

# 28-31 GHz Ka Band HPA



Chip Dimensions 4.290 mm x 3.019 mm

**Key Features** 

- 0.25 um pHEMT Technology
- 18 dB Nominal Gain
- 34.5 dBm Nominal P1dB
- 40 dBm OTOI Typical
- Bias 6 V @ 2.1 A

#### **Primary Applications**

- Satellite Ground Terminal
- Point-to-Point Radio



Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.



#### TABLE I MAXIMUM RATINGS

| Symbol            | Parameter <u>5</u> /                | Value                       | Notes        |
|-------------------|-------------------------------------|-----------------------------|--------------|
| $V^+$             | Positive Supply Voltage             | 8 V                         | <u>4/</u>    |
| V                 | Negative Supply Voltage Range       | -5V TO 0V                   |              |
| $I^+$             | Positive Supply Current (Quiescent) | 3.0 A                       | <u>4/</u>    |
| $\mid I_{G} \mid$ | Gate Supply Current                 | 62 mA                       |              |
| P <sub>IN</sub>   | Input Continuous Wave Power         | 24 dBm                      |              |
| P <sub>D</sub>    | Power Dissipation                   | 18.4 W                      | <u>3/ 4/</u> |
| T <sub>CH</sub>   | Operating Channel Temperature       | 150 <sup>0</sup> C          | <u>1/2/</u>  |
| T <sub>M</sub>    | Mounting Temperature                | 320 <sup>0</sup> C          |              |
|                   | (30 Seconds)                        |                             |              |
| T <sub>STG</sub>  | Storage Temperature                 | -65 to $150 {}^{0}\text{C}$ |              |

- $\underline{1}$ / These ratings apply to each individual FET.
- $\underline{2}$ / Junction operating temperature will directly affect the device median time to failure (T<sub>M</sub>). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{3}$ / When operated at this bias condition with a base plate temperature of 70  $^{0}$ C, the median life is reduced from 7.4 E+6 to 4.6 E+5 hours.
- $\underline{4}/$  Combinations of supply voltage, supply current, input power, and output power shall not exceed P<sub>D</sub>.
- 5/ These ratings represent the maximum operable values for this device.



#### TABLE II DC PROBE TEST (TA = 25 °C $\pm$ 5 °C)

| Symbol                 | Parameter                         | Minimum | Maximum | Unit |
|------------------------|-----------------------------------|---------|---------|------|
| Idss (Q35)*            | Saturated Drain Current           | 15      | 70.5    | mA   |
| Gm <sub>(Q35)*</sub>   | Transconductance                  | 33      | 79.5    | mS   |
| VP                     | Pinch-off Voltage                 | -1.5    | -0.5    | V    |
| BVGS <sub>(Q35)*</sub> | Breakdown Voltage Gate-<br>Source | -30     | -11     | V    |
| BVGD <sub>(Q35)*</sub> | Breakdown Voltage Gate-<br>Drain  | -30     | -11     | V    |

\* Q35 is a 150 um Test FET

| TABLE III                                      |
|------------------------------------------------|
| AUTOPROBE FET PARAMETER MEASUREMENT CONDITIONS |

| FET Parameters                                                                                                                       | Test Conditions                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{split} I_{DSS}: & Maximum \ drain \ current \ (I_{DS}) \ with \ gate \ voltage \\ (V_{GS}) \ at \ zero \ volts. \end{split}$ | $V_{GS} = 0.0$ V, drain voltage ( $V_{DS}$ ) is swept from 0.5 V up to<br>a maximum of 3.5 V in search of the maximum value of<br>$I_{DS}$ ; voltage for $I_{DSS}$ is recorded as VDSP.                                                                                                                                                                  |
| $\mathbf{G}_{\mathbf{m}}$ : Transconductance; $\frac{\left(\mathbf{I}_{\text{DSS}} - \text{IDS 1}\right)}{\text{VG1}}$               | For all material types, $V_{DS}$ is swept between 0.5 V and VDSP in search of the maximum value of $I_{ds}$ . This maximum $I_{DS}$ is recorded as IDS1. For Intermediate and Power material, IDS1 is measured at $V_{GS} = VG1 = -0.5$ V. For Low Noise, HFET and pHEMT material, $V_{GS} = VG1 = -0.25$ V. For LNBECOLC, use $V_{GS} = VG1 = -0.10$ V. |
| $V_P$ : Pinch-Off Voltage; $V_{GS}$ for $I_{DS} = 0.5$ mA/mm of gate width.                                                          | $V_{\rm DS}$ fixed at 2.0 V, $V_{\rm GS}$ is swept to bring $I_{\rm DS}$ to 0.5 mA/mm.                                                                                                                                                                                                                                                                   |
| $V_{BVGD}$ : Breakdown Voltage, Gate-to-Drain; gate-to-drain breakdown current ( $I_{BD}$ ) = 1.0 mA/mm of gate width.               | Drain fixed at ground, source not connected (floating),<br>1.0 mA/mm forced into gate, gate-to-drain voltage ( $V_{GD}$ )<br>measured is $V_{BVGD}$ and recorded as BVGD; this cannot be<br>measured if there are other DC connections between gate-<br>drain, gate-source or drain-source.                                                              |
| $V_{BVCS}$ : Breakdown Voltage, Gate-to-Source; gate-to-<br>source breakdown current ( $I_{BS}$ ) = 1.0 mA/mm of gate<br>width.      | Source fixed at ground, drain not connected (floating),<br>1.0 mA/mm forced into gate, gate-to-source voltage ( $V_{GS}$ )<br>measured is $V_{BVGS}$ and recorded as BVGS; this cannot be<br>measured if there are other DC connections between gate-<br>drain, gate-source or drain-source.                                                             |



#### TABLE IV RF WAFER CHARACTERIZATION TEST $(T_A = 25^{\circ}C \pm 5^{\circ}C)$ $(Vd = 6V, Id = 2.048A \pm 5\%)$

| Parameter          | Unit | Min  | Typical | Max |
|--------------------|------|------|---------|-----|
| Frequency          | GHz  | 28   |         | 31  |
| Output P1dB        | dBm  | 33.5 | 34.5    |     |
| Small Signal Gain  | dB   | 16   | 18      |     |
| Input Return Loss  | dB   |      | -6      |     |
| Output Return Loss | dB   |      | -6      |     |
| Output TOI         | dBm  |      | 40      |     |

TABLE V THERMAL INFORMATION\*

| Parameter                                                           | Test Conditions                                | Т <sub>СН</sub><br>(°С) | R <sub>θJC</sub><br>(°C/W) | T <sub>M</sub><br>(HRS) |
|---------------------------------------------------------------------|------------------------------------------------|-------------------------|----------------------------|-------------------------|
| $R_{\theta JC}$ Thermal Resistance (channel to backside of carrier) | Vd = 6V<br>$I_D = 2.048 A$<br>Pdiss = 12.288 W | 127.65                  | 4.69                       | 7.4E+6                  |

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

\* This information is a result of a thermal model analysis.



#### **Preliminary Measured Data**

**Bias Conditions:** Vd = 6 V, Id = 2.1 A19 18 17 16 Gain (dB) 15 14 13 12 11 10 28 28.5 29 29.5 30 30.5 31 Frequency (GHz)







# Chip Assembly & Bonding Diagram

Note: Please refer to page 8 for a magnified view of the chip assembly and bonding diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.



# Chip Assembly and Bonding Diagram



Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.



## Mechanical Drawing



GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.



#### Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.