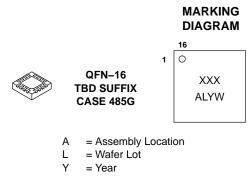
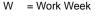
Product Preview USB Single Channel Transceiver

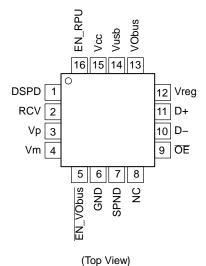
The NCN2500 Integrated Circuit is a single channel transceiver designed to accommodate the physical USB Port with a microcontroller digital I/O. The part is fully USB compliant and supports the full 12 Mbps speed. On the other hand, the NCN2500 device includes the pull–up resistors as defined by the USB–ECN new specifications.

Features

- Compliant to the USB Specification, Version 2.0, Low and Full Speed
- Very Small Footprint Due to the QFN-16 Package
- Integrated D+/D- Pull-Up Resistors
- Operates Over the Full 1.5 V to 5.5 V Vbat Supply


Typical Application


- Portable Computer
- Cellular Phone


ON Semiconductor®

http://onsemi.com

PIN CONNECTIONS

(.....)

ORDERING INFORMATION

Device	Package	Shipping
NCN2500TBD	QFN–16	TBD Units/Rail
NCN2500TBD	QFN-16	TBD Tape & Reel

