# MOS INTEGRATED CIRCUIT $\mu$ PD78F9046

# 8-BIT SINGLE-CHIP MICROCONTROLLER

#### DESCRIPTION

The  $\mu$ PD78F9046 is a  $\mu$ PD789046 Subseries product (small-scale package, general-purpose applications) of the 78K/0S Series.

The  $\mu$ PD78F9046 has flash memory in place of the internal ROM of the  $\mu$ PD789046.

Because flash memory allows the program to be written and erased with the device mounted on the target board, this product is ideal for development trials, small-scale production, or for applications that require frequent upgrades.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789046 Subseries User's Manual: U13600E 78K/0S Series User's Manual — Instruction: U11047E

#### **FEATURES**

- Pin-compatible with mask ROM version (except VPP pin)
- Flash memory: 16 Kbytes
- Internal high-speed RAM: 512 bytes
- Minimum instruction execution time can be changed from high-speed (0.4 μs; @5.0-MHz operation with main system clock) to ultra-low-speed (122 μs: @32.768-kHz operation with subsystem clock)
- I/O ports: 34
- Serial interface: 1 channel

3-wire serial I/O mode/UART mode can be selected

- Timer: 4 channels
  - 16-bit timer: 1 channel
  - 8-bit timer/event counter: 1 channel
  - Watch timer: 1 channel
  - Watchdog timer: 1 channel
- Power supply voltage: VDD = 1.8 to 5.5 V

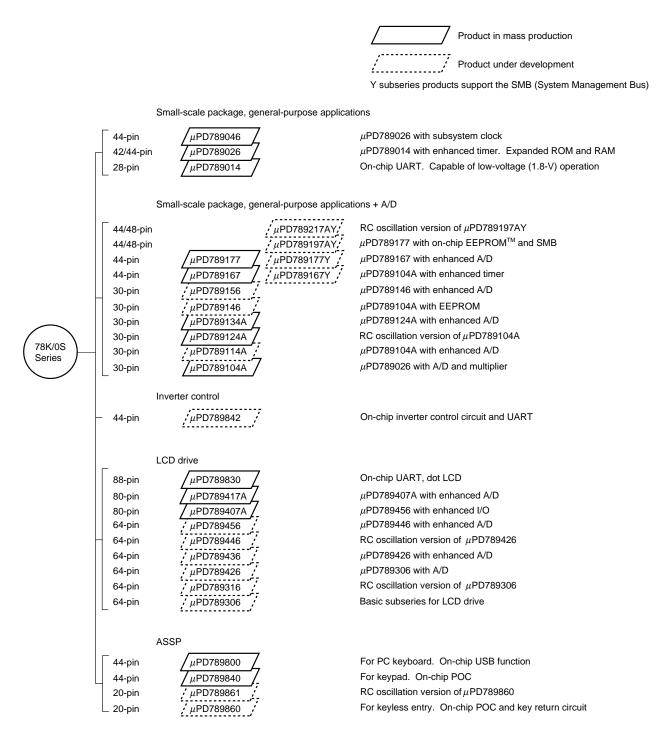
# APPLICATIONS

Cordless phones, etc.

#### **ORDERING INFORMATION**

Part Number

Package


μPD78F9046GB-8ES

44-pin plastic LQFP (10 × 10 mm)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

#### ★ 78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

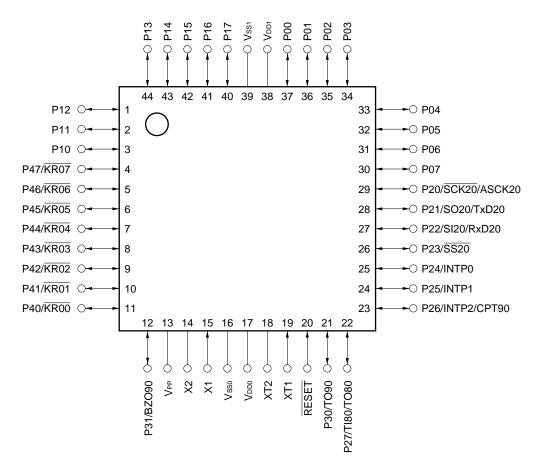


The major functional differences among the subseries are listed below.

| Function                |            | ROM          |       | Tir    | ner   |      | 8-Bit | 10-Bit | Serial Interface  | I/O | Vdd<br>MIN. | Remark                 |
|-------------------------|------------|--------------|-------|--------|-------|------|-------|--------|-------------------|-----|-------------|------------------------|
| Subserie                | s Name     | Capacity     | 8-bit | 16-bit | Watch | WDT  | A/D   | A/D    | Senar Interface   | 1/0 | Value       | Remark                 |
| Small-scale             | μPD789046  | 16 K         | 1 ch  | 1 ch   | 1 ch  | 1 ch | _     | _      | 1 ch (UART:1 ch)  | 34  | 1.8 V       | —                      |
| package,<br>general-    | µPD789026  | 4 K to 16 K  |       |        | —     |      |       |        |                   |     |             |                        |
| purpose<br>applications | μPD789014  | 2Kto4K       | 2 ch  |        |       |      |       |        |                   | 22  |             |                        |
| Small-                  | μPD789177  | 16 K to 24 K |       |        |       |      |       | 8 ch   | 1 ch (UART: 1 ch) | 31  |             | —                      |
| scale<br>package,       | μPD789167  |              |       |        |       |      | 8 ch  | _      |                   |     |             |                        |
| general-                | μPD789156  | 8 K to 16 K  | 1 ch  |        | _     |      | _     | 4 ch   |                   | 20  |             | On-chip                |
| purpose                 | μPD789146  |              |       |        |       |      | 4 ch  | _      |                   |     |             | EEPROM                 |
| applications<br>+ A/D   | µPD789134A | 2Kto8K       |       |        |       |      | _     | 4 ch   |                   |     |             | RC oscillation         |
|                         | µPD789124A |              |       |        |       |      | 4 ch  | _      |                   |     |             | version                |
|                         | μPD789114A |              |       |        |       |      | —     | 4 ch   |                   |     |             | —                      |
|                         | µPD789104A |              |       |        |       |      | 4 ch  |        |                   |     |             |                        |
| Inverter<br>control     | μPD789842  | 8 K to 16 K  | 3 ch  | Note   | 1 ch  | 1 ch | 8 ch  | —      | 1 ch (UART: 1 ch) | 30  | 4.0 V       | —                      |
| LCD                     | µPD789830  | 24 K         | 1 ch  | 1 ch   | 1 ch  | 1 ch | _     | _      | 1 ch (UART: 1 ch) | 30  | 2.7 V       | —                      |
| drive                   | μPD789417A | 12 K to 24 K | 3 ch  |        |       |      |       | 7 ch   |                   | 43  | 1.8 V       |                        |
|                         | μPD789407A |              |       |        |       |      | 7 ch  | _      |                   |     |             |                        |
|                         | μPD789456  | 12 K to 16 K | 2 ch  |        |       |      | _     | 6 ch   | 1 ch (UART: 1 ch) | 30  |             |                        |
|                         | μPD789446  |              |       |        |       |      | 6 ch  | _      |                   |     |             |                        |
|                         | µPD789436  |              |       |        |       |      | _     | 6 ch   |                   | 40  |             |                        |
|                         | μPD789426  |              |       |        |       |      | 6 ch  | —      |                   |     |             |                        |
|                         | μPD789316  | 8 K to 16 K  |       |        |       |      | _     |        | 2 ch (UART: 1 ch) | 23  |             | RC oscillation version |
|                         | µPD789306  |              |       |        |       |      |       |        |                   |     |             | —                      |
| ASSP                    | µPD789800  | 8K           | 2 ch  | 1 ch   | _     | 1 ch |       | _      | 2 ch (USB: 1 ch)  | 31  | 4.0 V       | —                      |
|                         | μPD789840  |              |       |        |       |      | 4 ch  |        | 1 ch              | 29  | 2.8 V       |                        |
|                         | μPD789861  | 4K           |       | _      |       |      | _     |        | _                 | 14  | 1.8 V       | RC oscillation version |
|                         | µPD789860  |              |       |        |       |      |       |        |                   |     |             | —                      |

**Note** 10-bit timer: 1 channel

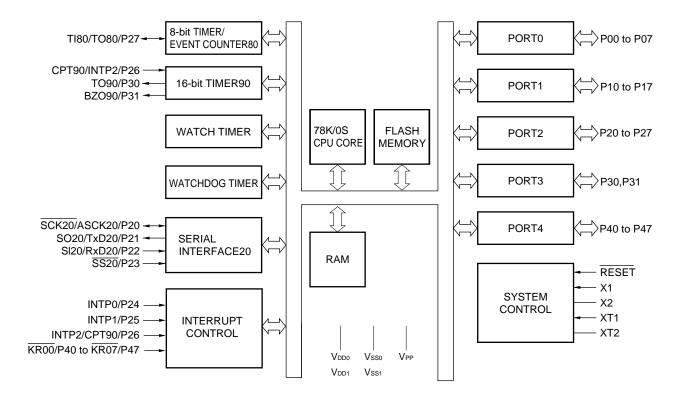
# **OVERVIEW OF FUNCTIONS**


|                              | Item              | Function                                                                                                                                                     |  |  |  |
|------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Internal memory Flash memory |                   | 16 Kbytes                                                                                                                                                    |  |  |  |
|                              | High-speed RAM    | 512 bytes                                                                                                                                                    |  |  |  |
| Minimum instruction          | on execution time | 0.4 $\mu$ s/1.6 $\mu$ s (@ 5.0-MHz operation with main system clock)<br>122 $\mu$ s (@32.768-kHz operation with subsystem clock)                             |  |  |  |
| General-purpose              | registers         | 8 bits × 8 registers                                                                                                                                         |  |  |  |
| Instruction set              |                   | <ul><li>16-bit operation</li><li>Bit manipulation (set, reset, test), etc.</li></ul>                                                                         |  |  |  |
| I/O ports                    |                   | • CMOS I/O: 34                                                                                                                                               |  |  |  |
| Serial interface             |                   | 3-wire serial I/O mode/UART mode selectable: 1 channel                                                                                                       |  |  |  |
| Timer                        |                   | <ul> <li>16-bit timer: 1 channel</li> <li>8-bit timer/event counter: 1 channel</li> <li>Watch timer: 1 channel</li> <li>Watchdog timer: 1 channel</li> </ul> |  |  |  |
| Timer outputs                |                   | 2                                                                                                                                                            |  |  |  |
| Vectored interrupt           | Maskable          | Internal: 7, External: 4                                                                                                                                     |  |  |  |
| sources Non-maskable         |                   | Internal: 1                                                                                                                                                  |  |  |  |
| Power supply voltage         |                   | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                                                               |  |  |  |
| Operating ambien             | t temperature     | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                                                                                                                |  |  |  |
| Package                      |                   | 44-pin plastic LQFP (10 $\times$ 10 mm)                                                                                                                      |  |  |  |

