


1/205

ST20-C1 Core
Instruction Set

Reference Manual

72-TRN-274-01 July 1997

Contents



2/205

Contents
1 Introduction .4

1.1 ST20-C1 features .4
1.2 Manual structure .5

2 Notation .6

2.1 Instruction listings .6
2.2 Instruction definitions .8
2.3 Operators used in the definitions .11
2.4 Data structures and constants .13

3 Architecture .16

3.1 Values .16
3.2 Memory .18
3.3 Registers .20
3.4 Instruction encoding .24

4 Using ST20-C1 instructions .30

4.1 Manipulating the evaluation stack. .30
4.2 Loading and storing .31
4.3 Expression evaluation .33
4.4 Arithmetic .35
4.5 Forming addresses .41
4.6 Comparisons and jumps .43
4.7 Evaluation of boolean expressions .45
4.8 Bitwise logic and bit operations. .47
4.9 Shifting and byte swapping .48
4.10 Function and procedure calls .48
4.11 Peripherals and I/O. .52
4.12 Status register. .55

5 Multiply accumulate .56

5.1 Data formats .56
5.2 mac and umac .56
5.3 Short multiply accumulate loop .56
5.4 Biquad IIR filter .58
5.5 Data vectors .59
5.6 Scaling .59
5.7 Data formats .65

3/205

Contents



6 Exceptions .70

6.1 Exception levels .71
6.2 Exception vector table. .72
6.3 Exception control block and the saved state. .73
6.4 Initial exception handler state .74
6.5 Restrictions on exception handlers .75
6.6 Interrupts .75
6.7 Traps. .76
6.8 Setting up the exception handler .76

7 Multi-tasking .78

7.1 Processes .78
7.2 Descheduled processes .79
7.3 Queues .80
7.4 Timeslicing .81
7.5 Inactive processes .82
7.6 Descheduled process state. .82
7.7 Initializing multi-tasking .83
7.8 Scheduling kernels .84
7.9 Semaphores .84
7.10 Sleep. .85

8 Instruction Set Reference .87

Appendices . 168

A Constants and data structures. .169

B Instruction set summary. .174

C Compiling for the ST20-C1 .178

D Glossary .187

1.1 ST20-C1 features

4/205



1 Introduction
This manual provides a summary and reference to the ST20 architecture and instruc-
tion set for the ST20-C1 core.

ST20 is a technology for building successful embedded VLSI designs. ST20 devices
comprise a collection of VLSI macro-cells connected through a high-performance on-
chip bus. This architecture allows the easy construction of both general purpose (e.g.
ST20-MC1 micro-controller) and application specific devices (e.g. ST20-TPx digital
set top box family).

The ST20 macro-cell library includes CPU micro-cores, on-chip memories and a wide
range of digital and analogue I/O devices. SGS-THOMSON offers a range of ST20
CPU micro-cores, allowing the best cost vs. performance trade-off to be achieved in
each application area. This manual describes the ST20-C1 CPU micro-core.

ST20 devices are available from SGS-THOMSON and licensed second source
vendors.

1.1 ST20-C1 features

The ST20-C1 has the following features:

• It is implemented as a 2-way superscalar, 3-stage pipeline, with an internal 16-
word register cache. This architecture can sustain 4 instructions in progress,
with a maximum of 2 instructions completing per cycle.

• It uses a variable length instruction coding scheme based on 8-bit units which
gives excellent static and dynamic code size. Instructions take between 1 and
8 units to code, with an average of 1.25 units (10 bits) per instruction.

• It provides flexible prioritized vectored interrupt capabilities. The worst case
interrupt latency is 0.5 microseconds (at 33 Mhz operating frequency).

• It provides extensive instruction level support for 16-bit digital signal process-
ing (DSP) algorithms.

• It is particularly suitable for low power and battery-powered applications, with
low core operating power, and sophisticated power management facilities.

• It provides extensive real-time debugging capability through the optional ST20
diagnostic controller unit (DCU) macro-cell, which supports fully non-intrusive
breakpoints, watchpoints and code tracing.

• It has a flexible and powerful built-in hardware scheduler. This is a light-weight
real-time operating system (RTOS) directly implemented in the microcode of
the ST20-C1 processor. The hardware scheduler can be customized and pro-
vides support for software schedulers.

• It provides a built-in user-programmable 32-bit input/output register providing
system control and communication capability directly from the CPU.

5/205

1 Introduction



1.2 Manual structure

The manual is divided into the following chapters:

1 This introduction chapter, which explains the structure of the book;

2 A notation chapter (Chapter 2) which explains the layout and notation conven-
tions used in the instruction definitions and elsewhere;

3 An architecture chapter (Chapter 3), which explains the structure of the ST20-
C1 core, the registers, memory addressing, the format of the instructions and
the exception handling and process models;

4 Four chapters on using the instructions and how the instructions can be used
to achieve certain useful outcomes: Chapter 4 on the general instructions;
Chapter 5 on multiply-accumulate; Chapter 6 on interrupts and traps; and
Chapter 7 on processes and support for multi-tasking.

5 An alphabetical listing of the instructions, one to a page (Chapter 8). Descrip-
tions and formal definitions are presented in a standard format with the instruc-
tion mnemonic and full name of the instruction at the top of the page. The
notation used is explained in detail in Chapter 2.

In addition there are appendices listing constants and structures, covering issues
related to compiling for a ST20-C1 core and listing the instruction set plus a glossary
for ST20-C1 terminology.

2.1 Instruction listings

6/205



2 Notation
This chapter describes the notation used throughout this manual, including the
meaning of the instruction listings and the meanings and values of constants.

2.1 Instruction listings

The instructions are listed in alphabetical order, one to a page. Descriptions are
presented in a standard format with the instruction mnemonic and full name of the
instruction at the top of the page, followed by these categories of information:

• Code: the instruction code;

• Description: a brief summary of the purpose and behavior of the instruction;

• Definition: a more formal and complete description of the instruction, using
the notation described below in section 2.2;

• Status Register: a list of errors and other changes to the Status Register
which can occur;

• Comments: a list of other important features of the instruction;

• See also: cross references are provided to other instructions with related func-
tions.

These categories are explained in more detail below, using the and instruction as an
example.

2.1.1 Instruction name

The header at the top of each page shows the instruction mnemonic and, on the right,
the full name of the instruction. For primary instructions the mnemonic is followed by
‘n’ to indicate the operand to the instruction; the same notation is used in the descrip-
tion to show how the operand is used. An explanation of the primary and secondary
instruction formats is given in section 3.4.

2.1.2 Code

The code of the instruction is the value that would appear in memory to represent the
instruction.

For secondary instructions the instruction ‘operation code’ is shown as the memory
code — the actual bytes, including any prefixes, which are stored in memory. The
value is given as a sequence of bytes in hexadecimal, decoded left to right. The codes
are stored in memory in ‘little-endian’ format, with the first byte at the lowest address.

For example, the entry for the and instruction is:

Code : F9

This means that the hexadecimal byte value F9 would appear in memory for an and.

7/205

2 Notation



For primary instructions the code stored in memory is determined partly by the value
of the operand to the instruction. In this case the op-code is shown as ‘Function x’
where x is the function code in the last byte of the instruction. For example, adc (add
constant) is shown as

Code: Function 8

This means that adc 1 would appear in memory as the hexadecimal byte value 81. For
an operand n in the range 0 to 15, adc n would appear in memory as 8n.

2.1.3 Description

The description section provides an indication of the purpose of the instruction as well
as a summary of the behavior. This may include details of the use of registers, whose
initial values may be used as parameters and into which results may be stored.

For example, the and instruction contains the following description:

Description: Bitwise AND of Areg and Breg .

2.1.4 Definition

The definition section provides a formal description of the behavior of the instruction.
The behavior is defined in ter ms of its effect on the state of the processor, i.e. the
changes in the values in registers and memory before and after the instruction has
executed.

The effects of the instruction on registers, etc. are given as statements of the following
form:

register′ ← expression involving registers, etc.

memory_location′ ← expression involving registers, etc.

Primed names (e.g. Areg′) represent values after instruction execution, while names
without primes represent values when the instruction execution starts. For example,
Areg represents the value in Areg before the execution of the instruction while Areg′
represents the value in Areg afterwards. So the example above states that after the
instruction has been executed the register or memory location on the left hand side
holds the value of the expression on the right hand side.

Only the changed registers and memory locations are given on the left hand side of
the statements. If the new value of a register or memory location is not given then the
value is unchanged by the instruction.

The description is written with the main function of the instruction stated first. For
example the main function of the add instruction is to put the sum of Areg and Breg
into Areg). This is followed by the other effects of the instruction, such as rotating the
stack. There is no temporal ordering implied by the order in which the statements are
written.

2.2 Instruction definitions

8/205



For example, the and instruction contains the following description:

Definition:

Areg′ ← Breg ∧ Areg

Breg′ ← Creg
Creg′ ← Areg

This says that the integer stack is rotated and Areg is assigned the bitwise AND of the
values that were initially in Breg and Areg . After the instruction has executed Breg
contains the value that was originally in Creg , and Creg has the value that was in
Areg .

The notation is described more fully in section 2.2.

2.1.5 Status Register

This section of the instruction definitions lists any changes to bits of the Status
register which can occur. The Status register is described in more detail in section
3.3.2.

2.1.6 Comments

This section is used for listing other information about the instructions that may be of
interest. This includes an indication of the type of the instruction:

“Primary instruction” — indicates one of the 13 functions which may be directly
encoded with an operand in a single byte instruction.

“Secondary instruction” — indicates an instruction which is encoded using opr.

An explanation of the primary and secondary instruction formats is given in section
3.4.

The Comments section also describes any situations where the operation of the
instruction is undefined or invalid and any limits to the parameter values.

For example, the only comment listed for the and instruction is:

Comments:

Secondary instruction.

This says that and is a secondary instruction.

2.2 Instruction definitions

The following sections give a full description of the notation used in the formal defini-
tion section of the instruction descriptions.

9/205

2 Notation



2.2.1 The process state

The process state consists of the registers (Areg , Breg , Creg , Iptr , Tdesc , Wptr , and
Status), and the contents of memory. A description of the meanings and uses of the
registers and special memory locations and data structures is given in section 3.3.

2.2.2 General

The instruction descriptions are not intended to describe the way the instructions are
implemented, but only their effect on the state of the processor. So, for example, the
result of mul is shown in terms of an intermediate result calculated to infinite precision,
although no such intermediate result is used in the implementation.

Comments (in italics) are used to both clarify the description and to describe actions
or values that cannot easily be represented by the notation used here; e.g. take
timeslice trap. Some of these actions and values are described in more detail in other
chapters.

An ellipsis is used to show a range of values; e.g. ‘i = 0..31’ means that i has values
from 0 to 31, inclusive.

Subscripts are used to indicate particular bits in a word; e.g. Aregi for bit i of Areg ; and
Areg0..7 for the least significant byte of Areg . Note that bit 0 is the least significant bit
in a word, and bit 31 is the most significant bit.

Except for Iptr , certain reserved words of memory, and taking exceptions or switching
processes, if the description does not mention the state of a register or memory
location after the instruction, then the value will not be changed by the instruction.

Iptr is assigned the address of the next instruction in the code before the instruction
execution starts. The Iptr is included in the description only when there are additional
effects of the instruction (e.g. in the jump instruction). In these cases the address of
the next instruction is indicated by the comment ‘next instruction’.

2.2.3 Undefined values

Some instructions in some circumstances leave the contents of a register or memory
location in an undefined state . This means that the value of the location may be
changed by the instruction, but the new value cannot be easily defined, or is not a
meaningful result of the instruction. For example, when division by zero is attempted,
Breg and Creg become undefined, i.e. they do not contain any meaningful data. An
undefined value is represented by the name undefined.

The values of registers which become undefined as a result of executing an instruc-
tion are implementation dependent and are not guaranteed to be the same on
different members or revisions of the ST20 family of processors.

2.2.4 Data types

The instruction set includes operations on three sizes of data: 8, 16 and 32-bit objects.
8-bit and 16-bit data can represent signed or unsigned integers and 32-bit data can

2.2 Instruction definitions

10/205



represent addresses, signed or unsigned integers. Generally the arithmetic in signed.
In some cases it is clear from the context (e.g. from the operators used) whether a
particular object represents a signed or unsigned number. A subscripted label is
added (e.g. Aregunsigned) to clarify where necessary.

2.2.5 Representing memory

The memory is represented by arrays of each data type. These are indexed by a value
representing a byte address. Access to the three data types is represented in the
instruction descriptions in the following way:

byte[address] references a byte in memory at the given address

sixteen[address] references a 16-bit half word in memory

word[address] references a 32-bit word in memory

For all of these, the state of the machine referenced is that before the instruction if the
function is used without a prime (e.g. word[address]), and that after the instruction if
the function is used with a prime (e.g. word′[address]).

For example, writing a value given by an expression, expr, to the word in memory at
address addr is represented by:

word′[addr] ← expr

and reading a word from a memory location is achieved by:

register′ ← word[addr]

Writing to memory in any of these ways will update the contents of memory, and these
updates will be consistently visible to the other representations of the memory. For
example, writing a byte at address 0 will modify the least significant byte of the word at
address 0.

Data alignment

Generally, word and half word data items have restrictions on their alignment in
memory. Byte values can be accessed at any byte address, i.e. they are byte aligned.
16-bit objects can only be accessed at even byte addresses, i.e. the least significant
bit of the address must be 0. 32-bit objects must be word aligned, i.e. the 2 least
significant bits of the address must be zero.

Address calculation

An address identifies a par ticular byte in memory. Addresses are frequently calculated
from a base address and an offset. For different instructions the offset may be given in
units of bytes or words depending on the data type being accessed. In order to
calculate the address of the data, a word offset must be converted to a byte offset
before being added to the base address. This is done by multiplying the offset by the
number of bytes per word, i.e. 4.

As there are many accesses to memory at word offsets, a shorthand notation is used
to represent the calculation of a word address. The notation register @ x is used to

11/205

2 Notation



represent an address which is offset by x words (4x bytes) from the address in
register. For example, in the specification of load non-local there is:

Areg′ ← word[Areg @ n]

Here, Areg is loaded with the contents of the word that is n words from the address
pointed to by Areg , i.e. the word at address Areg + 4n.

In all cases, if the given base address has the correct alignment then any offset used
will also give a correctly aligned address.

2.3 Operators used in the definitions

A full list of the operators used in the instruction definitions is given in Table 2.1.
Unless otherwise stated, all arithmetic is signed.

Modulo operators

Arithmetic is done using modulo arithmetic — i.e. there is no checking for errors and, if
the calculation overflows, the result ‘wraps around’ the range of values representable
in the word length of the processor — e.g. adding 1 to the address at the top of the

Symbol Meaning

Unchecked (modulo) integer arithmetic

+
−
×
/

rem

Signed integer add, subtract, multiply, divide and remainder. If the computation
overflows the result of the operation is truncated to the word length. If a divide
or remainder by zero occurs the result of the operation is undefined. No errors
are signalled. The operator ‘−’ is also used as a monadic operator.

Signed comparison operators

<
>
≤
≥
=
≠

Comparisons of signed integer values: ‘less than’, ‘greater than’, ‘less than or
equal’, ‘greater than or equal’, ‘equal’ and ‘not equal’.

Bitwise operators

∼
 ∧
∨
⊗
>>
<<

>>arith

‘Not’, ‘and’, ‘or’, ‘exclusive or’, logical left and right shift and arithmetic right shift
operations on bits in words.

Boolean operators

not
and
or

Boolean combination in conditionals.

Table 2.1 Operators used in the instruction descriptions

2.3 Operators used in the definitions

12/205



address map produces the address of the byte at the bottom of the address map.
These operators are represented by the symbols ‘+’, ‘−’, etc.

Error conditions

Any errors that can occur in instructions which are defined in terms of the modulo
operators are indicated explicitly in the instruction description. For example the add
instruction indicates the cases that can cause overflow or underflow, independently of
the actual addition:

if (sum > MostPos)
{

Areg′ ← sum − 2BitsPerWord

Status′underflow ← clear
Status′overflow ← set

}
else if (sum < MostNeg)
{

Areg′ ← sum + 2BitsPerWord

Status′underflow ← set
Status′overflow ← clear

}
else
{

Areg′ ← sum
Status′underflow ← clear
Status′overflow ← clear

}
...

2.3.1 Functions

Type conversions

The following notation is used to indicate the type cast of x to a 16-bit integer:

int16 (x)

If x is too large or too small to fit into a 16-bit integer then the result of the instruction is
undefined.

Double word splitting

Where a calculation is performed using a 48-bit or 64-bit value, the value may be split
into two words. The function low_word returns the least significant word and the
function high_word returns the most significant word.

13/205

2 Notation



2.3.2 Conditions to instructions

In many cases, the action of an instruction depends on the current state of the
processor. In these cases the conditions are shown by an if clause; this can take one
of the following forms:

• if condition
statement

• if condition
statement

else
statement

• if condition
statement

else if condition
statement

else
statement

These conditions can be nested. Braces, {}, are used to group statements which are
dependent on a condition. For example, the cj (conditional jump) instruction contains
the following lines:

if (Areg = 0)
Iptr′ ← next instruction + n

else
{

Iptr′ ← next instruction

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Areg

}

This says that if the value in Areg is zero, then the jump is taken (the instruction
operand, n, is added to the instruction pointer), otherwise the stack is popped and
execution continues with the next instruction.

2.4 Data structures and constants

A number of data structures have been defined in this manual. Each comprises a
number of data slots that are referenced by name in the text and the instruction
descriptions.

These data structures are listed in the tables in Appendix A. Each table gives the
name of each slot in the structure and the word offsets from the base address of the
structure. A slot in a data structure is identified using the offset notation descr ibed in
section 2.2.5:

word[base_address @ word_offset]

2.4 Data structures and constants

14/205



For example, the back pointer of a semaphore structure at address sem would be:

word[sem @ s.Back]

In addition, several constants are used to identify fixed values for the ST20-C1
processor. All the constants are listed in Appendix A.

Product identity value

This is the value returned by the ldprodid instruction. For specific product ids in the
ST20 family refer to SGS-THOMSON.

15/205

2 Notation



3.1 Values

16/205



3 Architecture
This chapter describes the general architectural features of the ST20-C1 core which
are relevant to more than one instruction or group of instructions. Interrupts and traps
are described in Chapter 6 and support for multi-tasking is described in Chapter 7.
Other features which are related to specific tasks are descr ibed in Chapter 4. A full list
of constants and data structures is given in Appendix A.

The ST20-C1 instruction set covers:

• control flow

• arithmetic and logical operations

• bit field manipulations

• shifting and byte-swapping

• register manipulations

• memory access with various addressing modes and data sizes

• task scheduling

• direct input/output

3.1 Values

The ST20-C1 core supports data objects of different sizes, either signed or unsigned.
The sizes directly supported are bytes (8-bit), half words (16-bit), words (32-bit) and
multiple words (64-bit, 96-bit etc.). Bytes, half-words and words may be loaded and
stored. Arithmetic operations are provided for signed words and multiple words. A half
word is called a sixteen in the instruction names.

The most negative integer (0x80000000) is known as MostNeg and the most positive
(0x7FFFFFFF) as MostPos.

Boolean objects, taking one of the values true or false, are also used by some instruc-
tions. False is represented by the value 0 and true has the value 1. Section 4.7
describes how other values may be implemented for language compilation.

Several data structures are defined in this manual. Each comprises a number of data
words (sometimes called slots) that are referenced by name in the text and the
instruction descriptions and addressed as offsets from the base of the data structure.
A full list of these data structures and other constants is given in Appendix A.

3.1.1 Ordering of information

The ST20 is little-endian - i.e. less significant data is always held in lower addresses.
This applies to bits in bytes, bytes in words and words in memory. Hence, in a word of
data representing an integer, one byte is more significant than another if its byte
selector is larger.

Figure 3.1 shows the ordering of bytes in words for the ST20.

17/205

3 Architecture



Figure 3.1 Bytes and bits in words

For example, the most significant bit of a word is bit 31, and the most significant byte is
byte 3, consisting of bits 24 to 31. This ordering is compatible with Intel processors,
but not Motorola or SPARC.

For compatibility with other devices, a swap32 instruction is provided to reverse the
order of bytes within a word.

3.1.2 Signed integers and sign extension

A signed object is stored in twos-complement format. A signed value may be repre-
sented by an object of any size. Most commonly a signed integer is represented by a
single word, but as explained, it may be stored, for example, in a 64-bit object, a 16-bit
object, or an 8-bit object. In each of these formats, all the bits within the object contain
useful information.

The length of the object that stores a signed value can be increased, so that the object
size is increased without changing the value that is represented. This operation is
known as sign extension. All the extra bits that are allocated for the larger object, are
meaningful to the value of the signed integer; they must therefore be set to the appro-
priate value. The value for all these extra bits is the same as the value of the most
significant bit - i.e. the sign bit - of the smaller object. The ST20-C1 provides instruc-
tions that sign extend byte and half-word objects to words.

The example shown in Figure 3.2 shows how the value -10 is stored in a 32-bit
register, either as an 8-bit object or as a 32-bit object. In this case, bits 31 to 8 are
meaningful for the 32-bit object but not for the 8-bit object. These bits are set to 1 in
the 32-bit object.

3 2 1 0

Bytes in a wordMost
significant

Least
significant

Bits in a wordMost
significant

Least
significant

31 0

3.2 Memory

18/205



Figure 3.2 Storing a signed integer in different length objects

3.2 Memory

The ST20 processor is a 32-bit word machine, with byte addressing and a 4 Gbyte
address space. This section explains how data is arranged in that address space. The
address of an object is the address of the base, i.e. the byte with the lowest address.

3.2.1 Word address and byte selector

A machine address, or pointer, is a single word of data which identifies a byte in
memory - i.e. a byte address. It comprises two parts, a word address and a byte
selector. The byte selector occupies the two least significant bits of the word; the word
address the thirty most significant bits.

An address is treated as a signed value, the range of which starts at the most negative
integer and continues, through zero, to the most positive integer. This enables the
standard arithmetic and comparison functions to be used on pointer values in the
same way that they are used on numerical values.

Certain values can never be used as pointers because they represent reserved
addresses at the bottom of memory space. They are reserved for use by the
processor and initialization. A full list of names and values of constants used in this
manual is given in Appendix A.

In particular, the null process pointer (known as NotProcess) has the value MostNeg,
since zero could be a valid process address.

3.2.2 Alignment

A data object is said to be word-aligned if it is at an address with a byte selector of
zero, i.e. the full address of the object is divisible by 4. Similarly, a data object is said to

1 1 1 1 0 1 1 0these bit values not related to integer value

07831bit position

1 1 1 1 0 1 1 0

07831bit position

1 1 1...

signed integer value (-10) stored as an 8-bit object (byte)

signed integer value (-10) stored as a 32-bit object (word)

19/205

3 Architecture



be half-word-aligned if it is at an address with an even byte selector, i.e. the full
address of the object is divisible by 2.

Word objects, including addresses, are normally stored word-aligned in memory. This
is usually desirable to make the best use of any 32-bit wide memory. Also most
instructions that involve fetching data from or storing data into memory, use word
aligned addresses and load or store four contiguous bytes.

However, there are some instructions that can manipulate part of a word. A half-word
object is normally half-word-aligned, so it can be stored either in the least significant
16 bits of a word or in the most significant 16 bits. A data item that is represented in
two contiguous words is called a double word object and is normally word-aligned.

3.2.3 Ordering of information in memory

Data is stored in memory using the little-endian rule. Objects consisting of more than
one byte are stored in consecutive bytes, with the least significant byte at the lowest
address and the most significant at the highest address .

Figure 3.3 shows the ordering of bytes in words in memory. If X is a word-aligned
address then the word at X consists of the bytes at addresses X to X+3, where the
byte at X is the least significant byte and the byte at X+3 is the most significant byte of
the word.

Figure 3.3 Bytes in words in memory

3.2.4 Work space

The ST20-C1 uses a stack-based data structure in memory to hold the local working
data of a program, called the work space. The work space is a word-aligned collection
of 32-bit words pointed to by the work space pointer register (Wptr).

The programmer’s model is that all local data is held in the work space, i.e. in memory,
and must be brought into the evaluation stack to be operated on, and then written
back from the evaluation stack to the work space.

X+7
X+6
X+5
X+4
X+3
X+2
X+1
X+0

Memory
(bytes)

X+3 X+2 X+1 X+0

MSB LSB

31 24 23 16 15 8 7 0

X+7 X+6 X+5 X+4
MSB LSB

31 24 23 16 15 8 7 0

32-bit words

X is a word-aligned byte address

X+n is the byte n bytes past X

3.3 Registers

20/205



An implementation of the ST20-C1 core may include a register cache. This provides a
mechanism to accelerate access to local work space without changing the
programmer’s model of how the work space operates or impacting either the excellent
code density or low interrupt latency associated with a stack-based instruction set.

3.3 Registers

This section introduces the ST20-C1 core registers that are visible to the programmer.
Seven registers, known as process state registers, define the local state of the
executing process. These registers are preserved through exceptions. One other
register is provided for performing input/output, and is not preserved through excep-
tions. All registers are 32-bit. Each instruction explicitly refers to specific registers , as
described in the instruction definitions.

The state of an executing process at any instant is defined by the contents of the
machine registers listed in Table 3.1. The registers are illustrated in Figure 3.4 and
described in the rest of this section.

Figure 3.4 Register set

Register Description

Areg Evaluation stack register A

Breg Evaluation stack register B

Creg Evaluation stack register C

Iptr Instruction pointer register, pointing to the next instruction to be executed

Status Status register

Wptr Work space pointer, pointing to the stack of the currently executing process

Tdesc Task descriptor

IOreg Input and output register

Table 3.1 Processor registers

Iptr

Areg

Breg

Creg

IOReg

Tdesc

Wptr

Evaluation Stack

Memory

Program
Code

Local
Program
Data

offset

base

Status

Task Descriptor

Instruction Pointer

Workspace Pointer

ST20-C1 Core

Task Control
Block

21/205

3 Architecture



3.3.1 Evaluation stack

The registers Areg , Breg and Creg are organized as a three register evaluation stack,
with Areg at the top. The evaluation stack is used for expression evaluation and to
hold operands and results of instructions. Generally, instructions may pop values from
or push values onto the evaluation stack or both, and do not address individual evalu-
ation stack registers.

Pushing a value onto the stack means that the value initially in Breg is pushed into
Creg , the value in Areg is pushed into Breg and the new value is put in Areg .
Popping a value from the stack means that a value is taken from Areg , the value
initially in Breg is popped into Areg , and the value in Creg is popped into Breg .The
value left in Creg varies between instructions, but is generally the value initially in the
Areg . These actions are illustrated in Figure 3.5 and Figure 3.6.

Figure 3.5 Pushing a value x onto the evaluation stack

Figure 3.6 Popping a value from the evaluation stack

3.3.2 Status register

The status register contains status bits which describe the current state of the
executing process and any errors which may have been detected. Initially the status
register is set to the value given in Table 7.3.

The contents of the status register are summarized in Table 3.2 and described in more
detail in the following paragraphs. Generally the status register is local except for the

Before

Areg

Breg
Creg

After

a
b
c

a
b

x

Before

Areg

Breg
Creg

After

a
b
c

c
a

b

3.3 Registers

22/205



global interrupt enable and timeslice enable, which are global and carried from one
process to another across a context switch.