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

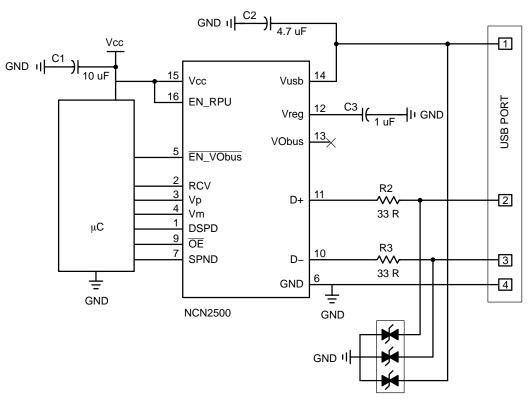


Figure 1. Typical Application

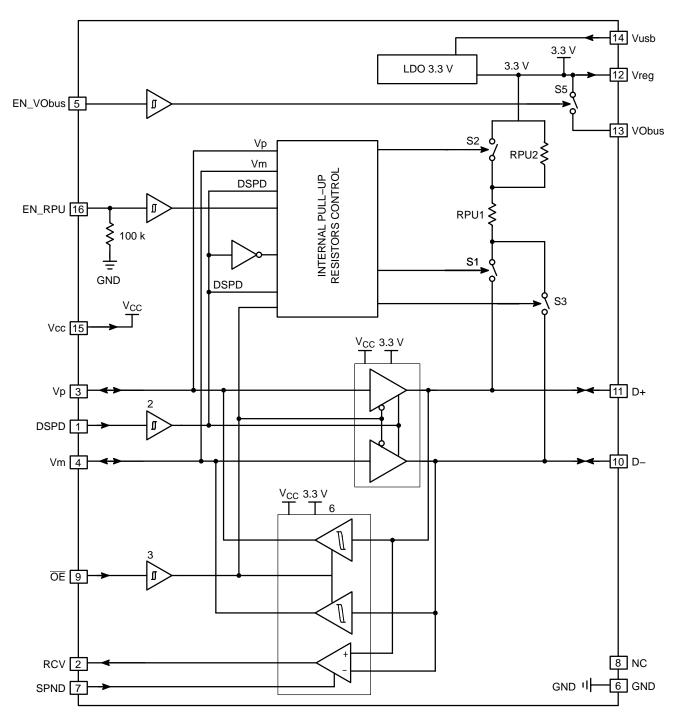


Figure 2. Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Symbol	Function	Description
1	DSPD	INPUT	The DSPD logic level (Data Speed) activates the Low or the High speed operation on the USB port. DSPD = Low Low Speed, RPU1 & RPU2 connected to D– DSPD = High Full Speed, RPU1 & RPU2 connected to D+
2	RCV	OUTPUT	This pin interfaces the USB signals with the microcontroller digital line. The data present on the D+/D– pins are translated onto this signal.
3	Vp	I/O	$ \begin{array}{l} \mbox{This pin, associated with Vm, is an I/O system interface signal depending upon the \overline{OE} logic state: \ensuremath{\overline{OE}}\xspace = Low \qquad \mbox{Vp is a Plus driver Input (from μC to USB bus)} \\ \ensuremath{\overline{OE}}\xspace = High \qquad \mbox{Vp is a Plus receiver Output (from USB bus to μC)} \ensuremath{\mathbb{C}}\xspace \ensuremath{\mathbb{C}$
4	Vm	I/O	$ \begin{array}{l} \label{eq:constraint} \hline This pin, associated with Vp, is an I/O system interface signal depending upon the \\ \hline \overline{OE} \mbox{ logic state:} \\ \hline \overline{OE} \mbox{ = Low } \mbox{ Vp is a Minus driver Input (from μC to USB bus)} \\ \hline \overline{OE} \mbox{ = High } \mbox{ Vp is a Minus receiver Output (from USB bus to μC)} \end{array} $
5	EN_VObus	INPUT	Digital input to control the VObus voltage. EN_VObus = Low VObus connected to Vreg EN_VObus = High VObus disconnected from Vreg (Hi Z)
6	GND	PWR	This pin carries the digital and USB ground level. High Quality PCB design shall be observed to avoid uncontrolled voltage spikes.
7	SPND	INPUT	The SPND digital signal (SUSPEND) selects the operation mode to reduce the power supply current. SPND = Low Normal operation SPND = High Suspend mode, no activity takes place
8	NC	-	No Connection, shall be neither grounded, nor connected to Vcc or Vbus.
9	ŌĒ	INPUT	This pin activates the operating mode of the D-/D+ signals. \overline{OE} = Low logic levelData are transmitted onto the USB bus \overline{OE} = High logic levelData are received from the USB bus
10	D-	I/O	This pin is connected to the USB Minus Data line I/O. The data direction depends upon the $\overline{\text{OE}}$ logic state.
11	D+	I/O	This pin is connected to the USB Plus Data line I/O The data direction depends upon the $\overline{\text{OE}}$ logic state.
12	Vreg	PWR	This pin provides a 3.3 V regulated voltage to supply the internal USB blocks and the external termination bias resistor. An external circuit can be connected to this LDO, assuming the current does not extend the maximum rating (50 mA).
13	VObus	OUTPUT, PWR	This pin connects the Vreg voltage to the 1.5 k external pull–up resistor. The VObus voltage is controlled by the logic states present pin 5.
14	Vusb	PWR	This pin is connected to the USB port +Vcc supply voltage.
15	Vcc	PWR	This pin provides the interface power supply. The power source can be an external supply or can be derived from the USB + Vcc voltage.
16	EN_RPU	INPUT	This pin activates or deactivate the internal RPU1 and RPU2 pull-up resistors: EN_RPU = H RPU1 and RPU2 activated EN_RPU = L RPU1 and RPU2 deactivated

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	6.0	V
Digital Input Pins	Vind	-0.5 V < Vin < Vcc + 0.5 V, but < 6.0 V	V
Digital Input Pins	Vid	–0.5 V < Vin < AGND + 0.5 V, but < 6.0 V	V
ESD Capability, HBM (Note 2) Vusb, D+, D–, GND Any Other Pins Machine Model, Any Pins	V _{ESD}	10 2.0 200	kV kV V
QFN–16 Package Power Dissipation @ Tamb = +85°C Thermal Resistance, Junction–to–Air (R _{θja})	P _{DS} R _{θja}	TBD TBD	mW °C/W
Operating Ambient Temperature Range	T _A	-25 to +85	°C
Operating Junction Temperature Range	Т _Ј	-25 to +125	°C
Maximum Junction Temperature (Note 3)	TJmax	+150	°C
Storage Temperature Range	Tsg	-65 to +150	°C

1. Maximum electrical ratings are defined as those values beyond which damage(s) to the device may occur whatever be the operating temperature.

2. Human Body Model, R = 1500 Ω , C = 100 pF; Machine Model. 3. Absolute Maximum Rating beyond which damage(s) to the device may occur.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	-----	------

DIGITAL PARAMETERS SECTION @ 1.5 V < Vcc < 5.5 V (-40° C to +85°C ambient temperature, unless otherwise noted.) NOTE: Digital inputs undershoot < -0.3 V to ground, digital inputs overshoot < 0.3 V to Vcc.