# CONTENTS

|   | 1. | PIN CONFIGURATION (TOP VIEW)                                        |
|---|----|---------------------------------------------------------------------|
|   | 2. | BLOCK DIAGRAM                                                       |
|   | 3. | PIN FUNCTIONS                                                       |
|   |    | 3.1 Port Pins                                                       |
|   |    | 3.2 Non-Port Pins                                                   |
|   |    | 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins      |
|   | 4. | MEMORY SPACE                                                        |
|   | 5. | PROGRAMMING FLASH MEMORY13                                          |
|   |    | 5.1 Selecting Communication Mode 13                                 |
|   |    | 5.2 Function of Flash Memory Programming 14                         |
|   |    | 5.3 Connecting Flashpro III 14                                      |
| * |    | 5.4 Example of Settings for Flashpro III (PG-FP3)                   |
|   | 6. | INSTRUCTION SET OVERVIEW 17                                         |
|   |    | 6.1 Conventions 17                                                  |
|   |    | 6.2 Operations                                                      |
|   | 7. | ELECTRICAL SPECIFICATIONS                                           |
| * | 8. | CHARACTERISTICS CURVES                                              |
|   | 9. | PACKAGE DRAWINGS                                                    |
| * | 10 | . RECOMMENDED SOLDERING CONDITIONS                                  |
|   | AF | PPENDIX A DIFFERENCES BETWEEN $\mu$ PD78F9046 AND MASK ROM VERSIONS |
|   | AF | PPENDIX B DEVELOPMENT TOOLS 40                                      |
|   | AF | PPENDIX C RELATED DOCUMENTS                                         |

# 1. PIN CONFIGURATION (TOP VIEW)


• **44-pin plastic LQFP (10 × 10 mm)** μPD78F9046GB-8ES



#### Caution Connect the VPP pin directly to Vsso or Vss1 in normal operation mode.

| ASCK20:                                  | Asynchronous Serial Input  | SCK20:      | Serial Clock                |
|------------------------------------------|----------------------------|-------------|-----------------------------|
| BZO90:                                   | Buzzer Output              | SI20:       | Serial Input                |
| CPT90:                                   | Capture Trigger Input      | SO20:       | Serial Output               |
| INTP0 to INTP2:                          | Interrupt from Peripherals | SS20:       | Chip Select Input           |
| $\overline{KR00}$ to $\overline{KR07}$ : | Key Return                 | TI80:       | Timer Input                 |
| P00 to P07:                              | Port 0                     | TO80, TO90: | Timer Output                |
| P10 to P17:                              | Port 1                     | TxD20:      | Transmit Data               |
| P20 to P27:                              | Port 2                     | Vdd0, Vdd1: | Power Supply                |
| P30, P31:                                | Port 3                     | Vpp:        | Programming Power Supply    |
| P40 to P47:                              | Port 4                     | Vsso, Vss1: | Ground                      |
| RESET:                                   | Reset                      | X1, X2:     | Crystal (Main System Clock) |
| RxD20:                                   | Receive Data               | XT1, XT2:   | Crystal (Subsystem Clock)   |

# 2. BLOCK DIAGRAM

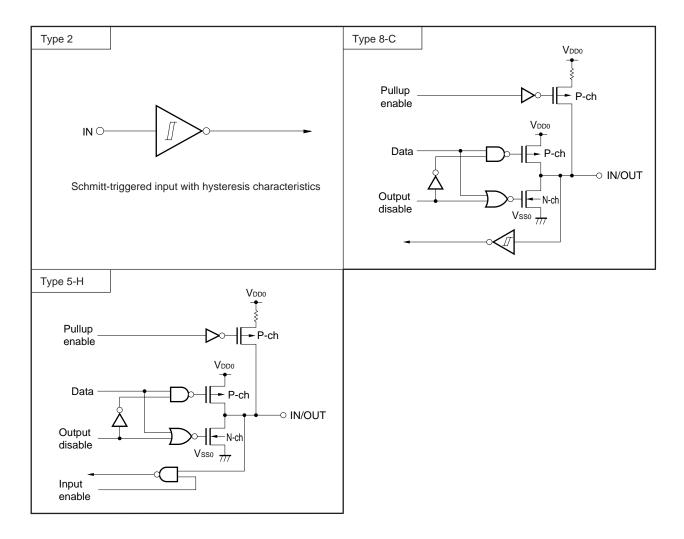


# 3. PIN FUNCTIONS

#### 3.1 Port Pins

| Pin Name   | I/O | Function                                                                                                                                                                                | After Reset | Alternate Function |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|
| P00 to P07 | I/O | Port 0<br>8-bit input/output port<br>Input/output can be specified in 1-bit units.<br>When used as an input port, an on-chip pull-up resistor can be<br>specified by means of software. | Input       | _                  |
| P10 to P17 | I/O | Port 1<br>8-bit input/output port<br>Input/output can be specified in 1-bit units.<br>When used as an input port, an on-chip pull-up resistor can be<br>specified by means of software. | Input       | _                  |
| P20        | I/O | Port 2<br>8-bit input/output port                                                                                                                                                       | Input       | SCK20/ASCK20       |
| P21        |     | Input/output can be specified in 1-bit units.<br>When used as an input port, an on-chip pull-up resistor can be<br>specified by means of software.                                      |             | SO20/TxD20         |
| P22        |     |                                                                                                                                                                                         |             | SI20/RxD20         |
| P23        |     |                                                                                                                                                                                         |             | SS20               |
| P24        |     |                                                                                                                                                                                         |             | INTP0              |
| P25        |     |                                                                                                                                                                                         |             | INTP1              |
| P26        |     |                                                                                                                                                                                         |             | INTP2/CPT90        |
| P27        |     |                                                                                                                                                                                         |             | TI80/TO80          |
| P30        | I/O | Port 3<br>2-bit input/output port                                                                                                                                                       | Input       | ТО90               |
| P31        |     | Input/output can be specified in 1-bit units.<br>When used as an input port, an on-chip pull-up resistor can be<br>specified by means of software.                                      |             | BZO90              |
| P40 to P47 | I/O | Port 4<br>8-bit input/output port<br>Input/output can be specified in 1-bit units.<br>When used as an input port, an on-chip pull-up resistor can be<br>specified by means of software. | Input       | KR00 to KR07       |

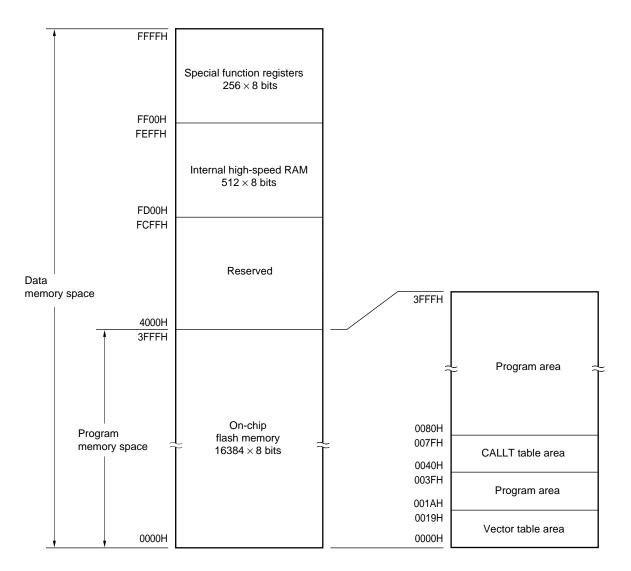
#### 3.2 Non-Port Pins


| Pin Name     | I/O    | Function                                                                                                                                                                     | After Reset | Alternate Function |
|--------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|
| INTP0        | Input  | External interrupt input for which the valid edge (rising edge, falling                                                                                                      | Input       | P24                |
| INTP1        |        | edge, or both rising and falling edges) can be specified.                                                                                                                    |             | P25                |
| INTP2        |        |                                                                                                                                                                              |             | P26/CPT90          |
| KR00 to KR07 | Input  | Key return signal detection                                                                                                                                                  | Input       | P40 to P47         |
| SI20         | Input  | Serial interface serial data input                                                                                                                                           | Input       | P22/RxD20          |
| SO20         | Output | Serial interface serial data output                                                                                                                                          | Input       | P21/TxD20          |
| SCK20        | I/O    | Serial interface serial clock input/output                                                                                                                                   | Input       | P20/ASCK20         |
| SS20         | Input  | Chip select input for serial interface                                                                                                                                       | Input       | P23                |
| ASCK20       | Input  | Serial clock input for asynchronous serial interface                                                                                                                         | Input       | P20/SCK20          |
| RxD20        | Input  | Serial data input for asynchronous serial interface                                                                                                                          | Input       | P22/SI20           |
| TxD20        | Output | Serial data output for asynchronous serial interface                                                                                                                         | Input       | P21/SO20           |
| TI80         | Input  | External count clock input to 8-bit timer 80                                                                                                                                 | Input       | P27/TO80           |
| TO80         | Output | 8-bit timer 80 output                                                                                                                                                        | Input       | P27/TI80           |
| TO90         | Output | 16-bit timer 90 output                                                                                                                                                       | Input       | P30                |
| BZO90        | Output | 16-bit timer 90 buzzer output                                                                                                                                                | Input       | P31                |
| CPT90        | Input  | Capture edge input                                                                                                                                                           | Input       | P26/INTP2          |
| X1           | Input  | Connecting crystal resonator for main system clock oscillation                                                                                                               | -           | _                  |
| X2           | -      |                                                                                                                                                                              | -           | _                  |
| XT1          | Input  | Connecting crystal resonator for subsystem clock oscillation                                                                                                                 | -           | _                  |
| XT2          | -      |                                                                                                                                                                              | -           | _                  |
| Vddo         | -      | Positive power supply of ports                                                                                                                                               | -           | _                  |
| Vdd1         | -      | Positive power supply (except ports)                                                                                                                                         | -           | _                  |
| Vsso         | -      | Ground potential of ports                                                                                                                                                    | -           | _                  |
| Vss1         | _      | Ground potential (except ports)                                                                                                                                              | _           |                    |
| RESET        | Input  | System reset input                                                                                                                                                           | Input       | _                  |
| Vpp          | _      | Flash memory programming mode setting. High-voltage application for program write/verify. Connect directly to V <sub>SS0</sub> or V <sub>SS1</sub> in normal operation mode. | -           | _                  |

# 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

| Pin Name             | I/O Circuit Type | I/O   | Recommended Connection of Unused Pins                             |
|----------------------|------------------|-------|-------------------------------------------------------------------|
| P00 to P07           | 5-H              | I/O   | Input: Independently connect to VDD0 or VDD1, or VSS0 or VSS1 via |
| P10 to P17           |                  |       | a resistor.                                                       |
| P20/SCK20/ASCK20     | 8-C              |       | Output: Leave open.                                               |
| P21/SO20/TxD20       |                  |       |                                                                   |
| P22/SI20/RxD20       |                  |       |                                                                   |
| P23/SS20             |                  |       |                                                                   |
| P24/INTP0            |                  |       |                                                                   |
| P25/INTP1            |                  |       |                                                                   |
| P26/INTP2/CPT90      |                  |       |                                                                   |
| P27/TI80/TO80        |                  |       |                                                                   |
| P30/TO90             | 5-H              |       |                                                                   |
| P31/BZO90            |                  |       |                                                                   |
| P40/KR00 to P47/KR07 | 8-C              |       |                                                                   |
| XT1                  | _                | Input | Connect to Vsso or Vss1.                                          |
| XT2                  |                  | _     | Leave open.                                                       |
| RESET                | 2                | Input | _                                                                 |
| Vpp                  | -                | _     | Connect directly to Vsso or Vsso.                                 |


#### Table 3-1. Types of Input/Output Circuits and Recommended Connection of Unused Pins



#### Figure 3-1. Pin Input/Output Circuits

# 4. MEMORY SPACE

The  $\mu$ PD78F9046 can access up to 64 Kbytes of memory space. Figure 4-1 shows the memory map.



