

AN1515 APPLICATION NOTE

LIS1R02 (L6671): A DIGITAL OUTPUT ANGULAR ACCELEROMETER

by F. Pasolini

1 INTRODUCTION

The LIS1R02 is a complete rotational accelerometer system based on a capacitive sensor that uses MEMS technology, and a set of accompanying electronics that produces a digital output. The device is interfaced to external hardware using a standard 3-wire serial interface that allows internal registers to be written and rotational acceleration samples to be read.

The MEMS structure consists of a rotor and stator assembly in which capacitive variations occur when the relative position of the rotor with respect to the stator changes. These capacitive variations are on the order of 50 x 10-18 farads. The MEMS structure also includes actuation electrodes that allow the rotor position to be driven externally by the processing electronics.

The electronic processing circuitry processes the capacitive variations that occur between the MEMS rotor and stator. A SigmaDelta architecture is implemented that works to continually restore the rotor to nominal position.

The control effort, or the signal that drives the rotor to nominal, represents the rotational acceleration that is present at the system location. This control effort is a binary bit stream that is decimated by the electronics to provide a noise-reduced output

Gain and offset adjustments are applied to the decimated bit stream to produce the acceleration samples. Accelerometer samples then are clocked into a four-deep data FIFO within the IC. The decimation and FIFO stages are clocked in a free-running manner based on the selection of either an internal or external clock source.

1.1 Choosing an External Clock Source

Designers who will use the LIS1R02 to select the clock source which can be either from the CLK_IN pin, from the internal oscillator or generated by using an embedded PLL.

When the CLK pin is selected as clock source, the designer has the ability to control the rate at which rotational acceleration samples are generated within the LIS1R02. It takes exactly 224 CLK_IN cycles to generate one new rotational acceleration sample, therefore the formula for determining the optimal frequency of the CLK_IN signal is as follows:

$$F_{out} = \frac{F_{CLKIN}}{224}$$

(Eq. 2.1)

where FCLKIN is the frequency of the clock signal that is applied to the CLK_IN pin and Fout si the frequency at which samples are produced.

If it is possible for the designer to implement a CLK_IN signal that satisfies equation 2.1 perfectly, then the device will generate one new acceleration sample at the desired rate (1/Ts). In practice, most designers will find it difficult to supply a clock whose frequency satisfies equation 2.1. Generally, the designer will be restricted to using a signal for CLK_IN that only approximates equation 2.1. In this case, the acceleration samples will be generated at a rate that differs from the desired sample rate. The inclusion of the on-chip FIFO data buffer allows for the proper handling of the accelerometer samples that are produced by the device.

In the case where:

$$F_{CLKIN} < \frac{224}{Ts}$$

(Eq. 2.2)

February 2002 1/12

a double sample will occur at a regular interval. The interval is a function of the difference between the LIS1R02 sample generation rate and the desired sampling rate (1/Ts). This interval, in units of servo sample periods, can be determined with the expression:

$$T_{double} = \frac{\frac{1}{Ts}}{\left(\frac{F_{CLKIN}}{224} - \frac{1}{Ts}\right)}$$
(Eq. 2.3)

For example, if $F_{CLKIN} = 2.00$ MHz and Ts = 124 μ s, then the FIFO will contain two valid samples on approximately every 9.333 samples.

Conversely, if

$$F_{CLKIN} > \frac{224}{Ts}$$
 (Eq. 2.4)

then a missing or empty sample will occur at a regular rate.

In either case, the handling of the samples must be done carefully to fully minimize the noise in the system. For the purpose of obtaining multiple samples per servo period, the designer can choose a CLK_IN frequency that is approximately equal to an integer multiple of the product seen in equation 2.1.

$$F_{CLKIN} = N \times \frac{224}{Ts}$$
(Eq. 2.5)

In this case, the accelerometer samples will be generated at a rate of approximately N samples per desired sample period, where N could be equal to 1, 2, 3, or 4. The designer must note, however, that the maximum frequency of CLK_IN, according to specification, is 6MHz.

When the internal oscillator is selected, the samples will be generated in a free-running manner, based on the internal clock rate. With the default settings, samples are generated at a rate of approximately 20KHz.