High Level Input Voltage DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	V _{IH}	1, 3, 4, 5, 7, 9, 16	2/3 Vcc	-	-	V
Low Level Input Voltage DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	V _{IL}	1, 3, 4, 5, 7, 9, 16	-	-	1/3 Vcc	V
High Level Output Voltage RCV, Vp, Vm @ I _{OH} = 1.0 mA	V _{OH}	2, 3, 4	2/3 Vcc	-	-	V
Low Level Output Voltage RCV, Vp, Vm @ I _{OL} = 1.0 mA	V _{OL}	2, 3, 4	-	-	1/3 Vcc	V
Input Leakage Current DSPD, Vp, Vm, EN_VObus, SPND, OE, EN_RPU	Ι _{ΙL}	1, 3, 4, 5, 7, 9, 16	-	-	±5.0	μΑ
	td					
	td					
	tr, tf					

TRANSCEIVER SECTION @ 1.5 V < Vcc < 5.5 V (-40° C to +85°C ambient temperature, unless otherwise noted.)

Static Output High, D–, D+ @ \overline{OE} = Low, R _L = 15 k Ω to GND	V _{OH}	10, 11	2.8	-	3.6	V
		ļ				v
Static Output Low, D–, D+ @ $\overline{\text{OE}}$ = Low, R _L = 1.5 k Ω to Vreg	V _{OL}	10, 11	-	-	0.3	V
Single Input Receiver Threshold	V _{SE}	10, 11	0.8	-	2.0	V
Single Ended Receiver Hysteresis (Note 4)	-	-	-	200	-	mV
Differential Input Sensitivity \mid D+ – D– \mid @ 0.8 V < V_{CM} < 2.5 V	V _{DI}	10, 11	0.2	-	-	V
Differential Common Mode Including the V_{DI}	V _{CM}	10, 11	0.8	-	2.5	V
Differential Receiver Hysteresis (Note 4)	-	10, 11	-	70	-	mV
D+ and D– Transceiver Hi–Z State Leakage Current @ \overline{OE} = 1, 0 V < Vusb < 3.3 V	ILO	10, 11	-	-	±10	μΑ
Transceiver Input Capacitance (Note 4)	Cin	10, 11	-	-	20	pF
Transceiver Output Resistance	Z _{DRV}	10, 11	28	-	44	Ω
Transceiver Input Impedance (Note 4)	Z _{IN}	10, 11	10	-	-	MΩ
Internal RPU1 Pull Resistor	R _{RPU-1}	10, 12	900	-	1575	Ω
Internal RPU2 Pull Up Resistor	R _{RPU-2}	10, 12	525	-	1515	Ω
LOW SPEED DRIVER OPERATION						
					1	T

Transition Rise Time @ $C_L = 50 \text{ pF}$ @ $C_L = 600 \text{ pF}$	tr	10, 11	75 75	- -	300 300	ns
Transition Fall Time @ C _L = 50 pF @ C _L = 600 pF	tf	10, 11	75 75	-	300 300	ns
Rise and Fall Time Matching	tr, tf	10, 11	80	-	125	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	_	-	1.5	Mbs

4. Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Pin	Min	Тур	Max	Unit
FULL SPEED DRIVER OPERATION		•			•	
Transition Rise Time @ $C_L = 50 \text{ pF}$	tr	10, 11	4.0	-	20	ns
Transition Fall Time @ $C_L = 50 \text{ pF}$	tf	10, 11	4.0	-	20	ns
Rise and Fall Time Matching	tr, tf	10, 11	90	-	110	%
Output Signal Crossover Voltage	V _{CRS}	10, 11	1.3	-	2.0	V
Data Transaction Rate	Drate	10, 11	_	-	12	Mbs
TRANSCEIVER TIMING						
OE to RCVR Hi–Z Delay (see Figure 3)	t _{PVZ}	9	_	-	15	ns
Receiver Hi–Z to Transmit Delay (see Figure 3)	t _{PZD}	-	15	-	-	ns
OE to DRVR Hi–Z Delay (see Figure 3)	t _{PDZ}	-	_	-	15	ns
Driver Hi–Z to Receiver Delay (see Figure 3)	t _{PZV}	-	15	-	-	ns
Vp/Vm to D+/D– Propagation Delay (see Figure 6)	t _{PLH}	3, 4, 10, 11	_	-	15	ns
Vp/Vm to D+/D- Propagation Delay (see Figure 6)	t _{PHL}	3, 4, 10, 11	_	-	15	ns
D+/D– to RCV Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PLH}	11, 10, 2	-	-	15	ns
D+/D– to RCV Propagation Delay @ 1.5 < Vcc < 5.5 V (see Figure 5) C_L = 25 pF tr = tf = 3.0 ns	t _{PHL}	11, 10, 2	-	_	15	ns
D+/D– to Vp/D– Propagation Delay @ 1.5 < Vcc < 5.5 V (see Figure 5) C_L = 25 pF tr = tf = 3.0 ns	t _{PLH}	11, 10, 3	-	_	8.0	ns
D+/D– to Vm/D– Propagation Delay @ $1.5 < Vcc < 5.5 V$ (see Figure 5) C _L = 25 pF tr = tf = 3.0 ns	t _{PHL}	11, 10, 4	-	_	8.0	ns
POWER SUPPLY SECTION @ 1.5 V < Vcc < 5.5 V (-40°C	to +85°C aml	bient temperatu	ire, unless oth	erwise noted.)	
USB Port Input Supply Voltage	Vusb	14	4.0	-	5.25	V
Output Regulated Voltage @ 4.0 V < Vusb < 5.25 V, Cin = 4.7 μ F, Cout = 1.0 μ F, Ireg = 100 mA	Vreg	12	3.0	3.3	3.6	V
Line Regulation Output Voltage	Vreg	12	_	0.1	-	%
Standby Current @ Vusb = 5.25 V, \overline{OE} = H, SPND = H, D+ & D- are Idle, Vcc = 3.6 V	Ivcc	14	-	1.0	-	μΑ
Standby Current @ Vusb = 5.25 V, \overline{OE} = H, SPND = L, D+ & D- are Idle, Vcc = 3.6 V	Ivcc	14	-	1.0	-	μΑ
Operating Current \overline{OE} = L, D– & D+ Active, SPND = L (Note 5), Transmitter Mode @ F = 6.0 MHz, C _L = 50 pF @ F = 750 kHz, C _L = 600 pF	I _{VCC}	14	-	300 40		μΑ
Operating Current \overline{OE} = H, D– & D+ Active, SPND = L (Note 5), Receiver Mode @ F = 6.0 MHz, C _L = 25 pF @ F = 750 kHz, C _L = 25 pF	Ivcc	14	-	1.5 250		mA μA

5. Parameter guaranteed by design, not production tested.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Pin	Min	Тур	Max	Unit
POWER SUPPLY SECTION @ 1.5 V < Vcc < 5.5 V (contin	ued) (–40°C te	o +85°C ambi	ent temperature	e, unless othe	erwise noted.)
USB Supply Current @ D- & D+ are Idle, Vusb = 5.25 V	I _{BUS}	14				
and:						
@ SPND = 1, \overline{OE} = 1, DSPD = 0, EN_RPU = 0			-	120	200	μΑ
@ SPND = 0, OE = 1, DSPD = 1, EN_RPU = 0			_	1.7	-	mA
@ SPND = 0, \overline{OE} = 0, DSPD = 0, EN_RPU = 0			-	1.7	-	mA
@ SPND = 1, OE = 1, DSPD = 0, EN_RPU = 1			-	320	500	μA
@ SPND = 0, \overline{OE} = 1, DSPD = 1, EN RPU = 1			_	_	_	μA
@ SPND = 0, OE = 0, DSPD = 0, EN_RPU = 1			-	-	-	μA
@ D- & D+ are Active, C ₁ = 50 pF, Vusb = 5.25 V,						
SPND = 0, \overline{OE} = 0, DSPD = 1, F = 6.0 MHz (Note 6)						
@ EN RPU = Low			_	8.3	_	mA
@ EN RPU = High			_	9.4	_	mA
@ D- & D+ are Active (Note 6)				011		
$Vusb = 5.25 V, SPND = 0, \overline{OE} = 0, DSPD = 1,$						
$F = 750 \text{ kHz}, C_1 = 600 \text{ pF}$			_	5.4	_	mA
$F = 750 \text{ kHz}, G_1 = 300 \text{ pF}$				3.9	_	mA
F = 750 kmz, CL = 500 pF			_	5.9	-	ШA

6. Parameter guaranteed by design, not production tested.

EN_RPU	DSPD	S1	S2	S3	Data Line	USB	Note
0	Х	Х	Х	Х	х	х	Internal RPU De-activated, S1 and S3 are Forced OPEN
1	1	Open	Х	Open	Vbus Off	Х	Internal RPU disabled
1	1	Close	Close	Open	Idle	Full Speed	Internal RPU Activated
1	1	Closed	Open	Open	Receiving	Full Speed	Internal RPU Activated
1	0	Open	Х	Open	Vbus Off	х	Internal RPU disabled
1	0	Open	Close	Close	Idle	Low Speed	Internal RPU Activated
1	0	Open	Open	Close	Receiving	Low Speed	Internal RPU Activated