#### Figure 4-1. Memory Map

# 5. PROGRAMMING FLASH MEMORY

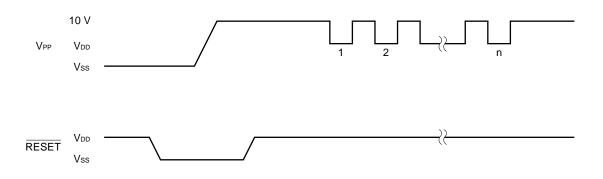
The program memory that is incorporated in the  $\mu$ PD78F9046 is flash memory.

With flash memory, it is possible to write programs on-board. Writing is performed by connecting a dedicated flash programmer (Flashpro III, (Part No. FL-PR3, PG-FP3)) to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

#### 5.1 Selecting Communication Mode

Writing to flash memory is performed using the Flashpro III in a serial communication mode. Select one of the communication modes in Table 5-1. The selection of the communication mode is made by using the format shown in Figure 5-1. Each communication mode is selected using the number of VPP pulses shown in Table 5-1.


| Communication Mode            | Pins                                                                            | VPP Pulses |
|-------------------------------|---------------------------------------------------------------------------------|------------|
| 3-wire serial I/O             | SCK20/ASCK20/P20<br>SO20/TxD20/P21<br>SI20/RxD20/P22                            | 0          |
| UART                          | TxD20/SO20/P21<br>RxD20/SI20/P22                                                | 8          |
| Pseudo 3-wire <sup>Note</sup> | P00 (Serial clock input)<br>P01 (Serial data output)<br>P02 (Serial data input) | 12         |

| Table 5-1. | List of | Communication | Mode |
|------------|---------|---------------|------|
|------------|---------|---------------|------|

Note Serial transfer is carried out by controlling ports with software.

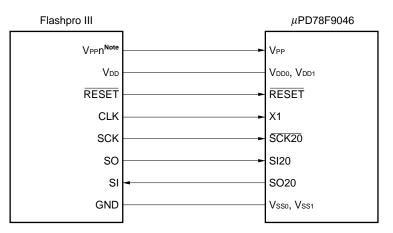
Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 5-1.





#### 5.2 Function of Flash Memory Programming

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 5-2 shows the major functions of flash memory programming.


| Function          | Description                                                                                                                             |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Batch erase       | Deletes the entire memory contents                                                                                                      |  |  |  |
| Batch blank check | Checks the deletion status of the entire memory                                                                                         |  |  |  |
| Data write        | Performs a write operation to the flash memory based on the write start address and the number of data to be written (number of bytes). |  |  |  |
| Batch verify      | Compares the entire memory contents with the input data.                                                                                |  |  |  |

| Table 5-2. | Major Function | of Flash Memory | Programming |
|------------|----------------|-----------------|-------------|
|------------|----------------|-----------------|-------------|

#### 5.3 Connecting Flashpro III

The connection of the Flashpro III and the  $\mu$ PD78F9046 differs according to the communication mode (3-wire serial I/O, UART, and pseudo 3-wire). The connections for each communication mode are shown in Figures 5-2, 5-3, and 5-4, respectively.





**Note** n = 0, 1

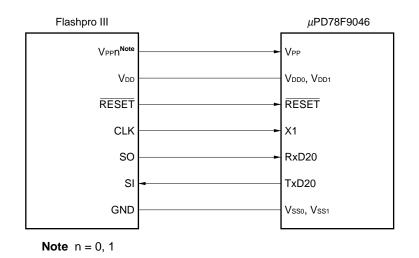
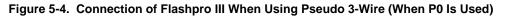
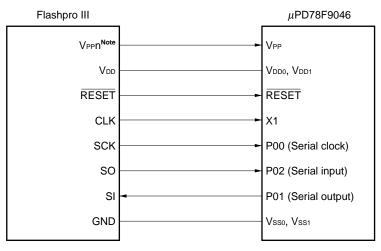





Figure 5-3. Connection of Flashpro III When Using UART Mode





**Note** n = 0, 1

#### ★ 5.4 Example of Settings for Flashpro III (PG-FP3)

When writing to flash memory using Flashpro III (PG-FP3), make the following settings.

<1> Load a parameter file.

<2> Select the mode of serial communication and serial clock with a type command.

<3> Make the settings according to the example of settings for PG-FP3 shown below.

| Communication Mode | Example of Settings for PG-F | P3                         | VPP Pulse NumberNote 1 |
|--------------------|------------------------------|----------------------------|------------------------|
| 3-wire serial I/O  | COMM PORT                    | SIO-ch0                    | 0                      |
|                    | CPU CLK                      | On Target Board            |                        |
|                    |                              | In Flashpro                |                        |
|                    | On Target Board              | 4.1943 MHz                 |                        |
|                    | SIO CLK                      | 1.0 MHz                    |                        |
|                    | In Flashpro                  | 4.0 MHz                    |                        |
|                    | SIO CLK                      | 1.0 MHz                    |                        |
| UART               | COMM PORT                    | UART-ch0                   | 8                      |
|                    | CPU CLK                      | On Target Board            |                        |
|                    | On Target Board              | 4.1943 MHz                 |                        |
|                    | UART BPS                     | 9600 bps <sup>Note 2</sup> |                        |
| Pseudo 3-wire      | COMM PORT                    | Port A                     | 12                     |
|                    | CPU CLK                      | On Target Board            |                        |
|                    |                              | In Flashpro                |                        |
|                    | On Target Board              | 4.1943 MHz                 |                        |
|                    | SIO CLK                      | 1 kHz                      |                        |
|                    | In Flashpro                  | 4.0 MHz                    |                        |
|                    | SIO CLK                      | 1 kHz                      |                        |

Table 5-3. Example of Settings for PG-FP3

- **Notes 1.** This is the number of VPP pulses that are supplied by the Flashpro III at serial communication initialization. The pins that will be used for communication are determined according to this number.
  - $\hbox{2. Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps. } \\$

#### Remark COMM PORT: Serial port selection

| SIO CLK: | Serial clock frequency selection |
|----------|----------------------------------|
| CPU CLK: | Input CPU clock source selection |

### 6. INSTRUCTION SET OVERVIEW

The instruction set for the  $\mu$ PD78F9046 is listed later in this section.

#### 6.1 Conventions

#### 6.1.1 Operand identifiers and descriptions

The description made in the operand field of each instruction conforms to the operand identifier for the instructions listed below (the details conform to the assembly specifications). If more than one operand identifier is listed for an instruction, one is selected. Uppercase letters, #, !, \$, and [] are used to specify keywords, which must be written exactly as they appear. The meanings of these special characters are as follows:

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

Immediate data should be described using appropriate values or labels. The specification of values and labels must be accompanied by #, !, \$, or [].

Operand registers, expressed by the identifiers r or rp, can be described using both functional names (X, A, C, etc.) and absolute names (R0, R1, R2, and other names listed inside the parentheses in Table 6-1).

| Identifier | Description                                                                                          |
|------------|------------------------------------------------------------------------------------------------------|
| r          | X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)                                       |
| rp         | AX (RP0), BC (RP1), DE (RP2), HL (RP3)                                                               |
| sfr        | Special function register symbol                                                                     |
| saddr      | FE20H to FF1FH: Immediate data or label                                                              |
| saddrp     | FE20H to FF1FH: Immediate data or label (even addresses only)                                        |
| addr16     | 0000H to FFFFH: Immediate data or label<br>(only even address for 16-bit data transfer instructions) |
| addr5      | 0040H to 007FH: Immediate data or label (even addresses only)                                        |
| word       | 16-bit immediate data or label                                                                       |
| byte       | 8-bit immediate data or label                                                                        |
| bit        | 3-bit immediate data or label                                                                        |

#### Table 6-1. Operand Formats and Descriptions

#### 6.1.2 Descriptions of the operation field

- A: A register (8-bit accumulator)
- X: X register
- B: B register
- C: C register
- D: D register
- E: E register
- H: H register
- L: L register
- AX: AX register pair (16-bit accumulator)
- BC: BC register pair
- DE: DE register pair
- HL: HL register pair
- PC: Program counter
- SP: Stack pointer
- PSW: Program status word
- CY: Carry flag
- AC: Auxiliary carry flag
- Z: Zero flag
- IE: Interrupt request enable flag
- NMIS: Flag to indicate that a non-maskable interrupt is being handled
- (): Contents of a memory location indicated by a parenthesized address or register name
- XH, XL: Upper and lower 8 bits of a 16-bit register
- ∧: Logical product (AND)
- v: Logical sum (OR)
- ∀: Exclusive OR
- -: Inverted data
- addr16: 16-bit immediate data or label
- jdisp8: Signed 8-bit data (displacement value)

# 6.1.3 Description of the flag operation field

(blank): No change

- 0: To be cleared to 0
- 1: To be set to 1
- $\times$ : To be set or cleared according to the result
- R: To be restored to the previous value

