performances at Maximum F	Pixel Rate				
Output format		8 or 10		bit	
Spectral range		250 – 1100		nm	
Linearity		2		%	
PRNU		±6		%	
Sensitivity output matching		10		%	
Offset output matching ⁽¹⁾		10		LSB	
Gain range (steps of 0.035 dB)	Gmin 0	Gnom 18	Gmax 30	dB	
Peak response ⁽¹⁾⁽²⁾ SEE	7 38.5	53 4.84	210 1.22	LSB/(nJ/cm ²) nJ/cm ²	
SNR at 25°C	58	42	30	dB	
NEE	50 TBC ⁽³⁾	-	_	pJ/cm ²	
Dark signal at 25°C ⁽¹⁾	260	2100	8500	LSB/s	
DSNU at 25°C ⁽¹⁾	200	1600	6500	LSB/s	
Mechanical and Electrical Interface		1		1	
Size (w x h x l)		56 x 60 x 54		mm	
Lens mount	No optical	mount or F mount c	or T2 mount	-	
Sensor alignment		$\Delta x, y = \pm 50$ $\Delta z = 0 - 60$ $\Delta \theta x, y = \pm 0.2$ $\Delta till_z = 0 - 35$			
Power supply		DC, single 12 to 24			
Power dissipation		< 10			
Operating temperature	0 te	0 to 55 (non-condensing)			
Storage temperature	-40	-40 to 85 (non-condensing)			

Notes: 1. LSB are given for 8 bit of resolution

2. nJ/cm² 4 front face temperature

3. In this specification TBD stands for To Be Defined, TBC for To Be Confirmed

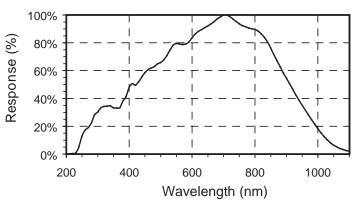
AViiVA M4 CL

Table 2. 6k and 8k Pixel Cameras Typical Performances

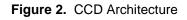
Parameter	Value			Unit
Sensor Characteristics at Maximum Pixel Rate	6K 8K			
Resolution	6144 8192		pixels	
Pixel size (square)	7		7	μm
Max Line rate	18.5		14	kHz
Peak data rate		4 x 40		MHz
Antiblooming		x 100		_
Radiometric Performances at Maximum Pixel Rate	1			
Output format		8 or 10		bit
Spectral range		250 - 1100		nm
Linearity		2		%
PRNU		±6		%
Sensitivity output matching		10		%
Offset output matching ⁽¹⁾	10			LSB
Gain range (steps of 0.035 dB)	Gmin 0	Gnom 18	Gmax 30	dB
Peak response ⁽¹⁾⁽²⁾ SEE	4 60	34 7.6	135 1.9	LSB/(nJ/cm ²) nJ/cm ²
SNR at 25°C	58	42	30	dB
NEE	75 TBC ⁽⁴⁾	_	_	pJ/cm ²
Dark signal at 25°C ⁽¹⁾	450	3500	14000	LSB/s
DSNU RMS at 25°C ⁽¹⁾	350	2700	11000	LSB/s
Mechanical and Electrical Interface		l		
Size (w x h x l)		82 x 60 x 54		mm
Lens mount		M72 x 0.75		_
Sensor alignment	$\Delta x, y = \pm 50$ $\Delta z = 0 - 60$ $\Delta \theta x, y = \pm 0.2$ $\Delta tilt_z = 0 - 35$			μm μm ∘ μm
Power supply	DC, single 12 to 24V			V
Power dissipation	< 10			W
Operating temperature ⁽³⁾	0 to 55 (non-condensing)			°C
Storage temperature	-40 to 85 (non-condensing)			°C

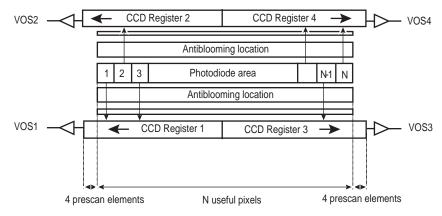
Notes: 1. LSB are given for 8 bit of resolution

2. nJ/cm² measured on the sensor


3. Front face temperature

4. In this specification TBD stands for To Be Defined, TBC for To Be Confirmed




Figure 1. Spectral Response

Description

Note: The prescan pixels are not output from the camera.

