DIP Dual In-Line Package # FEATURES. - 99.5% Alumina Substrate - Molded Epoxy DIP Package - 0.100 Inch (2,54mm) Lead Spacing - Low Profile - 8,14 and 16 Pin Construction - Automatically Insertable - Meets Specifications of Characteristic V of MIL-R-83401 # SPECIFICATIONS Standard Network Applications ___ | NETV | NETWORK | | | | | | |--|---|--|--|--|--|--| | F14A
F16A
APPLIC | F08B
F14B
F16B | | | | | | | Pull-Up Resistor Arrays for Open TTL Gates Parallel High Speed Circuitry Wired OR Configurations Pull-Down Applications TTL-MOS Interfacing Digital Pulse Squaring | Matched Pairs Current Limiting Transmission Line Termination Power Gate Pull-Up Logic Level Translation | | | | | | # Applications Information - For application information refer to the following Allen-Bradley Application Notes: - R2R Ladder Networks: EC5510-4.2 - Voltage Divider Networks: EC5515-4.2 For handling and soldering procedures refer to Allen-Bradley Product Data EC5570-5.1. ## **Custom Resistor Networks** When a standard Allen-Bradley network does not meet your requirements, a custom network can be designed to your specifications. Consult Allen-Bradley Co., Greensboro, North Carolina with your specifications. ## Applications. #### Series F14A and F16A Pull-Up resistor arrays for open TTL gates. Parallel high speed circuitry. Wired OR configurations. Pull-Down applications. TTL-MOS interfacing. Digital pulse squaring. #### Series F08B, F14B and F16B Matched pairs. Current limiting. Transmission line termination. Power gate pull-up. Logic level translation. # Standard Network Specifications ___ Resistor tolerance $-\pm .1\%$, $\pm .5\%$ and $\pm 1\%$ absolute. Temperature coefficient of resistance $-\pm 50 \text{ ppm/}^{\circ} \text{ C}$. TCR tracking — Between resistors in the same network is ± 5 ppm/ $^{\circ}$ C standard. Operating temperature range -55° C to $+125^{\circ}$ C. Storage temperature -65° C to $+150^{\circ}$ C. Power dissipation rating - Up to 70° C ambient ■ | Series | Individual
Resistor Rating | Total
Package Rating | |--------------------------------------|--|--| | F08B
F14A
F14B
F16A
F16B | 150 mw
50 mw 2
100 mw 5
50 mw 2
100 mw 5 | .5 watts .7 watts .7 watts .7 watts .7 watts | - At +70°C power derates linearly from full rated power to 0 wattage at +150°C. - Rated continuous working voltage (RCWV), based on nominal resistance (R) in ohms, is $\sqrt{.050 \times R}$ or 100 volts, whichever is less. - Rated continuous working voltage (RCWV), based on nominal resistance (R) in ohms, is $\sqrt{.100 \times R}$ or 100 volts, whichever is less. | Network Accuracy Code | Α | В | D | F | |-----------------------|------|-----|-----|-----| | Tolerance (absolute) | .1% | .1% | .5% | 1% | | Resistance matching | .05% | .1% | .1% | .5% | **Note:** R₁ is reference resistor for resistance ratio matching. # Standard Network Schematic Diagrams. Series F16B ## Standard Resistance Values. | Resistance | Part Numbers | | | | | | |---|---|--|---|--|---|---| | Value
(Ohms) | 8 Pin DIP | (Tol.) | 14 Pin DIP | (Tol.) | 16 Pin DIP | (Tol.) | | 100
500
1K
2K
4.7K
5.0K
10.0K
—
50.0K
100.0K
150.0K
300.0K
390.0K
500.0K | F08B101
F08B501
F08B102
—
F08B472
—
F08B103
—
F08B104
—
F08B504 | B,D,F
B,D,F
B,D,F
A,B,D,F
A,B,D,F
A,B,D,F | F14B101
F14B501
F14B102
———————————————————————————————————— | B,D,F
B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F | F16B101
F16B501
F16B102
F16B202
F16B472
F16B502
F16B103
F16A103
F16B104
F16B104
F16B304
F16B304
F16B394 | B,D,F
B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F
A,B,D,F | | 1.0 Meg | <u> </u> | | - | | F16B105 | A,B,D,F | ### Nonstandard Resistance Values . (Consult factory on build, minimum order, and residual inventory.) | | Resistance Range with Masks Available (No NRE Required) | | | | |---|---|---------------------------------------|--|--| | Pin
Count | "B" Circuit
Resistance Range (Ohms) | "A" Circuit resistance Range (Ohms) | | | | 8 100 Ohms thru 20.0K,
47.0K thru 500.0K | | | | | | 14 | 100 Ohms thru 1.0 Meg | 1.0K thru 22.0K,
33.0K thru 100.0K | | | | 16 100 Ohms thru 1.0 Meg | | 1.0K thru 22.0K,