# 6.2 Operations

| Mnemonic   | Operand        |        | Duto   | Clock | Operation                       | Flag |    |    |
|------------|----------------|--------|--------|-------|---------------------------------|------|----|----|
| whemonic   | Operand        |        | Byte 0 | CIOCK | Operation                       | Z    | AC | CY |
| MOV        | r, #byte       |        | 3      | 6     | $r \leftarrow byte$             |      |    |    |
|            | saddr, #byte   |        | 3      | 6     | (saddr) ← byte                  |      |    |    |
|            | sfr, #byte     |        | 3      | 6     | $sfr \leftarrow byte$           |      |    |    |
|            | A, r           | Note 1 | 2      | 4     | $A \leftarrow r$                |      |    |    |
|            | r, A           | Note 1 | 2      | 4     | $r \leftarrow A$                |      |    |    |
|            | A, saddr       |        | 2      | 4     | $A \leftarrow (saddr)$          |      |    |    |
|            | saddr, A       |        | 2      | 4     | (saddr) ← A                     |      |    |    |
|            | A, sfr         |        | 2      | 4     | $A \leftarrow sfr$              |      |    |    |
|            | sfr, A         |        | 2      | 4     | $sfr \leftarrow A$              |      |    |    |
|            | A, !addr16     |        | 3      | 8     | $A \leftarrow (addr16)$         |      |    |    |
|            | !addr16, A     |        | 3      | 8     | $(addr16) \leftarrow A$         |      |    |    |
|            | PSW, #byte     |        | 3      | 6     | $PSW \leftarrow byte$           | ×    | ×  | ×  |
|            | A, PSW         |        | 2      | 4     | $A \gets PSW$                   |      |    |    |
|            | PSW, A         |        | 2      | 4     | $PSW \leftarrow A$              | ×    | ×  | ×  |
|            | A, [DE]        |        | 1      | 6     | $A \leftarrow (DE)$             |      |    |    |
|            | [DE], A        |        | 1      | 6     | $(DE) \leftarrow A$             |      |    |    |
|            | A, [HL]        |        | 1      | 6     | $A \leftarrow (HL)$             |      |    |    |
|            | [HL], A        |        | 1      | 6     | $(HL) \gets A$                  |      |    |    |
|            | A, [HL + byte] |        | 2      | 6     | $A \leftarrow (HL + byte)$      |      |    |    |
|            | [HL + byte], A |        | 2      | 6     | (HL + byte) ← A                 |      |    |    |
| ХСН        | A, X           |        | 1      | 4     | $A \leftrightarrow X$           |      |    |    |
|            | A, r           | Note 2 | 2      | 6     | $A \leftrightarrow r$           |      |    |    |
|            | A, saddr       |        | 2      | 6     | $A \leftrightarrow (saddr)$     |      |    |    |
|            | A, sfr         |        | 2      | 6     | $A \leftrightarrow (sfr)$       |      |    |    |
|            | A, [DE]        |        | 1      | 8     | $A \leftrightarrow (DE)$        |      |    |    |
|            | A, [HL]        |        | 1      | 8     | $A \leftrightarrow (HL)$        |      |    |    |
|            | A, [HL + byte] |        | 2      | 8     | $A \leftrightarrow (HL + byte)$ |      |    |    |
| MOVW       | rp, #word      |        | 3      | 6     | $rp \leftarrow word$            |      |    |    |
|            | AX, saddrp     |        | 2      | 6     | $AX \leftarrow (saddrp)$        |      |    |    |
| saddrp, AX | saddrp, AX     |        | 2      | 8     | $(saddrp) \leftarrow AX$        |      |    |    |
|            | AX, rp         | Note 3 | 1      | 4     | $AX \leftarrow rp$              |      |    |    |
|            | rp, AX         | Note 3 | 1      | 4     | $rp \leftarrow AX$              |      |    |    |

**Notes 1.** Except when r = A.

- **2.** Except when r = A or X.
- **3.** Only when rp = BC, DE, or HL.

**Remark** The instruction clock cycle is based on the CPU clock (fcPu), specified by the processor clock control register (PCC).

| Mnemonic  | Operand        | Byte | Clock  | Operation                                    |   | Flag | I  |
|-----------|----------------|------|--------|----------------------------------------------|---|------|----|
| Whetherio | Operand        | Dyte | CICCIA | opolation                                    | Z | AC   | CY |
| XCHW      | AX, rp         | 1    | 8      | $AX \leftrightarrow rp$                      |   |      |    |
| ADD       | A, #byte       | 2    | 4      | A, CY $\leftarrow$ A + byte                  | × | ×    | ×  |
|           | saddr, #byte   | 3    | 6      | (saddr), CY $\leftarrow$ (saddr) + byte      | × | ×    | х  |
|           | A, r           | 2    | 4      | A, CY $\leftarrow$ A + r                     | × | ×    | х  |
|           | A, saddr       | 2    | 4      | A, CY $\leftarrow$ A + (saddr)               | × | ×    | х  |
|           | A, !addr16     | 3    | 8      | A, CY $\leftarrow$ A + (addr16)              | × | ×    | ×  |
|           | A, [HL]        | 1    | 6      | $A,CY \gets A + (HL)$                        | × | ×    | ×  |
|           | A, [HL + byte] | 2    | 6      | A, CY $\leftarrow$ A + (HL + byte)           | × | ×    | ×  |
| ADDC      | A, #byte       | 2    | 4      | A, CY $\leftarrow$ A + byte + CY             | × | ×    | ×  |
|           | saddr, #byte   | 3    | 6      | $(saddr), CY \gets (saddr) + byte + CY$      | × | ×    | ×  |
|           | A, r           | 2    | 4      | $A,CY \gets A + r + CY$                      | × | ×    | ×  |
|           | A, saddr       | 2    | 4      | A, CY $\leftarrow$ A + (saddr) + CY          | × | ×    | ×  |
|           | A, !addr16     | 3    | 8      | A, CY $\leftarrow$ A + (addr16) + CY         | × | ×    | ×  |
|           | A, [HL]        | 1    | 6      | $A,CY \gets A + (HL) + CY$                   | × | ×    | ×  |
|           | A, [HL + byte] | 2    | 6      | A, CY $\leftarrow$ A + (HL + byte) + CY      | × | ×    | ×  |
| SUB       | A, #byte       | 2    | 4      | A, CY $\leftarrow$ A – byte                  | × | ×    | ×  |
|           | saddr, #byte   | 3    | 6      | (saddr), CY $\leftarrow$ (saddr) – byte      | × | ×    | ×  |
|           | A, r           | 2    | 4      | A, CY $\leftarrow$ A – r                     | × | ×    | ×  |
|           | A, saddr       | 2    | 4      | A, CY $\leftarrow$ A – (saddr)               | × | ×    | ×  |
|           | A, !addr16     | 3    | 8      | A, CY $\leftarrow$ A – (addr16)              | × | ×    | ×  |
|           | A, [HL]        | 1    | 6      | A, CY $\leftarrow$ A – (HL)                  | × | ×    | ×  |
|           | A, [HL + byte] | 2    | 6      | A, CY $\leftarrow$ A – (HL + byte)           | × | ×    | ×  |
| SUBC      | A, #byte       | 2    | 4      | A, CY $\leftarrow$ A – byte – CY             | × | ×    | ×  |
|           | saddr, #byte   | 3    | 6      | (saddr), $CY \leftarrow (saddr) - byte - CY$ | × | ×    | ×  |
|           | A, r           | 2    | 4      | A, $CY \leftarrow A - r - CY$                | × | ×    | ×  |
|           | A, saddr       | 2    | 4      | A, CY $\leftarrow$ A – (saddr) – CY          | × | ×    | ×  |
|           | A, !addr16     | 3    | 8      | A, CY $\leftarrow$ A – (addr16) – CY         | × | ×    | ×  |
|           | A, [HL]        | 1    | 6      | $A,CY \leftarrow A-(HL)-CY$                  | × | ×    | ×  |
|           | A, [HL + byte] | 2    | 6      | A, CY $\leftarrow$ A – (HL + byte) – CY      | × | ×    | ×  |
| AND       | A, #byte       | 2    | 4      | $A \leftarrow A \land byte$                  | × |      |    |
|           | saddr, #byte   | 3    | 6      | $(saddr) \leftarrow (saddr) \land byte$      | × |      |    |
|           | A, r           | 2    | 4      | $A \leftarrow A \land r$                     | × |      |    |
|           | A, saddr       | 2    | 4      | $A \leftarrow A \land (saddr)$               | × |      |    |
|           | A, !addr16     | 3    | 8      | $A \leftarrow A \land (addr16)$              | × |      |    |
|           | A, [HL]        | 1    | 6      | $A \leftarrow A \land (HL)$                  | × |      |    |
|           | A, [HL + byte] | 2    | 6      | $A \leftarrow A \land (HL + byte)$           | × |      |    |

**Note** Only when rp = BC, DE, or HL.

**Remark** The instruction clock cycle is based on the CPU clock (fcPu), specified by the processor clock control register (PCC).

| Mnemonic | Operand        | Byte | Clock | Operation                                                                 | z | Flag<br>AC | g<br>CY |
|----------|----------------|------|-------|---------------------------------------------------------------------------|---|------------|---------|
| OR       | A, #byte       | 2    | 4     | $A \leftarrow A \lor byte$                                                | × |            |         |
|          | saddr, #byte   | 3    | 6     | $(saddr) \leftarrow (saddr) \lor byte$                                    | × |            |         |
|          | A, r           | 2    | 4     | $A \leftarrow A \lor r$                                                   | × |            |         |
|          | A, saddr       | 2    | 4     | $A \leftarrow A \lor (saddr)$                                             | × |            |         |
|          | A, !addr16     | 3    | 8     | $A \leftarrow A \lor (addr16)$                                            | × |            |         |
|          | A, [HL]        | 1    | 6     | $A \leftarrow A \lor (HL)$                                                | × |            |         |
|          | A, [HL + byte] | 2    | 6     | $A \leftarrow A \lor (HL + byte)$                                         | × |            |         |
| XOR      | A, #byte       | 2    | 4     | $A \leftarrow A \neq byte$                                                | × |            |         |
|          | saddr, #byte   | 3    | 6     | $(saddr) \leftarrow (saddr) + byte$                                       | × |            |         |
|          | A, r           | 2    | 4     | $A \leftarrow A \forall r$                                                | × |            |         |
|          | A, saddr       | 2    | 4     | $A \leftarrow A \checkmark$ (saddr)                                       | × |            |         |
|          | A, !addr16     | 3    | 8     | $A \leftarrow A \forall$ (addr16)                                         | × |            |         |
|          | A, [HL]        | 1    | 6     | $A \leftarrow A \nleftrightarrow (HL)$                                    | × |            |         |
|          | A, [HL + byte] | 2    | 6     | $A \leftarrow A \lor (HL + byte)$                                         | × |            |         |
| CMP      | A, #byte       | 2    | 4     | A – byte                                                                  | × | ×          | ×       |
|          | saddr, #byte   | 3    | 6     | (saddr) – byte                                                            | × | ×          | ×       |
|          | A, r           | 2    | 4     | A – r                                                                     | × | ×          | ×       |
|          | A, saddr       | 2    | 4     | A – (saddr)                                                               | × | х          | ×       |
|          | A, !addr16     | 3    | 8     | A – (addr16)                                                              | × | ×          | ×       |
|          | A, [HL]        | 1    | 6     | A – (HL)                                                                  | × | ×          | ×       |
|          | A, [HL + byte] | 2    | 6     | A – (HL + byte)                                                           | × | х          | ×       |
| ADDW     | AX, #word      | 3    | 6     | AX, CY $\leftarrow$ AX + word                                             | × | х          | ×       |
| SUBW     | AX, #word      | 3    | 6     | AX, CY $\leftarrow$ AX – word                                             | × | х          | ×       |
| CMPW     | AX, #word      | 3    | 6     | AX – word                                                                 | × | ×          | ×       |
| INC      | r              | 2    | 4     | r ← r + 1                                                                 | × | ×          |         |
|          | saddr          | 2    | 4     | $(saddr) \leftarrow (saddr) + 1$                                          | × | ×          |         |
| DEC      | r              | 2    | 4     | r ← r − 1                                                                 | × | ×          |         |
|          | saddr          | 2    | 4     | $(saddr) \leftarrow (saddr) - 1$                                          | × | ×          |         |
| INCW     | rp             | 1    | 4     | $rp \leftarrow rp + 1$                                                    |   |            |         |
| DECW     | rp             | 1    | 4     | $rp \leftarrow rp - 1$                                                    |   |            |         |
| ROR      | A, 1           | 1    | 2     | $(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$               |   |            | ×       |
| ROL      | A, 1           | 1    | 2     | $(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$               |   |            | ×       |
| RORC     | A, 1           | 1    | 2     | $(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$ |   |            | ×       |
| ROLC     | A, 1           | 1    | 2     | $(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$ |   |            | ×       |

