

Dual Low-Noise Operational Amplifier

GENERAL DESCRIPTION

The XR-5533 dual low-noise operational amplifier is especially designed for applications in high quality professional audio equipment. The low-noise, wide bandwidth and output drive capability make it ideally suited for instrumentation and control circuits as well as active filter design.

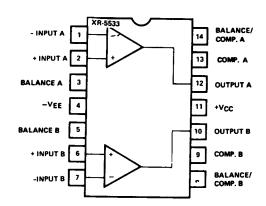
The XR-5533A is the specially screened version of the XR-5533 with guaranteed worst-case noise specifications.

FEATURES

Direct Replacement for Signetics SE/NE 5533 Wide Small-Signal Bandwidth: 10 MHz High-Current Drive Capability (10V rms into 600Ω at $V_S = \pm 18V$) High Slew Rate: 13 $V/\mu s$ Wide Power-Bandwidth: 200 kHz Very Low Input Noise: $4 \text{ nV}/\sqrt{\text{Hz}}$

APPLICATIONS

High Quality Audio Amplification Telephone Channel Amplifier Servo control Systems Low-Level Signal Detection Active Filter Design


ABSOLUTE MAXIMUM RATINGS

Power Supply	± 22V
Input Common-Mode Range	-VEE to +VCC
Differential Input Voltage (Note 1) ±0.5V
Short Circuit Duration (Note 2)	Indefinite
Power Dissipation (Package Limi	itation)
Ceramic Package 14-Pin	750 mW
Plastic Package 14-Pin	600 mW
Derate Above T _A = 25°C	5 mW/°C
Storage Temperature	-60°C to +150°C

Note 1: Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ± 10 mA.

Note 2: Output may be shorted to ground at V_{CC} = V_{EE} = 15V, T_A = 25°C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

FUNCTIONAL BLOCK DIAGRAM

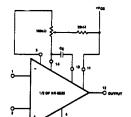
ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-5533AN	Ceramic	0°C to +70°C
XR-5533AP	Plastic	0°C to +70°C
XR-5533N	Ceramic	0°C to +70°C
XR-5533P	Plastic	0°C to +70°C

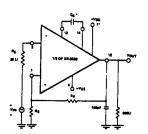
SYSTEM DESCRIPTION

The XR-5533 and XR-5533A are dual monolithic operational amplifiers featuring low noise and very large gain bandwidth products. The devices have low output resistance and can drive 10 Vrms into 600Ω . Input noise is 100% tested on the XR-5533A, and is typically only 4 nV/ $\sqrt{\text{Hz}}$. The small signal bandwidth is 10 MHz and slew rate exceeds 13 V/ μ S.

XR-5533/5533A

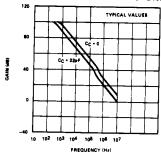

ELECTRICAL CHARACTERISTICS

Test Conditions: $T_A = 25$ °C, $V_{CC} = V_{EE} = 15$ V unless otherwise specified.