Camera

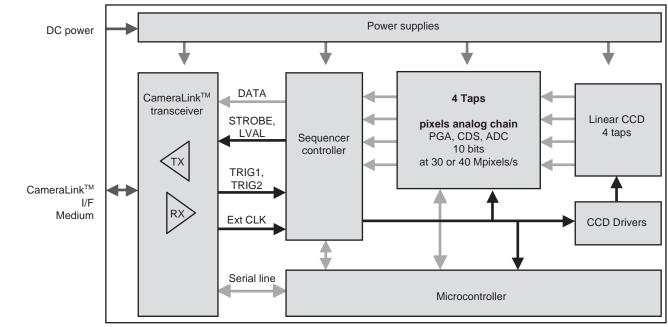


Figure 3. Camera Synoptic

The AViiVA M4 cameras are based on four taps linear CCDs. Therefore, four analog chains process pixels of the linear sensor. The analog chains perform the CCD output processing. It encompasses the correlated double sampling (CDS), the dark level correction (dark pixel clamping), the gain (PGA) and offset correction and finally the analog to digital conversion on 10 bits (8- or 10-bit output).

Note: PGA stands for programmable gain array

- A single DC power voltage from 12 to 24 V supplies the camera.
- The functional interface (data and control) is provided by the CameraLink[™] interface.
- The camera uses the medium configuration of CameraLink[™] standard.
- Note: FVAL=0
- The camera can be used with an external trigger. The camera uses TRIG1 and TRIG2 signals in the different external trigger modes, (refer to "Camera configuration is set by the serial interface. Please refer to "Serial Communication" on page 13 for the detailed protocol of the serial line." on page 7). The camera can be clocked externally, allowing system synchronization and/or multi-camera synchronization.

The camera configuration and settings are performed via a serial line. This interface is used for:

- Gain, offset setting
- Dynamic range, data rate setting
- Trigger mode setting: free running or external trigger modes
- Integration time setting: in free running and external trigger mode

Standard Conformity	 The cameras have been tested in the following conditions: Shielded power supply cable. Two CameraLink data transfer cables ref. 14B26-SZLB-500-OLC (3M). We recommend the use of the same configuration to ensure compliance with the following standards.
CE Conformity	AViiVA M4 Cameras comply with the requirements of the EMC (European) directive 89/336/CEE (EN 50081-2, EN 61000-6-2).
FCC Conformity	 AViiVA M4 Cameras comply with Part 15 of FCC rules. Operation is subject to the following two conditions: This device may not cause harmful interference, and This device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference at his own expense.

Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

Camera Commands and Controls

Camera configuration is set by the serial interface. Please refer to "Serial Communication" on page 13 for the detailed protocol of the serial line.

Table 3. Camera Settings

	Functionalities	Range/Values/Remarks
Common gain	Camera gain adjustment	2 to 35 dB
Channel 1 gain	Fine gain adjustment for balance	
Channel 2 gain	Fine gain adjustment for balance	
Channel 3 gain	Fine gain adjustment for balance	
Channel 4 gain	Fine gain adjustment for balance	
Channel 1 offset	Channel offset adjustment	
Channel 2 offset	Channel offset adjustment	
Channel 3 offset	Channel offset adjustment	
Channel 4 offset	Channel offset adjustment	
Contrast expansion Channel 1		256 steps
Contrast expansion Channel 2		256 steps
Contrast expansion Channel 3		256 steps
Contrast expansion Channel 4		256 steps

Table 4. Camera Configuration

	Functionalities	Range/Values/Remarks
Output mode (TBC)	2, or 4 outputs	
Automatic offset compensation	Allows automatic digital offset compensation	
Master clock	30 MHz	
Clock source selection	Internal or external Rising or falling edge selection	
Integration time	1 to 32000 steps	Each step = 1.00 μs
Trigger mode	Free run	Integration time set by serial line
	External trigger mode	
	One signal integration time control	Integration time and readout time controlled by
	Two signals integration time control	one or two external signals
Output data rate	Master clock period Master clock period/2 Master clock period/4	Data valid is used
Data size output	8 or 10 bits	
Output signal	Pattern	
	Raw video	

Table 5. Configuration Settings

	Functionalities	Range/Values/Remarks		
Storage/Restoration	One factory settings and four customer settings	The maximum number of write cycles allowed by the EEPROM is 100,000		

Table 6. Camera Readout

	Functionalities	Range/Values/Remarks
Camera status	Camera gives information on an external clock or trigger presence	
Factory ID readout	Allows ID and serial number readout	
Customer ID readout/storage	Allows customer ID readout	

Timing

Synchronization Four different modes may be used under user control. Mode The TRIG1 and TRIG2 signals may be used to trigger an external event and control the • integration time. The Master clock is either external or internal. • Times are given in seconds or in number of master clock periods (MCP). • M.C.P is 33 nsecs when master clock frequency is 30 MHz Free Run Mode

Integration time is set by the serial line.