Table 1. Internal RPU1 and RPU2 Pull–Up Resistors Control

7. See Figure 8 and Figure 9.

Table 2. Transmit Mode Interface Control ($\overline{OE} = 0 \rightarrow$ Transmit Mode)

SPND	Vp	Vm	D+	D-	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

Table 3. Receive Mode Interface Control ($\overline{OE} = 1 \rightarrow \text{Receive Mode}$)

SPND	D+	D-	Vp	Vm	RCV	STATE
0	0	0	0	0	Х	SE0
0	0	1	0	1	0	Low
0	1	0	1	0	1	High
0	1	1	1	1	Х	Undefined
1	0	0	0	0	0	Suspend
1	0	1	0	1	0	Suspend
1	1	0	1	0	0	Suspend
1	1	1	1	1	0	Suspend

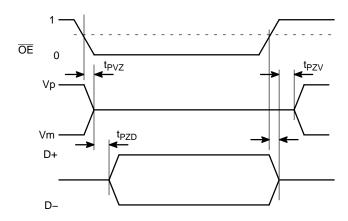


Figure 3. Enable and Disable USB Times

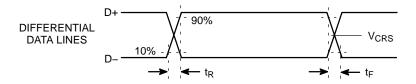


Figure 4. USB Line Rise and Fall Times

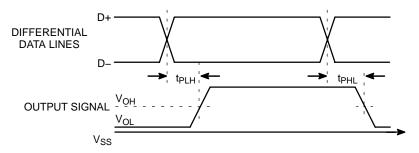


Figure 5. Receiver Propagation Delays

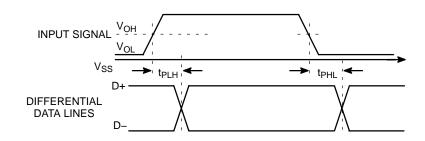
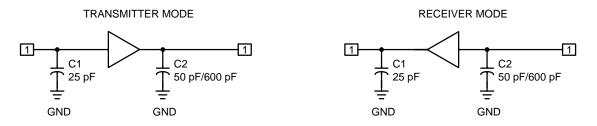
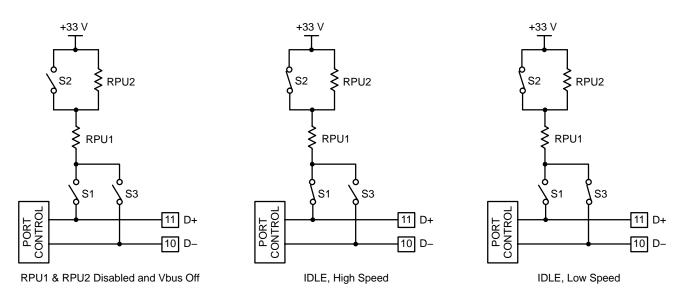
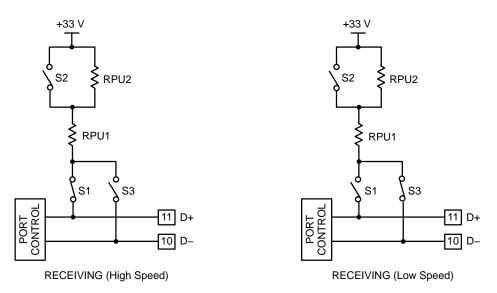
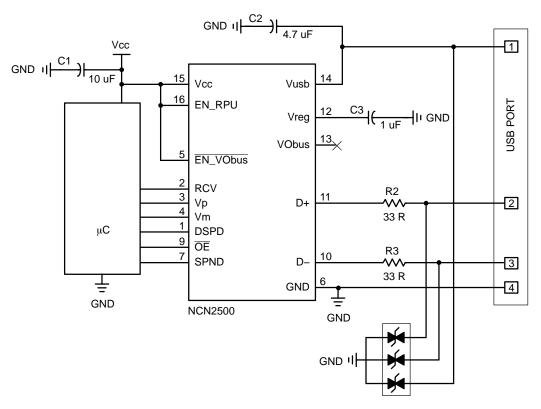



Figure 6. Driver Propagation Delays


Figure 8. Internal RPU1 and RPU2 Pull-Up Resistors Operation, IDLE Mode

NOTE: Internal Pull–Up Resistor Range: RPU1: 900 Ω min–1575 Ω max, RPU2: 525 Ω min–1515 Ω max