• The mac_count , mac_buffer , mac_scale and mac_mode fields are used by
the multiply-accumulate instructions to hold initialization data which must be
saved when an exception occurs. See Chapter 5 for details of multiply accu-
mulation.

• The global_interrupt_enable bit enables external interrupts. Interrupts
remain enabled or disabled until explicitly disabled or enabled again. This bit is
global and is maintained when a process is descheduled.

• The local_interrupt_enable enables external interrupts. Clearing this bit dis-
ables external interrupts until the current process is descheduled. This is
needed when a process delegates part of its processing to a peripheral and
then deschedules until completion, as described in section 4.11.3.

• Overflow , underflow and carry bits relating to arithmetic state are kept in the
status word.

The ST20-C1 maintains “sticky” bits in the status word which indicate whether
an overflow or underflow has occurred. This allows a complete expression to
be evaluated before testing whether an overflow has occurred. Overflow and
underflow are chosen as they apply both to addition as well as multiply as
opposed to a more traditional method of replicating two bits out of the carry

Bit numbers Full name Meaning when set or meaning of value

0 - 7 mac_count Multiply-accumulate number of steps.

8 - 10 mac_buffer Multiply-accumulate data buffer size code.

11 - 12 mac_scale Multiply-accumulate scaling code.

13 mac_mode Multiply-accumulate accumulator format code.

14 global_interrupt_enable Enable external interrupts until explicitly disabled.

15 local_interrupt_enable Enable external interrupts. Clearing this bit disables inter-
rupts until the current process is descheduled.

16 overflow An arithmetic operation gave a positive overflow.

17 underflo w An arithmetic operation gave a negative overflow.

18 carry An arithmetic operation produced a carry.

19 user_mode A user process is executing.

20 interrupt_mode An interrupt handler is executing or trapped.

21 trap_mode A trap handler is executing.

22 sleep The processor is due to go to sleep.

23 reserved Reserved.

24 start_next_task The CPU must start executing a new process.

25 timeslice_enable Timeslicing is enabled.

26 - 31 timeslice_count Timeslice counter.

Table 3.2 Status register bits

23/205

3 Architecture



chain. In addition, they allow for saturated arithmetic to be implemented rela-
tively easily.

A (non-sticky) carry bit is provided to allow efficient implementation of long
addition and subtraction. The carry bit is only manipulated by the addc and
subc instructions allowing the other add instructions to be used in address for-
mation of multi-word values where carry propagation is required so that the
carry is not lost in the address formation evaluations.

• The user_mode bit indicates when the machine is handling a user process,
i.e. a process which is not an exception handler. The interrupt_mode bit indi-
cates when the machine is handling an interrupt, or a trap from an interrupt
handler and the trap_mode bit indicates when the machine is executing a trap
handler. An operating system may need to distinguish between modes to allow
it to perform scheduling activities from a trap handler. These bits are also
required to enable the eret instruction to determine whether a signal to the
interrupt controller is required.

• The sleep bit indicates that the CPU is due to go to sleep, i.e. to turn off its
clocks and go into low power mode. This bit is set when the CPU detects there
is no user process to execute and is cleared when the CPU goes to sleep.

• The start_next_task bit when set causes the processor to attempt to run the
next process from the scheduling queue.

• The timeslice_enable bit and timeslice_count field are used for timeslicing,
as described in section 7.4.

The instructions to use the status register are described in section 4.12.

3.3.3 The work space pointer

All programs need somewhere to store local working data, e.g. local variables in the
application code. In the ST20 architecture, this local storage is termed the work space
of the program.

The Wptr register is the local work space pointer, which holds the address of the stack
of the executing process. The stack is downward pointing, so space is allocated by
moving the Wptr to a lower address. This address is word aligned and therefore has
the two least significant bits set to zero. When a process is descheduled, the Wptr is
stored as part of the process descriptor block, which is pointed to by Tdesc .

The Wptr is used as a base for addressing local variables. A word offset from the
Wptr is the operand for the instructions ldl (load local), stl (store local) and ldlp (load
local pointer).

The ST20-C1 simplifies the nor mal stack scheme by decoupling the load/store action
from the pointer update:

• Load-local and store-local instructions access values in the work space with
addresses relative to the Wptr , but do not change the value of Wptr .

• Separate instructions (ajw, gajw) are provided to update the work space

3.4 Instruction encoding

24/205



pointer by any amount in one step without needing a series of increments or
decrements.

On calling a function or procedure, the Wptr is normally decreased to a lower address
to allocate space for the parameters and local variables of the function. This is
performed using the instruction ajw. The Wptr is returned to its initial value before
returning from the function to free the local work space.

3.3.4 The task descriptor

The task descriptor Tdesc points to the process descriptor block for the currently
executing process. The value held in the Tdesc becomes the process identifier when
the process is not executing.

The process descriptor block is a block of memory whose contents depend on the
state of the process. It will generally hold the saved Wptr and Iptr for the process, and
may hold a link to the next process if the process is in a queue of waiting processes.
The process descriptor block is described in section 7.2.

3.3.5 IO register

The bits of the IOreg are mapped to external connections on the ST20-C1 core. They
may be used to signal to, or read signals from, peripherals on or off chip. The io
instruction is used to read and write to the IOreg and is described in section 4.11. The
IOreg is global, and remains unchanged by any context switch. The bits of the IOreg
are defined in Table 3.3.

In some ST20 variants, some bits of the IO register may be reserved for system use.
The reserved bits will be the most significant bits of the appropr iate half word. The
number of any such bits is given in the data sheet for each variant.

3.4 Instruction encoding

The ST20-C1 is a zero-address machine. Instruction operands are always implicit and
no bits are needed in the instruction representation to carry address or operand
location information. This results in very short instructions and exceptionally high code
density.

The instruction encoding is designed so that the most commonly executed instructions
occupy the least number of bytes. This reduces the size of the code, which saves
memory and reduces the memory bandwidth needed for instruction fetching. This
section describes the encoding mechanism.

A sequence of single byte instruction components is used to encode an instruction.
The ST20 interprets this sequence at the instruction fetch stage of execution. Most

Bits Purpose

0-15 Output data

16-31 Input data

Table 3.3 IOreg bits

25/205

3 Architecture



programmers, working at the level of microprocessor assembly language or high-level
language, need not be aware of the existence of instruction components and do not
generally need to consider the encoding.

This section has been included to provide a background. Appendix C discusses
consequential issues which need to be considered in order to implement a code
generator.

3.4.1 An instruction component

Each instruction component is one byte long, and is divided into two 4-bit parts. The
four most significant bits of the byte form a function code, and the four least significant
bits are used to build an instruction data value as shown in Figure 3.7.

Figure 3.7 Instruction format

This representation provides for sixteen function code values (one for each function),
each with a data field ranging from 0 to 15.

Instructions that specify the instruction directly in the function code are called primary
instructions or functions. There are 13 primary instructions, and the other three
possible function code values are used to build larger data values and other instruc-
tions. Two function code values, pfix and nfix, are used to extend the instruction data
value by prefixing. One function code operate (opr) is used to specify an instruction
indirectly using the instruction data value. opr is used to implement secondary instruc-
tions or operations.

3.4.2 The instruction data value and prefixing

The data field of an instruction component is used to create an instruction data value.
Primary instructions interpret the instruction data value as the operand of the instruc-
tion. Secondary instructions interpret it as the operation code for the instruction itself.

The instruction data value is a signed integer that is represented as a 32-bit word. For
each new instruction sequence, the initial value of this integer is zero. Since there are
only 4 bits in the data field of a single instruction component, it is only possible for
most instruction components to initially assign an instruction data value in the range 0
to 15. Prefix components are used to extend the range of the instruction data value.

mnemonic name

pfix n prefix

nfix n negative prefix

Table 3.4 Prefixing instruction components

function code data

0347

3.4 Instruction encoding

26/205



One or more prefixing components may be needed to create the full instruction data
value. The prefixes are shown in Table 3.4 and explained below.

All instruction components initially load the four data bits into the least significant four
bits of the instruction data value.

pfix loads its four data bits into the instruction data value, and then shifts this value up
four places. Consequently,a sequence of one or more prefixes can be used to extend
the data value of the following instruction to any positive value. Instruction data values
in the range 16 to 255 can be represented using one pfix.

nfix is similar, except that it complements all 32 bits of the instruction data value before
shifting it up, thus changing the sign of the instruction data value. Consequently, a
sequence of one or more pfixes with one nfix can be used to extend the data value of
a following instruction to any negative value. Instruction data values in the range -256
to -1 can be represented using one nfix.

When the processor encounters an instruction component other than pfix or nfix, it
loads the 4-bit data field into the instruction data value. The instruction encoding is
now complete and the instruction can be executed. The instruction data value is then
cleared so that the processor is ready to fetch the next instruction component, by
building a new instruction data value.

For example, to load the constant 0x11, the instruction ldc 0x11 is encoded with the
sequence:

pfix 1; ldc 1

The instruction ldc 0x2A68 is encoded with the sequence:

pfix 2; pfix A; pfix 6; ldc 8

The instruction ldc -1 is encoded with the sequence:

nfix 0; ldc F

3.4.3 Primary Instructions

Research has shown that computers spend most time executing a small number of
instructions such as:

• instructions to load and store from a small number of ‘local’ variables;

• instructions to add and compare with small constants; and

• instructions to jump to or call other parts of the program.

For efficiency, in the ST20 these are encoded directly as primary instructions using
the function field of an instruction component.

Thirteen of the instruction components are used to encode the most important opera-
tions performed by any computer executing a high level language. These are used (in
conjunction with zero or more prefixes) to implement the primary instructions. Primary
instructions interpret the instruction data value as an operand for the instruction. The
mnemonic for a primary instruction always includes this operand, shown in this
manual as n.

27/205

3 Architecture



The mnemonics and names for the primary instructions are listed in Table 3.5.

3.4.4 Secondary instructions

The ST20 encodes all other instructions, known as secondary instructions, indirectly
using the instruction data value.

The function code opr causes the instruction data value to be interpreted as the
operation code of the instruction to be executed. This selects an operation to be
performed on the values held in the evaluation stack, so that a further 16 operations
can be encoded in a single byte instruction. The pfix instruction component can be
used to extend the instruction data value, allowing any number of operations to be
encoded.

Secondary instructions do not have an operand specified by the encoding, because
the instruction data value has been used to specify the operation.

To ensure that programs are represented as compactly as possible, the operations are
encoded in such a way that the most frequently used secondary instructions are
represented without using prefix instructions.

For example, the instruction add is encoded by:

opr 4

The instruction and is encoded by:

opr F9

mnemonic name

adc n add constant

ajw n adjust work space

fcall n function call

cj n conditional jump

eqc n equals constant

j n jump

ldc n load constant

ldl n load local

ldlp n load local pointer

ldnl n load non-local

ldnlp n load non-local pointer

stl n store local

stnl n store non-local

Table 3.5 Primary instructions

mnemonic name

opr n operate

Table 3.6 Operate instruction

3.4 Instruction encoding

28/205



which is in turn encoded with the sequence:

pfix F; opr 9

3.4.5 Summary of encoding

The encoding mechanism has important consequences.

• It produces very compact code.

• It simplifies language compilation, by providing a completely uniform way of
allowing a primary instruction to take an operand of any size up to the proces-
sor word-length.

• It allows these operands to be represented in a form independent of the word-
length of the processor.

• It enables any number of secondary instructions to be implemented.

To aid clarity and brevity, prefix sequences and the use of opr are not explicitly shown
in this guide. Each instruction is represented by a mnemonic, and for primary instruc-
tions an item of data, which stands for the appropriate instruction component
sequence. Hence the examples above would be just shown as: ldc 17, add, and and.
Where appropriate, an expression may be placed in a code sequence to represent the
code needed to evaluate that expression.

29/205

3 Architecture



4.1 Manipulating the evaluation stack

30/205



4 Using ST20-C1 instructions
This chapter describes the purpose for which the sequential instructions are intended,
except for the multiply-accumulate instructions, which are described in Chapter 5.
These instructions are described in the context of their intended use. Some instruc-
tions are designed for use in a particular sequence of instructions, so this chapter
describes those sequences. Instructions for exceptions are described in Chapter 6
and multi-tasking instructions are described in Chapter 7.

The architecture of the ST20-C1, including the registers and memory arrangement, is
described in Chapter 3.

4.1 Manipulating the evaluation stack

The evaluation stack consists of the registers Areg , Breg and Creg . The general
action of the evaluation stack is described in section 3.3.1.

Instructions are provided for shuffling and re-order ing the values on the evaluation
stack, as listed in Table 4.1.

rot pops the value from Areg off the evaluation stack and rotates it into Creg , and arot
pushes the value from Creg onto the stack. rev swaps the Areg and Breg , and dup
pushes a copy of Areg onto the stack.

Table 4.2 shows how each of these affects the evaluation stack. Each row shows the
contents of the evaluation stack after one of these instructions is executed if the initial
values of the Areg , Breg and Creg are a, b and c respectively.

Many instructions leave the initial Areg in Creg . This value may be restored into the
Areg by using arot.

Mnemonic Name

rot rotate stack

arot anti-rotate stack

dup duplicate stack

rev reverse stack

Table 4.1 Evaluation stack manipulation instructions

Instruction Areg Breg Creg

rot b c a

arot c a b

rev b a c

dup a a b

Table 4.2 Evaluation stack manipulation

31/205

4 Using ST20-C1 instructions



4.2 Loading and storing

The loading and storing instructions are listed in Table 4.3.

On the ST20, the term loading means pushing a value onto the evaluation stack. The
value to be loaded may be a value read from memory, a constant, a copy of another
register or a calculated value. Storing means popping a value from the evaluation
stack. The value may be written into memory or written into another register. The eval-
uation stack is described in section 3.3, and evaluation of expressions is described in
section 4.3.

Relative addresses are used for accessing memory in order to reduce code size, as
the operand values are smaller than full machine addresses. Data structures are
word-aligned, so relative addresses can be word offsets, reducing the operand size
further.

The most common operations performed by a program are loading and storing of a
small number of variables, and loading small literal values.

4.2.1 Loading constants

One primary instruction ldc is provided for loading a general constant, for initializing a
variable or register or for a constant in an expression.

4.2.2 Local and non-local variables

When loading from and storing to memory, the ST20 distinguishes between local and
non-local addressing. Local addressing means that the address is given as a word
offset from the Wptr . Non-local addressing means that the address is given as a word
offset from the Areg . In practice, the Wptr points to the stack, so local addressing is

Mnemonic Name Description

ldc n load constant Load the constant n.

ldl n load local Load the value from n words above Wptr .

stl n store local Store a value to n words above Wptr .

ldnl n load non-local Load the value from n words above Areg .

stnl n store non-local Store a value to n words above Areg .

lbinc load byte and increment Load a byte and increment the address by 1 byte.

sbinc store byte and increment Store a byte and increment the address by 1 byte.

lsinc load sixteen and increment Load a half word and increment the address by 2 bytes.

lsxinc load sixteen sign extended
and increment

Load a half word and sign extend to 32 bits and increment
the address by 2 bytes.

ssinc store sixteen and increment Store a half word and increment the address by 2 bytes.

lwinc load word and increment Load a word and increment the address by 4 bytes.

swinc store word and increment Store a word and increment the address by 4 bytes.

Table 4.3 Loading and storing instructions

4.2 Loading and storing

32/205



normally used for local variables on the stack while non-local addressing is normally
used for all other variables.

The primary instructions ldl and stl perform loading and storing of local variables. For
example to load a value x words above the Wptr and write to a location y words above
the Wptr :

ldl x;
stl y;

The primary instructions ldnl and stnl perform loading and storing of non-local vari-
ables. For example, to load a value x above a base address x_base and store to a
location y words above y_base, where x_base and y_base are held in local variables:

ldl x_base; ldnl x;
ldl y_base; stnl y;

Note that for the purposes of this manual, ld X denotes loading the value from a
variable X, where X may be a local or non-local variable, so either ldl or ldnl may be
used as appropriate. Similarly st X denotes storing a value into a variable X, where X
may be a local or non-local variable, so either stl or stnl may be used.

4.2.3 Byte and half-word values

Instructions are provided for loading and storing byte and half-word variables. In each
case, the address is initially in the Areg and is incremented by the size of the object,
so that repeated loads and stores can be used to copy a block of memory.

The load instructions place the loaded value in the Areg , the incremented address in
the Creg and leave the Breg unaffected. The store instructions write the initial Breg
into memory at the address in the Areg , leaving the incremented address in the Breg ,
the initial Creg in the Areg and the initial Breg pushed down to the Creg .

Byte loading and storing

lbinc loads the byte at the address in Areg, into the evaluation stack. lbinc replaces
the address in Areg with the byte stored at that address, treating it as an unsigned
integer by setting the twenty-four most significant bits in Areg to 0. The incremented
address is left in Creg .

sbinc writes the least significant byte in Breg to the location addressed by Areg . The
address is incremented by 1 and put in the Breg .

Half-word loading and storing

lsinc and lsxinc load the half-word object at the address in Areg , into the evaluation
stack. lsinc replaces the address in Areg with the half word, treating it as an unsigned
integer by setting the sixteen most significant bits in Areg to 0. lsxinc is similar to lsinc,
but treats the half-word as a signed integer in twos-complement format, and hence
sign extends the representation by setting the sixteen most significant bits in Areg to
the same value as the most significant bit of the half-word object. Sign extension is
discussed in section 4.4.6.

33/205

4 Using ST20-C1 instructions



ssinc writes the half word in the two least significant bytes of Breg to the location
addressed by Areg .

4.2.4 Memory block copy

A block memory copy may be implemented using the instructions lwinc and swinc.
These instructions load or store a word, and increment the addresses used.

To copy n bytes from source to destination, where source and destination are both
word-aligned, a loop should be written, using the temporary variable limit, as in the
following code:

ld source; ld n; ld destination
add; stl limit

LOOP: lwinc; rev; swinc
ldl limit; arot
gt; cj END; j LOOP;

END:

This is the most efficient method of copying, since it reads and writes full words,
making the best use of any 32-bit memory. However, this is not always possible if the
alignment of the source and destination blocks are different. In that case the byte or
half-word load and store should be used.

4.3 Expression evaluation

Expression evaluation and address calculation is performed using the evaluation
stack. For example, the evaluation of operations with two integer operands is
performed by instructions that operate on the values of Areg and Breg . The result is
left in Areg .

Arithmetic and boolean calculations are considered in sections 4.4 and 4.7 respec-
tively. This section describes how the evaluation stack is used. Loading and storing
instructions are described in section 4.2.

In this and subsequent sections, in examples of assembly code, a single letter or iden-
tifier wr itten as an instruction is either an expression or a segment of code. If it is an
expression then it means ‘evaluate the expression and leave the result in the Areg .

4.3.1 Using the evaluation stack

A compiler normally loads a constant expression c using ldc:

ldc c

Loading from a constant table is described in section 4.3.3.

An expression consisting of a single local variable is loaded using

ldl x

Methods for loading non-local variables are discussed in section 4.2, and array
elements in section 4.5.

4.3 Expression evaluation

34/205



Evaluation of expressions sometimes requires the use of temporary variables in the
process work space, but the number of these can be minimized by careful choice of
the evaluation order. The details of how this is achieved by a compiler are described in
Appendix C in section C.3.

4.3.2 Loading operands

The three registers of the evaluation stack are used to hold operands of instructions.
Evaluation of an operand or parameter may involve the use of more than one register.
Care is needed when evaluating such operands to ensure that the first operand to be
loaded is not pushed off the bottom of the evaluation stack by the evaluation of later
operands. The processor does not detect evaluation stack overflow.

Three registers are available for loading the first operand, two registers for the second
and one for the third. Consequently, the instructions are designed so that Creg holds
the operand which, on average, is the most complex, and Areg the operand which is
the least complex.

In some cases, it is necessary to evaluate the Areg and Breg operands in advance,
and to store the results in temporary variables. This can sometimes be avoided using
the reverse instruction. Any of the following sequences may be used to load the
operands A, B and C into Areg , Breg and Creg respectively.

1 C; B; A;

2 C; A; B; rev;

3 B; C; rev; A;

4 A; C; rev; B; rev;

The choice of loading sequence, and of which operands should be evaluated in
advance is determined by the number of registers required to evaluate each of the
operands. The algorithm used by compilers is given in Appendix C in section C.4.

4.3.3 Tables of constants

The ST20-C1 instruction set has been optimized so that the loading of small constants
can be coded compactly — for example it allows the loading of constants between 0
and 15 to be coded in a single byte. Analysis of programs shows that such small
constants occur markedly more frequently than large constants. However when a
large constant does need to be loaded the necessary prefix sequence may be long.
Other techniques may be more efficient in these cases.

A simple mechanism to increase the code compactness is to use a table of constants.
This is implemented by storing all the long constants into a look-up table. This table
and all its constant entries must be aligned on a word boundary. The address of this
table is held in a local variable which is used to index the array. Then to load the

35/205

4 Using ST20-C1 instructions



constant from the nth entry in the constant table stored at address constants_ptr the
following code would be used:

ldl constants_ptr ; ldnl n;

where the instruction ldnl n is explained in section 4.2.2.

This code sequence only takes 2 bytes, provided constants_ptr is less than 16 words
from the work space pointer address and there are no more than 16 word-length
constants. At worse it is unlikely to take more than 4 bytes. Hence, if a constant takes
4 or more bytes to load using ldc then this sequence often improves code compact-
ness — especially if the constant is used more than once.

4.3.4 Assignment

Single words, half words and bytes may be assigned using the load and store instruc-
tions described in section 4.2.

Word assignment

If x and y are both single word variables and e is a word valued expression then word
assignments are compiled as

x = y compiles to ld y; st x;

x = e compiles to e; st x;

Byte assignment

If a and b are both single byte variables and e is a byte valued expression then byte
assignments are compiled as

b = a compiles to address(a); lbinc; address(b); sbinc;

b = e compiles to e; address(b); sbinc;

where address(variable) is the address of variable. Forming addresses is discussed in
section 4.5.

Half word assignment

If a and b are both half-word variables and e is a half-word valued expression then
half-word assignments are compiled as

b = a compiles to address(a); lsinc; address(b); ssinc;

b = e compiles to e; address(b); ssinc;

where address(variable) is the address of variable. Forming addresses is discussed in
section 4.5.

4.4 Arithmetic

This section describes the use of the arithmetic instructions except for the multiply-
accumulate instructions, which are described in Chapter 5, and forming addresses,
which is described in section 4.5. Boolean expression evaluation is discussed in

4.4 Arithmetic

36/205



section 4.7, and the general principles of expression evaluation are described in
section 4.3.

4.4.1 Addition, subtraction and multiplication

Single length signed arithmetic is provided by the operations listed in Table 4.4.

Each of these instructions except smul can signal overflow or underflow by setting the
appropriate bit in the status register. An overflow occurs if the result is greater than
MostPos and an underflow if it is less than MostNeg. If overflow or underflow occurs,
then the 32 least significant bits of the full result are left in the Areg . The overflow and
underflow are ‘sticky’, so when one has been set, it is not cleared and the other cannot
be set by subsequent arithmetic. The overflow and underflow bits may be used for
saturated arithmetic, as described in section 4.4.3.

The primary instruction adc n adds the constant value n to Areg . Breg and Creg are
unaffected. This is used for incrementing and decrementing variables and counters.

If op is one of add, sub, mul or smul, then the instruction sequence

ldl X; ldl Y; op;

evaluates the expression

X op Y

i.e. it takes the value in Breg as the left hand operand and the value in Areg as the
right hand operand, and loads the result into Areg . The content of Creg is popped into
Breg and the initial Areg is rotated into Creg .

smul multiples two half-word values producing a 32-bit result. It cannot overflow or
underflow and is faster than mul.

4.4.2 Division and remainder

Division and remainder are performed using the operations listed in Table 4.5.

Mnemonic Name

adc n add constant

add add

sub subtract

mul multiply

smul short multiply

Table 4.4 Single length signed integer arithmetic instructions

Mnemonic Name

divstep divide step

unsign unsign argument

Table 4.5 Division and remainder instructions

37/205

4 Using ST20-C1 instructions



Each divstep generates four bits of the unsigned quotient, so eight divsteps are
needed for a full 32-bit unsigned division, and will also generate a remainder. The
result of the division is the integer division rounded towards zero (truncated). The
quotient is left in Breg , and the remainder in Creg , so a rotation pops the quotient into
the Areg .

unsign is used to separate the sign from the magnitude of the operands before
performing the division. Division is then performed on the magnitudes, and the signs
of the results may be derived from the signs of the operands.

Overflow can occur only if the divisor (Areg) is zero, or if the dividend (Breg) is
MostNeg and the divisor is -1. divstep does not detect these cases, and does not set
any status bits, so a check should be applied before performing the division.

The following code sequence performs the integer division a/b. The signed quotient is
left in Areg .

a; b; ldc 0; arot; unsign;
arot; unsign; cj POS;

ldc 0; rot;
divstep; divstep; divstep; divstep;
divstep; divstep; divstep; divstep;
rot; not; adc 1;
j END;

POS: rot;
divstep; divstep; divstep; divstep;
divstep; divstep; divstep; divstep;
rot;

END:

The following code sequence performs the remainder a rem b. The signed remainder
is left in Areg .

a; b; ldc 0; rev; unsign;
eqc 2; arot; unsign; cj POS;
divstep; divstep; divstep; divstep;
divstep; divstep; divstep; divstep;
arot; not; adc 1;
j END;

POS: rot;
divstep; divstep; divstep; divstep;
divstep; divstep; divstep; divstep;
arot;

END:

4.4.3 Saturated arithmetic

In saturated arithmetic, when an overflow or underflow occurs the result is set to the
most positive or most negative possible result respectively, instead of the least signifi-
cant bits of the full result. This ensures that the result is as near as possible to the real
value and prevents glitches caused by wrap-around.

4.4 Arithmetic

38/205



Saturated arithmetic is achieved on the ST20-C1 by evaluating an expression and
then performing the saturate instruction. If an overflow or underflow has occurred then
the corresponding status bit will have been set, which will cause saturate to change
the value in Areg to the most positive or most negative value respectively. saturate
clears the overflow and underflow bits.

For example, to perform a saturated multiply of a and b:

ld a; ld b;
mul; saturate;

4.4.4 Unary minus

The expression (-e) can be evaluated with overflow signalling by:

e; not; adc 1;

or

ldc 0; e; sub;

The first sequence , using not, requires one less stack register than the second. not is
a bitwise inversion which is described in section 4.8.

4.4.5 Long arithmetic

The long arithmetic instructions are listed in Table 4.6.

Multiple length addition and subtraction

Multiple length addition or subtraction are performed using addc and subc, executed
once for each word of the result. For both instructions, the carry (or borrow) is held in
the carry bit of the status register. This keeps the carrying separate from overflow, so
address calculations may be safely performed using add, sub and wsub without
affecting the carry.

The addc instruction forms (Breg + Areg) + Status carry leaving the least significant
word of the result in Areg and the most significant (carr y) bit in the carry bit of the
status register. The Areg is rotated into the Creg .

Similarly, the subc instruction forms (Breg - Areg) - Status carry leaving the least
significant word of the result in Areg and the borrow bit in the carry bit of the status
register. The Areg is rotated into the Creg .