NEC

**Remark** The instruction clock cycle is based on the CPU clock (fcPU), specified by the processor clock control register (PCC).

| Mnemonic | Operand    | Byte | Clock             | Operation                                                                                                                                                                               |   | Flag |    |
|----------|------------|------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|----|
|          |            | 2,10 | electric electric |                                                                                                                                                                                         | Z | AC   | CY |
| SET1     | saddr. bit | 3    | 6                 | (saddr. bit) $\leftarrow 1$                                                                                                                                                             |   |      |    |
|          | sfr. bit   | 3    | 6                 | sfr. bit $\leftarrow$ 1                                                                                                                                                                 |   |      |    |
|          | A. bit     | 2    | 4                 | A. bit ← 1                                                                                                                                                                              |   |      |    |
|          | PSW. bit   | 3    | 6                 | PSW. bit ← 1                                                                                                                                                                            | × | ×    | ×  |
|          | [HL]. bit  | 2    | 10                | (HL). bit $\leftarrow$ 1                                                                                                                                                                |   |      |    |
| CLR1     | saddr. bit | 3    | 6                 | (saddr. bit) $\leftarrow 0$                                                                                                                                                             |   |      |    |
|          | sfr. bit   | 3    | 6                 | sfr. bit $\leftarrow 0$                                                                                                                                                                 |   |      |    |
|          | A. bit     | 2    | 4                 | A. bit $\leftarrow 0$                                                                                                                                                                   |   |      |    |
|          | PSW. bit   | 3    | 6                 | PSW. bit $\leftarrow 0$                                                                                                                                                                 | × | ×    | ×  |
|          | [HL]. bit  | 2    | 10                | (HL). bit $\leftarrow 0$                                                                                                                                                                |   |      |    |
| SET1     | CY         | 1    | 2                 | CY ← 1                                                                                                                                                                                  |   |      | 1  |
| CLR1     | CY         | 1    | 2                 | $CY \leftarrow 0$                                                                                                                                                                       |   |      | 0  |
| NOT1     | CY         | 1    | 2                 | $CY \leftarrow \overline{CY}$                                                                                                                                                           |   |      | ×  |
| CALL     | !addr16    | 3    | 6                 | $(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$<br>$PC \leftarrow addr16, SP \leftarrow SP - 2$                                                                   |   |      |    |
| CALLT    | [addr5]    | 1    | 8                 | $(SP - 1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$<br>$PC_{H} \leftarrow (00000000, addr5 + 1),$<br>$PC_{L} \leftarrow (00000000, addr5),$<br>$SP \leftarrow SP - 2$ |   |      |    |
| RET      |            | 1    | 6                 | $PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$<br>$SP \leftarrow SP + 2$                                                                                                         |   |      |    |
| RETI     |            | 1    | 8                 | $\begin{split} PC_{H} &\leftarrow (SP+1),  PC_{L} \leftarrow (SP), \\ PSW &\leftarrow (SP+2),  SP \leftarrow SP+3, \\ NMIS &\leftarrow 0 \end{split}$                                   | R | R    | R  |
| PUSH     | PSW        | 1    | 2                 | $(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$                                                                                                                                         |   |      |    |
|          | rp         | 1    | 4                 | $(SP - 1) \leftarrow rpH, (SP - 2) \leftarrow rpL,$<br>$SP \leftarrow SP - 2$                                                                                                           |   |      |    |
| POP      | PSW        | 1    | 4                 | $PSW \leftarrow (SP),  SP  \leftarrow SP + 1$                                                                                                                                           | R | R    | R  |
|          | rp         | 1    | 6                 | $rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$<br>$SP \leftarrow SP + 2$                                                                                                               |   |      |    |
| MOVW     | SP, AX     | 2    | 8                 | $SP \leftarrow AX$                                                                                                                                                                      |   |      |    |
|          | AX, SP     | 2    | 6                 | $AX \leftarrow SP$                                                                                                                                                                      |   |      |    |
| BR       | !addr16    | 3    | 6                 | PC ← addr16                                                                                                                                                                             |   |      |    |
|          | \$addr16   | 2    | 6                 | $PC \leftarrow PC + 2 + jdisp8$                                                                                                                                                         |   |      |    |
|          | AX         | 1    | 6                 | $PC_{H} \leftarrow A, PC_{L} \leftarrow X$                                                                                                                                              |   |      |    |

**Remark** The instruction clock cycle is based on the CPU clock (fcPu), specified by the processor clock control register (PCC).

| Manageria | Orangel              | Dute | Olash | Quanting                                                                     |   | Flag |    |
|-----------|----------------------|------|-------|------------------------------------------------------------------------------|---|------|----|
| Mnemonic  | Operand              | Byte | Clock | Operation                                                                    | Z | AC   | CY |
| BC        | \$addr16             | 2    | 6     | $PC \gets PC + 2 + jdisp8 \text{ if } CY = 1$                                |   |      |    |
| BNC       | \$addr16             | 2    | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$                                  |   |      |    |
| BZ        | \$addr16             | 2    | 6     | $PC \leftarrow PC + 2 + jdisp8$ if Z = 1                                     |   |      |    |
| BNZ       | \$addr16             | 2    | 6     | $PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$                                   |   |      |    |
| BT        | saddr. bit, \$addr16 | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$<br>if (saddr. bit) = 1                       |   |      |    |
|           | sfr. bit, \$addr16   | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1                              |   |      |    |
|           | A. bit, \$addr16     | 3    | 8     | $PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1                                |   |      |    |
|           | PSW. bit, \$addr16   | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1                              |   |      |    |
| BF        | saddr. bit, \$addr16 | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$<br>if (saddr. bit) = 0                       |   |      |    |
|           | sfr. bit, \$addr16   | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0                              |   |      |    |
|           | A. bit, \$addr16     | 3    | 8     | $PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0                                |   |      |    |
|           | PSW. bit, \$addr16   | 4    | 10    | $PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0                              |   |      |    |
| DBNZ      | B, \$addr16          | 2    | 6     | $B \leftarrow B - 1$ , then<br>PC $\leftarrow$ PC + 2 + jdisp8 if $B \neq 0$ |   |      |    |
|           | C, \$addr16          | 2    | 6     | $C \leftarrow C - 1$ , then<br>PC $\leftarrow$ PC + 2 + jdisp8 if C $\neq 0$ |   |      |    |
|           | saddr, \$addr16      | 3    | 8     | (saddr) ← (saddr) – 1, then<br>PC ← PC + 3 + jdisp8 if (saddr) $\neq$ 0      |   |      |    |
| NOP       |                      | 1    | 2     | No Operation                                                                 |   |      |    |
| EI        |                      | 3    | 6     | $IE \leftarrow 1$ (Enable Interrupt)                                         |   |      |    |
| DI        |                      | 3    | 6     | $IE \leftarrow 0$ (Disable Interrupt)                                        |   |      |    |
| HALT      |                      | 1    | 2     | Set HALT Mode                                                                |   |      |    |
| STOP      |                      | 1    | 2     | Set STOP Mode                                                                |   |      |    |

**Remark** The instruction clock cycle is based on the CPU clock (fcPu), specified by the processor clock control register (PCC).

# 7. ELECTRICAL SPECIFICATIONS

### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

| Parameter                     | Symbol | Conditions                      | Ratings                       | Unit |
|-------------------------------|--------|---------------------------------|-------------------------------|------|
| Supply voltage                | Vdd    |                                 | –0.3 to +6.5                  | V    |
|                               | VPP    |                                 | –0.3 to +10.5                 | V    |
| Input voltage                 | Vı     |                                 | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output voltage                | Vo     |                                 | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output current, high          | Іон    | Per pin                         | -10                           | mA   |
|                               |        | Total for all pins              | -30                           | mA   |
| Output current, low           | lo∟    | Per pin                         | 30                            | mA   |
|                               |        | Total for all pins              | 160                           | mA   |
| Operating ambient temperature | TA     | In normal operation mode        | -40 to +85                    | °C   |
| τ                             |        | During flash memory programming | 10 to 40                      | °C   |
| Storage temperature           | Tstg   |                                 | -40 to +125                   | °C   |

- Caution Product quality may suffer if the maximum absolute ratings exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

\*

| Resonator            | Recommended Circuit                    | Parameter                                           | Conditions                                                             | MIN. | TYP. | MAX. | Unit |
|----------------------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|------|------|------|------|
| Ceramic<br>resonator |                                        | Oscillation frequency<br>(fx) <sup>Note 1</sup>     | VDD = Oscillation voltage<br>range                                     | 1.0  |      | 5.0  | MHz  |
|                      |                                        | Oscillation stabilization<br>time <sup>Note 2</sup> | After V <sub>DD</sub> reaches the<br>oscillation voltage range<br>MIN. |      |      | 4    | ms   |
| Crystal<br>resonator |                                        | Oscillation frequency $(f_X)^{Note 1}$              |                                                                        | 1.0  |      | 5.0  | MHz  |
|                      |                                        | Oscillation stabilization<br>time <sup>Note 2</sup> | V <sub>DD</sub> = 4.5 to 5.5 V                                         |      |      | 10   | ms   |
|                      | <del>7)7</del>                         |                                                     |                                                                        |      |      | 30   | ms   |
| External clock       |                                        | X1 input frequency (fx) <sup>Note 1</sup>           |                                                                        | 1.0  |      | 5.0  | MHz  |
|                      | $\overset{\downarrow}{\bigtriangleup}$ | X1 input high-/low-level<br>width (txH, txL)        |                                                                        | 85   |      | 500  | ns   |
|                      |                                        | X1 input frequency (fx) <sup>Note 1</sup>           | V <sub>DD</sub> = 2.7 to 5.5 V                                         | 1.0  |      | 5.0  | MHz  |
|                      |                                        | X1 input high-/low-level<br>width (txH, txL)        | V <sub>DD</sub> = 2.7 to 5.5 V                                         | 85   |      | 500  | ns   |

#### Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
  - **2.** Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation is stabilized within the oscillation stabilization wait time.