To allow the production of data samples at a desired rate, a digital PLL has been embedded. In this case, the formulas to be used to calculate the frequency of the signals stated in Figure 1 are:

$$F_{refdiv} = \frac{F_{ref}}{(IDF+1)} \label{eq:Frefdiv}$$

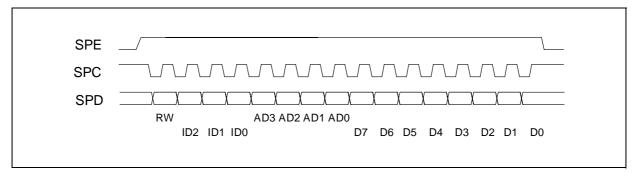
$$F_{refdiv} = \frac{F_{ref}}{(IDF+1)} \label{eq:Frefdiv}$$
 (Eq. 2.6)

To allow the PLL to operate correctly, F_{ref} must be at least equal to 5 KHz.

$$F_{dco} = F_{refdiv}(MF+1) = F_{ref}\frac{(MF+1)}{(IDF+1)}$$
 (Eq. 2.7)
$$F_{refdiv} = \frac{F_{dco}}{(ODF+1)} = F_{ref}\frac{(MF+1)}{(IDF+1)(ODF+1)}$$
 (Eq. 2.8)

For a better understanding of the IDF, ODF and MF terms, please refer to the PLL registers description.

_pin_CLK F_{oscdiv} OSC TCS0 OPDN IOD[3:0] Main CK SPE TCS1 Frefdiv F_{ref} F_{dco} CS0 DF[3:0] ODF[1:0] **ADPLL** MF[9:0] DSC Reference signal DSCR FIFO_Low Read (from internal logic)


Figure 1. Clock generation scheme

1.2 Serial Interface

The Serial Interface interacts with the outside world with 3 wires: **SPE**, **SPC** and **SPD**. It is used to write the data into the registers (REGISTERS block) which can also be read.

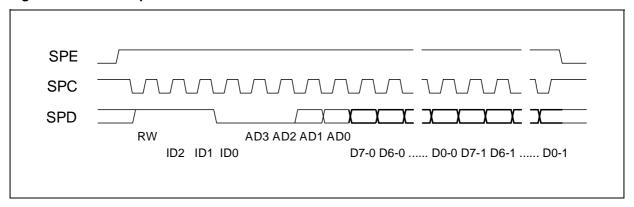
1.2.1 READ & WRITE REGISTER

Figure 2. Read & write protocol

SPE is the Serial Port Enable. It goes high at the start of the transmission and goes back low at the end. **SPC** is the Serial Port Clock. It is stopped high when **SPE** is low (no transmission). **SPD** is the Serial Port Data. It is driven by the falling edge of **SPC**. It should be captured at the rising edge of **SPC**.

The Read Register or Write Register command consists of 16 clocks or bits. A bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of SPC after the rising edge of **SPE** and the last bit (bit 15) starts at the last falling edge of **SPC** just before the falling edge of **SPE**.

bit 0: RW bit. When 0, the data D(7:0) is written into the RAC. When 1, the data D(7:0) from the RAC is read. In this case, the chip will drive **SPD** at the start of bit 8.


bit 1-3: chip ID. The chip ID for the RAC is ID(2:0)=110. The LIS1R02 accepts the command only when the ID is valid (equal to 110).

bit 4-7: address AD(3:0). This is the address field for the registers.

bit 8-15: data D(7:0). This is the data that will be written (read) into (from) the register which address is AD(3:0).

1.2.2 READ FIFO

Figure 3. Read FIFO protocol

The Read FIFO command consists of 24 clocks or bits:

bit 0: READ bit. The value is 1.

bit 1-3: chip ID. ID(2:0)=110.

bit 4-7: FIFO address. The FIFO has four registers grouped into two banks. The first bank consists of the first and the second register. The first register is the one written first since the last read. The second bank consists of the third and fourth register.

000x: address for the first bank

001x: address for the second bank

bit 8-23: FIFO data. The RAC puts out first the data of the first register of the bank starting with the MSB.

1.2.3 Notice

The serial interface allows the IC to work with the SPE line tied high.

The clock line has to be normally high (i.e. clock off-state = 1 as depicted in Figure 2.).