Addition of two double length unsigned values, X and Y, giving Z, without overflow
signalling can therefore be compiled as follows

Mnemonic Name

addc add with carry

subc subtract with carry

umac unsigned multiply accumulate

Table 4.6 Long arithmetic instructions

39/205

4 Using ST20-C1 instructions



ldc 0;
ldl Xlo; ldl Ylo; addc; stl Zlo;
ldl Xhi; ldl Yhi; addc; stl Zhi

The subscripts ‘lo’ and ‘hi’, used here and in subsequent text, specify the least and
most significant word respectively of the double word variable with which they are
associated.

Subtraction of two double length values, Y from X giving Z, without overflow signalling
is compiled as

ldc 0;
ldl Xlo; ldl Ylo; subc; stl Zlo;
ldl Xhi; ldl Yhi; subc; stl Zhi

Overflow signalling for signed arithmetic may be added by performing an extra addc or
subc to produce a final word which contains only a sign (0 for positive or -1 for
negative) unless an overflow has occurred. For example, the following code could be
used to perform double length signed addition with overflow signalling:

clear carry, overflow and underflow status bits
ld Xlo; ld Ylo; addc; st Zlo;
ld Xhi; ld Yhi; addc; st Zhi;
ldc 0; dup; addc;
dup; adc #7ffffff; - overflows if and only if carry word > 0
rev; adc #8000001; - underflows if and only if carry word < -1

Multiple length multiplication

The umac instruction multiplies two single word unsigned operands in Areg and Breg ,
and adds the single word carry operand in Creg to form a double length unsigned
result. The more significant (carr y) word of the result is left in Breg , the less significant
in Areg . No overflow can be signalled by this instruction.

Multiplication of a single length unsigned value X by a double length unsigned value Y
(leaving the ‘carry’ in Areg) can be performed by:

ldc 0;
ldl X; ldl Ylo; umac; stl Zlo;
ldl X; ldl Yhi; umac; stl Zhi

Double length unsigned multiplication is more complex. The product of two unsigned
double length words X and Y can be expressed as:

X * Y= (Xhi*2
32 + Xlo)*(Yhi*2

32 + Ylo)

= (Xhi*Yhi)*2
64 + (Xhi*Ylo + Xlo*Yhi)*2

32 + (Xlo*Ylo)

This can be coded as follows:

ldc 0;
ldl Xlo; ldl Ylo; umac; stl Z0
ldl Xlo; ldl Yhi; umac; rev; stl Z2

4.4 Arithmetic

40/205



ldl Xhi; ldl Ylo; umac; stl Z1;
ldl Xhi; ldl Yhi; umac; rev; stl Z3;
ldc 0; rev; ldl Z2; addc; stl Z2;
ldl Z3; addc; stl Z3

This gives a quadruple length unsigned result Z, where Z0 is the least significant and
Z3 the most significant word of Z.

4.4.6 Object length conversion

Object length conversion operations are provided by the instructions listed in Table
4.7.

Section 3.1 explains that data can be represented in data objects of various sizes.
This section describes the instructions that can be used to convert between these
representations.

Most of the ST20-C1 integer arithmetic instructions operate on signed integers held in
the evaluation stack registers as 32-bit objects, and produce results in this form.
Object length conversion is important for conversion of high level language data types.
The ST20-C1 therefore provides instructions that allow a byte or half-word signed
integer to be sign extended to 32-bits by copying the sign bit to all the bits that were
previously not significant, as shown in Figure 3.2. The sign extension is performed on
the value in the Areg and the result is placed in the Areg . The other registers are not
affected.

xbword extends a signed byte to a word by copying bit 7 into bits 8 to 31. xsword
extends a signed half-word to a word by copying bit 15 into bits 16 to 31.

lsxinc loads a sixteen bit value, sign extends it to 32 bits and increments the address
by two bytes. This is the same as:

lsinc; xsword;

Mnemonic Name

xbword sign extend byte to word

xsword sign extend sixteen to word

Table 4.7 Object length conversion instructions

41/205

4 Using ST20-C1 instructions



4.5 Forming addresses

The addressing instructions provide access to items in data structures using short
sequences of single byte instructions. These instructions are listed in Table 4.8.

4.5.1 The address of a variable

The absolute address of a local work space location is loaded using the ldlp primary
instruction. ldlp 0 can be used to load the value in the Wptr .

The ldnlp primary instruction is provided to calculate the absolute address of a non-
local variable.

The meaning of local and non-local is described in section 4.2.

4.5.2 The address of an instruction

The address of a location in the program being executed can be obtained by the ldpi
operation as follows. The address of the location x bytes past the next instruction
(which is itself pointed to by the instruction pointer register) can be pushed onto the
evaluation stack by

ldc x; ldpi

For example, the address of a label L can be loaded by

ldc (L-M); ldpi
M:

where the label M is the address of the instruction that follows the ldpi instruction. First
the offset in bytes from M to L is loaded into Areg . The ldpi then uses this offset and
the value in the instruction pointer register (which will be the address of label M) to
load the address of label L into Areg . This technique is useful for generating relocat-
able code. Breg and Creg are unaffected.

4.5.3 Arrays

The wsub instruction interprets Areg as the address of the beginning of a vector of
word-sized data objects, and Breg as an index into that vector. After execution, Areg
holds the address of the indexed element, and Creg is popped into Breg , leaving
Areg rotated into Creg . The operation performed by wsub is to multiply the integer in
Breg by four and to add this to the address in Areg (without overflow checking).

Mnemonic Name Meaning

ldlp n load local pointer Load the value Wptr + 4n.

ldnlp n load non-local pointer Load the value Areg + 4n.

ldpi n load pointer to instruction Load the value Iptr + n.

wsub word subscript Load the value Areg + 4.Breg .

Table 4.8 Addressing instructions

4.5 Forming addresses

42/205



Access to a component of an array can be split into two sections; first the address of
the component must be constructed, and then the transfer of data to or from that
component must be performed.

Evaluating a subscript

Array subscripts can be evaluated efficiently using the smul or mul instruction. If array
A has been declared by

int A[S1] . . . [Sn];

where Si (i = 1..n) are the dimensions, then one way of arranging this in memory is to
have all elements of the array in a contiguous block. For the purposes of this section,
suppose that the elements in the last dimension are stored adjacently; otherwise
change the order of the dimension subscripts. For example Figure 4.1 shows the
elements of a particular three dimensional array (Array) stored in this way.

Figure 4.1 A possible method of storing an array of integers

If an access is required to the following array element

A[e1] . . . [en]

then the code to evaluate the subscript is

e1;
ldc S2; mul; e2; add;
ldc S3; mul; e3; add;
. . .
ldc Sn; mul; en; add;

For example to evaluate the subscript for element Array[x][y][z] , (where Array
is declared as in Figure 4.1) the code sequence is

ld x;
ldc 2; mul; ld y; add;
ldc 3; mul; ld z; add;

If x is 1, y is 0 and z is 2, then this evaluates to 8, which as can be seen from Figure
4.1, is the correct offset from the base of the array.

Array[1][1][1]
Array[1][1][0]

Array[1][1][2]

Array[1][0][1]
Array[1][0][0]

Array[1][0][2]

Array[0][1][1]
Array[0][1][0]

Array[0][1][2]

Array[0][0][1]
Array[0][0][0]

Array[0][0][2]

int Array[2][2][3];

Increasing
memory

addresses

Contiguous
locations for
words in
memory
space

43/205

4 Using ST20-C1 instructions



Accessing a word addressed array

Let Wa_ptr be a pointer to an array Wa that starts at a word boundary,and in which all
component types are measured in words. Let e be a subscript expression. The
address of component e of Wa is

e; Wa_ptr; wsub;

or if e is a constant expression this can be optimized to:

Wa_ptr; ldnlp e;

Accessing a byte addressed array

Similarly, let Ba_ptr be a pointer to an array (Ba) which may start at any byte location,
and in which each component type is measured in bytes. Let e be a subscript expres-
sion.

The address of component e of Ba is:

e; Ba_ptr; add;

4.6 Comparisons and jumps

This section describes the arithmetical comparison instructions and their use in condi-
tional program behavior. Unconditional jumps are also described. Functions and
procedures are described in section 4.10, and evaluation of boolean expressions is
described in section 4.7.

Comparisons, conditional behavior and jumps are provided by the instructions listed in
Table 4.9.

4.6.1 Representation of true and false

The ST20 uses 0 as false and 1 as true. These values are generated by predicate
operations (for example comparisons). They can be loaded with single byte load
constant instructions.

Mnemonic Name

eqc n equal to constant

gt greater than

gtu greater than unsigned

order order

orderu order unsigned

cj n conditional jump

j n jump

jab jump absolute

Table 4.9 Comparison and jump instructions

4.6 Comparisons and jumps

44/205



Implementation of languages with different representations of true and false

It is easy to implement programming languages that use a different representation of
true and false. For example, using

eqc X; not; adc 1

in place of eqc X and

gt; not; adc 1

in place of gt, does not affect the representation of a false result, but changes the
representation of true to -1, which is used in some programming languages.

4.6.2 Comparison

The primary instruction eqc n loads Areg with a truth value — true if Areg is initially
equal to the instruction operand (n), false otherwise. Breg and Creg are unaffected.

gt and gtu take integer operands in Areg and Breg and produce a boolean result
which is loaded into Areg . They also load the value in Creg into Breg , saving a copy
of the initial Areg in Creg .

The gt instruction loads Areg with true if Breg > Areg , false otherwise, treating Areg
and Breg as signed values. Similarly gtu loads Areg with true if the unsigned value of
Breg is greater than the unsigned value of Areg ; false otherwise.

4.6.3 Jump and conditional jump

There are two relative jump instructions; both are primary instructions.

The unconditional jump instruction, j n, adds its operand (n) to the address of the
instruction immediately following it and puts the result into Iptr , thus transferring
execution to another part of the program.

The conditional jump instruction, cj n, performs a jump if the value in Areg is 0 and
does not affect the evaluation stack. If the value in Areg is not 0 cj rotates the value in
Areg to the bottom of the evaluation stack and continues with the next instruction.
Consequently cj n serves as ‘jump if false’ provided that the language being imple-
mented interprets 0 as false (see section 4.6.1).

4.6.4 Conditional transfer of control

The conditional expressions used in a conditional branch of an if construct are
compiled using the conditional jump. The statement:

if (E) {
P

}

This compiles to:

E; cj L;
P; j ENDIF;

L:

45/205

4 Using ST20-C1 instructions



where the label ENDIF: is at the end of the code for the if construct.

The compilation of a while loop is shown by the following example.

while (E) {
P

}

This compiles to:

L: E; cj ENDWHILE
P; timeslice; j L

ENDWHILE:

Note that this loop includes a timeslice instruction. This causes the current process to
be descheduled if a timeslice is due and timeslicing is enabled. The presence of this
ensures that the process cannot occupy the CPU for too long provided timeslicing is
enabled. It is good practice for multi-tasking programs to include a timeslice instruction
in every loop. Timeslicing is described in section 7.4. Single task programs do not
need to timeslice, but should have timeslicing disabled, so the timeslice instruction
has no effect.

A repeat .. until loop is shown by the following example.

repeat {
P

} until E

This compiles to:

j K
L: E; eqc 0; cj END
K: P; timeslice; j L
END:

4.6.5 Ordering instructions

Two instructions are provided to select the smaller of two values. If Breg is smaller
than Areg as a signed integer, order will swap Areg and Breg ; otherwise order will
have no effect. This can be used to find the minimum of two signed variables:

ldl a; ldl b; order;
stl minimum; stl maximum

Similarly orderu can be used to find the minimum or maximum of two unsigned values

4.7 Evaluation of boolean expressions

This section describes the operations using the logical true and false values, as used
with the conditional jump cj. Conditional behavior and comparisons are described in
section 4.6. Bitwise boolean operations are described in section 4.8. General issues
concerning expression evaluation are discussed in section 4.3.

4.7 Evaluation of boolean expressions

46/205



The following shows the correspondence between C logical expressions and ST20-C1
instructions. X and Y represent expressions,and K represents a constant. The symbol
‘¬ ’ is a logical NOT (see section 4.7.1).

true = ldc 1
false = ldc 0
! X = ¬ (X)
X == Y = X; Y; sub; eqc 0
X != Y = ¬ (X; Y; sub; eqc 0)
X == K = X; eqc K
X != K = ¬ (X; eqc K)
X > Y = X; Y; gt
X < Y = Y; X; gt
X >= Y = ¬ (Y; X; gt)
X <= Y = ¬ (X; Y; gt)

Further optimizations can be made to the ‘not equals’ comparison when followed by a
conditional jump.

X != Y; cj L = X; Y; sub; cj L
X != 0; cj L = X; cj L

4.7.1 Evaluation of NOT

If zero represents false and 1 represents true, then logical NOT can be performed by
eqc 0.

4.7.2 Evaluation of AND and OR

For evaluation of logical AND and OR operations, the instruction sequence depends
on whether strict or non-strict evaluation is used, i.e. whether both operands are
always evaluated. This is important if side-effects may occur, such as a trap, or if the
second operand is not always defined, as in:

if ((ptr != NULL) && (ptr->tag == TAG_VAL)) ...

In this example, ptr->tag is not defined if ptr is NULL. For languages such as ANSI
C, non-strict evaluation is required, so the following short-cuts must be used:

X ORY = ¬ (¬ (X); cj L; ¬ (Y); L:)
X ANDY = X; cj L; Y; L:

For non-strict evaluation, the following laws should be applied to the compilation of
conditional expressions before code is generated to ensure that the jump is taken as
early as possible:

¬ (X ANDY) = (¬ X) OR(¬Y) [= ¬ (X; cj L; Y; L:)]
¬ (X ORY) = (¬ X) AND(¬Y) [= ¬ (X); cj L; ¬ (Y); L:]
(X ORY); cj L = (¬ X); cj M; Y; cj L; M:
(X ANDY); cj L = X; cj L; Y; cj L

47/205

4 Using ST20-C1 instructions



In other languages, evaluation of boolean expressions may be strict (for example, ADA
gives the programmer the choice) and so both expressions in dyadic logical opera-
tions may need to be evaluated.

Where false is represented by 0, and true is represented by any fixed bit pattern other
than 0 (e.g. true is always 1, or true is always -1), then the following transformations
apply:

X ORY = X BITOR Y
X ANDY = X BITAND Y

and the bitwise instructions given in section 4.8 can be used:

Note that even for some non-strict evaluations, the above sequence may be prefer-
able. Where Y is a simple boolean expression such as a local variable, its evaluation
does not cause any side-effects, and so it does no harm to implement a non-strict
evaluation using a bitwise operation.

4.8 Bitwise logic and bit operations

Bitwise logic and bit operations are provided by the instructions listed in Table 4.10.

The not operation has only one operand that is taken from Areg . The result of this,
which is a bitwise inversion of all bits in the operand, is loaded into Areg , leaving Breg
and Creg unaffected.

and, or and xor are bitwise logical operations on two operands that are taken from
Areg and Breg . For each, the result is loaded into Areg . The data previously held in
Creg is popped into Breg and the initial Areg is left in Creg . These operations are
commutative.

bitld, bitst and bitmask are used for setting, clearing and testing bits of a word. bitld
returns the value of a single bit from a value in Breg , bitst sets or clears a single bit
and bitmask creates a mask with a single bit set. In each case the bit number is
initially in Areg and the result is put in Areg . For bitld and bitst, the value containing
the bit to be tested, set or cleared is initially in Breg .

Mnemonic Name

and and

or or

xor exclusive or

not bitwise not

bitld bit load

bitst bit store

bitmask bit mask

rmw memory read modify write

Table 4.10 Bitwise logic and bit instructions

4.9 Shifting and byte swapping

48/205



4.8.1 Memory bit test and clear or set

Bits of a word in memory may be tested and set or cleared by the instruction rmw. The
address of the memory word is held in Areg and a bit masks in Breg and Creg . rmw
clears the bits of the memory word that are set in Creg , and then sets the bits of the
memory word that are set in Breg .The initial memory word is loaded into Areg , with
Areg pushed down to Breg and Breg pushed down to Creg .

4.9 Shifting and byte swapping

The shift and byte swapping operations are provided by the instructions listed in Table
4.11.

The shift operations (shl, shr and ashr) shift the operand in Breg by the number of bits
specified by the unsigned integer in Areg and put the result in Areg . shl and shr fill the
vacated bit positions with zero bits, while ashr fills the vacated bits with copies of bit
31, which is the original sign bit. If Areg is zero, the result is the initial value of Breg .
When the value in Areg is greater than the number of bits in the object being shifted,
the result of the operation is undefined. The data previously held in Creg is popped
into Breg , and the initial Breg is left in the Creg .

swap32 reverses the order of the bytes in Areg by swapping byte 0 with byte 3 and
swapping byte 1 with byte 2.

4.10 Function and procedure calls

The function and procedure call operations are provided by the instructions listed in
Table 4.12.

The primary instruction fcall n calls a function or procedure. It stores the instruction
pointer (which holds the return address) in the word pointed to by the Wptr . The
operand to the call - n - is added to the address of the next instruction to produce the
address of the first instruction of the procedure or function being called. Since the call
address is relative, the code is relocatable.

Mnemonic Name

shl shift left

shr shift right

ashr arithmetic shift right

swap32 byte swap 32

Table 4.11 Shifting and byte swapping instructions

Mnemonic Name

fcall function call

jab jump absolute

ajw adjust work space

gajw general adjust workspace

Table 4.12 Function and procedure instructions

49/205

4 Using ST20-C1 instructions



A function called using fcall must have a fixed offset at compile time. jab is used for
calling functions and procedures at dynamically calculated addresses, for example
when using function pointers.

The jab instruction is also used to perform the return. The return address must have
been restored with a ldl from the stack into the Areg . A procedure or function that
requires local work space will normally include ajw instructions to allocate and deallo-
cate space.

When the jab instruction is executed, the programmer must ensure that:

• the Areg holds the return address;

• any workspace claimed by the procedure should have been released so that
the Wptr has returned to the value it held at the start of the procedure.

The jab instruction uses one word of the evaluation stack, so the other two words can
therefore be used to return up to two values to the calling code, including a pointer to
a block of additional data to be returned.

4.10.1 Adjusting work space

The primary instruction ajw is used to perform a relative adjustment to the stack
pointer Wptr to:

• create work space on the stack at the beginning of the function and

• return the work space pointer at the end of the function.

ajw n increases the value of the workspace pointer by the number of words in its
operand value, n. Work space is created at the beginning of a function or procedure
with a negative operand and released before returning with a positive operand.

The amount of extra work space needed will normally include:

• space to save any parameters passed in the evaluation stack;

• space for local variables and temporaries;

• space for any hidden system variables such as the static chain.

For example, a function with w words of local work space might be:

T myfunction (param_1, param_2)
{

local variable declarations;
P;
return (E);

}

This can be compiled as:

ajw -w;
stl param_1; stl param_2;
P;
E;
ajw w;

4.10 Function and procedure calls

50/205



ldl 0;
jab;

ST20-C1 processors may have a workspace cache which holds a copy of a few words
at the bottom of the work space. This cache is transparent to the programmer but may
substantially improve performance. It is refilled whenever the Wptr is adjusted, so the
ajw instruction should not be used excessively.

4.10.2 Parameters

It is convenient to load the first three parameters of the procedure or function into the
evaluation stack registers, and to arrange the work space of the calling code so that
the additional parameters can be stored in locations 1, 2, ... of the work space
before the procedure is called. Location zero of the work space is used for the return
address. This is illustrated in Figure 4.2, which shows a possible work space layout for
a function or procedure with six parameters and four local variables.

Figure 4.2 Example function or procedure workspace

To enable the procedure to access non-local variables the parameters of a procedure
may include a link to the environment in which the procedure was declared.

4.10.3 Returning results

Up to two results of size less than or equal to the word length of the processor can be
returned from a function in the evaluation stack — the jab instruction uses the third
register. Further results, or results larger than the word length, can be returned by
passing into the function the addresses of locations to store these results as extra
parameters.

Wptr in calling
code

Return Iptr
param 3
param 2

param 4
param 5
param 6

param 1
variable 1
variable 2
variable 3
variable 4Wptr in function

or procedure

51/205

4 Using ST20-C1 instructions



A C function is used for purposes of illustration. For simplicity, it is assumed that the
single result can be returned in the evaluation stack:

ajw -local_variables-1;
P;
E;
ldl local_variables;
ajw local_variables+1;
jab;

One of the loading sequences described earlier may be required if the expressions
returned in the registers contain evaluations.

4.10.4 Calling a function

The first three parameters should be loaded into the evaluation stack before the fcall
instruction. These parameters can be stored as local variables after the workspace
pointer has been moved down, to make the best use of the work space cache. The
remainder of the parameters passed should be loaded into the work space before fcall
is executed.

When the function returns, the results whose addresses were passed will already
have been stored so all that remains is to store up to 2 results returned in the evalua-
tion stack.

For example the function call

V = F(E1, . . ., En)

could be compiled by

E3; stl 0; . . . ; En; stl (n-3);
E2; E1; static_link; fcall F;
stl V;

The compiler must have already allocated sufficient workspace for the parameters that
are stacked explicitly.

Single result functions

In most programming languages, a function that returns a single result can be used in
an expression as well as in an assignment.

A common form of function returns a single value contained in a word — the
mechanism described above will return this in Areg . When compiling expressions,
(using the algorithm described in section C.3 in Appendix C) the depth of such a
function call should be taken as being infinite — i.e. deeper than any other form of
expression. This is because the function call will always lose any other information in
the registers. By giving it infinite depth the expression compilation algorithm will never
call a function while another expression result is being held in a register.

4.11 Peripherals and I/O

52/205



4.10.5 Other work space allocation techniques

The gajw instruction exchanges the contents of Wptr and Areg , allowing work spaces
to be allocated dynamically, and allowing dynamic switching between existing work
spaces. If a process work space holds a pointer to a new work space, then the
following code changes to the new work space and stores a pointer to the old work
space.

ldl Wnew; gajw; stl Wold;

The old work space can be restored by

ldl Wold; gajw;

In addition, the old work space can be accessed from the new work space, using

ldl Wold; ldnl x;
ldl Wold; stnl x;
ldl Wold; ldnlp x;

4.11 Peripherals and I/O

The peripheral and I/O instructions are listed in Table 4.13.

4.11.1 Using the IO register

The IO register is a 32-bit register used for simple bit control of devices outside the
core. The bits of the register are directly mapped to external connections on the ST20-
C1 core. The connections to and from the IO register may be to on-chip or external
peripherals depending on the particular chip design. The bits of the IO register are
defined in Table 3.3. Some bits at the most significant end of each half word may be
reserved for the system in some ST20 variants; see the data sheet for the variant.

Setting an output bit will cause the corresponding connection to be driven high, and
clearing the bit will drive the connection low. Similarly any input or output bit may be
tested for the state of the connection; if the connection is high the bit will be set and if
the connection is low the bit will be clear.

The instruction io sets and clears bits of the IO register and loads a copy of the initial
IO register. A bit in the bottom half-word may be set in the IO register by:

ldc 0; ldc bit_number; bitmask; io;

A bit in the bottom half-word may be cleared in the IO register by:

ldc bit_number; bitmask; ldc 0; io;

Mnemonic Name

io input / output

bitmask bit mask

ldtdesc load task descriptor

stop stop process

Table 4.13 Peripheral and I/O instructions

53/205

4 Using ST20-C1 instructions



Any bit may be read from the IO register by:

ldc 0; dup; io;
ldc bit_number; bitld;

The IO register is global and is not changed or saved by a context switch. If more than
one process accesses the IO register then it may need to be protected by a sema-
phore. On reset the IO register is set to all zeros.

4.11.2 Memory-mapped peripherals

On-chip peripherals may have memory-mapped registers in the address space.
Access to these registers is performed in the same way as accessing memory. If a
peripheral has a block of word-aligned registers with base address peripheral then a
register with word offset register may be read by:

ld peripheral;
ldnl register;

and value may be written to the register by:

ld value;
ld peripheral;
stnl register;

4.11.3 Channel-type peripherals

Some peripherals, for example peripherals using DMA (direct memory access), may
use a channel-type control model. This section describes how to use such periph-
erals, which use a micro-interrupt to notify the CPU that an assigned job is completed.

This type of peripheral works best with a multi-tasking program, so that the CPU has
other processes to execute while the peripheral is busy. However, if multi-tasking is not
otherwise required, then an interrupt model can be used. Multi-tasking is described in
Chapter 7 and interrupts and the exception vector table are described in Chapter 6.

Multi-tasking

The principle of using the channel model with multi-tasking is that the CPU tells the
peripheral to start a job and then deschedules the current process. The job might be
peripheral input/output or DMA transfer. This allows the CPU to continue executing
other processes while the job is in progress. When the peripheral completes the job it
signals to the CPU, which reschedules the process.

To enable this to happen, the task descriptor of a user process can be entered into the
exception vector table. This entry is called the peripheral channel. The peripheral
signals a micro-interrupt, which interrupts the CPU with the exception level associated
with the user process. The CPU recognizes that the exception vector table entry is a
user process because bit zero is UserProcessType, and either adds the process to the
end of the scheduling queue or takes a schedule exception trap if installed. The
scheduling exception trap allows a scheduling kernel to control the rescheduling of the
process.

In more detail, the steps to perform a job using this model are:

4.11 Peripherals and I/O

54/205



1 The CPU saves the task descriptor of the current process in the exception
vector table at the exception level for the peripheral.

2 The CPU tells the peripheral the number of bytes to be read or written, the
address of the start of the data or input buffer.

3 The CPU signals to the peripheral that the job can start.

4 The CPU deschedules the process, using the stop instruction, to wait for the
peripheral to complete the job.

5 The CPU executes other processes while the peripheral performs the job.

6 The peripheral completes the job and sends a micro-interrupt to the CPU, with
the exception level.

7 The CPU reads the exception vector table and recognises the entry as a user
process. The process is added to the back of the scheduling queue, or if the
schedule execution trap is enabled then the trap is taken.

The code to execute steps 3 to 4 must not be interrupted, since otherwise the periph-
eral job may be completed before the process is descheduled by a stop instruction,
which may crash the processor. Interrupts may be temporarily disabled by clearing the
local_interrupt_enable bit of the status register, which is set automatically when the
process is descheduled. Steps 5 to 7 happen automatically and need no coding.

The code to drive the peripheral will depend on the peripheral and the interface to it.
Typically the parameters (e.g. the byte count and the buffer address) would be written
to memory mapped registers and then a further write would be needed to start the
peripheral job.

The code to perform a DMA to transmit param_count bytes to or from param_buffer
using exception level except_level where the DMA registers periph_count,
periph_buffer and periph_start are in a block at peripheral would be similar to the
following:

ldtdesc; ld ExceptionBase; stnl except_level;

ld param_count; ld peripheral; stnl periph_count;
rev; ld param_buffer; stnl periph_buffer;

ldc local_interrupt_enable; bitmask; statusclr;
rot; ldc start_value; arot; stnl periph_start;
stop;

The process will resume at the next instruction after the stop when the peripheral job
is complete.

Single tasking

For programs which are not multi-tasking, it is not desirable to deschedule the
program while the peripheral is busy. The main program should continue with other
jobs while the peripheral is busy. An interrupt handler can be written to signal to the
main program that the peripheral job is complete. The descriptor of the interrupt
handler exception control block is placed in the exception vector table. The descriptor

55/205

4 Using ST20-C1 instructions



is the address of the control block ORed with the type flag ExceptionProcessType in
bit 0.