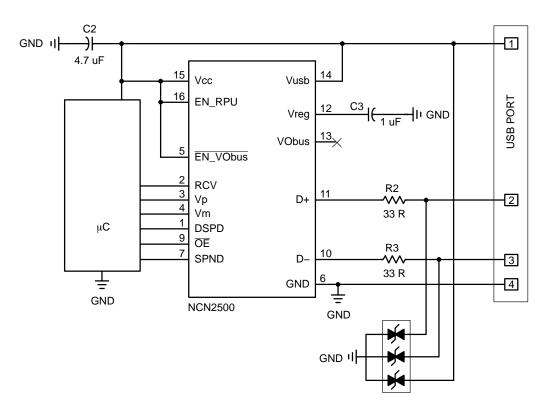
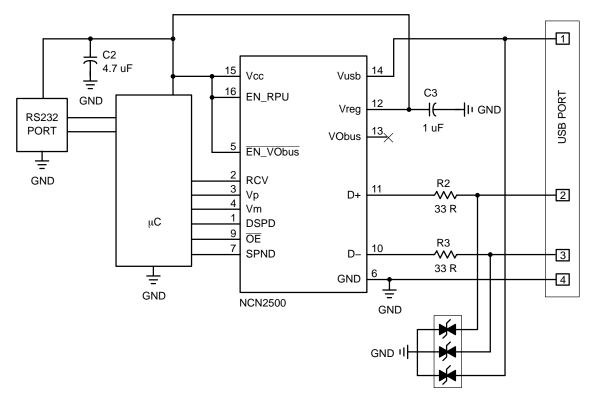
Figure 9. Internal RPU1 and RPU2 Pull–Up Resistors Activated, RECEIVING Mode

TYPICAL APPLICATIONS

In this application, the two internal pull–up resistors (RPU1 and RPU2) are used to bias the USB line. Consequently, the VObus voltage is deactivated (pin 5 connected to Vcc).

Figure 10. Fully Independent Power Supplies

TYPICAL APPLICATIONS

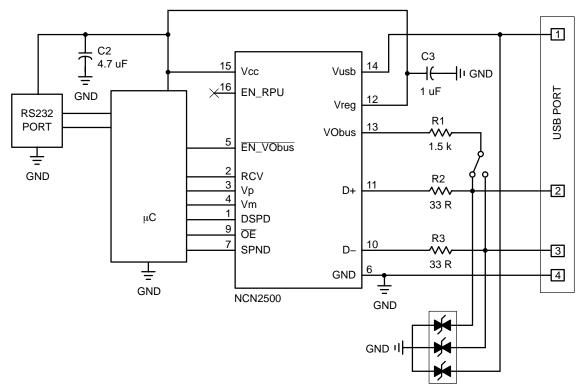
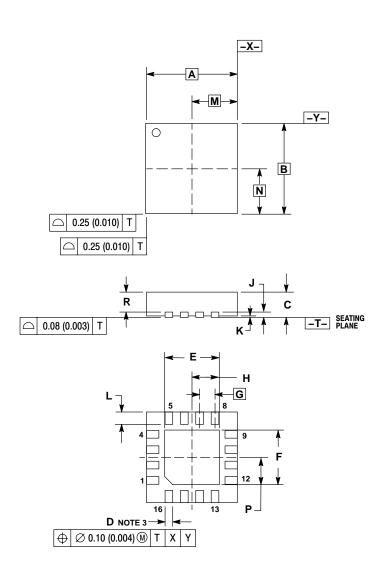


Figure 12. Serial to USB Stand-Alone Interface

TYPICAL APPLICATIONS



Note: Pin 16 can be left open, due to the internal pull-down resistor, or connected to ground.

Figure 14. Using External Pull–Up Resistors

PACKAGE DIMENSIONS

QFN-16 **TBD SUFFIX** CASE 485G-01 **ISSUE A**

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	3.00 BSC		0.118 BSC	
В	3.00 BSC		0.118 BSC	
С	0.80	1.00	0.031	0.039
D	0.23	0.28	0.009	0.011
Е	1.75	1.85	0.069	0.073
F	1.75	1.85	0.069	0.073
G	0.50 BSC		0.020 BSC	
Н	0.875	0.925	0.034	0.036
J	0.20 REF		0.008 REF	
Κ	0.00	0.05	0.000	0.002
L	0.35	0.45	0.014	0.018
М	1.50 BSC		0.059 BSC	
Ν	1.50 BSC		0.059 BSC	
Ρ	0.875	0.925	0.034	0.036
R	0.60	0.80	0.024	0.031

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.