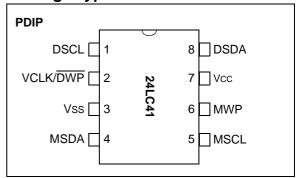
Obsolete Device

24LC41

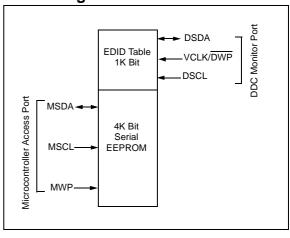
1K/4K 2.5V Dual Mode, Dual Port I²CTM Serial EEPROM

Features

- Single supply with operation down to 2.5V
- Completely implements DDC1™/DDC2™ interface for monitor identification
- Separate high speed 2-wire bus for microcontroller access to 4K-bit Serial EEPROM
- · Low-power CMOS technology
- · 2 mA active current typical
- 20 μA standby current typical at 5.5V
- Dual 2-wire serial interface bus
- · Hardware write-protect for both ports
- · Self-timed write cycle (including auto-erase)
- Page write buffer for up to 8 bytes (DDC port) or 16 bytes (4K Port)
- 100 kHz (2.5V) and 400 kHz (5V) compatibility
- 1,000,000 erase/write cycles ensured
- Data retention > 40 years
- 8-pin PDIP package
- · Available for extended temperature ranges
 - Commercial (C): 0°C to +70°C - Industrial (I): -40°C to +85°C


Description

The Microchip Technology Inc. 24LC41 is a dual-port 128 x 8 and 512 x 8-bit Electrically Erasable PROM (EEPROM). This device is designed for use in applications requiring storage and serial transmission of configuration and control information. Three modes of operation have been implemented:


- · Transmit-only mode for the DDC Monitor Port
- · Bidirectional mode for the DDC Monitor Port
- Bidirectional, industry-standard 2-wire bus for the 4K Microcontroller Access Port

Upon power-up, the DDC Monitor Port will be in the Transmit-only mode, repeatedly sending a serial bit stream of the entire memory array contents, clocked by the VCLK/DWP pin. A valid high-to-low transition on the DSCL pin will cause the device to enter the Bidirectional mode, with byte-selectable read/write capability of the memory array. The 4K-bit microcontroller port is completely independent of the DDC port, therefore, it can be accessed continuously by a microcontroller without interrupting DDC transmission activity. The 24LC41 is available in a standard 8-pin PDIP package in both commercial and industrial temperature ranges.

Package Type

Block Diagram

 I^2C is a registered trademark of Philips Corporation.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings^(†)

Vcc	7.0V
All inputs and outputs w.r.t. Vss	0.6V to Vcc +1.0V
Storage temperature	65°C to +150°C
Ambient temperature with power applied	65°C to +125°C
ESD protection on all pins	≥4 kV

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

	VCC = +2.5V to 5.5V				
DC CHARACTERISTICS	Commercial (C): $TA = 0^{\circ}C$ to $+70^{\circ}C$				
	Industrial (I): $TA = -40^{\circ}C \text{ to } +85^{\circ}C$				
Parameter	Symbol	Min	Max	Units	Conditions
DSCL, DSDA, MSCL & MSDA pins:					
High-level input voltage	VIH	.7 Vcc	_	V	
Low-level input voltage	VIL	_	.3 Vcc	V	
Input levels on VCLK/DWP pin:					
High-level input voltage	VIH	2.0	.8	V	VCC ≥ 2.7V (Note)
Low-level input voltage	VIL	_	.2 Vcc	V	VCC < 2.7V (Note)
Hysteresis of Schmitt Trigger inputs	VHYS	.05 Vcc	_	V	(Note)
Low-level output voltage	VOL1	_	.4	V	IOL = 3 mA, VCC = 2.5V (Note)
Low-level output voltage	VOL2	_	.6	V	IOL = 6 mA, VCC = 2.5V
Input leakage current	ILI	_	±1	μΑ	VIN = .1V to VCC
Output leakage current	ILO	_	±1	μΑ	Vout = .1V to Vcc
Pin capacitance (all inputs/outputs)	CIN, COUT	_	10	pF	VCC = 5.0V (Note),
					TA = 25°C, FCLK = 1 MHz
Operating current	Icc Write	_	3	mA	Vcc = 5.5V, DSCL or
	Icc Read	_	1	mA	MSCL = 400 kHz
Standby current	Iccs	_	60	μΑ	VCC = 3.0V, DSDA or
		_	200	μA	MSDA = DSCL or MSCL = Vcc
					Vcc = 5.5V, DSDA or
					MSDA = DSCL or MSCL = Vcc
					VCLK = VSS