The code to perform a DMA to transmit param_count bytes to or from param_buffer
using exception level except_level where the DMA registers periph_count,
periph_buffer and periph_start are in a block at peripheral and the interrupt handler is
at except_control_blockwould be similar to the following:

ld except_control_block; ldc ExceptionProcessType; or;
ld ExceptionBase; stnl except_level;

ld param_count; ld peripheral; stnl periph_count;
ld param_buffer; arot; stnl periph_buffer;

ldc start_value; arot; stnl periph_start;

When the interrupt handler starts execution the peripheral job will be complete.

4.12 Status register

The status register may be manipulated using the instructions listed in Table 4.14.

In each of these instructions, Areg holds a bit mask. statusclr copies the initial status
register into the Areg and clears the bits of the status register that are set in the initial
Areg . For example, to clear the bit bit_number:

ldc bit_number; bitmask; statusclr

statusset is similar, but sets the bits of the status register that are set in the initial
Areg . statustst returns in the Areg the status bits masked by the initial Areg . The
Breg and Creg are unaffected.

The status register is described in section 3.3.2.

Mnemonic Name

statusclr clear bits in status register

statusset set bits in status register

statustst test status register

Table 4.14 Semaphore instructions

5.1 Data formats

56/205



5 Multiply accumulate
This section describes the multiply-accumulate instructions and their use. All these
instructions are described in the context of their intended use. Instructions for general
use (arithmetic, loading, storing etc.) are described in Chapter 4. Instructions for
exceptions are described in Chapter 6 and multi-tasking instructions are described in
Chapter 7. The architecture of the ST20-C1, including the registers and memory
arrangement, is described in Chapter 3.

Multiply accumulate operations are provided by the signal processing instructions
listed in Table 5.1.

5.1 Data formats

A signed fractional number of N bits is described as x.y, where x+y=N. This means the
number is made up from x bits before the binary point, an implied binary point, and y
fractional bits. More details of the data formats are given in section 5.7.

5.2 mac and umac

mac and umac are general purpose multiply accumulate instructions, multiplying two
32-bit values and adding them to a 32-bit unsigned initial accumulator, giving a 64-bit
accumulator. mac treats the multiplicands as signed and umac treats them as
unsigned. Initially Areg and Breg hold the values to be multiplied and Creg holds the
initial accumulator. On completion, Areg is the least significant word of the result
accumulator, Breg the most significant and Creg holds a copy of the initial Areg .

5.3 Short multiply accumulate loop

The smacloop instruction performs a multiply-accumulate operation on two vectors of
16-bit values held in memory. It takes an initial accumulator value and two pointers,
one to each of two data vectors.

• The X vector of data values is normally considered to reside within a circular
buffer of programmable size, but this can be turned off. When data fetches
reach the end of this buffer, the pointer wraps-around back to the start of the
buffer and continues. The X vector must be word aligned.

• The Y vector of coefficients is always in a flat address space , and never wraps
around. The Y vector must be half-word aligned.

Mnemonic Name

mac multiply accumulate

umac unsigned multiply accumulate

smacinit initialize short multiply accumulate loop

smacloop short multiply accumulate loop

biquad biquad IIR filter step

Table 5.1 Multiply accumulate instructions

57/205

5 Multiply accumulate



The data items from each vector are read from memory in turn and the products
formed between corresponding pairs from the two vectors. Each of these products is
added into the running accumulator value. The instruction completes with 3 values in
the stack - the final accum ulator value and the two updated data pointers.

Four control values are held in the status register, as shown in Table 5.2.

These values are initialized by the smacinit instruction. The smacinit instruction takes
a packed control word in Areg , extracts the control fields and loads these into the
status register. For smacinit, Areg is organized as shown in Table 5.3.

These status register values are global and are not saved when a process is times-
liced or descheduled. If more than one process is performing short multiply accumu-
late loops then the values should be reloaded by the process code using smacinit
after each timeslice and stop instruction.

5.3.1 X buffer size

The X vector buffer size is determined by the mac_buffer control field, which may take
the values 0 to 7. When mac_buffer is 0, then no address wrapping takes place, i.e.
the buffer is assumed to be of infinite size. Otherwise, the buffer size is 2mac_buffer+2,
as shown in Table 5.3. The X buffer must be aligned to a multiple of its own size, so a
buffer of N bytes must start at an address whose value is a multiple of N bytes.

5.3.2 Number of steps

The mac_count control field in the status register determines the number of multiply-
accumulate steps for smacloop. This is an unsigned 8-bit integer. The value zero
signifies 256 steps; otherwise the value of mac_count is the number of steps.

Field Size Meaning

mac_count 8 bits The number of steps (from 1 to 256 items).

mac_buffer 3 bits The size code for the data buffer within which the data vector lies.

mac_scale 2 bits Shift control for scaling coefficient values.

mac_mode 1 bit Accumulator format - 0 indicates16-bit (short) and 1 indicates 32-bit (long) value.

Table 5.2 smacloop status register fields

Field Size Least significant
bit

Most significant
bit

mac_count 8 bits 0 7

mac_buffer 3 bits 8 10

mac_scale 2 bits 11 12

mac_mode 1 bit 13 13

Table 5.3 smacinit Areg format

5.4 Biquad IIR filter

58/205



5.3.3 Scaling

Scaling of the input data in the X vector is controlled by the mac_scale field of the
status register, as described in section 5.6.

5.3.4 Accumulator format mode

smacloop supports two data formats for the initial and final accumulator value. If
mac_mode is 0 then Q15 (sign extended to 32 bits) is used, and the mode is said to
be ShortMode. If mac_mode is 1 then Q31 is used, and the mode is said to be
LongMode.

5.4 Biquad IIR filter

The biquad instruction performs a fixed sequence of 5 multiply-accumulates. Figure
5.1 shows an example using Q14 format. The parameters to the instruction are
pointers to three vectors of 16-bit values:

• an X input data vector,

• a Y results vector and

• a coefficient vector C. This vector must be word-aligned.

biquad calculates the next item in the Y vector according to the following formula, and
writes this to memory, incrementing the X and Y pointers by two bytes:

Y[2] =
X[0].C[0] + X[1].C[1] + X[2].C[2] + Y[0].C[3] + Y[1].C[4]

The X and Y vectors must be either both word-aligned or neither word-aligned.

The C pointer is left unchanged. This allows successive biquad instructions to be
executed back-to-back to generate a set of filter outputs with no additional overhead.

biquad scales the X input data according to the mac_scale field of the status register,
as described in section 5.6. The mac_scale field may be set using smacinit, as
described in section 5.3.

mac_buffer Buffer size
(data items)

Buffer size
(bytes)

0 infinite infinite

1 4 8

2 8 16

3 16 32

4 32 64

5 64 128

6 128 256

7 256 512

Table 5.4 mac_buffer coding

59/205

5 Multiply accumulate



5.5 Data vectors

Both biquad and smacloop operate on arrays of 16-bit values, packed two per word.
This allows the ST20-C1 to read two values per cycle from memory which is funda-
mental to the high performance of the multiply-accumulate instructions. In all cases,
data values must be half-word aligned.

Figure 5.1 ST20-C1 biquad instruction example: Q15 = Q15 × Q14

5.6 Scaling

The biquad and smacloop operations are performed with an oversize accumulator of
48 bits. The accumulator value is always sign-extended to the full width of the accu-
mulator.

During a multiply-accumulate sequence the value in the accumulator may temporarily
go outside the representable range of the final result, but can never overflow the accu-
mulator for a single biquad or smacloop.

5.6.1 Accumulator scaling

The user-visible accumulator is either in LongMode (Q31) or ShortMode (Q15). For
smacloop, the mode is defined by the mac_mode status register field. biquad only
supports ShortMode.

Pre-scaling converts the user-visible accumulator to an internal format accumulator,
as shown in Figure 5.2. The inverse operation is post-scaling which is converting an

Q14

Z-1

Input

Z-1

<< 9

>> 23

Z-1

Z-1

Output

Coefficients: 0, L4, L8, L9 Accumulator: R23Shifts

Q14

Q14

Q14 Q14

Q15 Q15

c[0]

c[1]

c[2]

c[4]

c[3]

x[0]

x[1]

x[2]

y[1]

y[0]

y[2]

<< 9

<< 9

<< 9

<< 9

<< 22 1

5.6 Scaling

60/205



internal format accumulator to a user-visible accumulator.

Figure 5.2 Accumulator scaling

The accumulator is left-shifted 8 bits so that the assumed binary point is moved from
below bit 30 to below bit 38. The accumulator value is saturated from bit 38 upwards.
At the end of the multiply-accumulate sequence the accumulator value is shifted down
(right) by an extra 8 bits to compensate for the left shift of 8 on coefficient inputs.

5.6.2 Coefficient scaling

The standard data format for data and coefficients is 1.15 (Q15). The product of two
1.15 numbers is 2.30. The coefficient value for each multiply-accumulate operation is
pre-scaled before being fed into the multiplier. The shift distances are controlled by the
mac_scale field: of the status register, as shown in Table 5.5.

The standard behavior for 1.15 (Q15) values is to shift the coefficients by 8 places,
using mac_scale set to 2, which exactly compensates the extra right shift of 8 on the

mac_scale coefficient shift

0 0

1 left 4

2 left 8

3 left 9

Table 5.5 mac_scale values

ShortMode and biquad

LongMode

1

1

User-visible accumulator

Internal accumulator

047 38

015

Internal accumulator

047 38

031

User-visible accumulator

Implied binary point
Bit initially set for rounding

61/205

5 Multiply accumulate



final accum ulator. This is shown in Figure 5.3.

Figure 5.3 Coefficient scaling with mac_mode set to 2

Shifting the coefficient by 1 extra place (i.e. 9 places) is used to normalize a 2.14
(Q14) coefficient to the correct position for the binary point. This is shown in Figure
5.4.

Figure 5.4 Coefficient scaling with mac_mode set to 3

Y data value
015

Add to internal accumulator

047 39

023

X data value
015

<< 8

8

8

Y data value
015

Add to internal accumulator

047 40

024

X data value
015

<< 9

9

9

5.6 Scaling

62/205



Under shifting (by less than 8) is used for magnitude reduction (most suitable for
smacloop) by 4 bits (x16) using mac_scale =1 or 8 bits (x256) using mac_scale =0.
Under-shifting by 4 bits is shown in Figure 5.5, and by 8 bits in Figure 5.6.

Figure 5.5 Coefficient scaling with mac_mode set to 1

Figure 5.6 Coefficient scaling with mac_mode set to 0

Y data value
015

Add to internal accumulator

047 35

023

X data value
015

<< 4

4

4

Y data value
015

Add to internal accumulator

047 31

023

X data value
015

63/205

5 Multiply accumulate



5.6.3 Pre-scaling and rounding - smacloop

The initial accumulator value must be loaded into the accumulator for the start of the
smacloop instruction. The initial accumulator is either in Q31 format (LongMode), or
Q15 format (ShortMode) and is handled accordingly.

In LongMode,

• left shift by 7 places (right 1 + left 8)

• sign extend from bit 38 to the most significant bit

• set bit 6 = 1 (for rounding)

In ShortMode,

• left shift by 23 places (left 15 + left 8)

• sign extend from bit 38 to the most significant bit

• set bit 22 = 1 (for rounding)

Note that rounding is achieved by adding half of the least significant bit to the initial
value, which by associativity is equivalent to adding it to the final value.

5.6.4 Pre-scaling and rounding - biquad

The biquad instruction starts with an empty accumulator. Since the result is always
Q15 (equivalent to ShortMode), rounding is achieved by loading the accumulator with
222 (which is half of the least significant bit of the result).

5.6.5 Post-scaling and saturation - smacloop

At the end of a smacloop instruction the final accum ulator value is saturated and
scaled to the appropriate format, according to mac_mode .

If either the overflow or underflow bits in the status register are set, then the final value
is set to the appropriate exceptional value from Table 5.6. Note that this does not
involve testing the accumulator value, which is considered to be invalid if either of
these status register bits are set.

Otherwise, when the status register reports no overflow or underflow, bits 38 to 47
inclusive of the accumulator are tested for mutual equality. If they are all the same, the
accumulator value is well-formed and post-scaling is applied to produce the final accu-
mulator value.

In LongMode,

• arithmetic right shift by 7 places(left 1 + right 8)

• truncate to low 32 bits

In ShortMode,

• arithmetic right shift by 23 places (right 15 + right 8)

• truncate to low 32 bits

5.6 Scaling

64/205



However if the bits are not all equal, then an error has occurred. If the most significant
bit (bit 47) is zero then the overall result is positive, so the error is overflow. If the most
significant bit is 1 then the overall result is negative, so the error is underflow. The
appropriate status register bit (overflow or underflow) is set accordingly, and the final
value is taken from Table 5.6.

5.6.6 Post-scaling and saturation - biquad

The result of a biquad is always short (16-bits). The saturation test is from bit 38
upwards, and the overflow/underflow flags are set as required. Note the initial value of
the overflow/underflow flags is not taken into account. If a saturation error occurs, the
appropriate ShortMode value from Table 5.6 is used. If no error occurs, the scaling is:

• arithmetic right shift by 23 places

• truncate to low 32 bits

5.6.7 Error: load exceptional value

There are four exceptional values based on whether the result is to be delivered as a
ShortMode (Q15) or LongMode (Q31) value, and whether the error was overflow or
underflow:

Note that in all cases the final value is placed in a 32-bit register (Areg).

5.6.8 Performance and interrupts

biquad

The biquad instruction takes 11 cycles to execute, assuming single cycle memory
accesses. The ST20-C1 cannot be interrupted during this period.

smacloop

A smacloop of n steps takes n+4 cycles to complete, assuming single cycle memory
accesses.

The ST20-C1 cannot be interrupted during this period, which may be up to about 8
microseconds (for single cycle memory and an operating frequency of 33 Mhz). The
user may split a long multiply accumulate into a set of shorter ones passing the inter-
mediate accumulator value from one to the next. This will reduce interrupt latency, but
loses some numerical accuracy in that within a single smacloop intermediate values
are held to 48 bits of precision, while values passed from one smacloop to another
have at most 30 bits of precision (and are saturated).

mac_mode Overflo w Underflo w

ShortMode 00007FFF FFFF8000

LongMode 7FFFFFFF 80000000

Table 5.6 Exceptional values

65/205

5 Multiply accumulate



5.7 Data formats

This section gives details of the data formats used by the smacloop and biquad
instructions.

A signed fractional number of N bits is characterized as x.y, where x+y=N. This means
the number is made up from x bits before the binary point, an implied binary point, and
y fractional bits. Some examples are listed in Table 5.7.

5.7.1 Range

A value n in x.y format has a range -2x-1 ≤ n < 2x-1.

For example, a value in the format 1.15 has range -1 ≤ n < 1, and the format 2.14 has
range -2 ≤ n < 2.

5.7.2 Multiplication

The characteristic of the product of two fractional values is given by:

a.b * c.d = a+c.b+d

5.7.3 Supported formats

Table 5.8 shows the data formats for multiply-accumulate operations supported by the
ST20-C1.

Note that a Q15 value may be (optimally) stored in a 16-bit field, or a wider (>16-bit)
field with redundant sign bits. The two storage methods are described below.

5.7.4 Q15 in 16 bits

Q15 format is a 16-bit signed fractional value in the range -1 ≤ n < 1. The value is
stored in two’s-complement form with a sign bit (bit 15), an implied binary point
between bits 15 and 14, and 15 significant fractional bits (bit 14 to bit 0).

Total bits Range Format Short name

32 -1 ≤ n < 1 1.31 Q31

16 -1 ≤ n < 1 1.15 Q15

16 -2 ≤ n < 2 2.14 Q14

Table 5.7 Example data formats

Description Name Format

Signed 16-bit fractional Q14 14 significant fractional bits

Signed 16-bit fractional Q15 15 significant fractional bits

Signed 16-bit fractional Q31 31 significant fractional bits

Table 5.8 Supported multiply accumulate data formats

5.7 Data formats

66/205



A Q15 value in a 16-bit field is organized as shown in Figure 5.7.

Figure 5.7 Q15 data format (16-bits)

The minimum and maximum representable values are as shown in Table 5.9.

5.7.5 Q15 in an oversized field

When a Q15 value is stored in an oversized field, e .g.a 32-bit register, the significant
bits are placed at the least significant end of the field, and the v alue is sign-extended
to the width of the whole field.

The value still has the same range (-1 ≤ n < 1) and the same number of significant
bits.

A Q15 value in a 32-bit field is organized as shown in Figure 5.8.

Figure 5.8 Q15 data format (32-bits)

The minimum and maximum representable values are as shown in Table 5.10.

Hex Value Decimal Value

Minimum 8000 -1

Maximum 7FFF +0.9999

Table 5.9 Q15 limiting values

2-1-(20) 2-2 2-3 2-14 2-15

binary point

sign bit

15 14 13 12 01Bit position

Most significant Least significant

-(20)-(20) -(20) -(20)-(20) 2-1 2-142-13 2-15

binary point
sign bit

31 30 29 16 15 14 012Bit position

Most significant Least significant

Basic Q15 value

sign extended

67/205

5 Multiply accumulate



Memory access

A Q15 stored in memory may be loaded to Areg with a lsxinc instruction which will
automatically sign-extend the value. Similarly a Q15 may be written to memory with a
ssinc instruction (which will discard the top 16 bits).

Saturation

A well-formed Q15 value is sign extended to the width of the field, and so bits 15 to 31
inclusive will all be identical. Conversely, if the bits from 15 to 31 inclusive are not all
identical, then the value is not well-formed. It has either overflowed (if b31=0, so
positive) or underflowed (if bit31=1, so negative).

A Q15 value in Areg may be saturated with the sequence:

ldc 00007FFF;
order;
ldc FFFF8000;
order;
rev;

5.7.6 Q31 format

Q31 format is a 32-bit signed fractional value in the range -1 ≤ n < 1. The value is
stored in two’s-complement form with a sign bit (bit 31), an implied binary point
between bits 31 and 30, and 31 significant fractional bits (bit 30 to bit 0).

A Q31 value in a 32-bit field is organiz ed as shown in Figure 5.9.

Figure 5.9 Q31 data format

The minimum and maximum representable values are as shown in Table 5.11.

Hex Value Decimal Value

Minimum FFFF8000 -1

Maximum 00007FFF +0.9999

Table 5.10 Q15 limiting values

2-1-(20) 2-2 2-42-3 2-5 2-302-29 2-31

binary point

sign bit

31 30 29 28 27 26 012Bit position

Most significant Least significant

5.7 Data formats

68/205



Hex Value Decimal Value

Minimum 80000000 -1

Maximum 7FFFFFFF +0.99999999

Table 5.11 Q31 limiting values

69/205

5 Multiply accumulate



70/205



6 Exceptions
This chapter describes exceptions and how to use them. The architecture of the
ST20-C1, including the registers and memory arrangement, are described in Chapter
3. A full list of constants and data structures is given in Appendix A.

An exception is an exceptional event detected by the ST20-C1 core, which causes a
context switch from the normal flow of an executing program. The event triggering the
exception may be generated by software inside the core, in which case it is called a
trap. Otherwise, the event may be a hardware signal from outside the core, in which
case it is called an interrupt, except that the interrupt may attempt to perform a sched-
uling action, which may cause a trap.

When an exception occurs the CPU changes context to an exception handler, which is
a section of code only executed when an exception occurs. The process state
registers (Areg , Breg , Creg , Iptr , Wptr , Status and Tdesc) are saved while the
exception handler is running, and restored when it returns. Exception handlers for
traps are called trap handlers and exception handlers for interrupts are called interrupt
handlers. Normal processes which are not exception handlers are known as user
processes.

The exception handler is a transient process. Each exception handler starts execution
with a standard initial state, runs to completion and terminates with an empty work-
space. When the triggering event occurs again, the handler is restarted from its
standard initial state and again runs to completion and terminates.

Exception handlers may be nested to arbitrary depth, but they are not re-entrant, so
care should be taken to ensure that the exception which caused the handler to run
cannot occur while the handler is running, trapped or interrupted. The nesting of
exceptions is illustrated in Figure 6.1.

Figure 6.1 Nested exceptions

User
process

User
process

Exception 1 taken - state of user process saved

Exception 2 taken - state of exception 1 saved

Exception 2 returns - state of exception 1 restored

Exception 1 returns - state of user process restored

Exception 1 executing

Exception 1 executing

Exception 2 executing

71/205

6 Exceptions



Exception handler code is completed by executing the eret instruction, which restores
the state of the interrupted or trapped process. When an interrupt handler executes
eret, it also signals to the interrupt controller that the interrupt has completed. This
allows the interrupt handler to start a lower priority waiting interrupt if required.

The exception instructions are listed in Table 6.1.

6.1 Exception levels

All exception handlers are identified by an integer called the exception level. Exception
levels 0 to HighestException (255) are available for user-defined exceptions, while
system exceptions have negative levels, as defined in Table 6.2.

Any exception may be triggered from software with the ecall instruction. User-defined
exceptions can be interrupt handlers, user processes waiting for DMA peripherals or
trap handlers used as system calls by executing ecall.

System exceptions are traps which may be triggered automatically when the CPU is in
certain states. They are intended mainly for operating system kernels to trap sched-
uling events and for debuggers to trap breakpoints. The circumstances in which each
system trap is taken are as follows:

• el_breakpoint_trap

This trap is taken when either a breakpoint instruction is executed or a diag-
nostic controller (DCU) signals to the CPU requesting a breakpoint. If the trap
is null then the process continues. This trap is used by debuggers.

Mnemonic Name

ecall exception call

eret exception return

breakpoint breakpoint

Table 6.1 Exception instructions

Exception level Name Circumstances when taken if not null

0 - 255 - Interrupt, system call, DMA user process.

-1 el_breakpoint_trap breakpoint instruction executed or DCU break-
point request.

-2 el_illegal_instr_trap Illegal op-code encountered.

-3 el_idle_trap CPU becomes idle.

-4 el_schedule_exception_trap Schedule a user process as an exception.

-5 el_run_trap Execute a run instruction.

-6 el_stop_trap Execute a stop instruction.

-7 el_timeslice_trap Take a timeslice.

Table 6.2 Exception levels

6.2 Exception vector table

72/205



• el_illegal_instr_trap

This trap is taken when the CPU encounters an instruction with an illegal op-
code. If the trap is null then the instruction is treated as a nop.

• el_idle_trap

This trap is taken when the CPU becomes idle, i.e. the current process exe-
cutes a stop when there are no active processes waiting for CPU time, or a
timeslice is trapped or interrupted so that there are no active processes waiting
when the CPU attempts to start the next process. If the trap is null then the
CPU waits for an interrupt or for a process to be scheduled. This trap is used
by software scheduling kernels.

• el_schedule_exception_trap

This trap is taken when an interrupt is received from a peripheral and the
exception level is assigned to a user process, which will generally be desched-
uled waiting for the peripheral to complete a job. If the trap is null then the user
process is queued. This trap is used by software scheduling kernels.

• el_run_trap

This trap is taken when the run instruction is executed. If the trap is null then
the CPU adds the process to the back of the scheduling queue. This trap is
used by software scheduling kernels.

• el_stop_trap

This trap is taken when the stop instruction is executed. If the trap is null then
the current process is descheduled and the CPU starts executing the process
on the front of the scheduling queue, or goes idle if there is none. This trap is
used by software scheduling kernels.

• el_timeslice_trap

This trap is taken when a timeslice is due and enabled and the timeslice
instruction is executed. If the trap is null then the current process is timesliced,
i.e. placed on the back of the scheduling queue. This trap is used by software
scheduling kernels.

Scheduling and timeslices are discussed in Chapter 7. Using user processes as
exceptions to handle peripherals is described in section 4.11.

6.2 Exception vector table

The exception vector table maps each exception level to a user process or exception.
The base of the exception vector table is at the fixed address ExceptionBase
(#80000040) in on-chip memory, and the exception level is the word offset from the
ExceptionBase to the vector. Thus the exception level is used as an index into the
exception vector table.

The address of the user process or exception is always word aligned, and so has bits
0 and 1 set to zero. The entry in the exception vector table is a descriptor, which
consists of the address of the user process or exception ORed with a type. The type is

73/205

6 Exceptions



bit 0 of the descriptor, and so can be either ExceptionProcessType (which has the
value 1) or UserProcessType (which has the value 0). The type allows each exception
level to be assigned to one of the following:

• an exception handler. The entry for an exception handler is the address of the
exception control block (as described in section 6.3) bitwise ORed with
ExceptionProcessType to indicate an exception.

• a user process waiting for a peripheral (as described in section 4.11).The entry
for a user process is the task descriptor (i.e. the address of the process control
block) bitwise ORed with UserProcessType to indicate a user process.

• the null entry NotProcess. The CPU treats null entries as disabled exceptions.

When the exception is triggered, the CPU looks in the table entry for the requested
exception level. If the value in the table is NotProcess then no exception or trap is
taken and the CPU continues with the default behavior. Otherwise, if bit 0 is
UserProcessType then the address part of the value is assumed to be a valid task
descriptor of a process. If bit 0 is ExceptionProcessType, then the address part is
assumed to be a pointer to a valid exception control block.

Using user processes as exceptions to handle peripherals is described in section
4.11. The rest of this chapter refers only to exceptions.

Typically a separate descriptor is used for each interrupt level and system call, so that
this scheme provides a system of vectored interrupts and system calls. The exception
handler is then executed, and can itself be interrupted or trapped.

6.3 Exception control block and the saved state

When an exception is taken, the state is saved in the exception control block. The
evaluation stack, status register, Iptr , Wptr and Tdesc are automatically saved on
taking the exception and restored on returning. This is done to enable any exception
handler to have direct access to the state of the underlying process and is required for
some software scheduler implementations.

The constants in Table 6.3 define the locations in the control block.

Word offset Name Purpose

7 ex.HandlerIptr Exception handler instruction pointer.

6 ex.InterptdStatus Interrupted or trapped process status register.

5 ex.InterptdTdesc Interrupted or trapped process task descriptor.

4 ex.InterptdIptr Interrupted or trapped process instruction pointer.

3 ex.InterptdWptr Interrupted or trapped process workspace pointer.

2 ex.InterptdCreg Interrupted or trapped process Creg .

1 ex.InterptdBreg Interrupted or trapped process Breg .

0 ex.InterptdAreg Interrupted or trapped process Areg .

Table 6.3 Exception control block

6.4 Initial exception handler state

74/205



The control block is at the initial Wptr for the exception handler, so the locations are
word offsets from the initial Wptr of the exception handler. The initial Wptr is the
address of the exception control block which is the address part of the entry in the
exception vector table.

6.4 Initial exception handler state

When the exception handler starts, Wptr is set to the address of the exception control
block. The work space of the exception handler is normally below the control block, so
like a function or procedure call, one of the first actions of the exception handler code
is to adjust the Wptr downwards to create space for local variables using ajw. The
Wptr must be adjusted back up again before the handler returns.

The initial Iptr of the exception handler is the value loaded from ex.HandlerIptr in the
exception control block. The state of the interrupted or trapped process is saved in the
exception control block. If the exception is an idle trap then the saved state is the state
of the last descheduled process. Initially the status register is set to the values shown
in Table 6.4.

If the exception handler is interrupting a user process, then the address of the
exception control block (i.e. the user process state) is left in Tdesc . If necessary, the
exception handler can save this address. If a sequence of nested interrupts has

Field or bit Value

mac_count As in the interrupted or trapped process.

mac_buffer As in the interrupted or trapped process.

mac_scale As in the interrupted or trapped process.

mac_mode As in the interrupted or trapped process.

global_interrupt_enable False if exception is a trap, otherwise preserved.

local_interrupt_enable As in the interrupted or trapped process.

overflo w False.

underflo w False.

carry False.

user_mode False.

interrupt_mode True if any interrupts are running, false otherwise.

trap_mode True if exception is a trap, false otherwise.

sleep False.

reserved Undefined.

start_next_task False.

timeslice_enable False.

timeslice_count As in the interrupted or trapped process.