Cautions 1. When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vsso.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

| Resonator         | Recommended Circuit | Parameter                                        | Conditions         | MIN. | TYP.   | MAX. | Unit |
|-------------------|---------------------|--------------------------------------------------|--------------------|------|--------|------|------|
| Crystal resonator | VPP XT1 XT2         | Oscillation frequency<br>(fxT) <sup>Note 1</sup> |                    | 32   | 32.768 | 35   | kHz  |
|                   |                     | Oscillation stabilization time <sup>Note 2</sup> | VDD = 4.5 to 5.5 V |      | 1.2    | 2    | S    |
|                   |                     | time                                             |                    |      |        | 10   | S    |
| External clock    |                     | XT1 input frequency $(f_{XT})^{Note 1}$          |                    | 32   |        | 35   | kHz  |
|                   |                     | X1 input high-/low-level<br>width (tхтн, tхт∟)   |                    | 14.3 |        | 15.6 | μs   |

#### Subsystem Clock Oscillator Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

- **Notes 1.** Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
  - **2.** Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation is stabilized within the oscillation stabilization wait time.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
  - Keep the wiring length as short as possible.
  - Do not cross the wiring with the other signal lines.
  - Do not route the wiring near a signal line through which a high fluctuation current flows.
  - Always make the ground point of the oscillator capacitor the same potential as VSS0.
  - Do not ground the capacitor to a ground pattern through which a high current flows.
  - Do not fetch signals from the oscillator.
  - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

#### Parameter Symbol Conditions MIN. TYP. MAX. Unit Output current, high Юн Per pin -1 mΑ Total for all pins -15 mΑ Output current, low Per pin 10 mΑ IOL Total for all pins 80 mΑ Input voltage, high VIH1 P00 to P07, P10 to P17, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ 0.7Vdd $V_{\text{DD}}$ V P30, P31 0.9Vdd $V_{\text{DD}}$ V VIH2 RESET, P20 to P27, P40 VDD = 2.7 to 5.5 V $0.8V_{\text{DD}}$ $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ V to P47, 0.9Vdd V Vdd VIH3 X1, X2 $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ Vpp - 0.5 V Vdd Vdd - 0.1 Vdd V VIH4 XT1, XT2 VDD = 4.5 to 5.5 V Vdd - 0.5 Vdd ٧ V Vdd - 0.1 Vdd V Input voltage, low $V_{\mathsf{IL1}}$ P00 to P07, P10 to P17, VDD = 2.7 to 5.5 V 0 $0.3V_{\text{DD}}$ P30, P31 V 0 0.1VDD VIL2 RESET, P20 to P27, P40 VDD = 2.7 to 5.5 V 0 V 0.2VDD to P47 0 0.1Vdd V VIL3 X1, X2 VDD = 4.5 to 5.5 V 0 0.4 V 0 V 0.1 V VIL4 XT1, XT2 VDD = 4.5 to 5.5 V 0 0.4 0 0.1 V Output voltage, Vон $V_{DD} = 4.5$ to 5.5 V, IOH = -1 mA Vdd - 1.0 V high VDD = 1.8 to 5.5 V, IOH = $-100 \ \mu A$ Vdd - 0.5 V Output voltage, low Vol $V_{DD} = 4.5$ to 5.5 V, $I_{OL} = 10$ mA 1.0 V VDD = 1.8 to 5.5 V, IOL = 400 $\mu$ A 0.5 V Input leakage LIH1 VIN = VDDPins other than X1, X2, XT1, XT2 3 μΑ current, high X1, X2 20 μA μA Input leakage $V_{IN} = 0 V$ Pins other than X1, X2, XT1, -3 current, low XT2 X1, X2 μA -20 Output leakage current, high Vout = VDD LOH 3 μΑ Output leakage current, low LOL Vout = 0 V -3 μΑ $V_{IN} = 0 V$ Software pull-up resistor R 50 100 200 kΩ

#### DC Characteristics ( $T_A = -40$ to $+85^{\circ}C$ , $V_{DD} = 1.8$ to 5.5 V)

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

# \* DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

| Parameter                        | Symbol                                     | Cond                                                          | ditions                                                  | MIN. | TYP. | MAX. | Unit |
|----------------------------------|--------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------|------|------|------|
| Supply current <sup>Note 1</sup> |                                            | 5.0-MHz crystal                                               | $V_{\text{DD}}=5.0~\text{V}\pm10\%^{\text{Note 3}}$      |      | 4.2  | 15   | mA   |
|                                  |                                            | oscillation operating                                         | $V_{DD} = 3.0 \text{ V} \pm 10\%^{Note 4}$               |      | 1.0  | 5.0  | mA   |
|                                  |                                            | mode<br>(C1 = C2 = 22 pF)                                     | $V_{\text{DD}} = 2.0 \text{ V} \pm 10\%^{\text{Note 4}}$ |      | 0.8  | 3.0  | mA   |
|                                  | DD2                                        | 5.0-MHz crystal<br>oscillation HALT mode<br>(C1 = C2 = 22 pF) | $V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 3}}$        |      | 0.8  | 5.0  | mA   |
|                                  |                                            |                                                               | $V_{DD} = 3.0 \text{ V} \pm 10\%^{Note 4}$               |      | 0.5  | 2.5  | mA   |
|                                  |                                            |                                                               | $V_{DD} = 2.0 \text{ V} \pm 10\%^{Note 4}$               |      | 0.3  | 1.0  | mA   |
|                                  | osc                                        | 32.768-kHz crystal                                            | $V_{DD} = 5.0 \text{ V} \pm 10\%$                        |      | 200  | 750  | μA   |
|                                  |                                            | oscillation operating<br>mode <sup>Note 2</sup>               | $V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$                 |      | 150  | 600  | μA   |
|                                  |                                            | $(C3 = C4 = 22 \text{ pF}, R = 220 \text{ k}\Omega)$          | $V_{DD} = 2.0 \text{ V} \pm 10\%$                        |      | 130  | 450  | μΑ   |
|                                  | DD4                                        | 32.768-kHz crystal                                            | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$                 |      | 25   | 150  | μA   |
|                                  |                                            | oscillation HALT<br>mode <sup>Note 2</sup>                    | $V_{DD} = 3.0 \text{ V} \pm 10\%$                        |      | 10   | 90   | μA   |
|                                  | (C3 = C4 = 22  pF,<br>R = 220 k $\Omega$ ) | (C3 = C4 = 22 pF,                                             | $V_{DD} = 2.0 \text{ V} \pm 10\%$                        |      | 3.5  | 60   | μΑ   |
|                                  | DD5                                        | STOP mode                                                     | $V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$                 |      | 0.1  | 30   | μA   |
|                                  |                                            |                                                               | $V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$                 |      | 0.05 | 10   | μA   |
|                                  |                                            |                                                               | $V_{\text{DD}} = 2.0 \text{ V} \pm 10\%$                 |      | 0.05 | 10   | μA   |

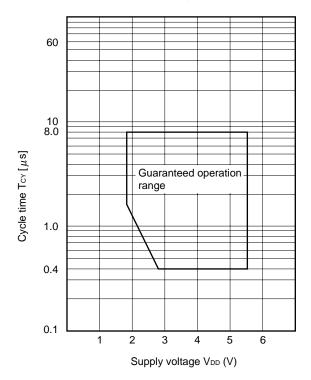
**Notes 1.** The current flowing to the ports (including the current flowing through the on-chip pull-up resistors) is not included.

- 2. Main system clock stopped.
- 3. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).
- 4. Low-speed mode operation (when PCC is set to 02H).
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

#### ★ Flash Memory Write/Erase Characteristics

#### (T<sub>A</sub> = 10 to 40°C, V<sub>DD</sub> = 1.8 to 5.5 V, in 5.0 MHz crystal oscillation operation mode)

| Parameter                                              | Symbol | Conditions                          | MIN. | TYP. | MAX.   | Unit  |
|--------------------------------------------------------|--------|-------------------------------------|------|------|--------|-------|
| Write current <sup>∾œ</sup><br>(V⊳⊳ pin)               | DDW    | When VPP supply voltage = VPP1      |      |      | 18     | mA    |
| Write current <sup>Note</sup><br>(VPP pin)             | PPW    | When VPP supply voltage = VPP1      |      |      | 22.5   | mA    |
| Erase current <sup>Note</sup><br>(V <sub>DD</sub> pin) | Idde   | When VPP supply voltage = VPP1      |      |      | 18     | mA    |
| Erase current <sup>Note</sup><br>(VPP pin)             | IPPE   | When VPP supply voltage = VPP1      |      |      | 115    | mA    |
| Unit erase time                                        | ter    |                                     | 0.5  | 1    | 1      | s     |
| Total erase time                                       | tera   |                                     |      |      | 20     | S     |
| Write count                                            |        | Erase/write are regarded as 1 cycle |      |      | 20     | Times |
| VPP supply voltage                                     | VPP0   | In normal operation                 | 0    |      | 0.2Vdd | V     |
|                                                        | Vpp1   | During flash memory programming     | 9.7  | 10.0 | 10.3   | V     |


**Note** The current flowing to the ports (including the current flowing through the on-chip pull-up resistors) is not included.

#### **AC Characteristics**

# (1) Basic operation ( $T_A = -40$ to $+85^{\circ}C$ , $V_{DD} = 1.8$ to 5.5 V)

|      | Parameter                                             | Symbol          | Conditions                          |                                | MIN. | TYP. | MAX. | Unit |
|------|-------------------------------------------------------|-----------------|-------------------------------------|--------------------------------|------|------|------|------|
| -    | Cycle time<br>(minimum instruction<br>execution time) | Тсү             | CY Operating with main system clock | VDD = 2.7 to 5.5 V             | 0.4  |      | 8    | μs   |
| `    |                                                       |                 |                                     |                                | 1.6  |      | 8    | μs   |
|      |                                                       |                 | Operating with subsyst              | Operating with subsystem clock |      | 122  | 125  | μs   |
| TI8  | TI80 input                                            | f⊤ı             | V <sub>DD</sub> = 2.7 to 5.5 V      |                                | 0    |      | 4    | MHz  |
| frec | quency                                                |                 |                                     |                                | 0    |      | 275  | kHz  |
| TI8  | 0 input high-                                         | t⊤ıн, t⊤ı∟      | V <sub>DD</sub> = 2.7 to 5.5 V      |                                | 0.1  |      |      | μs   |
| /lov | w-level width                                         |                 |                                     |                                | 1.8  |      |      | μs   |
|      | errupt input<br>h-/low-level<br>Ith                   | tinth,<br>tintl | INTP0 to INTP2                      |                                | 10   |      |      | μs   |
|      | SET input low-<br>el width                            | trsl            |                                     |                                | 10   |      |      | μs   |

#### TCY vs. VDD (main system clock)



- (2) Serial interface ( $T_A = -40$  to  $+85^{\circ}C$ ,  $V_{DD} = 1.8$  to 5.5 V)
  - (a) 3-wire serial I/O mode (SCK20...Internal clock)

| Parameter                             | Symbol     | Conditions                          |                                | MIN.          | TYP. | MAX. | Unit |
|---------------------------------------|------------|-------------------------------------|--------------------------------|---------------|------|------|------|
| SCK20 cycle time                      | tKCY1      | V <sub>DD</sub> = 2.7 to 5.5 V      |                                | 800           |      |      | ns   |
|                                       |            |                                     |                                | 3200          |      |      | ns   |
| SCK20 high-/low-                      | tкн1, tк∟1 | VDD = 2.7 to 5.5 V                  |                                | tксү₁/2 – 50  |      |      | ns   |
| level width                           |            |                                     |                                | tксү1/2 — 150 |      |      | ns   |
| SI20 setup time                       | tsıkı      | VDD = 2.7 to 5.5 V                  |                                | 150           |      |      | ns   |
| (to SCK20↑)                           |            |                                     |                                | 500           |      |      | ns   |
| SI20 hold time                        | tksi1      | VDD = 2.7 to 5.5 V                  |                                | 400           |      |      | ns   |
| (from SCK20↑)                         |            |                                     |                                | 600           |      |      | ns   |
| SO20 output delay<br>time from SCK20↓ | tkso1      | R = 1 kΩ, C =100 pF <sup>Note</sup> | V <sub>DD</sub> = 2.7 to 5.5 V | 0             |      | 250  | ns   |
|                                       |            |                                     |                                | 0             |      | 1000 | ns   |

Note R and C are the load resistance and load capacitance of the SO20 output line, respectively.