If the clock remains high beyond the time out period, the serial interface is reset. This feature allows a IC test to run at very low frequency using narrow clock pulses. If a packet is not completed correctly, the normal high clock will generate a port reset, flushing the data.

The timeout period is set to be 280*T_{osc}. Thus, supposing to have F_{osc} = 70 MHz, the timeout period will be 4µs.

1.3 Registers: array organization

The internal registers are organized as follows:

Table 1. Registers Array

Address	Reg. Bank 1	Reg. Bank 2	Reg. Bank 3
0000	FIFO_Low	FIFO_Low	FIFO_Low
0001	not used	not used	not used
0010	FIFO_High	FIFO_High	FIFO_High
0011	not used	not used	not used
0100	CTRL_Reg1	CTRL_Reg1	CTRL_Reg1
0101	CTRL_Reg2	CTRL_Reg2	CTRL_Reg2
0110	PLL_PRESC_MULT	FLASH_Reg_1	PLL_COMPARE_REG
0111	PLL_MULT	FLASH_Reg_2	PLL_RST_VALUE_REG
1000	IIR_A0 (*)	GAIN_Low (*)	not used
1001	IIR_A1 (*)	GAIN_High (*)	not used
1010	IIR_A2 (*)	OFFSET_Low (*)	not used
1011	IIR_B1 (*)	OFFSET_High (*)	not used
1100	IIR_B2 (*)	CURR_BANDGAP (*)	not used
1101	IIR_SIGN_BIT (*)	BAND_CSACT_REG (*)	not used
1110	DSC_Reg	CS_TRIM (*)	not used
1111	MISC_Reg	MISC_Reg	MISC_Reg

Notes: (*) Value stored inside the embedded FLASH and loaded at boo

Due to the limited number of address bit (4) allowed by the SPI protocol and the high number of registers present internally to the device, the registers have been spit and grouped into three banks.

To switch between Reg. Bank 1, Reg. Bank 2 and Reg. Bank 3 it is necessary to access the miscellaneous reg. located @ address 1111.

The registers not loaded at boot can be written also before the boot procedure is completed.

No reading is allowed until the boot is done. The boot procedure takes 1800 clock pulses to be completed.

More information are reported in the paragraphs below.

477

1.4 Registers Description

The only registers that can be modified by the user are described in the section that follows.

1.4.1 CONTROL_REG (0100)

PDN IEN CS1	CS0 OPDN	B2	B1	В0
-------------	----------	----	----	----

PDN	Chip power down					
	0: chip on (default value)					
	: chip in power down mode					
IEN	Interrupt enable:					
	0: interrupt signal available to the external					
	1: pad in high Z (default value);					
CS1-CS0	Clock Source Selection. For more information look at paragraph "clock scheme"					
	By default are set to 00					
OPDN	Oscillator Power Down:					
	0: oscillator toggling (default value);					
	1: oscillator turned off					
B2-B0	Control bit definition					

Table 2. Clock Source Selection

CS1	CS0	Clock Source		
0	0	Clock from CLK pin		
0	1	Internal Oscillator		
1	0	Clock from PLL locking on CLK pin		
1	1	Clock from PLL locking on FIFO_low reg. reading		

Table 3. Control Bit

B2-B0	Mode selection
000	Normal mode (default)
001	Not allowed
010	
011	
100	
101	
11X	

1.4.2 CONTROL_REG2 (0101)

DSCR	DSC	CEN	OWL1	OWL0	IFB	DF	SO

DSCR	Delayed Synchronous Conversion Reference. By default is set to 0.				
DSC	Delayed Synchronous Conversion enable				
	0: Delayed Synchronous Conversion disabled				
	1: Delayed Synchronous Conversion enabled (default value)				
CEN	Clip Enable on the Offset and Gain adjustment unit				
	0: Clip disabled				
	1: Clip enabled (default value)				
OWL1-OWL0	Output Word Length selection				
	See table below.				
IFB	IIR Filter Bypass				
	0: IIR filter on (default value)				
	1: IIR filter bypassed				
DF	Decimation Factor selection (normal mode only; no DSC)				
	0: decimate by 16				
	1: decimate by 32 (default value)				
so	Sinc Order selection				
	0: 2nd order				
	1: 3rd order (default value)				

Table 4. DSC Reference signal selection

DSCR	Delayed Synchronous Conversion Reference			
0	pin_CLK or FIFO_read_low, depending on CS0 value			
1	Input clock divider output			

Table 5. Clock Source Selection

OWL1	OWL0	Output Word Length			
0	0	8 bit (default mode)			
0	1	16 bit			
1	0	32 bit			
1	1	32 bit			

1.4.3 PLL_PRESC_MULT (0110 -Reg. Bank1-)

This register contains the value used by the PLL prescaler to divide the input reference clock and the most significant bit of the PLL multiplication factor. Both the parameters are expressed in unsigned binary format.