Table 6.4 Exception handler initial status register

75/205

6 Exceptions



occurred then this is the only way that the nested interrupts can identify the state of
the user process.

If the exception is a schedule_exception trap then the trap handler also needs to
know the process due to be scheduled. The descriptor of the process (as held in the
exception vector table) is saved at SavedTaskDescriptor near the bottom of the
address space.

6.5 Restrictions on exception handlers

Exception handlers cannot be queued, so they must not deschedule. This means that
the following are not permitted inside exception handlers:

• the stop instruction;

• the timeslice instruction.

Exception handlers may be nested to arbitrary depth, but they are not re-entrant, so
care should be taken to ensure that the exception which caused the handler to run
cannot occur while the handler is running, trapped or interrupted.

6.6 Interrupts

All interrupts, whether from on-chip peripherals or external pins, are routed through an
interrupt controller, which is normally an on-chip peripheral. The interrupt controller is
responsible for arbitration between multiple interrupt signals. The design of the
interrupt controller varies between ST20 variants. Typically, interrupt priorities are
managed by the interrupt controller, which will usually track the priority of the highest
level task currently executed by the core, and will interrupt the ST20-C1 again if a
higher priority interrupt occurs.

When an interrupt is requested by the interrupt controller, the ST20-C1 always
changes context to the appropriate interrupt handler. An interrupt request is accompa-
nied by an identifier for the interrupt handler, which is the exception level. The ST20-
C1 scheduler uses the exception level from the interrupt controller to start the appro-
priate interrupt handler.

The CPU also sets the interrupt_mode bit in the status register and clears the
trap_mode and user_mode bits. The interrupt_mode bit indicates that an interrupt
handler is running, though it may have been trapped.

When the interrupt handler executes the eret instruction, the CPU signals to the
interrupt controller that the handler has returned. This allows the interrupt controller to
keep track of which interrupt handlers are running, so that it can start a low priority
waiting interrupt when a higher priority handler completes.

If the interrupt controller requests an interrupt level which has a null interrupt handler
then the CPU signals to the controller that the interrupt has completed.

6.7 Traps

76/205



6.7 Traps

The ST20-C1 has a system of traps which act as software generated interrupts. Any
level of exception can be called as a user exception using ecall. This mechanism can
be used for system calls to an operating system. In addition some special exception
levels are reserved for system use to provide for the trapping of breakpoints,
scheduling events, illegal operations and the machine becoming idle. The reserved
‘system’ exception levels are described in section 6.1.

If a system trap event occurs or a trap is called at an exception level which has a null
trap handler then the CPU ignores the trap and continues.

When a non-null trap handler is started, the trap_mode bit of the status register is set
and the user_mode bit is cleared. The interrupt_mode bit is not altered. The
trap_mode bit indicates that a trap handler is currently executing, so it is cleared if the
trap handler is interrupted.

6.8 Setting up the exception handler

To create an exception handler, an exception work space area must be created, with
enough space for the exception handler’s stack and 8 words at the top of the work
space for the exception control block, as defined in Table 6.3. For minimum interrupt
latency, interrupt handler control blocks should be in fast memory, preferably on-chip.
The normal work space and control block of an exception handler is shown in Figure
6.2. In the control block, ex.HandlerIptr must be initialized to point to the entry point of
the exception handler code.

Figure 6.2 Exception handler

ex.HandlerIptr

Pointer OR 1

Exception
handler code
entry point

Interrupted
or trapped state

Work
space

Exception
vector
table

Exception
level

(7 words)

(word offset)

ExceptionBase

Exception
Handler

Initial
exception handler
Wptr

77/205

6 Exceptions



The code of the exception handler may access or modify the state of the interrupted or
trapped process. The state of the interrupted or trapped process is stored in the
exception control block, which is located at the initial Wptr of the exception handler.

An exception handler must use eret to return to the interrupted or trapped process.

6.8.1 Enabling and disabling exceptions

When the exception handler has been created and initialized, the exception can be
enabled. The address of the exception handler control block, ORed with 1 to set the
exception type bit, must be written in the exception vector table at the level for the
exception. To write an entry control_block with type ExceptionProcessType in the
exception vector table, the following code may be used:

ld control_block; ldc ExceptionProcessType;or;
ld ExceptionBase;
stnl exception_level;

For interrupts, both the global_interrupt_enable and local_interrupt_enable bits in the
status register must be set. In addition the interrupt controller may need to be initial-
ized, including any interrupt enable bits and masks.

A trap can be disabled by writing NotProcess into the exception vector table.

Interrupts can be disabled in four ways:

1 Clearing the status register bit global_interrupt_enable disables all interrupts
until the bit is set by an explicit write to the status register.

2 Clearing the status register bit local_interrupt_enable disables all interrupts
until the current process is descheduled.

3 A single exception level can be disabled by writing NotProcess into the excep-
tion vector table.

4 The interrupt controller will generally have a means of disabling interrupts indi-
vidually or globally by writing to interrupt controller registers.

7.1 Processes

78/205



7 Multi-tasking
This chapter describes the features of the ST20-C1 core provided to support multi-
tasking, and how to use them. The architecture of the ST20-C1, including the registers
and memory arrangement, are described in Chapter 3. Interrupts and traps are
described in Chapter 6. A full list of constants and data structures is given in Appendix
A.

Support is provided in the instruction set for timeslicing, scheduling processes and
manipulating queues of processes.

7.1 Processes

A process (also known as a task or thread) is an independent unit of software with a
single thread of control, i.e. a sequential algorithm. Any number of processes may be
run. A process which has been started but not terminated may be in one of several
different states:

• executing on the CPU;

• interrupted or trapped by an exception;

• inactive, i.e. waiting for a peripheral or semaphore signal;

• waiting for CPU time.

A process that is not inactive is said to be active. A process that is not executing or
interrupted is said to be descheduled. The states and main transitions are shown in
Figure 7.1. The scheduling transitions can be trapped so that a software scheduling
kernel can modify the transitions and so change the scheduling behavior, for example
by providing a system of process priorities.

Figure 7.1 Process states and main transitions

Waiting
for CPU

time
Executing

Interrupted
Inactive

Descheduled
processes

Active
processes

Interrupt
or trap

ReturnEvent

TerminateRun
TerminatedNot started

Descheduled

Timeslice

or
trapped

79/205

7 Multi-tasking



A process state is held in memory and the CPU registers. Sufficient of the register
state must be saved when the process is interrupted or a context switch occurs, so
that the process can be reloaded and continue execution at a later time. The register
state consists of:

• the instruction pointer register;

• the work space pointer register;

• the task descriptor register;

• the evaluation stack registers;

• the status register.

In order to save memory space and context switch time, processes are only desched-
uled when the evaluation stack and status register are empty. This is achieved by only
allowing processes to deschedule at certain instructions, called deschedule instruc-
tions, after which the final values in the evaluation stack are undefined and the status
register is reset to a default value. The deschedule instructions are stop and timeslice.

Table 7.2 lists the multi-tasking instructions.

7.2 Descheduled processes

If the process is waiting for a peripheral or a semaphore or descheduled by a timeslice
then the evaluation stack is not saved. The instruction pointer and Wptr are saved in
the process descriptor block. The task descriptor is the address of the process
descriptor block. It therefore identifies the waiting process and points to its saved
state. The task descriptor is a fixed address for each process, unlike the Wptr which
changes as the code executes. When the process is running, the task descriptor is
held in the Tdesc register.

Mnemonic Name

run Run process

stop Stop process

timeslice Timeslice

ldtdesc Load task descriptor

enqueue Enqueue a process

dequeue Dequeue a process

Table 7.2 Multi-tasking instructions

Word offset Slot name Purpose

2 pw.Iptr The process saved instruction pointer.

1 pw.Wptr The process saved work space pointer.

0 pw.Link The link to the next process in the queue.

Table 7.1 Process descriptor block

7.3 Queues

80/205



The structure of the process descriptor block is shown in Table 7.1. When the process
is not executing, it contains the saved work space pointer and instruction pointer of the
process, plus a queue link if the process is in a queue.

Figure 7.3 illustrates a descheduled process.

Figure 7.3 A descheduled process

7.3 Queues

There may be any number of processes waiting for execution, so a queue (i.e. a linked
list) of waiting processes is formed, called the scheduling queue. This is an example
of a general queue supported by the instruction set for queueing waiting processes.

A queue is a linked list of process control blocks, formed by links included in the
process control blocks. Each link points to the control block of the next process in the
queue unless it is the last in the queue, which is undefined.

The front and back pointers of a queue are held in a queue control block, as shown in
Table 7.2. The queue control block is held in memory, and the address of the block is
the identifier of the queue .

A complete queue is illustrated in Figure 7.4. In the case of the scheduling queue, the
control block is stored at the reserved address called SchedulerQptr (which has the

Word offset Slot name Purpose

1 q.BPtrLoc The back of the queue.

0 q.FPtrLoc The front of the queue.

Table 7.2 Queue control block

Process

work space
(stack)

Work space pointer

Link

Next process
Task descriptor

Code

local

Iptr

Process descriptor block

81/205

7 Multi-tasking



value MostNeg) at the bottom of the memory space.

Figure 7.4 A process queue

7.4 Timeslicing

The ST20-C1 includes support for timeslicing. Timeslicing is a safeguard in a multi-
tasking environment to prevent any one process from taking too much processor time.
Exception handlers are not timesliced.

A timeslicing counter is provided as a field of the status register called the
timeslice_count . It is reset to MaxTimesliceCount each time a user process is loaded
from the scheduling queue into the CPU. The counter is decremented regularly until it
reaches 0, and then stays at 0. A timeslice is due when the counter value is 0.

If a timeslice instruction is executed when a timeslice is due and timeslicing is enabled
then:

• the timeslice trap will be taken if it is installed;

• otherwise the current process will be timesliced, i.e. the current process is
placed on the back of the scheduling queue and the process on the front of the
scheduling queue is loaded into the CPU for execution.

If an exception occurs, the value of the counter is saved with the status register and
reloaded when the interrupted or trapped process is restarted. This ensures that a
process will be executed for roughly the same time regardless of whether it was inter-
rupted or trapped.

The timeslice_enable bit of the status register can be used to enable or disable
timeslicing. Timeslicing is enabled when the bit is set. This bit is preserved when a
process is descheduled, so it may be treated as global among user processes.Times-
licing must not be enabled in exception handlers.

Front

Back

Front Back

Queue control block

Process descriptor blocks

Wptr

Iptr

Wptr

Iptr

Wptr

Iptr

Wptr

Iptr

7.5 Inactive processes

82/205



7.5 Inactive processes

An inactive process is a process that is waiting for some event to occur, such as a
process executing a run instruction or a peripheral completing a DMA. An inactive
process cannot continue even if the CPU is idle. Inactive processes are not polled, but
should be rescheduled by the event for which they are waiting.

A process becomes inactive by saving its own state and then executing the stop
instruction. stop automatically saves the Iptr and Wptr in the process control block.
The code should save the Tdesc in an appropriate place where the awaited event can
find it. The Tdesc points to the process control block. The Iptr is loaded onto the eval-
uation stack using ldpi, the Wptr using ldlp 0 and the Tdesc using ldtdesc. For
example:

ldtdesc; ld tdesc_save_address;stnl 0;
stop;

Two mechanisms are provided for rescheduling inactive processes:

• Executing the run instruction. This allows other processes to reschedule an
inactive process. For example, this is used when semaphore signalling to a
waiting process and could be used by other communications, possibly imple-
mented by an operating system.

• Scheduling an exception. This allows external devices to reschedule an inac-
tive process. For example, this is used by DMA peripherals to wake a process
waiting for the DMA to complete. Exception scheduling is described in section
4.11.

The run instruction takes a task descriptor in Areg and adds the process control block
to the back of the scheduling queue. For example:

ld task_descriptor ; run;

Inactive processes may need to be queued, for example while waiting for a sema-
phore. The semaphore queue handling is incorporated into the signal and wait instruc-
tions, but for other queues the instructions enqueue and dequeue are needed.
Enqueue will add a process to the back of an arbitrary queue, and dequeue will take a
process from the front of the queue.

7.6 Descheduled process state

When a process restarts after an interrupt or trap, the entire state is loaded from the
saved state. However, when the process starts or restarts after being descheduled,
the CPU makes assumptions about the state of the process, since not all the state
was saved.

Wptr and Iptr are set to the values saved in pw.Wptr and pw.Iptr of the process
descriptor block.

The status register is set to the values shown in Table 7.3. The global interrupt enable
and timeslice enable are global status bits, and are carried over from one process to
the next when a context switch occurs.

83/205

7 Multi-tasking



7.7 Initializing multi-tasking

7.7.1 Initializing the scheduling queue

Before multi-tasking operations can be performed, the scheduling queue must be
initialized. The scheduling queue is described in section 7.3. The queue must be
initialized by setting it to empty, which means setting the front pointer to empty:

ld MostNeg; ld SchedulerQptr; stnl q.FPtrLoc;

7.7.2 Creating and starting a process

A process consists of code, a work space area, a process control block and the values
for the Iptr , Wptr and Tdesc . To create a process, a large enough work space is
created, and a process control block of three words. It may be convenient to put all the
process control blocks together in one area of memory. For fast context switches and
minimal interrupt latency, process control blocks should be in on-chip memory.

The entry point for the process code is written into pw.Iptr of the process control
block. The address of the top of the work space is written into pw.Wptr of the process
control block, so the process code must adjust the initial Wptr down using ajw to
create space for local variables.

Field or bit Value

mac_count As in previous process.

mac_buffer As in previous process.

mac_scale As in previous process.

mac_mode As in previous process.

global_interrupt_enable As in previous process.

local_interrupt_enable Set.

overflo w False.

underflo w False.

carry False.

user_mode True.

interrupt_mode False.

trap_mode False.

sleep False.

reserved Undefined.

start_next_task False.

timeslice_enable As in previous process.

timeslice_count MaxTimesliceCount.

Table 7.3 Restarted process status register

7.8 Scheduling kernels

84/205



The following code would set up a process control block:

ld entry_point; ld control_block; stnl pw.Iptr;
ld work_space_top; arot; stnl pw.Wptr;

The process is then inactive, so it can be added to the back of the scheduling queue
using run, exactly as in section 7.5.

7.8 Scheduling kernels

A scheduling kernel can be written to override the default scheduling behavior of the
ST20-C1, but still using the very fast micro-code scheduling. The basis of such a
scheduler would be trap handlers to trap the system exceptions el_idle_trap ,
el_run_trap , el_stop_trap , el_timeslice_trap and el_schedule_exception_trap .
When these traps are taken, a scheduling event is due or the processor has become
idle. The trap replaces the default scheduling action. When the trap handler returns,
the CPU will continue with the next instruction. Traps are described in Chapter 6.

Additional system calls may be implemented by user-defined trap handlers, called
using ecall.

7.9 Semaphores

Semaphores are a mechanism for managing access to shared resources within a
multi-tasking environment. The semaphore operations are provided by the instructions
listed in Table 7.4.

The semaphore instructions act on a semaphore control block, defined in Table 7.5.

Each semaphore has a semaphore control block, which implements a linked list of
waiting processes and a count of free resources. The count should be initialized to the
total number of available resources (usually one), and the front list pointer should be
initialized to the empty value NotProcess. For fast signalling and minimal interrupt
latency, semaphore control blocks should be in fast memory, preferably on-chip.

Mnemonic Name

signal signal

wait wait

stop stop process

run run process

Table 7.4 Semaphore instructions

Word offset Slot name Purpose

2 s.Back The back of the semaphore waiting list.

1 s.Front The front of the semaphore waiting list.

0 s.Count The unsignednumber of extraprocesses that thesemaphore will allow
to continue running on a wait request.

Table 7.5 Semaphore control block

85/205

7 Multi-tasking



7.9.1 Waiting for a resource

A process requesting a resource executes a wait (or P), which is the following code
sequence:

ld semaphore; wait;
cj CONTINUE;
stop;

CONTINUE:

The wait instruction is executed, with a pointer to the semaphore control block in
Areg . The action of wait depends on the count in the semaphore control block. If the
count is not zero, then a resource is free, so the count of free resources is decre-
mented and the value false is left in the Areg to indicate that the process can
continue. If the count is zero then there are no free resources, and the process is
added to the list of waiting processes, and the value true is left in Areg to indicate that
the process must wait. A conditional jump then tests Areg and performs a stop if the
process must wait. stop saves the Iptr and Wptr and deschedules the process, which
will wait on the semaphore queue until another process performs a signal and subse-
quently restarts the process with a run instruction.

7.9.2 Freeing a resource

When a process finishes with a resource and can free it, it performs a signal (or V),
which is the following code sequence:

ld semaphore; signal;
cj CONTINUE;
run;

CONTINUE:

The signal instruction is executed, with a pointer to the semaphore control block in
Areg . The action of signal depends on whether a process is waiting or not. If the front
pointer of the process waiting list is empty then there are no processes waiting, so the
count is incremented and Areg is set to false. Otherwise, at least one process is
waiting, so the first process is removed from the list and placed in the Breg , and Areg
is set to true. A conditional jump tests Areg and performs a run to restart the process
if there was one waiting.

7.10 Sleep

When the ST20-C1 becomes idle it disables counter distribution to its circuits and
consumes a very small amount of electrical power; this is known as sleep mode. The
counters are re-enabled and normal operation resumes automatically and instantly
when either an interrupt or a software reset from the diagnostic controller is received.

Sleep mode may also be triggered directly from software by setting the sleep bit in the
status register:

ldc sleep; bitmask; statusset;

In this case also, sleep mode persists until the next interrupt or software reset.

7.10 Sleep

86/205



87/205

8 Instruction Set Reference



8 Instruction Set Reference
The following pages define the actions of each instruction in the ST20-C1 instruction
set. The notation used is described in Chapter 2. The use of the instructions is
described in Chapter 4, Chapter 6 and Chapter 7. The constants and data structures
are listed in Appendix A.

88/205



adc n add constant

Code: Function 8

Description: Add a constant to Areg .

Definition:
if (sum > MostPos)
{

Areg′ ← sum − 2BitsPerWord

if (Status′underflo w ≠ set)
Status′overflow ← set

}
else if (sum < MostNeg)
{

Areg′ ← sum + 2BitsPerWord

if (Status′overflow ≠ set)
Status′underflow ← set

}
else
{

Areg′ ← sum
}

where sum = Areg + n
– the value of sum is calculated to unlimited precision

Status Register:
Overflow or underflow bit may be set.

Comments:
Primary instruction.

See also: add addc ldnlp
section 4.4.

89/205

8 Instruction Set Reference



add add

Code: F4

Description: Add Areg and Breg .

Definition:
if (sum > MostPos)
{

Areg′ ← sum − 2BitsPerWord

if (Status′underflow ≠ set)
Status′overflow ← set

}
else if (sum < MostNeg)
{

Areg′ ← sum + 2BitsPerWord

if (Status′overflow ≠ set)
Status′underflow ← set

}
else
{

Areg′ ← sum
}

Breg′ ← Creg
Creg′ ← Areg

where sum = Areg + Breg
– the value of sum is calculated to unlimited precision

Status Register:
Overflow or underflow bit may be set.

Comments:
Secondary instruction.

See also: adc addc
section 4.4.

90/205



addc add with carry

Code: 21 F0

Description: Add Areg and Breg , unsigned, with carry propagation. This instruction
is provided for long arithmetic; address calculations may be performed with add, sub
and adc without affecting the carry flag.

Definition:
if (sum < 2BitsPerWord)
{

Areg′unsigned ← sum
Status′carry ← clear

}
else
{

Areg′unsigned ← sum - 2BitsPerWord

Status′carry ← set
}

Breg′ ← Creg
Creg′ ← Areg

where sum = Aregunsigned + Bregunsigned + Statuscarry
– the value of sum is calculated to unlimited precision

Status Register:
Carry bit is set or cleared.

Comments:
Secondary instruction.

See also: adc add subc
section 4.4.

91/205

8 Instruction Set Reference



ajw n adjust work space

Code: Function B

Description: Move the workspace (stack) pointer by the number of words specified in
the operand, in order to allocate or de-allocate workspace stack slots.

Definition:
Wptr′ ← Wptr @ n

Status Register:
No effect

Comments:
Primary instruction.

See also: fcall gajw
section 4.10.

92/205



and and

Code: F9

Description: Bitwise AND of Areg and Breg .

Definition:
Areg′ ← Breg ∧ Areg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: not or xor
section 4.8.

93/205

8 Instruction Set Reference



arot anti-rotate stack

Code: F3

Description: Rotate the evaluation stack downwards. This instruction may be used to
recover values rotated onto the bottom of the stack, e.g. by cj.

Definition:
Areg′ ← Creg
Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.

See also: dup rev rot
section 4.1.

94/205



ashr arithmetic shift right

Code: 21 FF

Description: Perform an arithmetic shift right of Breg by Areg bits, copying the sign
bit into the vacated bits. Breg , not Areg , is rotated into Creg , to preserve the value
rather than the shift length.

Definition:
Areg′ ← (Breg >>arith Aregunsigned)

Breg′ ← Creg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
If Areg is not in the range 0..31 then the result is undefined.

See also: shl shr
section 4.9.

95/205

8 Instruction Set Reference



biquad biquad IIR filter step

Code: 21 F7

Description: Execute a step of a biquad IIR filter on vectors of 16-bit values. Areg
points to the C coefficient vector, Breg points to the X input data vector and Creg
points to the Y results vector. Areg must be word-aligned and Breg and Creg half-
word aligned. biquad increments Breg and Creg by 2 bytes and performs the five
multiply accumulates Y[2] = X[0].C[0] + X[1].C[1] + X[2].C[2] + Y[0].C[3] + Y[1].C[4].

Definition:
if (overflow)

if (Status′underflow ≠ set) Status′overflow←set
else if (underflow)

if (Status′overflow ≠ set) Status′underflow←set
else
{

sixteen′[Creg + 4] ← acc >>arith23
Breg′ ← Breg + 2
Creg′ ← Creg + 2

}
where acc = 1 << 22 + ((sixteen[Areg] << shift) × sixteen[Breg])

+ ((sixteen[Areg+2] << shift) × sixteen[Breg+2])
+ ((sixteen[Areg+4] << shift) × sixteen[Breg+4])
+ ((sixteen[Areg+6] << shift) × sixteen[Creg])
+ ((sixteen[Areg+8] << shift) × sixteen[Creg+2])

– the value of acc is calculated to 48-bit precision
if (Statusmac_scale = 3) shift = 9
else shift = 4 × Statusmac_scale

Status Register:
May set underflow or overflow.

Comments:
Areg must be word-aligned.
Breg and Creg must be half-word aligned, and must either be both word-aligned
or neither word-aligned.
This instruction may take 8 memory accesses, which will affect interrupt latency.

See also: mac, smacloop, umac
Chapter 5.

96/205



bitld load bit

Code: 22 F3

Description: Get a bit of Breg . The bit number is given by Areg . Breg is rotated into
Creg , to preserve the value rather than the bit number.

Definition:
Areg′ ← (Breg >> Areg) ∧ 1

Breg′ ← Creg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be in the range 0..31.

See also: bitst bitmask
section 4.8.

97/205

8 Instruction Set Reference



bitmask create bit mask

Code: 22 F5

Description: Create a bit mask with a single bit set. The value in Areg indicates the
bit that is to be set.

Definition:
Areg′ ← 1 << Areg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be in the range 0..31.

See also: bitld
section 4.8.

98/205



bitst store bit

Code: 22 F4

Description: Overwrite the bit position Areg of the value in Creg with a single bit with
the value given by Breg . Breg is rotated into Creg , to preserve the value rather than
the bit number.

Definition:
Areg′ ← (Creg ∧ ~(1 << Areg)) ∨ (Breg << Areg)

Breg′ ← Creg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be in the range 0..31.
Breg must be 0 or 1.

See also: bitld bitmask
section 4.8.

99/205

8 Instruction Set Reference



breakpoint breakpoint

Code: FF

Description: Take a breakpoint trap if a breakpoint trap is installed.

Definition:
if (breakpoint trap installed)

take breakpoint trap

Status Register:
If the trap is taken then the status register is saved and the trap handler status
register is loaded.

Comments:
Secondary instruction.
This instruction is a short secondary instruction, encoded in a single byte.

See also:
Chapter 6.

100/205



cj n conditional jump

Code: Function A

Description: Jump if Areg is 0 (i.e. jump if false). The destination of the jump is
expressed as a byte offset from the instruction following the conditional jump.

Definition:
if (Areg = false)

Iptr′ ← next instruction + n
else
{

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Areg

}

Status Register:
No effect

Comments:
Primary instruction.
The initial Areg can be recovered using arot.

See also: eqc gt gtu j jab
section 4.6.

101/205

8 Instruction Set Reference



dequeue dequeue a process

Code: 23 F8

Description: Load into Breg a pointer to the first process from the queue control
block pointed to by Areg . Load into Areg a boolean value indicating whether a
process was found. The queue control block is defined in Chapter 7.

Definition:
if (frontptr = NotProcess) -- queue is empty
{

Areg′ ← false
Breg′ ← undefined

}
else -- queue is not empty
{

Areg′ ← true
Breg′ ← frontptr
if (frontptr = backptr) -- one process on queue

word′[Areg @ q.FPtrLoc]← NotProcess
else -- many processes on queue

word′[Areg @ q.FPtrLoc]← word[frontptr @ pw.Link]
}

Creg′ ← undefined

where frontptr = word[Areg @ q.FPtrLoc]
backptr = word[Areg @ q.BPtrLoc]

Status Register:
No effect

Comments:
Secondary instruction.
This instruction may require 4 memory accesses. If the queue structure is in off-
chip memory then interrupt latency may be affected.
Areg must be word aligned (i.e. divisible by 4).

See also: enqueue run
Chapter 7.

102/205



divstep divide step

Code: 21 F8

Description: Perform a step of an integer division to generate 4 bits of the quotient.
Areg holds the positive divisor. Breg and Creg hold the non-negative dividend or
partial remainder and the partial result. Before the first step, Breg holds the dividend
and Creg must be 0. After performing divstep 8 times, Breg will hold the quotient and
Creg the remainder.

Definition:
if (Areg > 0 and Breg ≥ 0 and Creg ≥ 0)
{

Breg′ ← (Breg << 4) ∨ (part_div / Areg)
Creg′ ← part_div rem Areg

}
else
{

Breg′ ← undefined
Creg′ ← undefined

}

where part_div = (Creg << 4) ∨ (Breg >> 28)
– the value of part_div is calculated to unlimited precision

Status Register:
No effect.

Comments:
Secondary instruction.
Areg must be greater than zero.
Breg and Creg must be not less than zero.

See also: unsign
section 4.4.

103/205

8 Instruction Set Reference



dup duplicate top of stack

Code: F1

Description: Duplicate the top of the integer stack.

Definition:
Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.

See also: arot rev rot
section 4.8.

104/205



ecall exception call

Code: 23 F1

Description: Take a trap with exception level indicated by Areg . This instruction can
be used to implement system calls to an operating system.

Definition:
Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Areg

if (trap level Areg is installed)
take trap level Areg

Status Register:
The status register is saved and a new status register with set values is loaded.