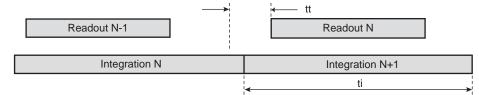

The integration and readout periods start automatically and immediately after the previous period. The readout time depends on the pixel number and pixel rate.

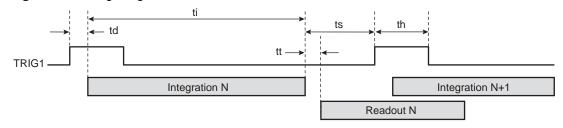
Table 7.	Timing Specification
----------	-----------------------------

Label	Description	Min	Тур	Max
ti	Integration time duration	(1)	Ι	32 ms
tt	Integration period to readout delay at master clock H	-	21 MCP	-
tt	Integration period to readout delay at master clock H/2	_	44 MCP	-
tt	Integration period to readout delay at master clock H/4	_	90 MCP	_

1. The Integration time is set by the serial line and should be higher than the readout time + tt Note: (otherwise it is adjusted to the readout time + tt).

Figure 4. Timing Diagram

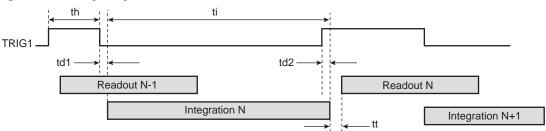
Trigger Mode


The integration period starts immediately after the rising edge of TRIG1 input signal. The integration time is set by the serial line. This integration period is immediately followed by a readout period. The readout time depends on the pixel number and the pixel rate.

A 270 ns jitter may occur between the rising edge of TRIG1 and the beginning of real integration time.

Table 8.	Timing \$	Specification:	Selected	output data	rate = mast	ter clock

Label	Description	Min	Тур	Max
ti	Integration time duration	1,9 µs	_	32 ms
td	TRIG1 rising to integration period delay	-	21 MCP	_
tt	Integration period stop to readout delay	-	See Table 7	_
ts	Integration period to TRIG1 rising set-up time	80 MCP	_	_
th	TRIG1 hold time (pulse high duration)	8 MCP	_	_

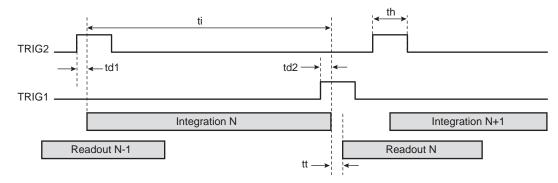

Figure 5. Timing Diagram

ITC Mode (One Signal) In the Integration Time Control (ITC) mode, the integration period starts immediately after the falling edge of TRIG1 input signal and stops immediately after the rising edge of TRIG1 input signal. It is immediately followed by a readout period. The readout time depends on the pixel number and pixel rate.

Label	Description	Min	Тур	Мах
ti	Integration time duration	1,9 µs	_	-
td1	TRIG1 falling to starting integration period delay	-	21 MCP	-
td2	TRIG1 rising to ending integration period delay	-	39 MCP	Ι
tt	Integration period to readout delay	_	See Table 7	_
th	TRIG1 hold time (pulse high duration)	8 MCP	-	_

Figure 6. Timing Diagram

ITC Mode (Two Signals) The TRIG2 rising edge starts the integration period.

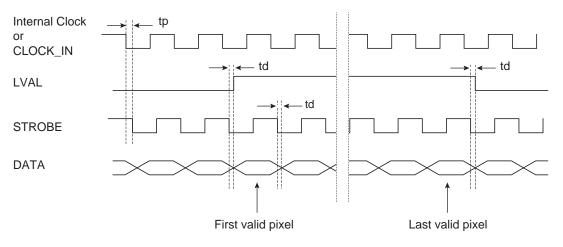

The TRIG1 rising edge stops the integration period.

This period is immediately followed by a readout period.