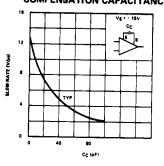

	7	XR-5533A			XR-5533				
PARAMETERS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	SYMBOL	CONDITIONS
C CHARACTERISTICS									
nput Offset Voltage		0.5	4 5		0.5	4 5	mV mV	Vos	T _A = 25°C T _A = Full Range
Input Offset Current		20	300 400		20	300 400	nA nA	los	T _A = 25°C T _A = Full Range
Input Bias Current		500	1500 2000		500	1500 2000	nA nA	lΒ	T _A = 25°C T _A = Full Range
Large Signal Voltage Gain	25 15	100		25 15	100		V/mV V/mV	AVOL	$R_L \ge 600\Omega$, $V_O = \pm 10V$ $T_A = 25^{\circ}C$ $T_A = Full Range$
Supply Current (Each Amplifier)		4	8		4	8	mA	lcc	R _L = Open
Output Swing	± 12 ± 15	±13 ±16		± 12 ± 15	±13 ±16		V V	Vout	$R_L \ge 600\Omega$ $V_{CC} = V_{EE} = 15V$ $V_{CC} = V_{EE} = 18V$
Output Short Circuit Current		38			38		mA	'sc	(Note 2)
Input Resistance	30	100		30	100	L	kΩ	R _{IN}	
Common-Mode Range	± 12	±13		± 12	±13		٧	ViCM	
Common-Mode Rejection	70	100		70	100		dB	CMRR	
Power Supply Rejection		10	100		10	100	μ\/\	PSRR	f = 1 kHz,
Channel Separation	_	110			110	<u> </u>		dB	$R_S = 5 k\Omega$
AC CHARACTERISTICS									
Transient Response Rise Time		20			20		nsec	t _r	Voltage Follower $R_L = 600\Omega$, $C_C = 22 \text{ pF}$
Overshoot		20			20		%	t _o	C _L = 100 pF V _{IN} = 50 mV
AC Gain									f = 10 kHz
		6 2.2			6 2.2		V/mV V/mV		$C_C = 0$ $C_C = 22 \text{ pF}$
Unity-Gain Bandwidth		10			10		MHz	BW	$C_{C} = 22 \text{ pF},$ $C_{L} = 100 \text{ pF}$
Slew Rate		13 6			13 6		V/μ/sec V/μ/sec	<u> </u>	$C_C = 0$ $C_C = 22 \text{ pF}$
Power Bandwidth		95 200			95		kHz	^f p	$V_{OUT} = \pm 10V$, $C_C = 22 \text{ pF}$ $C_C = 0 \text{ pF}$
MOISE CHAPACTERISTICS		1 200			1 -/-				
Input Noise Voltage	<u> </u>	1	Т	Т	T	Τ	T	en	
Input 140196 Voltage	<u> </u>	5.5 3.5	7 4.5		7 4		nV/√Hz nV/√Hz	ľ	$f_0 = 30 \text{ Hz}$ $f_0 = 1 \text{ kHz}$
Input Noise Current		1.5 0.4			2.5 0.6		pA/√Hz pA/√Hz		f ₀ = 30 Hz f ₀ = 1 kHz
Broadband Noise Figure		0.9			0.9		dB	R _N	F _S = 5 kΩ f = 10 Hz to 20 kHz