Comments:
Secondary instruction.
Areg must be in the range LowestException to HighestException.
The exception type must be ExceptionProcessType.

See also: eret
Chapter 6.

105/205

8 Instruction Set Reference



enqueue enqueue a process

Code: 23 F7

Description: Add the process indicated by the process descriptor in Breg to the
queue structure in Areg . The queue control block is defined in Chapter 7.

Definition:
if (word[Areg @ q.FPtrLoc] = NotProcess) -- queue is empty
{

word′[Areg @ q.FPtrLoc] ← Breg
word′[Areg @ q.BPtrLoc] ← Breg

}
else
{

word′[word[Areg @ q.BPtrLoc] @ pw.Link] ← Breg
word′[Areg @ q.BPtrLoc] ← Breg

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Status Register:
No effect

Comments:
Secondary instruction.
This instruction may require 4 memory accesses. If the queue structure is in off-
chip memory then interrupt latency may be affected.
Areg must be word aligned (i.e. divisible by 4).

See also: dequeue, stop
Chapter 7.

106/205



eqc n equals constant

Code: Function C

Description: Compare Areg to a constant.

Definition:
if (Areg = n)

Areg′ ← true
else

Areg′ ← false

Status Register:
No effect

Comments:
Primary instruction.

See also: cj gt gtu
section 4.6.

107/205

8 Instruction Set Reference



eret exception return

Code: 23 F2

Description: Return from an interrupt or trap.

Definition:
if (Statustrap_mode = clear)

signal interrupt return to interrupt controller

Areg′ ← word[Wptr @ ex.InterptdAreg]
Breg′ ← word[Wptr @ ex.InterptdBreg]
Creg′ ← word[Wptr @ ex.InterptdCreg]
Wptr′ ← word[Wptr @ ex.InterptdWptr]
Iptr′ ← word[Wptr @ ex.InterptdIptr]
Tdesc′ ← word[Wptr @ ex.InterptdTdesc]
Status′ ← word[Wptr @ ex.InterptdStatus]

Status Register:
Saved status register is restored.

Comments:
Secondary instruction.
The interrupted Wptr must be word aligned.

See also: ecall
Chapter 6.

108/205



fcall n function call

Code: Function 9

Description: Call subroutine at the specified byte offset.

Definition:
word′[Wptr @ 0] ← Iptr

Iptr′ ← next instruction + n

Status Register:
No effect

Comments:
Primary instruction.

See also: ajw jab
section 4.4.

109/205

8 Instruction Set Reference



gajw general adjust workspace

Code: 23 FB

Description: Set the workspace pointer to the word aligned address in Areg , saving
the previous value in Areg .

Definition:
Wptr′ ← Areg
Areg′ ← Wptr

Status Register:
No effect

Comments:
Secondary instruction.
Areg should be word aligned (i.e. divisible by 4).

See also: ajw fcall
section 4.4.

110/205



gt greater than

Code: 21 FB

Description: Compare the top two elements of the stack, returning true if Breg is
greater than Areg .

Definition:
if (Breg > Areg)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: eqc gtu order
section 4.6.

111/205

8 Instruction Set Reference



gtu greater than unsigned

Code: 21 FC

Description: Compare the top two elements of the stack, treating both as unsigned
integers, returning true if Breg is greater than Areg .

Definition:
if (Bregunsigned > Aregunsigned)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: eqc gt orderu
section 4.6.

112/205



io input/output

Code: 23 FD

Description: Set, clear and test bits of the IO register. The bits set in the least
significant half word of Breg are cleared in the IO register and then the bits set in the
least significant half word of Areg are set in the IO register. The initial IO register is
copied into the Areg .

Definition:
IOreg′ ← (IOreg ∧ (~Breg ∨ #FFFF0000)) ∨ (Areg ∧ #FFFF)
Areg′ ← IOreg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.
Some bits of the IO register may be reserved in some variants. See the datasheet
for the variant.

See also: bitmask
section 4.11.

113/205

8 Instruction Set Reference



j n jump

Code: Function 0

Description: Unconditional relative jump. The destination of the jump is expressed as
a byte offset from the first byte after the current instruction.

Definition:
Iptr′ ← next instruction + n

Status Register:
No effect.

Comments:
Primary instruction.

See also: cj jab
section 4.6.

114/205



jab jump absolute

Code: FD

Description: Jump to the address in Areg , saving the previous address in Creg . This
instruction can be used for function and procedure returns and to jump to a run-time
computed location.

Definition:
Iptr′ ← Areg
Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Iptr

Status Register:
No effect

Comments:
Secondary instruction.

See also: cj j
section 4.4.

115/205

8 Instruction Set Reference



lbinc load byte and increment

Code: 22 FA

Description: Load the unsigned byte addressed by Areg into Areg and increment
the address by one byte.

Definition:
Areg′0..7 ← byte[Areg]
Areg′8..BitsPerWord-1 ← 0
Creg′ ← Areg + 1

Status Register:
No effect

Comments:
Secondary instruction.

See also: ldl ldnl lsinc lwinc sbinc
section 4.2.

116/205



ldc n load constant

Code: Function 4

Description: Load constant into Areg .

Definition:
Areg′ ← n

Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Primary instruction.

See also: adc ldl
section 4.2.

117/205

8 Instruction Set Reference



ldl n load local

Code: Function 7

Description: Load into Areg the local variable at the specified word offset in
workspace. ldl cannot read from addresses reserved for peripheral registers.

Definition:
Areg′ ← word[Wptr @ n]

Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Primary instruction.
Areg must be word aligned (i.e. divisible by 4).

See also: ldnl stl
section 4.2.

118/205



ldlp n load local pointer

Code: Function 1

Description: Load into Areg the address of the local variable at the specifiedoffset in
workspace.

Definition:
Areg′ ← Wptr @ n

Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Primary instruction.

See also: ldl ldnlp
section 4.5.

119/205

8 Instruction Set Reference



ldnl n load non-local

Code: Function 3

Description: Load into Areg the non-local variable at the specified word offset from
Areg .

Definition:
Areg′ ← word[Areg @ n]

Status Register:
No effect

Comments:
Primary instruction.
Areg must be word aligned (i.e. divisible by 4).

See also: ldl ldnlp stnl
section 4.2.

120/205



ldnlp n load non-local pointer

Code: Function 5

Description: Load into Areg the address at the specified word offset from the
address in Areg .

Definition:
Areg′ ← Areg @ n

Status Register:
No effect

Comments:
Primary instruction.

See also: ldlp ldnl wsub
section 4.5.

121/205

8 Instruction Set Reference



ldpi load pointer to instruction

Code: 23 FA

Description: Load into Areg an absolute address calculated from an offset relative to
the current instruction pointer. Areg contains a byte offset which is added to the
address of the first byte following this instruction.

Definition:
Areg′ ← next instruction + Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: jab
section 4.5.

122/205



ldprodid load product identity

Code: 23 FC

Description: Load a value indicating the product identity into Areg. Each product in
the ST20 family has a unique product identity code.

Definition:
Areg′ ← ProductId

Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Different ST20 products may use the same processor type, but return different
product identity codes. However a product identity code uniquely defines the
processor type used in that product. For specific product identities in the ST20
family refer to SGS-THOMSON.

See also:
section 4.2.

123/205

8 Instruction Set Reference



ldtdesc load task descriptor

Code: 23 F9

Description: Load the task descriptor of the current task.

Definition:
Areg′ ← Tdesc
Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.

See also: ldlp ldpi
Chapter 6.

124/205



lsinc load sixteen and increment

Code: 22 FC

Description: Load the unsigned 16-bit object addressed by Areg into Areg and
increment the address by two bytes.

Definition:
Areg′0..15 ← sixteen[Areg]
Areg′16..BitsPerWord-1← 0
Creg′ ← Areg + 2

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be half-word aligned (i.e. divisible by 2).

See also: lbinc ldl lsxinc lwinc ssinc
section 4.2.

125/205

8 Instruction Set Reference



lsxinc load sixteen sign extended and increment

Code: 22 FD

Description: Load the signed 16-bit object addressed by Areg into Areg , sign extend
to a word, and increment the address by two bytes.

Definition:
Areg′0..15 ← sixteen[Areg]
Areg′16..BitsPerWord-1← sixteen[Areg]15
Creg′ ← Areg + 2

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be half-word aligned (i.e. divisible by 2).

See also: ldl lsinc lwinc ssinc xsword
section 4.2.

126/205



lwinc load word and increment

Code: 22 FF

Description: Load a variable from the address given in Areg and increment the
address by one word. This instruction may be used with stinc as a step in a block
move, and Breg is not modified so that it can be used to hold the store address.

Definition:
Areg′ ← word[Areg]
Creg′ ← Areg @ 1

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be word aligned (i.e. divisible by 4).

See also: lbinc lsinc swinc
section 4.2.

127/205

8 Instruction Set Reference



mac multiply accumulate

Code: 21 F2

Description: Multiply Areg and Breg , and add in Creg . The most significant word of
the result is placed in Breg and the least significant in Areg . This can be used in
forming the double length product of Areg and Breg , with Creg as carry in, treating
the Areg and Breg values as signed but Creg as unsigned.

Definition:
Areg′ ← low_word (accum64)
Breg′ ← high_word (accum64)

Creg′ ← Areg

where accum64 = (Breg × Areg) + Cregunsigned
– the value of accum64 is calculated as a 64-bit value

Status Register:
No effect

Comments:
Secondary instruction.

See also: ldiv mul umac
Chapter 5.

128/205



mul multiply

Code: F6

Description: Multiply Areg by Breg , with checking for overflow but no carry.

Definition:
Areg′ ← low_word (prod)

if (prod > MostPos)
{

if (Status′underflo w ≠ set)
Status′overflow ← set

}
else if (prod < MostNeg)
{

if (Status′overflow ≠ set)
Status′underflow ← set

}

Breg′ ← Creg
Creg′ ← Areg

where prod = Areg × Breg
– the value of prod is calculated to unlimited precision

Status Register:
Overflow or underflow bit may be set.

Comments:
Secondary instruction.

See also: add mac
section 4.4.

129/205

8 Instruction Set Reference



nop no operation

Code: 23 FF

Description: Perform no operation.

Definition:
no change

Status Register:
No effect

Comments:
Secondary instruction.

130/205



not bitwise not

Code: F8

Description: Complement bits in Areg .

Definition:
Areg′ ← ∼Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: and or xor
section 4.8.

131/205

8 Instruction Set Reference



or or

Code: FA

Description: Bitwise OR of Areg and Breg .

Definition:
Areg′ ← Breg ∨ Areg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: and not xor
section 4.8.

132/205



order order

Code: 21 FD

Description: Order Areg and Breg into signed ascending order, so that Breg is
greater than or equal to Areg . This can be used to implement maximum, minimum,
absolute value and saturation at less than 32 bits.

Definition:
if (Areg > Breg)
{

Areg′ ← Breg
Breg′ ← Areg

}

Status Register:
No effect

Comments:
Secondary instruction.

See also: gt orderu rev
section 4.6.

133/205

8 Instruction Set Reference



orderu unsigned order

Code: 21 FE

Description: Order Areg and Breg into unsigned ascending order, so that Breg is
greater than or equal to Areg . This can be used to implement unsigned maximum and
minimum.

Definition:
if (Aregunsigned > Bregunsigned)
{

Areg′ ← Breg
Breg′ ← Areg

}

Status Register:
No effect

Comments:
Secondary instruction.

See also: gtu order rev
section 4.6.

134/205



rev reverse

Code: F0

Description: Swap the values in Areg and Breg .

Definition:
Areg′ ← Breg
Breg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: dup order orderu rot
section 4.8.

135/205

8 Instruction Set Reference



rmw memory read modify write

Code: 22 F9

Description: Clear and set bits of the memory word at address Areg using the set
mask in Breg and clear mask in Creg.

Definition:
word′[Areg] ← (word[Areg] ∧ ~Creg) ∨ Breg
Areg′ ← word[Areg]

Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be word aligned (i.e. divisible by 4).

See also: bitmask
section 4.8.

136/205



rot rotate stack

Code: F2

Definition: Rotate the evaluation stack upwards.

Definition:
Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: arot dup rev
section 4.8.

137/205

8 Instruction Set Reference



run run process

Code: 23 F3

Description: Spawn a new process. Add the new process to the back of the process
queue defined by the control block at SchedulerQptr. The task descriptor of the
process is in Areg ; this identifies the process descr iptor block. The instruction pointer
and work space pointer must have been written in the process descriptor block of the
process at offsets pw.Iptr and pw.Wptr words.

Definition:
if (run trap handler installed)

take run trap
else
{

if (word [SchedulerQptr @ q.FPtrLoc] = NotProcess) -- queue is empty
{

word′[SchedulerQptr @ q.FPtrLoc] ← Areg
word′[SchedulerQptr @ q.BPtrLoc] ← Areg

}
else
{

word′[word [SchedulerQptr @ q.BPtrLoc] @ pw.Link] ← Areg
word′[SchedulerQptr @ q.BPtrLoc] ← Areg

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

}

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be word aligned (i.e. divisible by 4).
This instruction may require up to three on-chip memory accesses and one off-
chip. This may affect interrupt latency.

See also: dequeue enqueue signal stop
Chapter 7.

138/205



saturate saturate arithmetic result

Code: 21 FA

Description: Saturate the value in Areg to MostPos or MostNeg if overflow or
underflow respectively has occurred, and clear the overflow or underflow.

Definition:
if (Statusoverflow)

Areg′ ← MostPos
else if (Statusunderflow)

Areg′ ← MostNeg

Status′overflow ← clear
Status′underflow ← clear

Status Register:
Overflow and underflow bits are cleared.

Comments:
Secondary instruction.

See also: adc add mul smul sub
section 4.4.

139/205

8 Instruction Set Reference



sbinc store byte and increment

Code: 22 FB

Description: Store the least significant byte of Breg into the byte of memory
addressed by Areg and increment the address by one byte.

Definition:
byte′[Areg] ← Breg0..7

Areg′ ← Creg
Breg′ ← Areg + 1
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.

See also: lbinc ssinc swinc stnl
section 4.2.

140/205



shl shift left

Code: FB

Description: Logical shift of Breg left by Areg bits, filling with zero bits. If the initial
Areg is not between 0 and 31 inclusive then the result is undefined.

Definition:
Areg′ ← Breg << Areg

Breg′ ← Creg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be in the range 0..31.

See also: shr
section 4.9.

141/205

8 Instruction Set Reference



shr shift right

Code: FC

Description: Logical shift of Breg right by Areg places, filling with zero bits. If the
initial Areg is not between 0 and 31 inclusive then the result is undefined.

Definition:
Areg′ ← Breg >> Areg

Breg′ ← Creg
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be in the range 0..31.

See also: ashr shl
section 4.9.

142/205



signal signal

Code: 23 F5

Description: Perform the first par t of a semaphore signal (or V) on the semaphore
pointed to by Areg . If no process is waiting then the unsigned count is incremented. If
processes are waiting then the first process is removed from the queue and its
identifier placed in Breg ready to be run. The instruction returns a boolean value in
Areg stating whether a run process is required.

This instruction should be used in the following sequence: ld semptr; signal; cj
continue; run; continue:

Definition:
if (frontptr = NotProcess) -- queue empty
{

word′[Areg @ s.Count] ← word[Areg @ s.Count] + 1
Areg′ ← false
Breg′ ← undefined

}
else -- queue not empty
{

if (frontptr = backptr) -- one process on queue
word′[Areg @ s.Front] ← NotProcess

else -- many processes on queue
word′[Areg @ s.Front] ← word[frontptr @ pw.Link]

Areg′ ← true
Breg′ ← frontptr

}

Creg′ ← undefined

where frontptr = word[Areg @ s.Front]
backptr = word[Areg @ s.Back]

Status Register:
No effect

Comments:
Secondary instruction.
The increment of the count is unchecked.
This instruction may require 4 accesses to memory. The semaphore structure
should be placed in on-chip memory if interrupt latency is critical.

See also: run wait
Chapter 7.

143/205

8 Instruction Set Reference



smacinit initialize short multiply accumulate loop

Code: 21 F5

Description: Set the loop count, buffer size, scaling and data format for the smacloop
instruction.

Definition:
Status′mac_count ← Areg ∧ #FF
Status′mac_buffer ← (Areg >> 8) ∧ #7
Status′mac_scale ← (Areg >> 11) ∧ #3
Status′mac_mode ← (Areg >> 13) ∧ #1

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← 0

Status Register:
No effect.

Comments:
Secondary instruction.

See also: smacloop
Chapter 5.

144/205



smacloop short multiply accumulate loop

Code: 21 F6

Description: Multiply pairs of signed16-bit values and accumulate the products. On
entry Areg and Breg contain the addresses of arrays X and Y of 16-bit values and
Creg holds the initial 32-bit accumulator. On exit the accumulator is in Areg , while
Breg and Creg contain the next addresses in the X and Y arrays respectively. The X
values can be in a circular buffer whose address is exactly divisible by the size. The
loop count, buffer size, mode and scaling codes, held in the status register, may be set
by the smacinit instruction.
Warning: This instruction is not interruptible. If interrupt latency is critical then a
similar result may be achieved by executing the instruction many times with small
counts. The result may not be the same, since rounding occurs at the end of the
instruction from the internal 48-bit accumulator to a 32-bit result.

Definition:
if (Statusoverflow)

Areg′ ← max
else if (Statusunderflo w)

Areg′ ← min
else if (overflow)
{

Status′overflow ← set
Areg′ ← max

}
else if (underflow)
{

Status′underflow ← set
Areg′ ← min

}
else
{

Areg′ ← acc >>arith shift1
}

Breg′ ← xaddress (Statusmac_count)
Creg′ ← Breg + (2 × Statusmac_count)

where
acc = (Creg << shift1) + (1 << (shift1-1))

+ Σi=0..n-1[sixteen[xaddress(i)] × (sixteen[Breg + 2.i] << shift2)]
– the value of acc is calculated to 48-bit precision

if (Statusmac_count = 0) n=256

145/205

8 Instruction Set Reference



else n = Statusmac_count

if (Statusmac_buffer ≠ 0)
{

buff_size = 4 << Statusmac_buffer
xaddress (i) = Areg - (Areg rem buff_size) + ((Areg + 2.i) rem buff_size)

}
else xaddress(i) = Areg + (2 × i)

if (Statusmac_mode = LongMode)
{

shift1 = 7
max = MostPos
min = MostNeg

}
else
{

shift1 = 23
max = #7FFF
min = #8000

}

if (Statusmac_scale = 3) shift2 = 9
else shift2 = 4 × Statusmac_scale

Status Register:
Overflow or underflow may be set.

Comments:
Secondary instruction.
Areg must be half-word aligned. Breg must be word aligned.

See also: biquad mac mul smacinit
Chapter 5.

146/205



smul short multiply

Code: 21 F4

Description: Multiply Areg by Breg , treated as sixteen bit signed integers.

Definition:
Areg′ ← (int16)Areg × (int16)Breg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.
Areg and Breg must be in the range of 16-bit signed integers.

See also: mul smac
section 4.4.

147/205

8 Instruction Set Reference



ssinc store sixteen and increment

Code: 22 FE

Description: Store the least significant 16 bits of Breg into the half word of memory
addressed by Areg and increment the address by two bytes.

Definition:
sixteen′[Areg] ← Breg0..15

Areg′ ← Creg
Breg′ ← Areg + 2
Creg′ ← Breg

Status Register:
No effect

Comments:
Secondary instruction.
Areg must be half-word aligned (i.e. divisible by 2).

See also: lsinc lsxinc sbinc stl stnl swinc
section 4.2.

148/205



statusclr clear bits in status register

Code: 22 F7

Description: Clear the bits of the status register which are set in the Areg . The initial
status register value is returned in the Areg .

Definition:
Areg′ ← Status
Status′ ← Status ∧ ~Areg

Status Register:
The bits of Areg which are set will be cleared in the Status Register.

Comments:
Secondary instruction.

See also: statusset statustst
section 4.12.

149/205

8 Instruction Set Reference



statusset set bits in status register

Code: 22 F6

Description: Set the bits of the Status Register which are set in Areg . The initial
Status Register value is returned in the Areg .

Definition:
Areg′ ← Status
Status′ ← Status ∨ Areg

Status Register:
The bits of Areg which are set will be set in the Status Register.

Comments:
Secondary instruction.

See also: statusclr statustst
section 4.12.

150/205



statustst test status register

Code: 22 F8

Description: Test the bits of the Status Register which are set in the Areg .

Definition:
Areg′ ← Status ∧ Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: bitmask statusclr statusset
section 4.12.

151/205

8 Instruction Set Reference



stl n store local

Code: Function D

Description: Store the contents of Areg into the local variable at the specified word
offset in workspace. This instruction cannot write to addresses reserved for peripheral
registers.

Definition:
word′[Wptr @ n] ← Areg

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Primary instruction.

See also: ldl sbinc ssinc stnl
section 4.2.

152/205



stnl n store non-local

Code: Function E

Description: Store the contents of Breg into the non-local variable at the specified
word offset from Areg.

Definition:
word′[Areg @ n] ← Breg

Areg′ ← Creg
Breg′ ← Areg
Creg′ ← Breg

Status Register:
No effect

Comments:
Primary instruction.
Areg must be word aligned (i.e. divisible by 4).

See also: ldnl sbinc ssinc swinc stl
section 4.2.

153/205

8 Instruction Set Reference



stop stop process

Code: 23 F4

Description: Terminate the current process, saving the current Iptr and Wptr for later
use, and start the next process from the scheduling queue. If the scheduling queue is
empty then the CPU will become idle. This instruction is implemented in two stages to
protect interrupt latency. The first stage deschedules the current process and sets the
start_next_task status bit. The second stage clears the start_next_task status bit
and starts the next process. An interrupt may occur between the two stages.

Definition:
if (stop trap handler installed)

take stop trap

else
{

word′[Tdesc @ pw.Iptr] ← next instruction
word′[Tdesc @ pw.Wptr] ← Wptr
Status′ local_interrupt_enable ← set
Status′overflow ← clear
Status′undeflow ← clear
Status′carry ← clear
Status′ interrupt_mode ← clear
Status′ trap_mode ← clear
Status′start_next_task ← clear
Status′ timeslice_count ← MaxTimesliceCount

-- start next process on scheduling queue
if (frontptr = NotProcess) -- queue is empty, so become idle
{

Status′sleep ← set
Status′user_mode ← clear
if (idle trap handler installed)

take idle trap
else

set idle
}

else -- processes waiting, so start next process
{

Status′sleep ← clear
Status′user_mode ← set
Tdesc′ ← frontptr
Wptr′ ← word [frontptr @ pw.Wptr]

154/205



Iptr′ ← word [frontptr @ pw.Iptr]
if (frontptr = backptr) --one process on queue, so make it empty

word′[SchedulerQptr @ q.FPtrLoc] ← NotProcess
else --many processes, so remove first

word′[SchedulerQptr @ q.FPtrLoc] ← word[frontptr @ pw.Link]
}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

}

where frontptr = word[SchedulerQptr @ q.FPtrLoc]
backptr = word[SchedulerQptr @ q.BPtrLoc]

Status Register:
Global interrupt enable and timeslice enable are preserved.
Start_next_task is set when the current process is descheduled and cleared
when the new process is started. An interrupt may occur between these two
stages.
Other bits are set to the values listed above.

Comments:
Secondary instruction.
Deschedules the current process.
This instruction must not be used in an exception handler.

See also: dequeue enqueue run wait
Chapter 7.

155/205

8 Instruction Set Reference



sub subtract

Code: F5

Description: Subtract Areg from Breg , with checking for overflow.

Definition:
if (diff > MostPos)
{

Areg′ ← diff − 2BitsPerWord

if (Status′underflow ≠ set)
Status′overflow ← set

}
else if (diff < MostNeg)
{

Areg′ ← diff + 2BitsPerWord

if (Status′overflow ≠ set)
Status′underflow ← set

}
else
{

Areg′ ← diff
}

Breg ← Creg
Creg ← Areg

where diff = Breg − Areg
– the value of diff is calculated to unlimited precision

Status Register:
Overflow or underflow bit may be set.

Comments:
Secondary instruction.

See also: add subc
section 4.4.

156/205



subc subtract with carry

Code: 21 F1

Description: Subtract Areg from Breg , unsigned with carry propagation. This
instruction is provided for long arithmetic; address calculations may be performed with
add, sub and adc without affecting the carry flag.

Definition:
if (diff ≥ 0)
{

Areg′unsigned ← diff
Status′carry ← clear

}
else
{

Areg′unsigned ← diff + 2BitsPerWord

Status′carry ← set
}

Breg′ ← Creg
Creg′ ← Areg

where diff = (Bregunsigned − Aregunsigned) - Statuscarry
– the value of diff is calculated to unlimited precision

Status Register:
Carry bit is set or cleared.

Comments:
Secondary instruction.

See also: addc sub
section 4.4.

157/205

8 Instruction Set Reference



swap32 byte swap 32

Code: 23 FE

Description: Reverse the order of the bytes within Areg .

Definition:
Areg′ ← (Areg0..7 << 24) ∨ (Areg8..15 << 16) ∨ (Areg16..23 << 8) ∨ Areg24..31

Status Register:
No effect

Comments:
Secondary instruction.

See also:
section 4.9.

158/205



swinc store word and increment

Code: 23 F0

Description: Store the value from the Breg at the memory address given in the initial
Areg and increment the address by one word. This instruction may be used with lwinc
as a step in a block move. The value in Creg is copied into the Areg .

Definition:
word′[Areg] ← Breg

Areg′ ← Creg
Breg′ ← Areg @ 1
Creg′ ← Breg

Status Register:
No effect

Comments:
Areg must be word aligned (i.e. divisible by 4).
Secondary instruction.

See also: ldinc sbinc ssinc stnl
section 4.2.

159/205

8 Instruction Set Reference



timeslice timeslice

Code: FE

Description: Deschedules the current process and starts the next task if a timeslice
is due and timeslicing is enabled. This instruction is implemented in two stages to
protect interrupt latency. The first stage deschedules the current process (even if the
queue is empty), adds it to the back of the scheduling queue and sets the
start_next_task status bit. The second stage clears the start_next_task status bit
and starts the next process from the scheduling queue. An interrupt may occur
between the two stages.

Definition:
if (Statustimeslicing enabled and Statustimeslice_count=0)
{

if (timeslice trap installed)
take timeslice trap

else
{

-- save state of current process
word′[Tdesc @ pw.Iptr] ← next instruction
word′[Tdesc @ pw.Wptr] ← Wptr

if (frontptr ≠ NotProcess) --queue not empty
{

-- add current process to scheduling queue
word′[backptr @ pw.Link] ← Tdesc
word′[SchedulerQptr @ q.BPtrLoc] ← Tdesc
-- remove front process from queue
word′[SchedulerQptr @ q.FPtrLoc] ← word[frontptr @ pw.Link]
-- start next process from scheduling queue
Tdesc′ ← frontptr
Wptr′ ← word [frontptr @ pw.Wptr]
Iptr′ ← word [frontptr @ pw.Iptr]

}

Status′ local_interrupt_enable ← set
Status′overflow ← clear
Status′undeflow ← clear
Status′carry ← clear
Status′user_mode ← set
Status′ interrupt_mode ← clear
Status′ trap_mode ← clear
Status′sleep ← clear
Status′start_next_task ← clear

160/205



Status′timeslice_count ← MaxTimesliceCount

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

}
}

where frontptr = word[SchedulerQptr @ q.FPtrLoc]
backptr = word[SchedulerQptr @ q.BPtrLoc]

Status Register:
Global interrupt enable and timeslice enable preserved.
Start_next_task is set when the current process is descheduled and cleared
when the new process is started. An interrupt may occur between these two
stages.
Other bits are set to the values listed above.