Table 10. Timing Specification : Selected Output Data Rate = Master Clock

Label	Description	Min	Тур	Max
ti	Integration time duration	1,9 µs	-	Η
td1	TRIG2 rising to starting integration period delay	_	21 MCP	_
td2	TRIG1 rising to ending integration period delay	_	39 MCP	_
tt	Integration period to readout delay	_	See Table 7	-
th	TRIG1 and TRIG2 hold time (pulse high duration)	8 MCP	_	_

Figure 7. Timing Diagram


AViiVA M4 CL

Output Data Timing

Table 11. Timing Specification

Label	Description	Min	Тур	Max
tp	Input to output clock propagation delay	Ι	5 µs	-
td	STROBE to synchronize signal delay	-	1.8 µs	-

Figure 8. Timing Diagram

Note: DVAL, as defined in the CameraLink standard is active at high level

Electrical Interface

Power Supply It is recommended to insert a 1A fuse between the power supply and the camera. The voltage ripple of the power supply should be below ±50 mVp-p at BW = 50MHz for full camera performance.

Signal Name	I/O	Туре	Description
PWR	Р	-	DC power input: +12 to +24V
GND	Р	_	Electrical and mechanical ground

Note: I = input, O = output, IO = bi-directional signal, P = power/ground, NC = not connected

Command and Control

The CameraLink interface provides four LVDS signals dedicated to camera control (CC1 to CC4). On the AViiVA, three of them are used to synchronize the camera on external events.

- 1. FVAL, as defined in the CameraLink standard, is not used. FVAL is permanently tied to 0 (low) level.
- 2. CC3 is not used

Table 13. Signal Definitions

Signal Name	I/O ⁽²⁾	Туре	Description
TRIG1	I	RS644	CC1 – Synchronization input ⁽¹⁾
TRIG2	Ι	RS644	CC2 – Start Integration period in dual synchro mode ⁽¹⁾
CLOCK_IN	I	RS644	CC4 – External clock for (multi-) camera synchronization ⁽¹⁾

Notes: 1. Refer to "Synchronization Mode" on page 8.

2. I = input, O = output, IO = bi-directional signal, P = power/ground, NC = not connected

Video Data

Data and enable signals are provided on the CameraLink interfaces.

- 1. FVAL, as defined in the CameraLink standard, is not used. FVAL is permanently tied to 0 (low) level.
- 2. DVAL, as defined in the CameraLink standard, when used is active at high level.

Table 14. Video Data

Signal Name	I/O ⁽²⁾	Туре	Description
OUT1-D[9-0]	0	RS644	Out 1 pixel data, OUT1-0 = LSB, OUT1-9 = MSB ⁽¹⁾
OUT2-D[9-0]	0	RS644	Out 2 pixel data, OUT2-0 = LSB, OUT2-9 = MSB ⁽¹⁾
OUT3-D[9-0]	0	RS644	Out 3 pixel data, OUT3-0 = LSB, OUT3-9 = MSB ⁽¹⁾
OUT4-D[9-0]	0	RS644	Out 4 pixel data, OUT4-0 = LSB, OUT4-9 = MSB ⁽¹⁾
STROBE	0	RS644	Output data clock, data valid on the rising edge ⁽¹⁾
LVAL	0	RS644	Line valid or line enable, active high signal ⁽¹⁾
DVAL	0	RS644	Data valid, active high signal

Notes: 1. Refer to "Output Data Timing" on page 11

2. I = input, O = output, IO = bi-directional signal, P = power/ground, NC = not connected

Serial Communication

The CameraLink interface provides two LVDS signal pairs for the communication between the camera and the frame grabber. This is an asynchronous serial communication based on the RS-232 protocol.

The configuration of the serial line is:

- Full duplex/without handshaking
- 9600 bauds, 8-bit data, no parity, 1 stop bit.

Table 15. Signal Definition

Signal Name	I/O	Туре	Description
SerTFG	0	RS644	Differential pair for serial communication to the frame grabber
SerTC	Ι	RS644	Differential pair for serial communication from the frame grabber

The camera will be delivered with:

- Software dedicated to camera control.
- .dll and .h files to allow camera control in a customer development software.

Connector Description

All connectors are on the rear panel. Better results are obtained by using shielded cables (foil and braid).

CameraLink Connector Standard CameraLink cables should be used to ensure the full electrical compatibility.