Note: This parameter is periodically sampled and not 100% tested.

TABLE 1-2: AC CHARACTERISTICS (DDC MONITOR AND MICROCONTROLLER ACCESS PORTS)

DDC Monitor Port (Bidirectional Mode) and Microcontroller Access Port							
Parameter	Symbol	Standard Mode		Vcc = 4.5 - 5.5V Fast Mode		Units	Remarks
		Min	Max	Min	Max		
Clock frequency (DSCL and MSCL)	FCLK		100		400	kHz	
Clock high time (DSCL and MSCL)	THIGH	4000	_	600	_	ns	
Clock low time (DSCL and MSCL)	TLOW	4700	_	1300	_	ns	
DSCL, DSDA, MSCL and MSDA rise time	TR	1	1000	_	300	ns	(Note 1)
DSCL, DSDA, MSCL and MSDA fall time	TF	1	300	_	300	ns	(Note 1)
Start condition hold time	THD:STA	4000	_	600		ns	After this period the first clock pulse is generated
Start condition setup time	Tsu:sta	4700	_	600		ns	Only relevant for repeated Start condition
Data input hold time	THD:DAT	0	_	0	_	ns	(Note 2)
Data input setup time	TSU:DAT	250	_	100	_	ns	
Stop condition setup time	Tsu:sto	4000	_	600	_	ns	
Output valid from clock	TAA	ı	3500		900	ns	(Note 2)
Bus free time	TBUF	4700	_	1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from VIH min to VIL max	Tof	_	250	20 + .1 CB	250	ns	(Note 1), CB ≤ 100 pF
Input filter spike suppression (DSCL, DSDA, MSCL and MSDA pins)	TSP	_	50	_	50	ns	(Note 3)
Write cycle time	TWR	1	10		10	ms	Byte or Page mode
DDC Monitor Port Transmi	t-Only Mo	de Parame	eters				
Output valid from VCLK/	TVAA		2000	_	1000	ns	
VCLK/DWP high time	Tvhigh	4000	_	600	_	ns	
VCLK/DWP low time	TvLow	4700	_	1300	_	ns	
Mode transition time	Tvhz	_	500	_	500	ns	
Transmit-only power-up time	TVPU	0	_	0	_	ns	
Endurance	_	1M	_	1M	_	cycles	25°C, Vcc = 5.0V, Block mode (Note 4)

- **Note 1:** Not 100% tested. CB = total capacitance of one bus line in pF.
 - 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of DSCL or MSCL to avoid unintended generation of Start or Stop conditions.
 - **3:** The combined TsP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise and spike suppression. This eliminates the need for a Ti specification for standard operation.
 - **4:** This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ model which can be obtained from our web site.

2.0 FUNCTIONAL DESCRIPTION

2.1 DDC Monitor Port

The DDC Monitor Port operates in two modes, the Transmit-only mode and the Bidirectional mode. There is a separate 2-wire protocol to support each mode, each having a separate clock input and sharing a common data line (DSDA). The device enters the Transmit-only mode upon power-up. In this mode, the device transmits data bits on the DSDA pin in response to a clock signal on the VCLK/DWP pin. The device will remain in this mode until a valid high-to-low transition is placed on the DSCL input. When a valid transition on DSCL is recognized, the device will switch into the Bidirectional mode. The only way to switch the device back to the Transmit-only mode is to remove power from the device.