Comments:
Secondary instruction.
This instruction must not be used in an exception handler.

See also: stop run
Chapter 7.

161/205

8 Instruction Set Reference



umac unsigned multiply accumulate

Code: 21 F3

Description: Multiply Areg by Breg, adding in Creg, to form a double word result,
treating the initial values as unsigned. This can be used in forming the double length
product of Areg and Breg , with Creg as carry in.

Definition:
Areg′unsigned ← low_word (prod)
Breg′unsigned ← high_word (prod)

Creg′ ← Areg

where prod = (Bregunsigned × Aregunsigned) + Cregunsigned
– the value of prod is calculated to unlimited precision

Status Register:
No effect

Comments:
Secondary instruction.

See also: mac
Chapter 5.

162/205



unsign unsign argument

Code: 21 F9

Description: Remove the sign of the value in Areg and exclusive-or it with a sign flag
in Breg .

Definition:
if (Areg ≥ 0)
{

Areg′ ← Breg
Breg′ ← Areg

}
else
{

Areg′ ← 1 - Breg
Breg′ ← − Areg

}

Status Register:
No effect

Comments:
Secondary instruction
To aid the implementation of signed division.
Breg must be 0 or 1.

See also: divstep
section 4.4.

163/205

8 Instruction Set Reference



wait wait

Code: 23 F6

Description: Perform the first par t of a semaphore wait (or P) on the semaphore
pointed to by Areg . If the semaphore count is non-zero then the count is decremented
and the process continues; otherwise the current process is added to the back of the
semaphore list ready for the current process to be descheduled. The instruction
returns a boolean value in Areg stating whether a process deschedule is required.

The instruction should be used in the following sequence:
ld semptr; wait; cj continue; stop; continue:

Definition:
if (word[Areg @ s.Count] ≠ 0)
{

word′[Areg @ s.Count] ← word[Areg @ s.Count] − 1
Areg′ ← false

}
else
{

if (frontptr = NotProcess) -- queue empty so add to queue
{

word′[Areg @ s.Front] ← Tdesc
word′[Areg @ s.Back] ← Tdesc

}
else -- queue not empty so add to back of queue
{

word′[backptr @ pw.Link] ← Tdesc
word′[Areg @ s.Back] ← Tdesc

}
Areg′ ← true

}
Breg′ ← undefined
Creg′ ← undefined

where frontptr = word[Areg @ s.Front]
backptr = word[Areg @ s.Back]

Status Register: No effect

Comments:
Secondary instruction.
Areg must be word-aligned.
The semaphore structure should be in fast memory if interrupt latency is critical.

See also: signal stop
Chapter 7.

164/205



wsub word subscript

Code: F7

Description: Generate the address of the element which is indexed by Breg in the
word array pointed to by Areg .

Definition:
Areg′ ← Areg @ Breg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: ldlp ldnlp
section 4.5.

165/205

8 Instruction Set Reference



xbword sign extend byte to word

Code: 22 F1

Description: Sign-extend the value in the least significant byte of Areg into a signed
word.

Definition:
Areg′0..7 ← Areg0..7
Areg′8..BitsPerWord-1 ← Areg7

Status Register:
No effect

Comments:
Secondary instruction.

See also: xsword
section 4.4.6.

166/205



xor exclusive or

Code: 21 F0

Description: Bitwise exclusive or of Areg and Breg .

Definition:
Areg′ ← Breg ⊗ Areg

Breg′ ← Creg
Creg′ ← Areg

Status Register:
No effect

Comments:
Secondary instruction.

See also: and not or
section 4.8.

167/205

8 Instruction Set Reference



xsword sign extend sixteen to word

Code: 22 F2

Description: Sign extend the value in the least significant 16 bits of Areg to a signed
word.

Definition:
Areg′0..15 ← Areg0..15
Areg′16..BitsPerWord-1 ← Areg15

Status Register:
No effect

Comments:
Secondary instruction.

See also: xbword
section 4.4.6.

168/205



Appendices

169/205



A Constants and data structures
This appendix gives a full listing of all the constants and data structures used in this
document, with brief descriptions and values.

170/205



A.1 Status Register

A.2 Exception levels

Full name Bit numbers Meaning when set or meaning of value

mac_count 0 - 7 Multiply-accumulate number of steps.

mac_buffer 8 - 10 Multiply-accumulate data buffer size code.

mac_scale 11 - 12 Multiply-accumulate scaling code.

mac_mode 13 Multiply-accumulate accumulator format code.

global_interrupt_disable 14 Disable external interrupts until explicitly enabled.

local_interrupt_disable 15 Disable external interrupts until process descheduled.

overflow 16 An arithmetic operation gave a positive overflow.

underflo w 17 An arithmetic operation gave a negative overflow.

carry 18 An arithmetic operation produced a carry.

user_mode 19 A user process is executing.

interrupt_mode 20 An interrupt handler is executing.

trap_mode 21 A trap handler is executing.

sleep 22 The processor is due to go to sleep.

reserved 23 Reserved.

start_next_task 24 The CPU must start executing a new process.

timeslice_enable 25 Timeslicing is enabled.

timeslice_count 26 - 31 Timeslice clock.

Table A.1 Status register bits (see section 3.3.2)

Exception level Name Description

0 - 255 User exception User exception levels.

-1 el_breakpoint_trap Breakpoint trap.

-2 el_illegal_instr_trap Illegal op-code trap.

-3 el_idle_trap CPU idle trap.

-4 el_schedule_exception_trap Schedule user process as exception trap.

-5 el_run_trap Run process trap.

-6 el_stop_trap Stop process trap.

-7 el_timeslice_trap Timeslice trap.

Table A.2 Exception levels (see Chapter 6)

171/205



A.3 Data structures

This section defines the data structures used by the ST20-C1 core.

Name Wordoffset Purpose

ex.HandlerIptr 7 Exception handler instruction pointer.

ex.InterptdStatus 6 Interrupted process status register.

ex.InterptdTdesc 5 Interrupted process task descriptor.

ex.InterptdIptr 4 Interrupted process instruction pointer.

ex.InterptdWptr 3 Interrupted process stack pointer.

ex.InterptdCreg 2 Interrupted process Creg.

ex.InterptdBreg 1 Interrupted process Breg.

ex.InterptdAreg 0 Interrupted process Areg.

Table A.3 Exception handler (see Chapter 6)

Name Word offset Purpose

pw.Iptr 2 The instruction pointer.

pw.Wptr 1 The instruction pointer.

pw.Link 0 The link to the next process in the list.

Table A.4 Process descriptor block (see section 3.3.4)

Name Word offset Purpose

q.BPtrLoc 1 The last process in the waiting process list.

q.FPtrLoc 0 The first process in the waiting process list.

Table A.5 Waiting process list data structure (see section 7.1)

Name Word offset Purpose

s.Back 2 The last process in the semaphore waiting list.

s.Front 1 The first process in the semaphore w aiting list.

s.Count 0 The unsigned numberof extraprocesses that the semaphore willallow
to continue running on a wait request.

Table A.6 Semaphore data structure (see section 7.9)

172/205



A.4 Miscellaneous constants

This section lists the constants which are used in this manual.

Name Value Meaning

BitsPerWord 32 The number of bits in a word.

BytesPerWord 4 The number of bytes in a word.

ExceptionBase #80000040 The base of the exception descriptor area.

ExceptionProc-
essType

#1 Bit 0 of exception vector table entry for an exception.

false 0 The boolean value ‘false’.

HighestException 255 Highest permitted exception level.

LongMode 1 smacloop Q15 data format.

LowestException -7 Lowest permitted exception level.

MaxTimesliceCount 63 Maximum value of timeslice count.

MostNeg #80000000 The most negative integer value.

MostPos #7FFFFFFF The most positive signed integer value.

NotProcess MostNeg
#80000000

Used, wherever a process descriptor is expected, to indi-
cate that there is no process.

ProductId Depends on
processor type.

A valueused to identify the type and revision of processor,
returned by the ldprodid instruction.

SavedTaskDescriptor #800000008 Address where user process exception is saved when a
schedule exception trap occurs.

SchedulerQptr MostNeg
#80000000

The address of the process list data structure for the
scheduler list.

ShortMode 0 smacloop Q31 data format.

true 1 The boolean value ‘true’.

UserProcessType #0 Bit 0 of exception vector table entry for a user process.

Table A.7 Constants

173/205



174/205



B Instruction set summary
This appendix gives a full listing of all the instructions and instruction components,
both in function code and alphabetical order. The ‘Memory’ column gives, in hexadec-
imal, the bytes that appear in memory. For primary instructions, this includes a data
value, which is represented by n.

B.1 Function code order

B.1.1 Primary instructions

Code Memory Mnemonic Name

0 0n j n jump
1 1n ldlp n load local pointer
2 2n pfix n prefix
3 3n ldnl n load non-local
4 4n ldc n load constant
5 5n ldnlp n load non-local pointer
6 6n nfix n negative prefix
7 7n ldl n load local
8 8n adc n add constant
9 9n fcall n function call
A An cj n conditional jump
B Bn ajw n adjust work space
C Cn eqc n equals constant
D Dn stl n store local
E En stnl n store non-local
F Fn opr n operate

B.1.2 Secondary instructions

Code Memory Mnemonic Name

00 F0 rev reverse
01 F1 dup duplicate
02 F2 rot rotate stack
03 F3 arot anti-rotate stack
04 F4 add add
05 F5 sub subtract
06 F6 mul multiply
07 F7 wsub word subscript
08 F8 not bitwise not
09 F9 and and
0A FA or or
0B FB shl shift left
0C FC shr shift right
0D FD jab jump absolute
0E FE timeslice timeslice
0F FF breakpoint breakpoint

175/205



10 21 F0 addc add with carry
11 21 F1 subc subtract with carry
12 21 F2 mac multiply accumulate
13 21 F3 umac unsigned multiply accumulate
14 21 F4 smul short multiply
15 21 F5 smacinit initialize short multiply accumulate loop
16 21 F6 smacloop short multiply accumulate loop
17 21 F7 biquad biquad IIR filter step
18 21 F8 divstep divide step
19 21 F9 unsign unsign argument
1A 21 FA saturate saturate
1B 21 FB gt greater than
1C 21 FC gtu greater than unsigned
1D 21 FD order order
1E 21 FE orderu unsigned order
1F 21 FF ashr arithmetic shift right
20 22 F0 xor exclusive or
21 22 F1 xbword sign extend byte to word
22 22 F2 xsword sign extend sixteen to word
23 22 F3 bitld load bit
24 22 F4 bitst store bit
25 22 F5 bitmask create bit mask
26 22 F6 statusset set bits in status register
27 22 F7 statusclr clear bits in status register
28 22 F8 statustst test status register
29 22 F9 rmw read modify write
2A 22 FA lbinc load byte and increment
2B 22 FB sbinc store byte and increment
2C 22 FC lsinc load sixteen and increment
2D 22 FD lsxinc load sixteen sign extended and increment
2E 22 FE ssinc store sixteen and increment
2F 22 FF lwinc load word and increment
30 23 F0 swinc store word and increment
31 23 F1 ecall exception call
32 23 F2 eret exception return
33 23 F3 run run process
34 23 F4 stop stop process
35 23 F5 signal signal
36 23 F6 wait wait
37 23 F7 enqueue enqueue a process
38 23 F8 dequeue dequeue a process
39 23 F9 ldtdesc load task descriptor
3A 23 FA ldpi load pointer to instruction
3B 23 FB gajw general adjust workspace
3C 23 FC ldprodid load product identity
3D 23 FD io input/output
3E 23 FE swap32 byte swap 32
3F 23 FF nop no operation

176/205



B.2 Alphabetical order
Mnemonic Code Memory Name

adc n primary 8 8n add constant
add secondary 04 F4 add
addc secondary 10 21 F0 add with carry
ajw n primary B Bn adjust work space
and secondary 09 F9 and
arot secondary 03 F3 anti-rotate stack
ashr secondary 1F 21 FF arithmetic shift right
biquad secondary 17 21 F7 biquad IIR filter step
bitld secondary 23 22 F3 load bit
bitmask secondary 25 22 F5 create bit mask
bitst secondary 24 22 F4 store bit
breakpoint secondary 0F FF breakpoint
cj n primary A An conditional jump
dequeue secondary 38 23 F8 dequeue a process
divstep secondary 18 21 F8 divide step
dup secondary 01 F1 duplicate
ecall secondary 31 23 F1 exception call
enqueue secondary 37 23 F7 enqueue a process
eqc n primary C Cn equals constant
eret secondary 32 23 F2 exception return
fcall n primary 9 9n function call
gajw secondary 3B 23 FB general adjust workspace
gt secondary 1B 21 FB greater than
gtu secondary 1C 21 FC greater than unsigned
io secondary 3D 23 FD input/output
j n primary 0 0n jump
jab secondary 0D FD jump absolute
lbinc secondary 2A 22 FA load byte and increment
ldc n primary 4 4n load constant
ldl n primary 7 7n load local
ldlp n primary 1 1n load local pointer
ldnl n primary 3 3n load non-local
ldnlp n primary 5 5n load non-local pointer
ldpi secondary 3A 23 FA load pointer to instruction
ldprodid secondary 3C 23 FC load product identity
ldtdesc secondary 39 23 F9 load task descriptor
lsinc secondary 2C 22 FC load sixteen and increment
lsxinc secondary 2D 22 FD load sixteen sign extended and increment
lwinc secondary 2F 22 FF load word and increment
mac secondary 12 21 F2 multiply accumulate
mul secondary 06 F6 multiply
nfix n primary 4 4n negative prefix
nop secondary 3F 23 FF no operation
not secondary 08 F8 bitwise not
opr n primary F Fn operate
or secondary 0A FA or
order secondary 1D 21 FD order
orderu secondary 1E 21 FE unsigned order

177/205



pfix n primary 2 2n prefix
rev secondary 00 F0 reverse
rmw secondary 29 22 F9 read modify write
rot secondary 02 F2 rotate stack
run secondary 33 23 F3 run process
saturate secondary 1A 21 FA saturate
sbinc secondary 2B 22 FB store byte and increment
shl secondary 0B FB shift left
shr secondary 0C FC shift right
signal secondary 35 23 F5 signal
smacinit secondary 15 21 F5 initialize short multiply accumulate loop
smacloop secondary 16 21 F6 short multiply accumulate loop
smul secondary 14 21 F4 short multiply
ssinc secondary 2E 22 FE store sixteen and increment
statusclr secondary 27 22 F7 clear bits in status register
statusset secondary 26 22 F6 set bits in status register
statustst secondary 28 22 F8 test status register
stl n primary D Dn store local
stnl n primary E En store non-local
stop secondary 34 23 F4 stop process
sub secondary 05 F5 subtract
subc secondary 11 21 F1 subtract with carry
swap32 secondary 3E 23 FE byte swap 32
swinc secondary 30 23 F0 store word and increment
timeslice secondary 0E FE timeslice
umac secondary 13 21 F3 unsigned multiply accumulate
unsign secondary 19 21 F9 unsign argument
wait secondary 36 23 F6 wait
wsub secondary 07 F7 word subscript
xbword secondary 21 22 F1 sign extend byte to word
xor secondary 20 22 F0 exclusive or
xsword secondary 22 22 F2 sign extend sixteen to word

178/205



C Compiling for the ST20-C1

C.1 Generating prefix sequences

Prefixing is intended to be performed by a compiler or assembler. Prefixing by hand is
not advised.

Normally a value can be loaded into the instruction data value by a variety of different
prefix sequences . It is important to use the shortest possible sequence as this
enhances both code compaction and execution speed. The best method of optimizing
object code so as to minimize the number of prefix instructions needed is shown
below.

C.1.1 Prefixing a constant

The algorithm to generate a constant instruction data value e for a function op is
described by the following recursive function.

prefix(op , e) = if (e < 16 AND e 0)
op(e)

else if (e 16)
{prefix(pfix, e >> 4); op(e ∧ # F)}

else if (e < 0)
{prefix(nfix, (~e) >> 4); op(e ∧ # F)}

where (op, e) is the instruction component with function code op and data
field e , ~ is a bitwise NOT, and >> is a logical right shift.

C.1.2 Evaluating minimal symbol offsets

Several primary instructions have an operand that is an offset between the current
value of the instruction pointer and some other part of the code. Generating the
optimal prefix sequence to create the instruction data value for one of these instruc-
tions is more complicated. This is because two, or more, instructions with offset
operands can interlock so that the minimal prefix sequences for each instruction is
dependent on the prefixing sequences used for the others.

For example consider the interlocking jumps below which can be prefixed in two
distinct ways. The instructions j and cj are respectively jump and conditional jump.
These are explained in more detail later. The sequence:

cj +16; j -257

can be coded as

pfix 1; cj 0; pfix 1; nfix 0; j 15

but this can be optimized to be

cj 15; nfix 15; j 1

which is the encoding for the sequence

cj +15; j -255

179/205



This is because when the two offsets are reduced, their prefixing sequences take 1
byte less so that the two interlocking jumps will still transfer control to the same
instructions as before. This compaction of non-optimal prefix sequences is difficult to
perform and a better method is to slowly build up the prefix sequences so that the
optimal solution is achieved. The following algorithm performs this.

5 Associate with each jump instruction or offset load an ‘estimate’ of the number
of bytes required to code it and initially set them all to 0.

6 Evaluate all jump and load offsets under the current assumptions of the size of
prefix sequences to the jumps and offset loads

7 For each jump or load offset set the number of bytes needed to the number in
the shortest sequence that will build up the current offset.

8 If any change was made to the number of bytes required then go back to 2 oth-
erwise the code has reached a stable state.

The stable state that is achieved will be the optimal state.

Where the code being analyzed has alignment directives, then it is possible that this
algorithm will not reach a stable state. One solution to this, is to allow the algorithm to
increase the instruction size but not allow it to reduce the size. This is achieved by
modifying stage 7 to choose the larger of: the currently calculated length, and the
previously calculated length. This approach does not always lead to minimal sized
code, but it guarantees termination of the algorithm.

Steps 2 and 3 can be combined so that the number of bytes required by each jump is
updated as the offset is calculated. This does mean that if an estimate is increased
then some previously calculated offsets may have been invalidated, but step 4 forces
another loop to be performed when those offsets can be corrected.

By initially setting the estimated size of offsets to zero, all jumps whose destination is
the next instruction are optimized out.

Knowledge of the structure of code generated by the compiler allows this process to
be performed on individual blocks of code rather than on the whole program. For
example it is often possible to optimize the prefixing in the code for the sub-compo-
nents of a programming language construct before the code for the construct is opti-
mized. When optimizing the construct it is known that the sub-components are already
optimal so they can each be considered as a fixed block of code which cannot be
reduced.

This algorithm may not be efficient for long sections of code whose underlying
structure is not known. If no knowledge of the structure is available (e.g. in an assem-
bler), all the code must be processed at once. In this case a code shrinking algorithm
where in step one the initial number of bytes is set to twice the number of bytes per
word is used. The prefix sequences then shr ink on each iteration of the loop. 1 or 2
iterations produce fairly good code although this method will not always produce
optimal code as it will not correctly prefix the pathological example given above.

180/205



C.2 Compiling switch statements

The switch statement is a special form of conditional transfer where the transfer is
determined by comparing an expression to a number of constants.

When compiling the process

switch x
...

the expression x is evaluated and stored in a local variable by

x; stl selector

Then each branch of the switch statement

c1, ... , cn
P

can be compiled by

ldl selector; ldc c1; sub; cj L;
ldl selector; ldc c2; sub; cj L;
...
ldl selector; eqc cn; cj M;

L: P; j END;
M:

where the label END: is placed at the end of the switch statement.

C.2.3 Optimal compilation of switch

The compilation method given above will produce inefficient code for large switch
statements. To produce more efficient code the following rules can be used.

First build up a set of pairs of selector values and processes, consisting of every
selector value in the switch statement along with its associated process — the
process part of each pair can be represented by the offset to the start of the compiled
code for that process. Then the following rules can be used.

1 If there are 3 entries or less then use the method as described above.

2 If there are 12 entries or less then use a binary search to limit the number of
comparisons required.

3 For more than 12 entries attempt to use a jump table. The offset of the start of
each selected process is placed in the table against each selector value.
Entries that do not match a selector in the switch statement must contain the
offset of an error handler process. This jump table should be the largest table
such that about one third of the entries are filled. This compilation strategy is
then recursively called to handle the two ends. The jab (section 4.10) and ldpi
(section 4.5) instructions, can be used to jump to the selected piece of code.

The choice of 3 or less entries, 12 or less entries and one third filled table are the
values used in current ST20 compilers.

181/205



Consider compiling the following switch expression:

switch X
c1

P1
...
cn

Pn

where, for brevity, it is assumed that all the switch selectors are already in increasing
order.

Three entries or less

This switch is compiled as:

if (X = c 1)

P1
else if (X = c 2)

P2
...
else if (X = c n)

Pn

Four to twelve entries

This switch is compiled as:

if (X <= c n/2)

{
if (X <= c n/4)

...etc.
else

... etc.
}
else

... etc.

Using a jump table

Assume that ci ... cm form a third filled jump table. Then the switch is compiled as:

if (X < c i)

{
switch X

c1
P1

...
c i-1

Pi-1

182/205



}
else if (X > c m)

... similar
else

... jump table code

where jump table code is

X; ldc ci; sub; ldc jump_size; mul; ldc (jump_table-M); ldpi
M: add; jab;
jump_table:

j case_0; j case_1; ... ; j case_k
ERROR: ... error code
Li: ... code for Pi

...
Lm: ... code for Pm

The code at jump_table consists of a sequence of jump instructions which transfer
control to the relevant branch Li ... Lm or to ERROR. The destination, case_x, of
each of these jumps is Lj if cj is equal to (ci + x) and is ERROR otherwise.

The code at ERROR should be the same code as used at the end of an IF statement
where all the conditionals have been false. The add, ldpi and jab instructions are
explained in other sections.

All the jumps in the jump_table code must be encoded to the same length (jump_size
bytes) to enable them to be accessed as a byte array. nop, which is a two byte instruc-
tion that performs no operation, can be used to ensure this where different operands
require a different amount of prefixing.

Also note that in the special case where jump_size is 1, ‘ldc jump_size; mul’ can be
removed from the sequence, and where jump_size is 4, ‘ldc jump_size; mul’ can be
removed provided add is replaced with wsub.

C.3 Expression evaluation order

Let depth(e) be the number of stack locations needed for the evaluation of expression
e, defined by

depth(constant) = 1
depth(variable) = 1
depth(function call) = ‘infinite’
depth(e1 op e2) = if (depth(e1) > depth(e2))

depth(e1)
else if (depth(e1) < depth(e2))

depth(e2)
else

depth(e1) + 1

That is, if the depth required for each expression is the same, then one extra stack
location is required to store the result of the first expression, while the second expres-
sion is being evaluated. If the stack requirements for each expression are different,

183/205



then the total stack requirement is the larger stack requirement of the individual
expressions. This is only the case if care is taken over the order of evaluation. Note
that ‘infinite’ should be taken as meaning greater than any finite depth - because a
function call does not preserve values on the stack.

Let the function eval(e, r) evaluate expression e where there are r registers available
to perform the evaluation. Where this expression is an operation on two sub expres-
sions - e1 op e2 - it is efficiently evaluated by the following algorithm, where op
commutes is true if a op b is equal to b op a and false otherwise:

if (depth(e1) < r AND depth(e2) < r) /* i.e. depth of both expressions is less
than the number of registers available */

{
if (depth(e2) > depth(e1)) {

if (op commutes) {
eval(e2, r); eval(e1, r-1); op

}
else {

eval(e2, r); eval(e1, r-1); rev; op (*)
}

}
else if (depth(e2) <= depth(e1)) {

eval(e1, r); eval(e2, r-1); op
}

}
else if (depth(e1) >= r OR depth(e2) >= r) {

if (depth(e2) >= depth(e1)) {
if (depth(e1) >= r){ /* i.e. both depths >= r */

eval(e2, r); stl temp; eval(e1, r); ldl temp; op
}
else { /* i.e. depth(e1) < r AND depth(e2) >=r */

if (op commutes) {
eval(e2, r); eval(e1, r-1); op

}
else { /* i.e. operation doesn’t commute */

eval(e2, r); eval(e1, r-1); rev; op
}

}
}
else if (depth(e2) < depth(e1)) {

if (depth(e2) >= r) { /* i.e. both depths >= r */
if (op commutes){

eval(e1, r); stl temp; eval(e2, r); ldl temp; op
}
else {

eval(e2, r); stl temp; eval(e1, r); ldl temp; op
}

}
else { /* i.e. (depth(e2) < r) AND depth(e1) >= r */

eval(e1, r); eval(e2, r-1); op

184/205



}
}

}

The justification of this is as follows. If the depth of both expressions is less than the
number of registers available (r), then there is no need to store the result of the first
evaluation in a temporary variable. The deeper expression is evaluated first to ensure
that the operation evaluates in the least number of stack registers. If this were not
done then the total depth requirement would have to be incremented due to the extra
location for storing the result of the first evaluation. If both expression depths are as
great as r, then a local variable (temp) must be used to store the result of the first
expression. It is again better to evaluate the expression with the larger depth if
possible, because this minimizes the number of local variables required. If only one of
the expressions is as great as r, then provided that expression is evaluated first, there
is no need to store its result in a local variable.

In the cases where a temporary variable temp is required to hold the value of the first
expression in the evaluation of e1 op e2, then that variable can be used as a
temporary variable in the evaluation of the first expression. Also a temporary variable
used in the evaluation of the first expression and not used to hold its result can be
used in the evaluation of second expression.

The code sequence

(e2; e1; rev; op)

at (*) in the above algorithm, can be optimized further to

(e1; e2; op)

removing the execution of the rev instruction. But be aware that the latter uses an
extra stack register, and so there is trade-off here between evaluation depth and code
size.

C.4 Loading sequence

The three registers of the evaluation stack are used to hold operands of instructions.
Evaluation of an operand or parameter may involve the use of more than one register.
Care is needed when evaluating such operands to ensure that the first operand to be
loaded is not pushed off the bottom of the evaluation stack by the evaluation of later
operands. The processor does not detect evaluation stack overflow.

Three registers are available for loading the first operand, two registers for the second
and one for the third. Consequently, the instructions are designed so that Creg holds
the operand which, on average, is the most complex, and Areg the operand which is
the least complex.

In some cases, it is necessary to evaluate the Areg and Breg operands in advance,
and to store the results in temporary variables. This can sometimes be avoided using
the reverse instruction. Any of the following sequences may be used to load the
operands A, B and C into Areg , Breg and Creg respectively.

185/205



1 C; B; A

2 C; A; B; rev

3 B; C; rev; A

4 A; C; rev; B; rev

The choice of loading sequence, and of which operands should be evaluated in
advance is determined by the number of registers required to evaluate each of the
operands.

In particular, if C requires more than two registers it must be loaded before A and B. If
A or B requires more than two registers it must be evaluated before C and may need
to be stored in a temporary variable if C requires more than two registers.