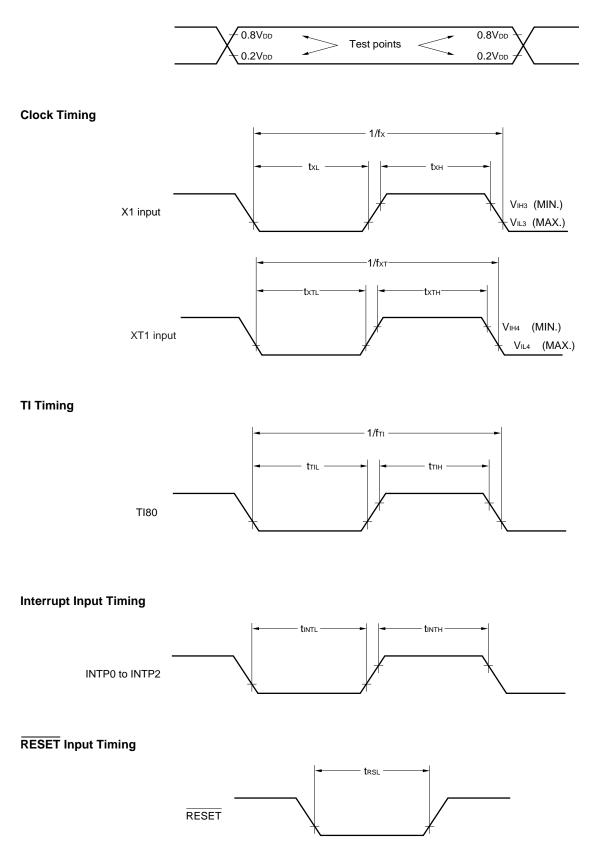
### (b) 3-wire serial I/O mode (SCK20...External clock)

| Parameter                                     | Symbol     | Conditior                             | IS                             | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------|------------|---------------------------------------|--------------------------------|------|------|------|------|
| SCK20 cycle time                              | tkCY2      | V <sub>DD</sub> = 2.7 to 5.5 V        |                                | 900  |      |      | ns   |
|                                               |            |                                       |                                | 3500 |      |      | ns   |
| SCK20 high-/low-                              | tĸн₂, tĸ∟₂ | V <sub>DD</sub> = 2.7 to 5.5 V        |                                | 400  |      |      | ns   |
| level width                                   |            |                                       |                                | 1600 |      |      | ns   |
| SI20 setup time (to                           | tsik2      | V <sub>DD</sub> = 2.7 to 5.5 V        |                                | 100  |      |      | ns   |
| SCK20↑)                                       |            |                                       |                                | 150  |      |      | ns   |
| SI20 hold time (from                          | tksi2      | V <sub>DD</sub> = 2.7 to 5.5 V        |                                | 400  |      |      | ns   |
| SCK20↑)                                       |            |                                       |                                | 600  |      |      | ns   |
| SO <u>20 set</u> up time                      | tkas2      | V <sub>DD</sub> = 2.7 to 5.5 V        |                                |      |      | 120  | ns   |
| (to SS20↓ when<br>SS20 is used)               |            |                                       |                                |      |      | 400  | ns   |
| SO20 disable time $(t_2, SO20^{+})$ with an   | tksd2      | V <sub>DD</sub> = 2.7 to 5.5 V        |                                |      |      | 240  | ns   |
| (to SS20↑ when<br>SS20 is used)               |            |                                       |                                |      |      | 800  | ns   |
| SO20 out <u>put delay</u><br>time from SCK20↓ | tĸso2      | $R = 1 k\Omega$ , $C = 100 pF^{Note}$ | V <sub>DD</sub> = 2.7 to 5.5 V | 0    |      | 300  | ns   |
| ume nom SCK20↓                                |            |                                       |                                | 0    |      | 1000 | ns   |

Note R and C are the load resistance and load capacitance of the SO20 output line, respectively.

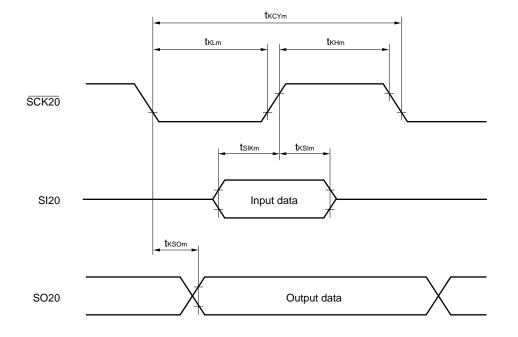
\*

\*


#### (c) UART mode (Dedicated baud rate generator output)

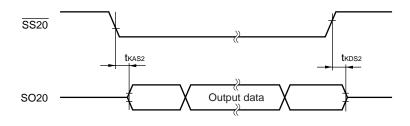
| Parameter     | Symbol | Conditions                     | MIN. | TYP. | MAX.  | Unit |
|---------------|--------|--------------------------------|------|------|-------|------|
| Transfer rate |        | V <sub>DD</sub> = 2.7 to 5.5 V |      |      | 78125 | bps  |
|               |        |                                |      |      | 19531 | bps  |

# (d) UART mode (External clock input)

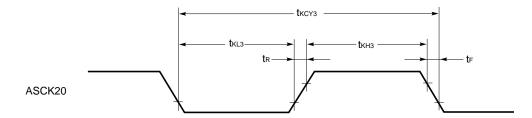

|   | Parameter                | Symbol     | Conditions                     | MIN. | TYP. | MAX.  | Unit |
|---|--------------------------|------------|--------------------------------|------|------|-------|------|
| * | ASCK20 cycle             | tксүз      | V <sub>DD</sub> = 2.7 to 5.5 V | 900  |      |       | ns   |
|   | time                     |            |                                | 3500 |      |       | ns   |
|   | ASCK20 high-/low-        | tkh3, tkl3 | V <sub>DD</sub> = 2.7 to 5.5 V | 400  |      |       | ns   |
|   | level width              |            | 1600                           |      |      | ns    |      |
|   | Transfer rate            |            | V <sub>DD</sub> = 2.7 to 5.5 V |      |      | 39063 | bps  |
|   |                          |            |                                |      |      | 9766  | bps  |
|   | ASCK20 rise/fall<br>time | tr, tr     |                                |      |      | 1     | μs   |

#### AC Timing Test Points (Except the X1 and XT1 inputs)




## Serial Transfer Timing

# 3-wire serial I/O mode:




**Remark** m = 1, 2

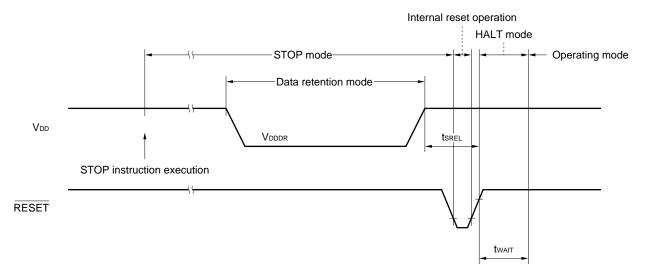
3-wire serial I/O mode (when  $\overline{SS20}$  is used):



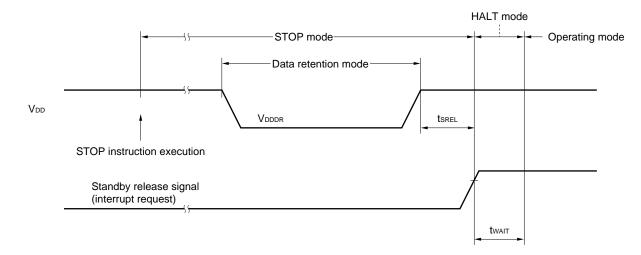
# UART mode (External clock input):



#### Data Memory Stop Mode Low Supply Voltage Data Retention Characteristics (T<sub>A</sub> = -40 to +85°C)


| Parameter                                    | Symbol        | Conditions                   | MIN. | TYP.                | MAX. | Unit |
|----------------------------------------------|---------------|------------------------------|------|---------------------|------|------|
| Data retention<br>supply voltage             | Vdddr         |                              | 1.8  |                     | 5.5  | V    |
| Release signal set time                      | tsrel         |                              | 0    |                     |      | μs   |
| Oscillation                                  | <b>t</b> wait | Release by RESET             |      | 2 <sup>15</sup> /fx |      | ms   |
| stabilization wait<br>time <sup>Note 1</sup> |               | Release by interrupt request |      | Note 2              |      | ms   |

**Notes 1.** The oscillation stabilization wait time is the period when CPU operation is stopped in order to avoid unstable operation at the beginning of oscillation.


**2.** 2<sup>12</sup>/fx, 2<sup>15</sup>/fx, or 2<sup>17</sup>/fx can be selected according to the setting of bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Remark fx: Main system clock oscillation frequency

#### Data Retention Timing (STOP Mode Release by RESET)



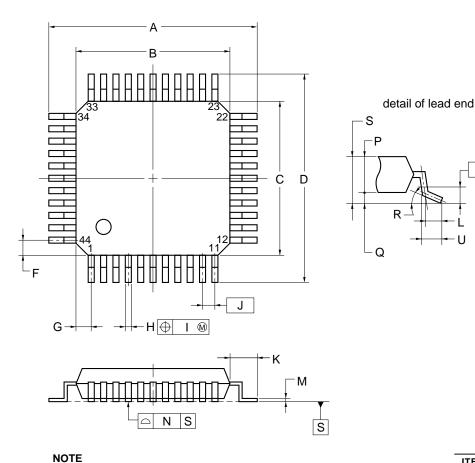
#### Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



#### ★ 8. CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C)$ 10 - PCC = 00H PCC = 02H PCC = 00H (HALT mode) 1.0 PCC = 02H (HALT mode) 0.5 Subsystem clock operating mode (CSS0 = 1) Supply current Ipp (mA) 0.1 0.05 Subsystem clock operation HALT mode (CSS0 = 1) 0.01 0.005 X1 XT2 X2 XT1 Crystal resonator 5.0 MHz ╢┨┠ ┨╋ 22 pF \_\_\_\_ 22 pF 📩 33 pF 33 pF Г ₩ Vss 777 Vss 0.001 0 1 2 3 4 5 6 7

IDD vs. VDD (fx = 5.0 MHz, fxT = 32.768 kHz)


Supply voltage VDD (V)