2.2 Transmit-Only Mode

The device will power-up in the Transmit-only mode. This mode supports a unidirectional 2-wire protocol for transmission of the contents of the memory array. This device requires that it be initialized prior to valid data being sent in the Transmit-only mode (Section 2.3)

"Initialization Procedure"). In this mode, data is transmitted on the DSDA pin in 8-bit bytes, each followed by a ninth, null bit (Figure 2-1). The clock source for the Transmit-only mode is provided on the VCLK/DWP pin, and a data bit is output on the rising edge on this pin. The eight bits in each byte are transmitted by Most Significant bit first. Each byte within the memory array will be output in sequence. When the last byte in the memory array is transmitted, the output will wrap around to the first location and continue. The Bidirectional mode Clock (DSCL) pin must be held high for the device to remain in the Transmit-only mode.

2.3 Initialization Procedure

After Vcc has stabilized, the device will be in the Transmit-only mode. Nine clock cycles on the VCLK/ DWP pin must be given to the device for it to perform internal sychronization. During this period, the DSDA pin will be in a high-impedance state. On the rising edge of the tenth clock cycle, the device will output the first valid data bit which will be the Most Significant bit of a byte. The device will power-up at an indeterminate byte address (Figure 2-2).

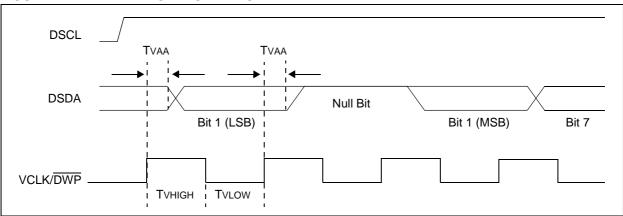
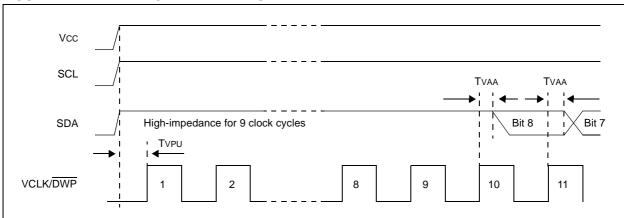
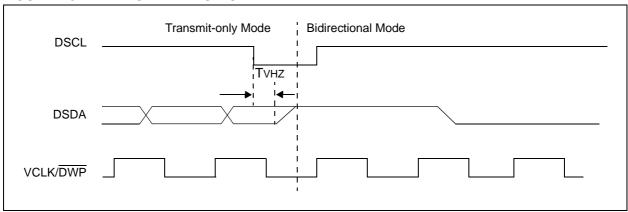



FIGURE 2-2: DEVICE INITIALIZATION


2.3.1 BIDIRECTIONAL MODE

The DDC Monitor Port can be switched into the Bidirectional mode (Figure 2-3) by applying a valid high-to-low transition on the Bidirectional mode Clock (DSCL). When the device has been switched into the Bidirectional mode, the VCLK/DWP input is disregarded, with the exception that a logic high level is required to enable write capability. This mode supports a 2-wire bidirectional data transmission protocol. In this protocol, a device that sends data on the bus is defined to be the transmitter, and a device that receives data from the bus is defined to be the receiver. The bus must be controlled by a master device that generates the Bidirectional mode Clock (DSCL), controls access to the bus and generates the Start and Stop conditions, while the DDC Monitor Port acts as the slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

2.4 Microcontroller Access Port

The Microcontroller Access Port supports a bidirectional 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device which generates the serial clock (MSCL), controls the bus access, and generates the Start and Stop conditions, while the Microcontroller Access Port works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

FIGURE 2-3: MODE TRANSITION

3.0 BIDIRECTIONAL BUS CHARACTERISTICS

Characteristics for the bidirectional bus are identical for both the DDC Monitor Port (in Bidirectional mode) and the Microcontroller Access Port The following **bus protocol** has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 3-1).