Table 8.1 gives the instruction sequences needed for loading three operands into the
evaluation stack, where the number in the ‘load sequence’ column refers to the list
above. The columns labelled ‘temp’ indicate where a local variable is needed to
temporarily save an operand value in the load sequence. The variable ‘a’ is used to
store operand ‘A’ and the variable ‘b’ is used to store operand ‘B’.

registers
required

temp load
sequence

instructions

C B A b a

≤ 2 1 1 1 C; B; A

1 2 2 C; A; B; rev

1 >2 4 A; C; rev; B; rev

2 1 1 C; B; A

2 2 * 1 A; stl a; C; B; ldl a

2 >2 * 1 A; stl a; C; B; ldl a

>2 1 3 B; C; rev; A

>2 2 * 3 A; stl a; B; C; rev; ldl a

>2 >2 * 3 A; stl a; B; C; rev; ldl a

> 2 1 1 1 C; B; A

1 2 2 C; A; B; rev

1 >2 * 1 A; stl a; C; B; ldl a

2 1 1 C; B; A

2 2 * 1 A; stl a; C; B; ldl a

2 >2 * 1 A; stl a; C; B; ldl a

>2 1 * 1 B; stl b; C; ldl b; A

>2 2 * 2 B; stl b; C; A; ldl b; rev

>2 >2 * * 1 A; stl a; B; stl b; C; ldl b; ldl a

Table 8.1 Register loading sequences

186/205



187/205



D Glossary
Active process

An active process in a multi-tasking program is one that is either executing or
waiting for CPU time. It may have been interrupted or trapped or it may be waiting
on a scheduling queue.

Address
A 32-bit integer used to identify one byte of memory or memory-mapped device.
ST20 addresses are signed, i.e. the address range is the same as the range of a
signed 32-bit integer. A pointer.

Address space
The range of valid addresses.

Areg
The 32-bit register at the top of the evaluation stack.

Arithmetic shift
A shift in which the sign bit is preserved. An arithmetic right shift copies the sign bit
into the vacated bits.

Array
A data structure in which all the elements are of the same type and are identified
by a non-negative integer subscript. A vector.

Bit
A binary digit, which can take the value 1 (also called set or true) or 0 (also called
clear or false).

Bitwise operation
An operation on multi-bit values which treats each bit as a true (if set) or false (if
clear).

Boolean
Logic values and calculations using AND, OR, and NOT. A multi-bit value is treated
as Boolean if it represents a single true of false value, as opposed to bitwise.

Breg
The 32-bit register in the middle of the evaluation stack.

Byte
An 8-bit value or location.

Cache
Fast memory used to temporarily hold copies of slow memory locations in order to
provide high performance memory access with slow memory.

Channel
A synchronous, one-way, point-to-point, unbuffered communications mechanism.

188/205



Clear
A bit is clear if it has the value 0.

Creg
The 32-bit register at the bottom of the evaluation stack.

Current process
The process being either being executed by the CPU, interrupted or trapped.

DCU
Diagnostic Controller Unit.

Descriptor
Identifier of a process or exception.

Deschedule
A process is descheduled when it is not being executed by the CPU and has not
been interrupted or trapped by an exception handler but it is capable of being
restarted. To deschedule a process is to make it descheduled.

Diagnostic Controller Unit
ST20 hardware macro-cell which provides fully non-intrusive breakpoints, watch-
points and code tracing.

DMA
Direct memory access. A peripheral or external device performs DMA when it
reads directly from or writes directly to memory.

DMA peripheral
A peripheral with a DMA engine.

Double word
A 64-bit value, occupying two words.

Evaluation stack
The Areg , Breg and Creg , which together behave as a stack. The evaluation
stack is used for expression evaluation and to hold operands for instructions. The
registers cannot be individually addressed, but values can be pushed onto the
stack or popped off it.

Exception
A mechanism for handling events outside the normal program flow. An exception
may be an interrupt or a trap.

Exception handler
The code and data which defines the action when an exception is taken. An
exception handler may be a trap handler or an interrupt handler.

Exception level
The signed integer specifying which exception will be taken, which is the word
offset from the base of the exception vector table to the descriptor of the process
or exception.

189/205



Exception vector table
The table mapping exception levels to user processes and exception descriptors.

Executing
A process is executing if the CPU is currently modifying its state. Only one process
can be executing at any one time.

External interrupt
An interrupt generated by a peripheral or external device, routed through the
interrupt controller and handled by an interrupt handler.

Function
A named section of code which may have parameters and may return one or more
values.

Function
A primary instruction.

Function code
The most significant 4-bits of an instruction component, which defines the action
of the component.

Half-word
A 16-bit value or location.

Half-word aligned
An address is half-word aligned if it is divisible by two, i.e. if bit 0 is 0.

Idle
The CPU is idle when there is no process or exception handler executing.

Inactive
A process is inactive if it is capable of being restarted but it is currently waiting for
some event to occur before it can continue. The event might be a semaphore
signal or a peripheral completing a DMA.

Instruction
A code element corresponding to a single instruction set mnemonic, consisting of
zero or more prefixes followed by a non-prefix instruction component.

Instruction component
A single byte of code, consisting of a function code and 4 bits of data.

Instruction data value
The operand of a primary instruction, which is built from the least significant 4 bits
of each of the instruction components of the instruction.

Instruction pointer
The 32-bit CPU register which holds the address of the next instruction to be
executed by the current process.

Integer
A whole number, which may be positive, negative or zero.

190/205



Internal memory
On-chip memory.

Interrupt
A signal from outside the CPU to switch from normal execution to execution of an
interrupt handler. If the interrupt causes a scheduling event, then that may cause
an immediate trap.

Interrupt controller
An on-chip peripheral which arbitrates between interrupt requests and signals to
the CPU when an interrupt is required.

Interrupt handler
The code and data which defines the action when an interrupt is taken.

Interrupt latency
The time taken from receiving an interrupt signal to starting execution of the
interrupt handler.

Interrupted
A process is in an interrupted state if it is waiting for an interrupt handler to
complete and it will continue as soon as the interrupt handler has completed.

IOreg
The input and output register, whose bits are directly connected to peripherals.

Iptr
The instruction pointer.

Linked list
A linked list is an ordered data structure where each element includes a pointer to
the next element. A list is identified by a front pointer, which points to the first
element in the list. Linked lists are also called queues.

Little-endian
Little-endian ordering of data, used by all ST20s, means that less significant data
is always held in lower addresses. This applies to bits in bytes, bytes in words and
words in memory.

List
See linked list.

Local
A local variable is one that is addressed by means of an offset from the workspace
pointer. Local variables are usually held on a stack and are defined within a
function or procedure. cf. non-local.

Logical shift
A shift in which the sign bit is shifted by the same amount as any other bit.

191/205



Memory
Addressed devices which can be read and possibly written. Reading read/write
memory at a particular address gives the value that was last written to that
address. Reading read-only memory always gives the same value.

Memory-mapped
Addressed devices which are read and written as if they were memory, but do not
necessarily return the last written value.

Microcode
The on-chip hardware mechanism for implementing instructions.

Micro-kernel
The ST20 on-chip hardware support for multi-tasking.

MostNeg
The most negative 32-bit integer, #80000000. The address of the base of memory.
The value of the null process pointer NotProcess.

Multi-tasking
Running several communicating processes on the same processor using time
sharing.

Non-local
A non-local variable is one that is addressed by means of an offset from the base
address held in Areg . Non-local variables are usually not held on a stack and are
defined globally. cf. local.

NotProcess
The null process pointer, which has the value MostNeg.

On-chip emulator
Diagnostic controller unit.

On-chip memory
Very fast memory included in the ST20 chip. On-chip memory is usually located at
the bottom of the address space.

Operate
An instruction component, with function code #F and mnemonic opr, used to
encode secondary instructions. The instruction data value identifies the secondar y
instruction.

Operating system
Code controlling multi-tasking, interrupts and certain system operations, which
may be called by a program. The ST20 supports many of these facilities in micro-
code without an operating system.

Operation
A secondary instruction.

Peripheral
A device connected to and controlled by the CPU.

192/205



Pointer
An address.

Prefix
An instruction component used to extend the data value of the following instruction
component. There are two prefixes - pfix (function code #2) which preserves the
sign and nfix (function code #6) which complements the data value and so
changes the sign.

Primary instruction
One of thirteen directly coded instructions which therefore do not require an
operate instruction component. A primary instruction has a data part associated
with it, called the operand. cf. secondary instruction.

Priority
A value associated with each process or interrupt which is used to make choices
when conflicts occur.

Procedure
A named section of code which may have parameters.

Process
A sequential algorithm and data which can run in parallel with other
processes.Processes are also known as tasks or threads. Each process is identi-
fied by a task descriptor which points to a process descriptor block.

Process descriptor block
A data structure defining a process, including the saved instruction pointer,
workspace pointer and a link used for queueing processes.

Process pointer
A pointer to a process.

Queue
A linked list.

Real time operating system
An operating system providing facilities for real-time programming, including multi-
tasking and interrupt handling.

Register cache
Registers used to cache the lowest words of the work space in order to accelerate
access to local variables. Also called work space cache or register file.

Register file
See register cache.

RTOS
Real-time operating system.

Scheduler
Code or hardware which controls how processes share CPU time.

193/205



Scheduling kernel
Code to override the ST20 built-in microcode scheduler, consisting mainly of trap
handlers which are taken when a scheduling event occurs.

Scheduling queue
The queue of processes waiting for CPU time.

Secondary instruction
An instruction encoded using an operate instruction component. A secondary
instruction has no data part associated with it, as the instruction data value is used
to identify the instruction. cf. primary instruction.

Semaphore
A mechanism for synchronizing and signalling between processes.

Set
A bit is set when its value is 1.

Sign extension
A signed value can be extended to occupy more bits by filling the most significant
bits with copies of the sign bit.

Sign bit
The most significant bit of a signed value, used to indicate the sign of the value.

Signed value
Value which could be positive or negative depending on the sign bit.

Sleep
The CPU is asleep when its clocks are turned off to reduce power consumption.
The CPU automatically goes to sleep after it becomes idle. It is woken by an
external interrupt.

Slot
A slot is a field of a data structure for holding a value. A slot normally occupies one
word.

Stack
A stack is a data storage structure that uses a ‘first in, last out’ access model.
Adding an item to a stack is called pushing on, and extracting a value is called
popping. A program stack is normally implemented using the Wptr as the stack
pointer. The Areg , Breg and Creg form the evaluation stack.

Stack, evaluation
See evaluation stack.

State
The state of a process is the data needed for the process to continue execution.
This may include the evaluation stack, Iptr , Wptr , status register and local data.

Status register
The status register holds CPU status information which must be saved if an
interrupt occurs but is not saved if the process deschedules. Some status register

194/205



bits are global and are preserved when a process is descheduled and others are
local to a process and are lost when the process is descheduled.

Task
A process.

Task descriptor
The identifier of a process, which is a pointer to the process descriptor block.
When a process is executing, the Tdesc holds the task descriptor of the process.

Tdesc
A 32-bit register which holds the task descriptor of the current process.

Thread
A dynamically generated process.

Timeslice
Deschedule a process to allow other processes access to the CPU. Timeslicing
prevents any one process from occupying too much CPU time. A timesliced
process is normally added to the back of the scheduling queue and the process on
the front of the queue is restarted.

Trap
An exception caused by software, or an interrupt initiating a scheduling event.

Trap handler
The code and data which define what happens when a trap is taken.

Trapped
A process is trapped when it is waiting for a trap handler to complete.

Unsigned value
Value which could only be positive, so the most significant bit is not used as a sign
bit.

Vector
An array.

Waiting
A process is waiting for an event if it cannot continue execution until that event has
occurred. The event could be for example a communication or a semaphore
signal.

Word
A word is a four byte (32-bit) location for data.

Word-aligned
An address is word-aligned if it is divisible by 4, i.e. if the least significant two bits
are zero.

Work space
Space in memory for local variables and values.

195/205



Work space cache
Registers used to cache the lowest words of the work space in order to accelerate
access to local variables. Also called register cache or register file

Workspace pointer
A 32-bit register pointing to the work space for the current process.

Wptr
The workspace pointer.

196/205



197/205

Index



Index
Symbols

+ (plus), 11
.. (ellipsis), 9
/ (divide), 11
< (less than), 11
= (equals), 11
> (greater than), 11
>> (logical shift right), 11
@ (word offset), 10
{ } (braces), 13
′ (prime), 10
≤ (less than or equal to), 11
≥ (greater than or equal to), 11
≠ (is not equal to), 11

Numerics
16-bit, 32

assignment, 35
load, 31, 124

signed, 31, 125
multiply, 146
multiply accumulate, 56, 143, 144
sign extension, 40, 167
store, 31, 147

A
active, 78, 187
adc, 36, 88
add, 36, 89

constant, 36, 88
with carry, 38, 90

addc, 38, 90
address, 187

calculation, 10, 41–43
load local, 41
load non-local, 41
space, 18, 187
subscript, 41

addressing, 16
adjust work space, 91
ajw, 48, 91
alignment, 18
and

bitwise, 11, 47
boolean, 11, 46
instruction, 92

anti-rotate stack, 30, 93
architecture, 16–28
Areg , 20, 21, 30, 187
arithmetic, 35–40

add, 89
boolean, 45–47
divide, 102
modulo, 11
multiply accumulate, 56–67
saturated, 138
shift, 187
shift right, 94
subtract, 155
subtract with carry, 156
unchecked, 11
unsign, 162

arot, 30, 93
arrays, 41, 187

word subscript, 164
ashr, 48, 94
assignment

byte, 35
single word, 35

B
biquad, 56, 58, 95
bit, 187

load, 47, 96
mask, 47
read modify write, 47, 135
store, 47, 98

bitld, 47, 96
bitmask, 47, 52, 97
BitsPerWord, 172
bitst, 47, 98
bitwise, 187

and, 11
exclusive or, 166
not, 11, 130
operations, 47
or, 11, 131
xor, 11

block copy, 31, 33
load, 126
store, 158

boolean, 187
expressions, 45–47

branch, 43, 100
breakpoint, 71, 99

trap, 71
Breg , 20, 21, 30, 187
buffer size

multiply accumulate, 57
byte, 32, 187

addressing, 19

Index

198/205



arrays, 43
assignment, 35
load, 31
load and increment, 115
ordering

compatibility, 17
selector, 18
sign extension, 40, 165
store, 31, 139
swap, 48, 157

BytesPerWord, 172

C
cache, 187
call

exception, 104
function, 48–52, 108
procedure, 48–52

carry, 22, 38
channel, 187
channel-type peripherals, 53
checked arithmetic, 36
cj, 43, 100
clear, 188

status bit, 55
status bits, 148

clock
timeslicing, 81

code
in instruction descriptions, 6

coding of instruction, 6, 24
comments

in instruction descriptions, 8, 9
comparison, 43–45

equals constant, 43, 106
greater than, 43, 110

unsigned, 43, 111
order, 132

unsigned, 133
compatibility

byte ordering, 17
complement, 47
conditional jump, 43, 100
conditionals, 43–45
conditions

in instruction descriptions, 13
constants, 172

equals, 43
loading, 31, 116

from table, 34
machine constant definitions, 14, 169
used in instruction descriptions, 14, 172

control block
exception, 73

process queue, 80
conversion

object length, 17, 40
type, 12

create bit mask, 97
Creg , 20, 21, 30, 188
current process, 188

D
data format

multiply accumulate, 58, 65
data structures, 171
data types, 9
DCU, 188
decrement, 36, 88
definition

in instruction descriptions, 7, 8
depth

of stack needed, 182
dequeue a process, 79, 101
descheduled process, 79, 188

state, 80, 82
description

in instruction descriptions, 7
descriptor, 188

in exception vector table, 72
of process, 79
task, 24

diagnostic controller unit, 188
direct memory access, 53
disabling

exceptions, 77
timeslicing, 81

division, 36, 102
divstep, 36, 102
DMA, 188

peripherals, 53
double word, 19, 188

arithmetic, 38
multiply, 39

DSP, 56–67
dup, 30, 103
duplicate top of stack, 30, 103
dynamic allocation of workspace, 52

E
ecall, 71, 104
ellipsis, 9
else, 13
emulator, 191
enabling

exceptions, 77
timeslicing, 81

encoding of instructions, 6, 24

199/205

Index



enqueue a process, 79, 105
eqc, 43, 106
equals constant, 43, 106
eret, 71, 107
error signals

in instruction descriptions, 8
evaluation

arithmetic, 35–40
boolean, 45–47
function, 51
of addresses, 41–43
of expressions, 33–35, 182–185
stack, 19, 21, 30, 33–35, 182–185, 188

loading sequences, 34
subscripts, 42

exception, 70–77, 188
call, 104
control block, 73
handler, 188

initial state, 74
levels, 71, 170, 188
return, 107
type, 72
vector table, 72, 189

ExceptionBase, 72, 172
ExceptionProcessType, 73, 172
exclusive or, 166

bitwise, 47
executing, 78, 189
expression

depth, 182–184
evaluation, 33–35, 182–185

using functions, 51
extend sign, 40, 165
external interrupt, 189

F
false, 16, 43, 172
fcall, 48, 108
filter

biquad IIR, 58
IIR step, 95

function, 189
call, 48–52, 108
code, 7, 25, 189
evaluation, 51

functions
in instruction descriptions, 12

G
gajw, 48, 109
general adjust workspace, 109
global_interrupt_enable , 22, 77

greater than, 43, 110
unsigned, 43, 111

gt, 43, 110
gtu, 43, 111

H
half-word, 16, 32, 189

aligned, 19, 189
assignment, 35
load, 31, 124

signed, 31, 125
multiply, 36, 146
multiply accumulate, 56, 143, 144
sign extension, 40, 167
store, 31, 147

high_word, 12
HighestException, 172

I
i/o, 52–55
identity

of device, 14, 122
idle, 85, 189

trap, 72
if

compiling, 43–45
in definitions, 13

IIR filter, 58, 95
inactive, 78, 82, 189

process restarting, 82
increment, 36, 88
indirection of exceptions, 72
initializing

exception handlers, 76
multi-tasking, 83
smacloop, 143

input/output, 52–55, 112
instruction, 14, 189

address, 41
component, 25, 189
data value, 25, 189
definitions, 87
encoding, 6, 24
pointer, 20, 189

load, 41, 121
int16, 12
integer, 189

length conversion, 40
internal memory, 190
interrupt, 70–77, 190

controller, 190
enable, 22
handler, 190

Index

200/205



latency, 190
interrupt_mode , 22, 23
interrupted, 78, 190
io, 52, 112
IOreg , 20, 24, 52, 190
Iptr , 20, 190

load, 41

J
j, 43, 113
jab, 43, 48, 114
jump, 43–45, 112, 113

absolute, 43, 114
conditional, 43, 100
table, 181

L
lbinc, 31, 115
ldc, 31, 116
ldl, 31, 117
ldlp, 41, 118
ldnl, 31, 119
ldnlp, 41, 120
ldpi, 41, 121
ldprodid, 14, 122
ldtdesc, 52, 79, 123
length conversion, 17
link

in queue, 80
linked list, 80, 190
list, 190
little-endian, 16, 19, 157, 190
load, 31–33

bit, 47, 96
byte, 31, 115
constant, 31, 116
instruction pointer, 41
local, 31, 117
local pointer, 41, 118
non-local, 31, 119
non-local pointer, 41, 120
operands, 34
parameters, 50
pointer to instruction, 121
product identity, 122
sequence

integer stack, 34
sequences, 184
sixteen bit, 31, 124

signed, 125
sixteen bit signed, 125
task descriptor, 123
word, 31, 126

local, 19, 23, 31, 190
load pointer, 118
load variable, 31, 117
store variable, 31, 151

local_interrupt_enable , 22, 77
logic, 45–47

bitwise instructions, 47
logical shift, 190
long arithmetic, 38

multiplication, 127
subtract, 156

LongMode, 58, 172
low_word, 12
LowestException, 172
lsinc, 31, 124
lsxinc, 31, 125
lwinc, 31, 126

M
mac, 56, 127
mac_buffer , 22, 57
mac_count , 22, 57
mac_mode , 22, 57
mac_scale , 22, 57
mask, 47

create, 97
maximum, 45, 132

unsigned, 133
MaxTimesliceCount, 81, 172
memory, 18, 191

block copy, 33
mapped, 191
mapped peripherals, 53
read modify write, 47, 135
representation of, 10

microcode, 191
micro-kernel, 191
minimum, 45, 132

unsigned, 133
minus, 36, 38
modulo arithmetic, 11
MostNeg, 16, 172, 191
MostPos, 16, 172
move, 33
mul, 36, 128
multiply, 36, 128

half-word, 36
multiple length, 39

multiply accumulate, 56–67, 127
short loop, 144

initialize, 143
unsigned, 38, 161

multi-tasking, 78–85, 191

201/205

Index



N
negation, 38
next instruction, 9
nfix, 25
no operation, 129
non-local, 31, 191

load pointer, 120
load variable, 31, 119
store variable, 152

nop, 129
not

bitwise, 47
boolean, 11, 46
instruction, 130

notation, 6–14
NotProcess, 18, 172, 191

O
object length conversion, 40
objects, 9
On-chip emulator, 191
on-chip memory, 191
operands

in descriptions, 6
primary instructions, 26
secondary instructions, 34

operate, 25, 191
operating system, 191
operation, 191

code, 6, 25, 27
operations

bitwise, 47
operators

in instruction definitions, 11
in instruction descriptions, 11

opr, 8, 27
or

bitwise, 11, 47
boolean, 11, 46
instruction, 131

order, 43
of loads, 184
unsigned, 43

order, 132
ordering

of data, 16
values, 43–45

orderu, 133
output, 52–55, 112
overflow, 22, 36, 37

saturate, 138

P
parallel programming, 78–85
parameters

procedure, 50
peripherals, 52–55, 191
pfix, 25
plus, 36
pointer, 192

load local, 41
load non-local, 41
reserved values, 18

pop, 21
prefixing, 25, 178, 192
primary instructions, 8, 25, 26, 192
prime notation

in instruction descriptions, 10
priority, 78, 170, 192
procedure, 192

call, 48–52
process, 78–85, 192

creation, 83
current, 188
dequeue, 101
descriptor, 24, 170
descriptor block, 79, 192
enqueue, 105
pointer, 192
queues, 80
run, 137
state, 9, 24, 79

in descriptions, 7
states, 78
stop, 153
timeslice, 159
transitions, 78
user, 22
waiting, 80

product identity, 14, 122
ProductId, 172
push, 21
pw.Iptr , 82
pw.Wptr , 82

Q
q.BptrLoc , 80, 171
q.FPtrLoc , 80, 171
Q15, 58
Q31, 58, 65
queue, 192

control block, 80
scheduling, 80

Index

202/205



R
read modify write, 47, 135
real time operating system, 192
register, 20

cache, 20, 192
file, 192
in instruction descriptions, 7
memory mapped, 53

rem, 11
remainder, 36
repeat loop, 45
representing memory

in instruction descriptions, 10
rescheduling a process, 82
reserved memory, 18
return

exception, 107
from procedure, 49

rev, 30, 134
reverse stack, 30, 134
rmw, 47, 135
rot, 30, 136
rotate stack, 30, 136
RTOS, 192
run, 79, 82, 84, 137

trap, 72

S
s.Back , 79, 84, 171
s.Count , 84, 171
s.Front , 84, 171
saturate, 37, 138
SavedTaskDescriptor, 172
sbinc, 31, 139
scaling

multiply accumulate, 59
scheduler, 192
SchedulerQptr, 80, 172
scheduling, 78–85

kernel, 193
kernels, 84
queue, 80, 193

secondary instructions, 8, 25, 27, 193
semaphore, 84–85, 193

signal (V), 84, 85, 142
wait (P), 85, 163

set, 193
status bits, 55, 149

setting up
exception handler, 76
multi-tasking, 83
process, 83
semaphore, 84

shift, 48

instructions, 47
logical left, 140
right arithmetic, 94
right logical, 141

shl, 48, 140
short

multiply, 36, 146
multiply accumulate loop, 144
store, 147

ShortMode, 58, 172
shr, 48, 141
sign

bit, 193
extension, 17, 40, 193

byte, 165
half-word, 31, 167

signal, 84, 142
signal processing, 56–67
signed

arithmetic, 17
shift right, 48
value, 193

sixteen bit, 16, 32
assignment, 35
load, 31, 124

signed, 31, 125
multiply, 36, 146
multiply accumulate, 56, 143, 144
sign extension, 40, 167
store, 31, 147

sleep, 22, 23, 85, 193
slot, 16, 193
smacinit, 56, 57, 143
smacloop, 56, 144

initialize, 143
smul, 36, 146
ssinc, 31, 147
stack, 193

anti-rotate, 30
duplicate, 30, 103
evaluation, 19, 21, 193
memory, 19
reverse, 30, 134
rotate, 30, 136

start_next_task , 22, 23
state, 193
status register, 8, 20, 21, 55, 170, 193

clear bits, 148
exception handler start state, 74
restart value, 83
restarted process state, 83
set bits, 149
test, 150

statusclr, 55, 148

203/205

Index



statusset, 55, 149
statustst, 55, 150
steps

multiply accumulate, 57
stl, 31, 151
stnl, 31, 152
stop, 52, 79, 84, 153

trap, 72
store, 31–33

bit, 47, 98
byte, 31, 139
local, 31, 151
non-local, 31, 152
sixteen bit, 31
word, 31, 158

sub, 36, 155
subc, 38, 156
subprogram

call, 48–52
subscript, 42

address, 41
evaluation, 42
in instruction definitions, 9
word, 164

subtract, 36, 155
with carry, 38, 156

swap bytes, 48, 157
swap32, 17, 48, 157
swinc, 31, 158
switch statements, 180
system traps, 71, 84

T
table of constants

loading from, 34
task, 78, 194

descriptor, 79, 194
load, 123

Tdesc , 20, 24, 194
test status bit, 55, 150
threads, 78, 194
timeslice, 45, 79, 81, 159, 194

trap, 72
timeslice_count , 22, 81
timeslice_enable , 22, 81
trap_mode , 22, 23
trapped, 78, 194
traps, 70–77, 194

handlers, 194
true, 16, 43, 172
type

conversion, 12
of data, 9
of exception, 72

U
umac, 38, 56, 161
unary minus, 38
unchecked arithmetic, 11
undefined, 9
underflow, 22, 36, 37

saturate, 138
unsign, 36, 162
unsigned, 10

greater than, 43, 111
multiply accumulate, 38, 161
order, 133
value, 194

user process, 22
user_mode , 22
UserProcessType, 73, 172

V
values, 16
variable

address, 41
allocating work space for, 49
assignment, 35

vector, 194
exception table, 72

W
wait, 84, 163
waiting process, 79, 80, 194
while loop, 45
word, 16, 194

address, 18
aligned, 18, 194
arrays, 43
assignment, 35
load, 126
multiply accumulate, 56
store, 158
subscript, 41, 164

work space, 19, 23, 170, 194
address, 23
adjust, 49, 91
cache, 20, 195
dynamic allocation, 52
general adjust, 109
pointer, 19, 23, 195

Wptr , 19, 20, 23, 195
wsub, 41, 164

X
x (multiply), 11
xbword, 40, 165
xor

Index

204/205



bitwise, 11, 47, 166
xsword, 40, 167

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.
This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of
SGS-THOMSON Microelectronics.

 1997 SGS-THOMSON Microelectronics - All Rights Reserved

IMS and DS-Link are trademarks of SGS-THOMSON Microelectronics Limited.

is a registered trademark of the SGS-THOMSON Microelectronics Group.

205/205




Document number: 72-TRN-274-01