Data Sheet U13546EJ1V0DS00

Т

# 9. PACKAGE DRAWINGS

# 44 PIN PLASTIC LQFP (10x10)



r

Each lead centerline is located within 0.16 mm of its true position (T.P.) at maximum material condition.

| ITEM MILLIMETERS |                                       |  |
|------------------|---------------------------------------|--|
| А                | 12.0±0.2                              |  |
| В                | 10.0±0.2                              |  |
| С                | 10.0±0.2                              |  |
| D                | 12.0±0.2                              |  |
| F                | 1.0                                   |  |
| G                | 1.0                                   |  |
| н                | $0.37\substack{+0.08 \\ -0.07}$       |  |
| I                | 0.2                                   |  |
| J                | 0.8 (T.P.)                            |  |
| К                | 1.0±0.2                               |  |
| L                | 0.5                                   |  |
| М                | $0.17\substack{+0.03 \\ -0.06}$       |  |
| N                | 0.10                                  |  |
| Р                | 1.4±0.05                              |  |
| Q                | 0.1±0.05                              |  |
| R                | $3^{\circ}^{+4^{\circ}}_{-3^{\circ}}$ |  |
| S                | 1.6 MAX.                              |  |
| U                | 0.6±0.15                              |  |
|                  | S44GB-80-8ES-1                        |  |

# **\* 10. RECOMMENDED SOLDERING CONDITIONS**

The  $\mu$ PD78F9046 should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

#### Table 10-1. Surface Mounting Type Soldering Conditions

#### $\mu$ PD78F9046GB-8ES: 44-pin plastic LQFP (10 × 10 mm)

| Soldering Method | Soldering Conditions                                                                                                                         | Recommended<br>Condition Symbol |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Infrared reflow  | Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: twice or less                                            | IR35-00-2                       |
| VPS              | Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: twice or less                                            | VP15-00-2                       |
| Wave soldering   | Solder bath temperature: 260°C max., Time: 10 seconds max., Count:<br>Once, Preheating temperature: 120°C max. (package surface temperature) | WS60-00-1                       |
| Partial heating  | Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)                                                                              | —                               |

Caution Do not use different soldering methods together (except for partial heating).

# APPENDIX A DIFFERENCES BETWEEN $\mu$ PD78F9046 AND MASK ROM VERSIONS

The  $\mu$ PD78F9046 has flash memory in place of the internal ROM of the mask ROM versions ( $\mu$ PD789046). Differences between the  $\mu$ PD78F9046 and mask ROM versions are shown in Table A-1.

| Parameter                 |                         | Flash Memory Version        | Mask ROM Versions |
|---------------------------|-------------------------|-----------------------------|-------------------|
|                           |                         | μPD78F9046                  | μPD789046         |
| Internal                  | ROM structure           | Flash memory                | Mask ROM          |
| memory                    | ROM capacity            | 16 Kbytes                   |                   |
|                           | High-speed RAM capacity | 512 bytes                   |                   |
| V <sub>PP</sub> pin       |                         | Available                   | Not available     |
| IC pin                    |                         | Not available               | Available         |
| Electrical specifications |                         | See the relevant data sheet |                   |

#### Table A-1. Differences Between µPD78F9046A and Mask ROM Versions

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the consumer samples (not engineering samples) of the mask ROM version.

# APPENDIX B DEVELOPMENT TOOLS

The following development tools are available for system development using the  $\mu$ PD78F9046.

# Language Processing Software

|   | RA78K0S <sup>Notes 1, 2, 3</sup> Assembler package common to 78K/0S Series |                                                        |
|---|----------------------------------------------------------------------------|--------------------------------------------------------|
|   | CC78K0S <sup>Notes 1, 2, 3</sup>                                           | C compiler package common to 78K/0S Series             |
|   | DF789026 <sup>Notes 1, 2, 3</sup>                                          | Device file for the $\mu$ PD789046 Subseries           |
| * | CC78K0S-L <sup>Notes 1, 2, 3</sup>                                         | C compiler library source file common to 78K/0S Series |

#### ★ Flash Memory Writing Tools

| Flashpro III<br>(FL-PR3 <sup>№™ 4</sup> , PG-FP3) | Dedicated flash programmer for microcontrollers incorporating flash memory |
|---------------------------------------------------|----------------------------------------------------------------------------|
| FA-44GB-8ES <sup>Note 4</sup>                     | Flash memory writing adapter for 44-pin plastic LQFP (GB-8ES type)         |

# **Debugging Tools**

|                                                                                                                                                                                                   | IE-78K0S-NS       In-circuit emulator for debugging the hardware and software of the application system         In-circuit emulator       78K/0S series. Supports the integrated debugger (ID78K0S-NS). Used with an AC emulation probe, and interface adapter that connects the host machine. |                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| IE-70000-MC-PS-B Adapter that distributes power supply from an AC100<br>AC adapter                                                                                                                |                                                                                                                                                                                                                                                                                                | Adapter that distributes power supply from an AC100- to 240-V outlet.                                                                   |
|                                                                                                                                                                                                   | IE-70000-98-IF-C<br>Interface adapter                                                                                                                                                                                                                                                          | Adapter when using a PC-9800 series PC (except notebook type) as the host machine of the IE-78K0S-NS (C bus supported).                 |
|                                                                                                                                                                                                   | IE-70000-CD-IF-A<br>PC card interface                                                                                                                                                                                                                                                          | PC card and interface cable when using a notebook type PC as the host machine of the IE-<br>78K0S-NS (PCMCIA socket supported).         |
|                                                                                                                                                                                                   | IE-70000-PC-IF-C<br>Interface adapter                                                                                                                                                                                                                                                          | Adapter when using an IBM PC/AT <sup>™</sup> or compatible as the host machine of the IE-78K0S-NS (ISA bus supported).                  |
| *                                                                                                                                                                                                 | IE-70000-PCI-IF<br>Interface adapter                                                                                                                                                                                                                                                           | Adapter when using a PC with PCI bus as the host machine of the IE-78K0S-NS.                                                            |
|                                                                                                                                                                                                   | IE-789026-NS-EM1<br>Emulation board                                                                                                                                                                                                                                                            | Board for emulating device-specific peripheral hardware. Used with an in-circuit emulator.                                              |
| NP-44GB <sup>№0€4</sup> Board connecting an in-circuit emulator and target system. For 44-pin plastit           ★         NP-44GB-TQ <sup>№0€4</sup> type) and 44-pin plastic LQFP (GB-8ES type). |                                                                                                                                                                                                                                                                                                | Board connecting an in-circuit emulator and target system. For 44-pin plastic LQFP (GB-3BS type) and 44-pin plastic LQFP (GB-8ES type). |
|                                                                                                                                                                                                   | SM78K0S <sup>Notes 1,2</sup> System simulator common to 78K/0S Series                                                                                                                                                                                                                          |                                                                                                                                         |
| *                                                                                                                                                                                                 | ID78K0S-NS <sup>Notes 1,2</sup>                                                                                                                                                                                                                                                                | Integrated debugger common to 78K/0S Series                                                                                             |
|                                                                                                                                                                                                   | DF789046 <sup>Notes 1,2</sup>                                                                                                                                                                                                                                                                  | Device file for $\mu$ PD789046 Subseries                                                                                                |

#### **Real-Time OS**

| MX78K0S <sup>Notes 1, 2</sup> | OS for 78K/0S Series |
|-------------------------------|----------------------|
| 101278103                     | OS IOL FORVOS Series |

Notes 1. Based on the PC-9800 series (Japanese/English Windows<sup>™</sup>)

- 2. Based on IBM PC/AT and compatibles (Japanese/English Windows)
- Based on the HP9000 series 700<sup>™</sup> (HP-UX<sup>™</sup>), SPARCstation<sup>™</sup> (SunOS<sup>™</sup>, Solaris<sup>™</sup>), and NEWS<sup>™</sup> (NEWS-OS<sup>™</sup>)
- **4.** Products manufactured by Naito Densei Machida Mfg. Co., Ltd. (+81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.

Remark The RA78K0S, CC78K0S, and SM78K0S can be used in combination with the DF789046.

# APPENDIX C RELATED DOCUMENTS

# **★** Documents Related to Devices

| Document Name                                              | Document No. |          |
|------------------------------------------------------------|--------------|----------|
|                                                            | English      | Japanese |
| μPD789046 Data Sheet                                       | U13380E      | U13380J  |
| $\mu$ PD78F9046 Data Sheet                                 | This manual  | U13546J  |
| $\mu$ PD789046 Subseries User's Manual                     | U13600E      | U13600J  |
| 78K/0S Series User's Manual — Instruction                  | U11047E      | U11047J  |
| 78K/0, 78K/0S Series Application Note — Flash Memory Write | U14458E      | U14458J  |

#### Documents Related to Development Tools (User's Manuals)

| Document Name                                |                                                   | Document No.   |                |
|----------------------------------------------|---------------------------------------------------|----------------|----------------|
|                                              |                                                   | English        | Japanese       |
| RA78K0S Assembler Package                    | Operation                                         | U11622E        | U11622J        |
|                                              | Assembly Language                                 | U11599E        | U11599J        |
|                                              | Structured Assembly Language                      | U11623E        | U11623J        |
| CC78K0S C Compiler                           | Operation                                         | U11816E        | U11816J        |
|                                              | Language                                          | U11817E        | U11817J        |
| SM78K0S System Simulator Windows Based       | Reference                                         | U11489E        | U11489J        |
| SM78K Series System Simulator                | External Parts User Open Interface Specifications | U10092E        | U10092J        |
| ID78K0S-NS Integrated Debugger Windows Based | Reference                                         | U12901E        | U12901J        |
| IE-78K0S-NS In-Circuit Emulator              |                                                   | U13549E        | U13549J        |
| IE-789046-NS-EM1 Emulation Board             |                                                   | To be prepared | To be prepared |

# Documents Related to Embedded Software (User's Manuals)

| Document Name            |             | Document No. |          |
|--------------------------|-------------|--------------|----------|
|                          |             | English      | Japanese |
| 78K/0S Series OS MX78K0S | Fundamental | U12938E      | U12938J  |

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

 $\star$ 

#### **Other Related Documents**

| Document Name                                                                      | Document No. |          |
|------------------------------------------------------------------------------------|--------------|----------|
|                                                                                    | English      | Japanese |
| SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)                         | X13769X      |          |
| Semiconductor Device Mounting Technology Manual                                    | C10535E      | C10535J  |
| Quality Grades on NEC Semiconductor Device                                         | C11531E      | C11531J  |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983E      | C10983J  |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892E      | C11892J  |
| Guide to Microcomputer-Related Products by Third Party                             | _            | U11416J  |

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

\_\_\_\_\_

[MEMO]

# NOTES FOR CMOS DEVICES

# **1** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# **②** HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

**EEPROM** is a trademark of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

# NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

#### NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41

Fax: 02-66 75 42 99

#### NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

#### NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

#### NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

#### NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- The information in this document is current as of December, 1999. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
   "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
   developed based on a customer-designated "quality assurance program" for a specific application. The
   recommended applications of a semiconductor product depend on its quality grade, as indicated below.
   Customers must check the quality grade of each semiconductor product before using it in a particular
   application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).