3.1 Bus not Busy (A)

Both data and clock lines remain high.

3.2 Start Data Transfer (B)

A high-to-low transition of the DSDA or MSDA line while the clock (DSCL or MSCL) is high determines a Start condition. All commands must be preceded by a Start condition.

3.3 Stop Data Transfer (C)

A low-to-high transition of the DSDA or MSDA line while the clock (DSCL or MSCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

3.4 Data Valid (D)

The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

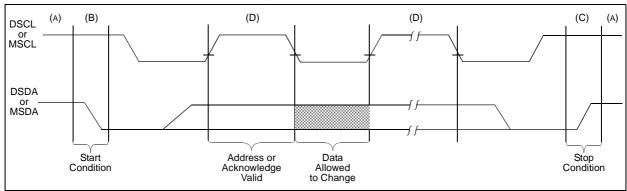
The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is theoretically unlimited, although only the last eight will be stored when doing a write operation. When an overwrite does occur, it will replace data in a first in first out fashion.

3.5 Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note:	The microcontroller access port and the DDC Monitor Port (in Bidirectional mode) will not generate any Acknowledge bits if
	an internal programming cycle is in
	progress.


The device that acknowledges has to pull down the DSDA or MSDA line during the Acknowledge clock pulse in such a way that the DSDA or MSDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition.

3.6 Device Addressing

A control byte is the first byte received following the Start condition from the master device. The first part of the control byte consists of a 4-bit control code. This control code is set as 1010 for both read and write operations and is the same for both the DDC Monitor Port and Microcontroller Access Port. The next three bits of the control byte are block select bits (B1, B2 and B0). All three of these bits are don't care bits for the DDC Monitor Port. The B2 and B1 bits are don't care bits for the Microcontroller Access Port, and the B0 bit is used by the Microcontroller Access Port to select which of the two 256 word blocks of memory are to be accessed (Figure 3-4). The B0 bit is effectively the Most Significant bit of the word address. The last bit of the control byte defines the operation to be performed. When set to one, a read operation is selected; when set to zero, a write operation is selected. Following the Start condition, the device monitors the DSDA or MSDA bus checking the device type identifier being transmitted, upon a 1010 code the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the device will select a read or a write operation. The DDC Monitor Port and Microcontroller Access Port can be accessed simultaneously because they are completely independent of one another.

Operation	Control Code Chip Select		R/W
Read	1010	XXB0	1
Write	1010	XXB0	0

FIGURE 3-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

FIGURE 3-2: BUS TIMING START/STOP

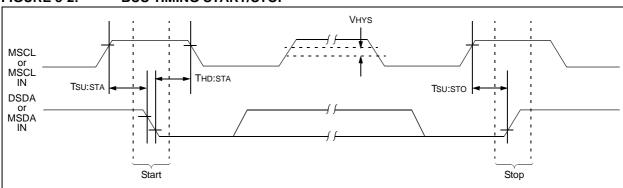
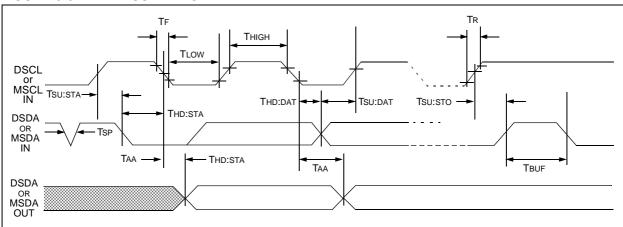
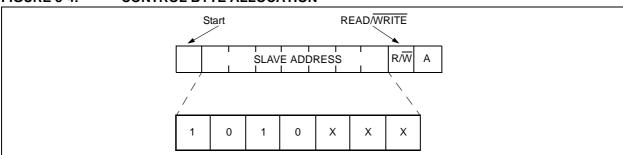




FIGURE 3-3: BUS TIMING DATA

FIGURE 3-4: CONTROL BYTE ALLOCATION

X = Don't care. B0 is don't care for DDC Monitor Port, but is used by the Microcontroller Access Port to select which of the two 256 word blocks of memory are to be accessed.