Camera connector type: 2 x MDR-26 (female) ref. 10226-2210VE

Cable connector type: Standard CameraLink cable should be used (ex. $3M^{TM} - 14B26$ -SZLB-x00-OLC)

Signal	Pin	Signal	Pin
GND	1	GND	14
Х0-	2	X0+	15
X1-	3	X1+	16
X2-	4	X2+	17
Xclk-	5	Xclk+	18
Х3-	6	X3+	19
SerTC+	7	SerTC-	20
SerTFG-	8	SerTFG+	21
CC1-	9	CC1+	22
CC2+	10	CC2-	23
CC3-	11	CC3+	24
CC4+	12	CC4-	25
GND	13	GND	26

Table 16.	CameraLink Connector
-----------	----------------------

Bit Assignment

This bit assignment is compliant with CameraLink specifications in the **Medium Configura**tion with two cables (see AIA CameraLink documentation).

Power Supply

Camera connector type: Hirose HR10A-7R-6PB (male)

Cable connector type: Hirose HR10A-7P-6S (female), one connector is delivered with each camera.

Table 17.	Power Connector J01
-----------	---------------------

Signal	Pin	Signal	Pin
PWR	1	GND	4
PWR	2	GND	5
PWR	3	GND	6

Figure 9. Receptacle Viewed from the Rear of the Camera

Ordering Codes

Table 18. Cameras

Item	Part Number
AVIIVA M4 CameraLink 2048 pixels 14 µm	AT71XM4CL2014-BA0
AVIIVA M4 CameraLink 6144 pixels 7 µm	AT71XM4CL6007-BA0
AVIIVA M4 CameraLink 8192 pixels 7 µm	AT71XM4CL8007-BA0

Note: The cameras are delivered with a power supply connector.

Table 19. Optical Mount

Item	Part Number
F Mount for Aviiva M4 2k or 6k	AT71-AVIIVAX4-F
T2 Mount for Aviiva M4 2k or 6k	AT71-AVIIVAX4-T2
M72 x 0.75 Mount for Aviiva M4 8k	AT71-AVIIVAX4-M72

Note: The cameras are delivered without an optical mount.

Table 20. BG38 Filters

Item	Part Number
Kit BG38 for 2k and 6k	AT71ABG38AVIVX4-6K
Kit BG38 for 8k	AT71ABG38AVIVX4-8K

Note: Filters are held by an optical mount

Table 21. Accessories

Item	Part Number
2 CameraLink cables (5 meters long)	AT71KAVIIVA-X4-CL
Optional heatsink	Please contact factory

Mechanical Characteristics

Weight

The camera typical weight (without lens) is 500g (TBC).

Dimensions

Figure 10. 2k

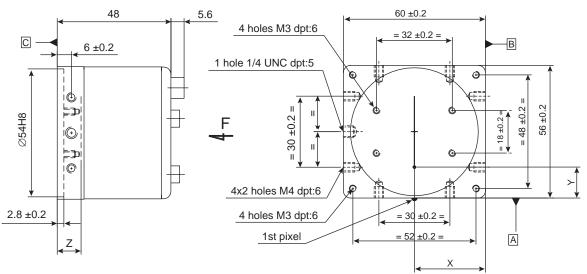


Figure 11. 6k and 8k

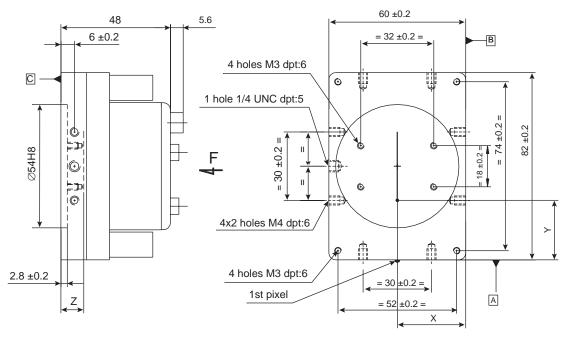
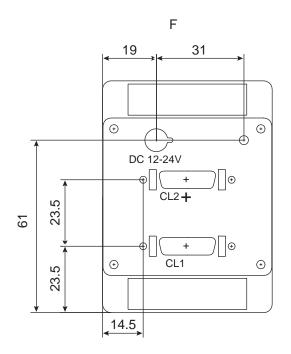



Figure 12. Rear Face

Note: The 2k rear face doesn't have the two heat sinks.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. AViiVA[™] is the trademark of Atmel Corporation. CameraLink[™] is a trademark of the AIA (Automated Imaging Association). Other terms and product names may be the trademarks of others.

Printed on recycled paper.