XR-5533/5533A

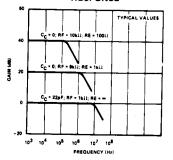
TEST CIRCUITS
FREQUENCY COMPENSATION AND OFFSET **VOLTAGE ADJUSTMENT CIRCUIT**

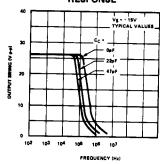


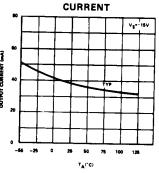
CLOSED LOOP FREQUENCY RESPONSE

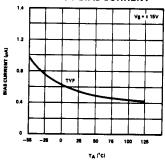


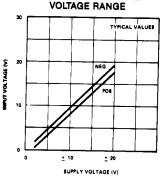
TYPICAL PERFORMANCE CHARACTERISTICS

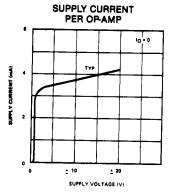

OPEN LOOP FREQUENCY RESPONSE


SLEW-RATE AS A FUNCTION OF COMPENSATION CAPACITANCE

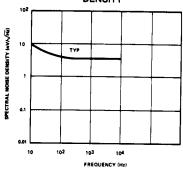

CLOSED LOOP FREQUENCY RESPONSE


LARGE-SIGNAL FREQUENCY RESPONSE

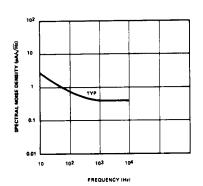

OUTPUT SHORT-CIRCUIT

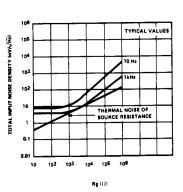


INPUT BIAS CURRENT

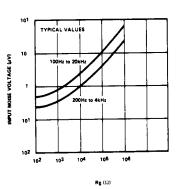


INPUT COMMON MODE

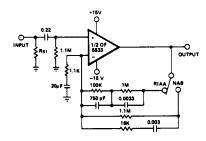

INPUT NOISE VOLTAGE DENSITY


XR-5533/5533A

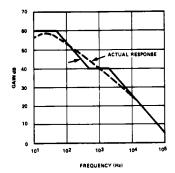
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


INPUT NOISE CURRENT DENSITY

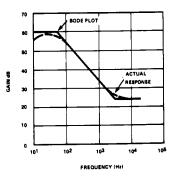
TOTAL INPUT NOISE DENSITY



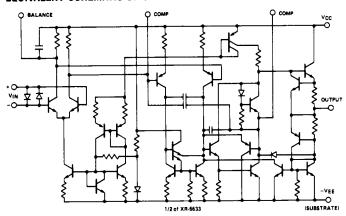
BROADBAND INPUT NOISE VOLTAGE



TYPICAL APPLICATION


PREAMPLIFIER-RIAA/NAB COMPENSATION

*SELECT TO PROVIDE SPECIFIED TRANSDUCER LOADING OUTPUT NOISE > 0.8 mV rms (WITH INPUT SHORTED) ALL RESISTOR VALUES ARE IN OHMS.



BODE PLOT OF RIAA EQUALIZATION AND THE RESPONSE REALIZED IN AN ACTUAL CIRCUIT USING THE XR-5533.

BODE PLOT OF NAB EQUALIZATION AND THE RESPONSE REALIZED IN THE ACTUAL CIRCUIT USING THE XR-8633

EQUIVALENT SCHEMATIC DIAGRAM

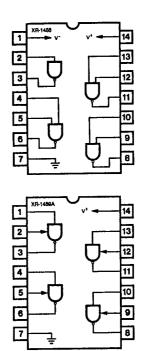
XR-1488/1489A

Quad Line Driver/Receiver

GENERAL DESCRIPTION

The XR-1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS232C. This extremely versatile integrated circuit can be used to perform a wide range of applications. Features such as output current limiting, independent positive and negative power supply driving elements, and compatibility with all DTL and TTL logic families greatly enhance the versatility of the

The XR-1489A is a monolithic quad line receiver designed to interface data terminal equipment with data communications equipment, the XR-1489A quad receiver along with its companion circuit, the XR-1488 quad driver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined voltage and impedance levels.


ABSOLUTE MAXIMUM RATINGS

Power Supply	
XR-1488	± 15 Vdc
XR-1489A	+ 10 Vdc
Power Dissipation	
Ceramic Package	1000 mW
Derate above +25°C	6.7 mW/°C
Plastic Package	650 mW/°C
Derate above +25°C	5 mW/°C

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-1488N	Ceramic	0°C to +70°C
XR-1488P	Plastic	0°C to +70°C
XR-1489AN	Ceramic	0°C to +70°C
XR-1489AP	Plastic	0°C to +70°C

FUNCTIONAL BLOCK DIAGRAMS

SYSTEM DESCRIPTION

The XR-1488 and XR-1489A are a matched set of quad line drivers and line receivers designed for interfacing between TTL/DTL and RS232C data communication lines.

The XR-1488 contains four independent split supply line drivers, each with a \pm 10 mA current limited output. For RS232C applications, the slew rate can be reduced to the 30 V/ μ S limit by shunting the output to ground with a 410 pF capacitor. The XR-1489A contains four independent line receivers, designed for interfacing RS232C to TTL/DTL. Each receiver features independently programmable switching thresholds with hysteresis, and input protection to \pm 30 V. The output can typically source 3 mA and sink 20 mA.