4.0 WRITE OPERATION

Write operations are identical for the DDC Monitor Port (when in Bidirectional mode) and the Microcontroller Access Port, with the exception of the VCLK/DWP and MWP pins noted in the next sections. Data can be written using either a Byte Write or Page Write command. Write commands for the DDC Monitor Port and the Microcontroller Access Port are completely independent of one another.

4.1 Byte Write

Following the Start signal from the master, the slave address (4-bits), the Chip Select bits (3-bits) and the R/W bit which is a logic low is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer of the port. After receiving another Acknowledge signal from the port, the master device will transmit the data word to be written into the addressed memory location. The port acknowledges again and the master generates a Stop condition. This initiates the internal write cycle, and during this time, the port will not generate Acknowledge signals (Figure 4-1).

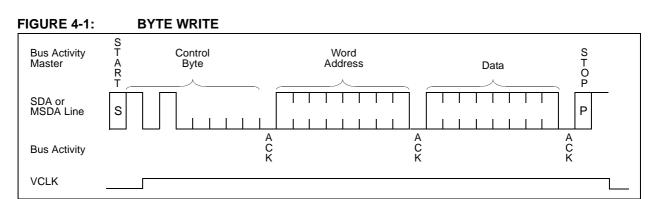
For the DDC Monitor Port it is required that VCLK/\overline{DWP} be held at a logic high level in order to program the device. This applies to byte write and page write operation. Note that VCLK/\overline{DWP} can go low while the device is in its self-timed program operation and not affect programming.

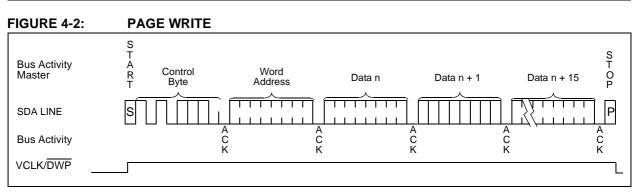
For the Microcontroller Access Port, the MWP pin must be held to Vss during the entire write operation.

4.2 Page Write

The write control byte, word address, and the first data byte are transmitted to the port in the same way as in a byte write. But, instead of generating a Stop condition, the master transmits up to eight data bytes to the DDC Monitor Port or 16 bytes to the Microcontroller Access Port, which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a Stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order 5-bits of the word address remains constant. If the master should transmit more than eight words to the DDC Monitor Port or 16 words to the Microcontroller Access Port prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received an internal write cycle will begin (Figure 4-2).

For the DDC Monitor Port, it is required that VCLK/ DWP be held at a logic high level in order to program the device. This applies to byte write and page write operation. Note that VCLK/DWP can go low while the device is in its self-timed program operation and not affect programming.

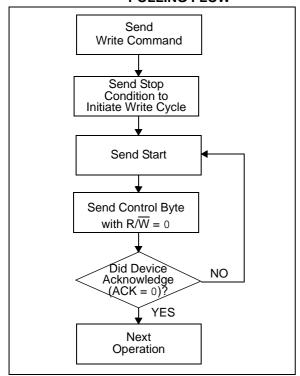

For the Microcontroller Access Port, the MWP pin must be held to Vss during the entire write operation..


Page write operations are limited to writing

application software to prevent page write operations that would attempt to cross a

bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of [page size - 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the

page boundary.



5.0 ACKNOWLEDGE POLLING

Acknowledge polling can be done for both the DDC Monitor Port (when in Bidirectional mode) and the Microcontroller Access Port.

Since the port will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize but throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/ \overline{W} = 0). If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 5-1 for the flow diagram.

