3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

General Description

The MAX4090 3V/5V, 6dB video buffer with sync-tip clamp, and low-power shutdown mode is available in tiny SOT23 and SC70 packages. The MAX4090 is designed to drive DC-coupled, 150Ω back-terminated video loads in portable video applications such as digital still cams, portable DVD players, digital camcorders, PDAs, video-enabled cell phones, portable game systems, and notebook computers. The input clamp positions the video waveform at the output and allows the MAX4090 to be used as a DC-coupled output driver.
The MAX4090 operates from a single 2.7 V to 5.5 V supply and consumes only 6.5 mA of supply current. The low-power shutdown mode reduces the supply current to 150nA, making the MAX4090 ideal for low-voltage, battery-powered video applications.
The MAX4090 is available in tiny 6-pin SOT23 and SC70 packages and is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Portable Video/Game Systems/DVD Players
Digital Camcorders/Televisions/Still Cameras
PDAs
Video-Enabled Cell Phones
Notebook Computers
Portable/Flat-Panel Displays

Pin Configuration

Features

- Single-Supply Operation from 2.7V to 5.5V
- Input Sync-Tip Clamp
- DC-Coupled Output
- Low-Power Shutdown Mode Reduces Supply Current to 150nA
- Available in Space-Saving SOT23 and SC70 Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4090EXT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	ABM
MAX4090EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$	ABOX

Block Diagram

TOP VIEW

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND	
OUT, FB SH)
IN to GND (Note 1) $\mathrm{V}_{\text {CLP }}$ to ($\left.\mathrm{V}_{C C}+0.3 \mathrm{C}\right)$	
IN Short-Circuit Duration from -0.3V to VCLP........................ 1 min	
in SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
6 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	5

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: $V_{C L P}$ is the input clamp voltage as defined in the DC Electrical Characteristics table.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.0 \mathrm{~V}, G N D=O V, C_{I N}=0.1 \mu \mathrm{~F}\right.$ from $I N$ to $G N D, R_{L}=$ infinity to $G N D, F B$ shorted to $O U T, \overline{S H D N}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.0 V, G N D=0 V, F B\right.$ shorted to $O U T, C_{I N}=0.1 \mu F, R I N=75 \Omega$ to $G N D, R_{L}=150 \Omega$ to $G N D, \overline{S H D N}=V_{C C}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	$V_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$		55		MHz
Large-Signal -3dB Bandwidth	BWLS	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$		45		MHz
Small-Signal 0.1dB Gain Flatness	BW0.1dBSS	$V_{\text {OUT }}=100 \mathrm{mV}$ P-P		25		MHz
Large-Signal 0.1dB Gain Flatness	BW0.1dBLS	$V_{\text {OUT }}=2 V_{\text {P-P }}$		17		MHz
Slew Rate	SR	VOUT $=2 \mathrm{~V}$ step		275		V/ $/ \mathrm{s}$
Settling Time to 0.1\%	ts	VOUT $=2 \mathrm{~V}$ step		25		ns
Power-Supply Rejection Ratio	PSRR	$\mathrm{f}=100 \mathrm{kHz}$		50		dB
Output Impedance	ZOUT	$f=5 \mathrm{MHz}$		2.5		Ω
Differential Gain	DG	NTSC	$\mathrm{V}_{C C}=3 \mathrm{~V}$	1		\%
			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	0.5		
Differential Phase	DP	NTSC	$\mathrm{V}_{C C}=3 \mathrm{~V}$	0.8		Degrees
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.5		
Group Delay	D/dT	$\mathrm{f}=3.58 \mathrm{MHz}$ or 4.43 MHz		20		ns
Peak Signal to RMS Noise	SNR	$\mathrm{V}_{\text {IN }}=1 \mathrm{VP}_{\text {P-P, }} 10 \mathrm{MHz} \mathrm{BW}$		65		dB
Droop		$\mathrm{CIN}^{\text {a }}=0.1 \mu \mathrm{~F}($ Note 4)		2	3	\%
$\overline{\text { SHDN }}$ Enable Time	ton	$V_{I N}=V_{C L P}+1 V, \overline{\text { SHDN }}=3 V$, Vout settled to within 1% of the final voltage		250		ns
$\overline{\text { SHDN }}$ Disable Time	toff	$V_{I N}=V_{C L P}+1 V, \overline{S H D N}=0 V$, $V_{\text {OUT }}$ settled to below 1% of the output voltage		50		ns

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 3: Voltage gain (Av) is referenced to the clamp voltage, i.e., an input voltage of $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CLP}}+\mathrm{VI}$ would produce an output voltage of $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CLP }}+\mathrm{AV} \times \mathrm{VI}$.
Note 4: Droop is guaranteed by the Input Bias Current specification.