33.0K thru 100.0K | | | Consult factory for resistance range need outside of available mask range. Custom parts: $8, 14, 16 \, \text{pin} \, \text{DIP}; 4, 7, 8 \, \text{pin} \, \text{SIP}, \, \text{SOIC}$ and PLCC available. #### **Custom Resistor Networks** When an Allen-Bradley standard resistor network does not fit your exact application, consider our custom resistor networks. The following is a summary of Allen-Bradley custom dual in-line resistor network capabilities: Resistance range - 1K ohm to 1 megohm; special to 100 ohms. Requests for custom resistor networks can best be met when total number of different resistor values is limited to a small number. Maximum total resistance per package is 2.5 megohms. Tolerance (absolute) - Standard ±.1%. Resistance matching or ratio – Low as $\pm .05\%$. Temperature coefficient of resistance (TCR) -±50 ppm/°C and ±25 ppm/°C available. TCR Tracking — Depends on resistance range and number of resistors. Typical tracking is 5 ppm/° C. Temperature range of operation - Industrial (0° C to $+70^{\circ}$ C), Military (-55° C to $+125^{\circ}$ C) and other ranges available. #### Power dissipation rating - 8 pin DIP — .5 watts up to 70° C; derated linearly to 0 watts at 150° C. 14 pin DIP - .7 watts up to 70° C; derated linearly to 0 watts at 150° C. 16 pin DIP - .7 watts up to 70° C; derated linearly to 0 watts at 150° C. Additional Capabilities - Group A and B testing available. R/2R ladders to 10 bits at $\pm \frac{1}{2}$ LSB Full Scale Accuracy, -55° C to $+125^{\circ}$ C. #### **DIMENSIONS** #### Series F08B ## Series F14A, F14B, F16A, and F16B **TOLERANCES** Dimensional Tolerance ±.005 (0,13) Angular Tolerance ±5% Except as Specified. NOT TO SCALE ## Typical Performance Test Capabilities. | Test | Order
Of | | Test Method
Per
MIL-R-83401 | | |-------|-------------|--|-----------------------------------|---| | Group | Test | Examination or Test | (Paragraph) | Post Test Requirements 🛚 | | | 1 | Visual and Mechanical
Examination | 4.6.2 | In accordance with applicable requirements. | | I | 2 | Thermal Shock | 4.6.3 | Resistance change ± 0.25 percent maximum, Δ Ratio $\pm .03\%$. | | | 3 | Power Conditioning | 4.6.4 | Resistance change ± 0.1 percent maximum, Δ Ratio $\pm .03\%$. | | | 4 | DC Resistance | 4.6.5 | In accordance with applicable requirements. | | II | II 1 | Solderability | 4.6.6 | In accordance with applicable requirements. | | | 2 | Resistance to Solvents | 4.6.7 | Marking shall remain legible. | | | 1 | Resistance Temperature
Characteristic | 4.6.8 | Within specified limits. ±50 ppm/° C TCR Tracking,
±5 ppm/° C. | | Ш | 2 | Low Temperature Operation | 4.6.9 | Resistance change ± 0.1 percent maximum, \triangle Ratio $\pm .02\%$. | | | 3 | Short Time Overload | 4.6.10 | Resistance change ± 0.1 percent maximum, \triangle Ratio $\pm .02\%$. | | | 4 | Terminal Strength | 4.6.11 | Resistance change ± 0.1 percent maximum, $\Delta Ratio \pm .03\%$. | | - | 1 | Dielectric Withstanding
Voltage | 4.6.12 | Resistance change, ±0.1 percent maximum, \triangle Ratio ±.03%.
No mechanical damage, arcing or breakdown. | | IV | 2 | · Insulation Resistance | 4.6.13 | 10 ¹¹ Ohms minimum. | | Ī | 3 | Resistance to Soldering
Heat | 4.6.14 | Resistance change ± 0.1 percent maximum, \triangle Ratio $\pm .02\%$. | | | 4 | Moisture Resistance | 4.6.15 | Resistance change ± 0.2 percent maximum, \triangle Ratio $\pm .02\%$. | | ν | 1 | Shock (Specified Pulse) | 4.6.16 | Resistance change ± 0.25 percent maximum, \triangle Ratio $\pm .03\%$. | | | 2 | Vibration, High Frequency | 4.6.17 | Resistance change ± 0.25 percent maximum, \triangle Ratio $\pm .03\%$. | | VI | 1 | Life | 4.6.18 | Resistance change ± 0.1 percent maximum, Δ Ratio $\pm .03\%$. | | VII | 1 | High Temperature Exposure | 4.6.19 | Resistance change ± 0.1 percent maximum, Δ Ratio $\pm .03\%$. | | | 2 | Low Temperature Storage | 4.6.20 | Resistance change ± 0.1 percent maximum, \triangle Ratio $\pm .02\%$. | [■] Post test requirements meet Characteristic V. **INSPECTION CONDITIONS:** Unless otherwise specified, all measurements are understood to be made at the following initial inspection conditions: Normal atmospheric pressure. Relative humidity of 40 ± 10 percent. Ambient temperature of $24^{\circ} \pm 2^{\circ}$ C. NOTE: During an inspection or qualification, all the networks shall be subjected to the inspections of Test Group I. The total samples are then divided into Groups II to V inclusive, and subjected to the tests and inspections of the particular group. ## **Explanation of Part Numbers.** #### Resistance Value First two digits are significant figures and the third indicates the number of zeros following the first two digits - Examples: 101 = 100 Ohms 102 = 1000 Ohms 122 = 1200 Ohms