FIGURE 5-1: ACKNOWLEDGE POLLING FLOW

6.0 WRITE PROTECTION

6.1 DDC Monitor Port

When using the <u>DDC</u> Monitor Port in the Bidirectional mode, the VCLK/DWP pin operates as the write-protect control pin. Setting VCLK/DWP high allows normal write operations, while setting VCLK/DWP low prevents writing to any location in the array. Connecting the VCLK/DWP pin to Vss would allow the DDC Monitor Port to operate as a serial ROM, although this configuration would prevent using the device in the Transmit-only mode.

6.2 Microcontroller Access Port

The Microcontroller Access Port can be used as a serial ROM when the MWP pin is connected to Vcc. Programming will be inhibited and the entire memory associated with the Microcontroller Access Port will be write-protected.

7.0 READ OPERATION

Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the slave address is set to one. There are three basic types of read operations: current address read, random read and sequential read. These operations are identical for both the DDC Monitor Port (in Bidirectional mode) and the Microcontroller Access Port and are completely independent of one another.

7.1 Current Address Read

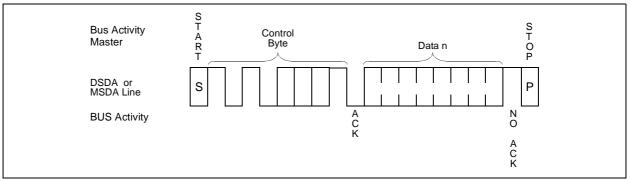
The port contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/\overline{W} bit set to one, the port issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the port discontinues transmission (Figure 7-1).

7.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the port as part of a write operation. After the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. The master then issues the control byte again, but with the R/\overline{W} bit set to a one. The port then issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the port discontinues transmission (Figure 7-2).

7.3 Sequential Read

Sequential reads are initiated in the same way as a random read except that after the port transmits the first data byte, and the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the port to transmit the next sequentially addressed 8-bit word (Figure 7-3).


To provide sequential reads, the port contains an internal address pointer, which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.

7.4 Noise Protection

Both the DDC Monitor Port and Microcontroller Access Port employ a Vcc threshold detector circuit which disables the internal erase/write logic, if the Vcc is below 1.5 volts at nominal conditions.

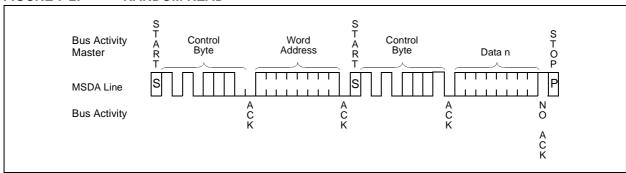
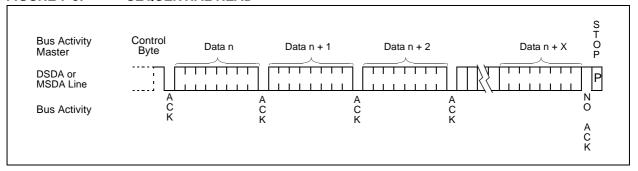

The DSCL, MSCL, DSDA and MSDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

FIGURE 7-1: CURRENT ADDRESS READ



24LC41

FIGURE 7-2: RANDOM READ

FIGURE 7-3: SEQUENTIAL READ

8.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 8-1.

TABLE 8-1: PIN FUNCTION TABLE

Name	Function
DSCL	Serial Clock for DDC Bidirectional mode (DDC2)
DSDA	Serial Address and Data I/O (DDC Bus)
VCLK/DWP	Serial Clock for DDC Transmit-only mode (DDC1)/Write-Protect
MSCL	Serial clock for 4 Kbit MCU port
MSDA	Serial Address and Data I/O for 4 Kbit MCU port
MWP	Hardware write-protect for 4 Kbit MCU port
Vss	Ground
Vcc	+2.5V to +5.5V power supply

8.1 DSDA

This pin is used to transfer addresses and data into and out of the DDC Monitor Port, when the device is in the Bidirectional mode. In the Transmit-only mode, which only allows data to be read from the device, data is also transferred on the DSDA pin. This pin is an open drain terminal, therefore the DSDA bus requires a pull-up resistor to VCC (typical $10 \text{K}\Omega$ for $100 \text{ kHz}, 2 \text{ K}\Omega$ for 400 kHz).