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{FB}\right.$ shorted to $\mathrm{OUT}, \mathrm{CIN}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=75 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{unless}$ otherwise noted.)

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

Typical Operating Characteristics (continued)
$\left(V_{C C}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{FB}\right.$ shorted to $\mathrm{OUT}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{IN}}=75 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{unless}$ otherwise noted.)

CLAMP VOLTAGE
vs. TEMPERATURE

OUTPUT VOLTAGE HIGH SWING
vs. TEMPERATURE

QUIESCENT SUPPLY CURRENT
vs. TEMPERATURE

VOLTAGE GAIN vs. TEMPERATURE

OUTPUT VOLTAGE HIGH SWING
vs. TEMPERATURE

CLAMP VOLTAGE
vs. TEMPERATURE

VOLTAGE GAIN vs. TEMPERATURE

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

Typical Operating Characteristics (continued)

$\left(V_{C C}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{FB}\right.$ shorted to $\mathrm{OUT}, \mathrm{CIN}^{2}=0.1 \mu \mathrm{~F}, \mathrm{RIN}=75 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	OUT	Video Output
2	GND	Ground
3	IN	Video Input
4	VCC	Power-Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground as close to pin as possible.
5	$\overline{\text { SHDN }}$	Shutdown. Pull $\overline{\text { SHDN }}$ MAX4090 in low-power shutdown mode.
6	FB	Feedback. Short to VCC.

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

Detailed Description

The MAX4090 3V/5V, 6dB video buffer with sync-tip clamp and low-power shutdown mode is available in tiny SOT23 and SC70 packages. The MAX4090 is designed to drive DC-coupled, 150Ω back-terminated video loads in portable video applications such as digital still cams, portable DVD players, digital camcorders, PDAs, videoenabled cell phones, portable game systems, and notebook computers. The input clamp positions the video waveform at the output and allows the MAX4090 to be used as a DC-coupled output driver.
The MAX4090 operates from a single 2.7 V to 5.5 V supply and consumes only 6.5 mA of supply current. The low-power shutdown mode reduces the supply current to 150 nA , making the MAX4090 ideal for low-voltage, battery-powered video applications.
The input signal to the MAX4090 is AC-coupled through a capacitor into an active sync-tip clamp circuit, which places the minimum of the video signal at approximately 0.38 V . The output buffer amplifies the video signal while still maintaining the 0.38 V clamp voltage at the output. For example, if V IN $=0.38 \mathrm{~V}$, then $\mathrm{V}_{\text {OUT }}=0.38 \mathrm{~V}$. If $\mathrm{V}_{\text {IN }}=(0.38 \mathrm{~V}+1 \mathrm{~V})=1.38 \mathrm{~V}$, then $\mathrm{V}_{\text {OUT }}$ $=(0.38 \mathrm{~V}+2 \mathrm{X}(1 \mathrm{~V}))=2.38 \mathrm{~V}$. The net result is that a 2 V video output signal swings within the usable output voltage range of the output buffer when $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$.

Shutdown Mode

The MAX4090 features a low-power shutdown mode $(1 \overline{S H D N}=150 \mathrm{nA})$ for battery-powered/portable applications. Pulling the SHDN pin high enables the output. Connecting the SHDN pin to ground (GND) disables the output and places the MAX4090 into a low-power shutdown mode.

Applications Information

Input Coupling the MAX4090

The MAX4090 input must be AC-coupled because the input capacitor stores the clamp voltage. The MAX4090 requires a typical value of $0.1 \mu \mathrm{~F}$ for the input clamp to meet the Line Droop specification. A minimum of a ceramic capacitor with an X7R temperature coefficient is recommended to avoid temperature-related problems with Line Droop. For extended temperature operation, such as outdoor applications, or where the impressed voltage is close to the rated voltage of the capacitor, a film dielectric is recommended. Increasing the capacitor value slows the clamp capture time. Values above $0.5 \mu \mathrm{~F}$ should be avoided since they do not improve the clamp's performance.

The active sync-tip clamp also requires that the input impedance seen by the input capacitor be less than 100Ω typically to function properly. This is easily met by the 75Ω input resistor prior to the input-coupling capacitor and the back termination from a prior stage. Insufficient input resistance to ground causes the MAX4090 to appear to oscillate. Never operate the MAX4090 in this mode.

Layout and Power-Supply Bypassing
The MAX4090 operates from single 2.7 V to 5.5 V supply. Bypass the supply with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible. Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the device's performance, design it for a frequency greater than 1 GHz . Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Do not use wire-wrap boards; they are too inductive.
- Do not use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better, high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Chip Information
TRANSISTOR COUNT: 755
PROCESS: BiCMOS

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

Figure 1. Typical Operating Circuit

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

3V/5V, 6dB Video Buffer with Sync-Tip Clamp and 150nA Shutdown Current

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