IDF3	IDF2	IDF1	IDF0	ODF1	ODF0	MF9	MF8
------	------	------	------	------	------	-----	-----

IDF3-IDF0	PLL Input Division Factor (Default: 0000)
ODF1-ODF0	PLL Output Division Factor (Default: 00)
MF9-MF8	PLL Multiplication Factors MSB (Default: 00)

1.4.4 PLL_MULT (0111 -Reg. Bank 1-)

This register contains the value used by the PLL prescaler to divide the input reference clock and the most significant bit of the PLL multiplication factor. Both the parameters are expressed in unsigned binary format.

	MF7	MF6	MF5	MF4	MF3	MF2	MF1	MF0	
--	-----	-----	-----	-----	-----	-----	-----	-----	--

MF7-MF0	PLL Multiplication Factors LSB (Default: 11011111)	
---------	--	--

1.4.5 IIR_A0 (1000 -Reg. Bank 1-)

Contains the LSB of the coefficient A0 used in the IIR filter. The sign bit is A0_8 and is stored in register IIR_SIGN_BIT (address 1101 -Reg. Bank 1-). The complete coefficient A0_8-A0_0 is expressed in two's complement format.

A0_7	A0_6	A0_5	A0_4	A0_3	A0_2	A0_1	A0_0	
------	------	------	------	------	------	------	------	--

A0_7-A0_0	LSBs of the coefficient A1 used inside the IIR Filter (LSB)

1.4.6 IIR_A1 (1001 -Reg. Bank 1-)

Contains the LSB of the coefficient A1 used in the IIR filter. The sign bit is A1_8 and is stored in register IIR_SIGN_BIT (address 1101 -Reg. Bank 1-). The complete coefficient A1_8-A1_0 is expressed in two's complement format

A1_7	A1_0
------	------

A1_7-A1_0	LSBs of the coefficient A1 used inside the IIR Filter (LSB)	
-----------	---	--

1.4.7 IIR_A2 (1010 -Reg. Bank 1-)

Contains the LSB of the coefficient A2 used in the IIR filter. The sign bit is A2_8 and is stored in register IIR_SIGN_BIT (address 1101 -Reg. Bank 1-). The complete coefficient A2_8-A2_0 is expressed in two's complement format.

A2_7	A2_6	A2_5	A2_4	A2_3	A2_2	A2_1	A2_0

A2_7-A2_0	LSBs of the coefficient A2 used inside the IIR Filter (LSB
-----------	--

1.4.8 IIR_B1 (1011 -Reg. Bank 1-)

Contains the LSB of the coefficient B1 used in the IIR filter. The sign bit is B1_8 and is stored in register IIR_SIGN_BIT (address 1101 -Reg. Bank 1-). The complete coefficient B1_8-B1_0 is expressed in two's complement format.

B1_7 B1_6 B1_5 B1_4 B1_3 B1_2 B1_1	B1_0
------------------------------------	------

B1_7-B1_0	LSBs of the coefficient B2 used inside the IIR Filter (LSB)

1.4.9 IR_B2 (1100 -Reg. Bank 1-)

Contains the LSB of the coefficient B2 used in the IIR filter. The sign bit is B2_8 and is stored in register IIR_SIGN_BIT (address 1101 -Reg. Bank 1-). The complete coefficient B2_8-B2_0 is expressed in two's complement format.

B2_7	B2_6	B2_5	B2_4	B2_3	B2_2	B2_1	B2_0

B2_7-B2_0	LSBs of the coefficient B2 used inside the IIR Filter (LSB)	
-----------	---	--

1.4.10IIR_SIGN_BIT (1101 -Reg. Bank 1-)

Contains the sign bit for the coefficients used inside the IIR filter. All the coefficients are expressed in two's complement format.