For normal data transfer in the Bidirectional mode, DSDA is allowed to change only during DSCL or MSDA low. Changes during DSCL high are reserved for indicating the Start and Stop conditions.

8.2 DSCL

This pin is the clock input for the DDC Monitor Port while in the Bidirectional mode, and is used to synchronize data transfer to and from the device. It is also used as the signaling input to switch the device from the Transmit-only mode to the Bidirectional mode. It must remain high for the chip to continue operation in the Transmit-only mode.

8.3 VCLK/DWP

This pin is the clock input for the DDC Monitor Port while in the Transmit-only mode. In the Transmit-only mode, each bit is clocked out on the rising edge of this signal. In the Bidirectional mode, a high logic level is required on this pin to enable write capability.

8.4 MSCL

This pin is the clock input for the Microcontroller Access Port, and is used to synchronize data transfer to and from the device.

8.5 MSDA

This pin is used to transfer addresses and data into and out of the Microcontroller Access Port. This pin is an open drain terminal, therefore the MSDA bus requires a pull-up resistor to Vcc (typical 10K Ω for 100 kHz, 2K Ω for 400 kHz).

MSDA is allowed to change only during MSCL low. Changes during MSCL high are reserved for indicating the Start and Stop conditions.

8.6 MWP

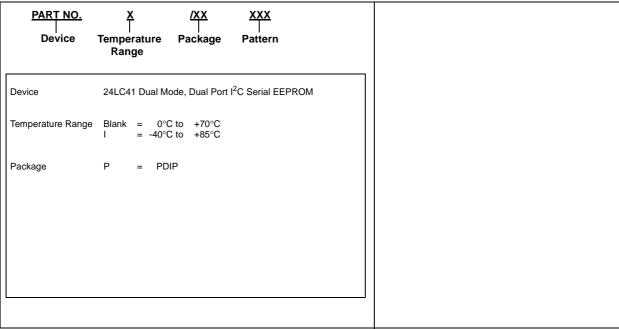
This pin is used to write-protect the 4K memory array for the Microcontroller Access Port.

This pin must be connected to either Vss or Vcc.

If tied to Vss, normal memory operation is enabled (read/write the entire memory).

If tied to Vcc, Write operations are inhibited. The entire memory will be write-protected. Read operations are not affected.

24LC41


APPENDIX A: REVISION HISTORY

Revision E

Corrections to Section 1.0, Electrical Characteristics.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

24LC41

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICWorks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOO® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: 480-792-7627 Web Address: www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

16200 Addison Road, Suite 255 Addison Plaza Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250

Fax: 248-538-2260 Kokomo

2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

25950 Acero St., Suite 200 Mission Viejo, CA 92691 Tel: 949-462-9523 Fax: 949-462-9608

San Jose

1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Unit 32 41 Rawson Street Epping 2121, NSW Sydney, Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431 China - Shanghai

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China

Tel: 86-755-82901380 Fax: 86-755-8295-1393 China - Shunde

Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571

China - Qingdao

Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205

India

Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062

Japan

Yusen Shin Yokohama Building 10F 3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore

200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850

Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4816 Fax: 886-7-536-4817

Taiwan

Taiwan Branch 11F-3, No. 207 Tung Hua North Road

Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

Taiwan

Taiwan Branch 13F-3, No. 295, Sec. 2, Kung Fu Road Hsinchu City 300, Taiwan

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria Durisolstrasse 2

A-4600 Wels

Austria

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Regus Business Centre

Lautrup hoj 1-3 Ballerup DK-2750 Denmark

Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Via Salvatore Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands

Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399

Fax: 31-416-690340 **United Kingdom**

505 Eskdale Road Winnersh Triangle Wokingham

Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820

07/12/04