X B2_	B1_8	Х	Х	A2_8	A1_8	8_0A
-------	------	---	---	------	------	------

B2_8	Sign bit for coefficient B2
B1_8	Sign bit for coefficient B1
A2_8	Sign bit for coefficient A2
A1_8	Sign bit for coefficient A1
A0_8	Sign bit for coefficient A0

1.4.11 DSC_Reg (1110 -Reg. Bank 1-)

Contains the threshold value used to trigger the decimation when in Delay Synchronous Conversion mode.

DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0

DT7-DT0	DSC Threshold

477

1.4.12MISC_Reg (1111)

This register is used to switch between registers bank1 and registers bank2 and to select the division factor of the divider acting on the internal oscillator. It also allows to force a SW reset on the device.

RES	PLLT	IOD3	IOD2	IOD1	IOD0	BS1	BS0

RES	Force SW reset on the device (Active High)
PLLT	PLL Test using an external clock source (0: PLL clock from internal OSCillator (default value); 1: clock from SPE pad when t8 is high)
IOD3-IOD0	Internal Oscillator Divider (Set to 1000 by default)
BS1-BS0	Registers Bank Select At reset BS1-BS0=00 making Reg. Bank 1 accessible by default

Table 6. Registers Bank selection

BS1-BS0 Registers Bank Selection					
201-200	Registers Bunk occession				
00	Bank 1				
01	Bank 2				
10	Bank 3				
11	not used				

1.4.13 GAIN_LSB (1000 -Reg. Bank 2-)

Ī	GL7	GL6	GL5	GL4	GL3	GL2	GL1	GL0
- 1								

GL7-GL0	8 LSB of the digital gain block	
---------	---------------------------------	--

1.4.14GAIN_MSB (1001 -Reg. Bank 2-)

GH7 GH6 GH5 GH4 GH3	GH2 GH1 GH0
---------------------	-------------

GH7-GH0	8 MSB of the digital gain block	
---------	---------------------------------	--

1.4.15OFFSET_LSB (1010 -Reg. Bank 2-)

OL7	OL6	OL5	OL4	OL3	OL2	OL1	OL0	

OL7-OL0	8 LSB of the digital offset correction value	

1.4.16OFFSET_MSB (1011 -Reg. Bank 2-)

OH7	OH6	OH5	OH4	OH3	OH2	OH1	OH0

o mod of the digital offset correction value	OH7-OH0	8 MSB of the digital offset correction value
--	---------	--

1.5 Device initialization

Before using the device, the user must disable the Delayed Synchronous Conversion Option (bit DSC of CTRL_REG2) and set the Sinc Order (bit SO of CTRL_REG2) to 2.

This is achieved by writing 0010 0010 inside the CTRL_REG2 register.

1.6 Circuit Board and Layout Considerations

In order to avoid, in the analog section, any kind of disturbances coming from the digital section, the 5V supply and the ground are split between analog lines and digital lines. For this reason the VDD_DIGITAL 5V supply and the GND_DIGITAL ground have been added. The two 5V supply lines must be powered up and down simultaneously (a maximum 0.3V difference between them is allowed. The two 5V supply lines and the two ground lines could be derived from a single low-voltage supply and a single ground but must be connected to the chip using two separate decoupling capacitors.

The LIS1R02 IC by default expects a master clock coming into the CLK_IN pin. This master clock frequency must be lower than 6MHz. A ground plane must be located under the chip to help prevent any disturbance to the LIS1R02 sensor.

Each of the two power supplies requires decoupling capacitors. It is recommended that each VDD pin (analog and digital) have a $0.22\mu F$ as near as possible to the chip pin. A $22\mu F$ electrolytic capacitor on the supply line is also advised. As close as possible to the REF_CAP pin (pin 8), two decoupling capacitors must be placed. A $0.22\mu F$ electrolytic and a 220pF ceramic or polyester are strongly recommended.

Due to the high sensitivity of this device maximum care must be taken during board layout to avoid any kind of coupling between CLK_IN, power supplies and grounds tracks. In order to avoid any performance loss, the REF_CAP pin and the board trace that connects it must be far from any kind of noisy signal (i.e. CLK_IN).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com