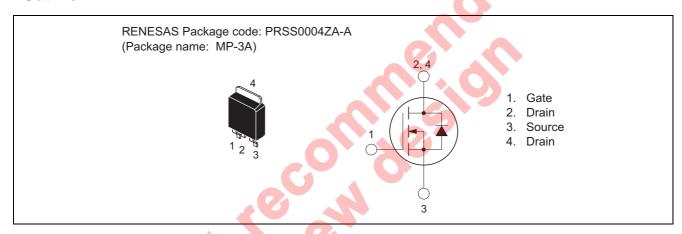


FS5ASJ-2

High-Speed Switching Use Nch Power MOS FET

REJ03G1405-0300 Rev.3.00 Nov 21, 2006


Features

 $\begin{tabular}{ll} \bullet & Drive \ voltage: 4 \ V \\ \bullet & V_{DSS}: 100 \ V \\ \bullet & r_{DS(ON) \, (max)}: 0.4 \ \Omega \\ \end{tabular}$

• I_D: 5 A

• Integrated Fast Recovery Diode (TYP.): 80 ns

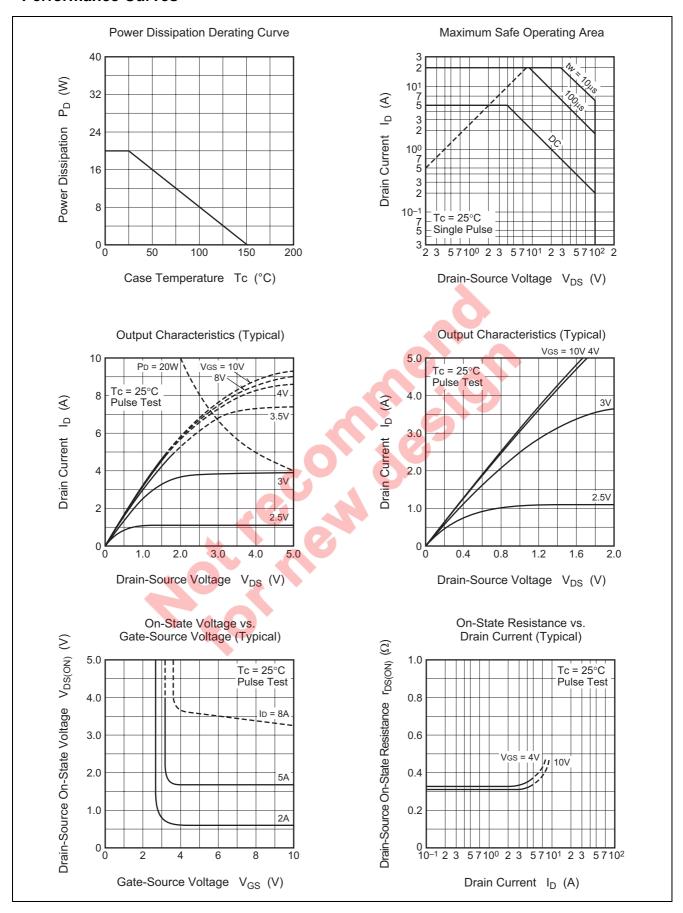
Outline

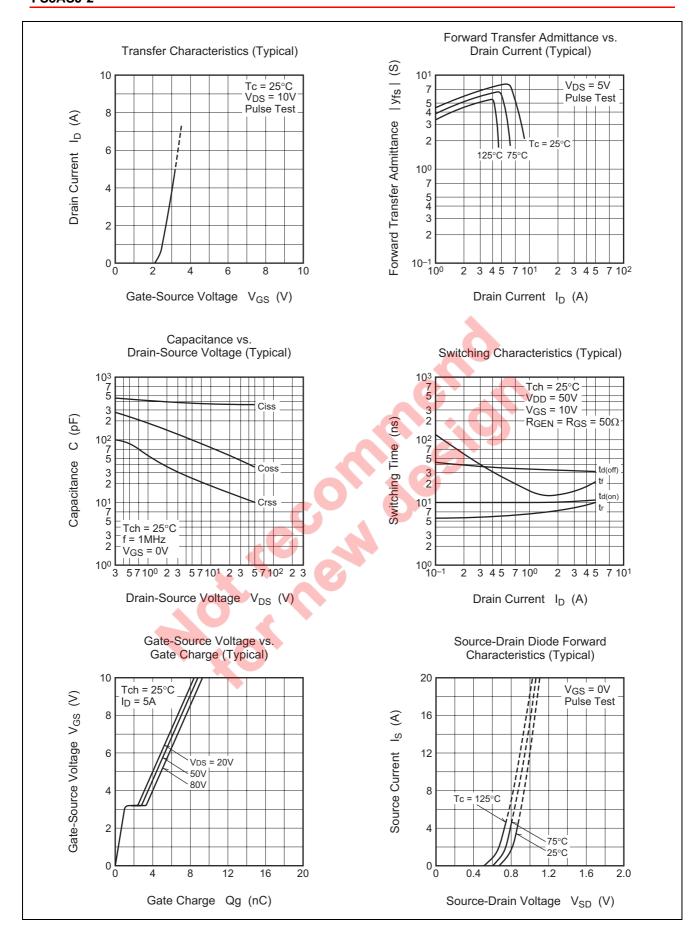
Applications

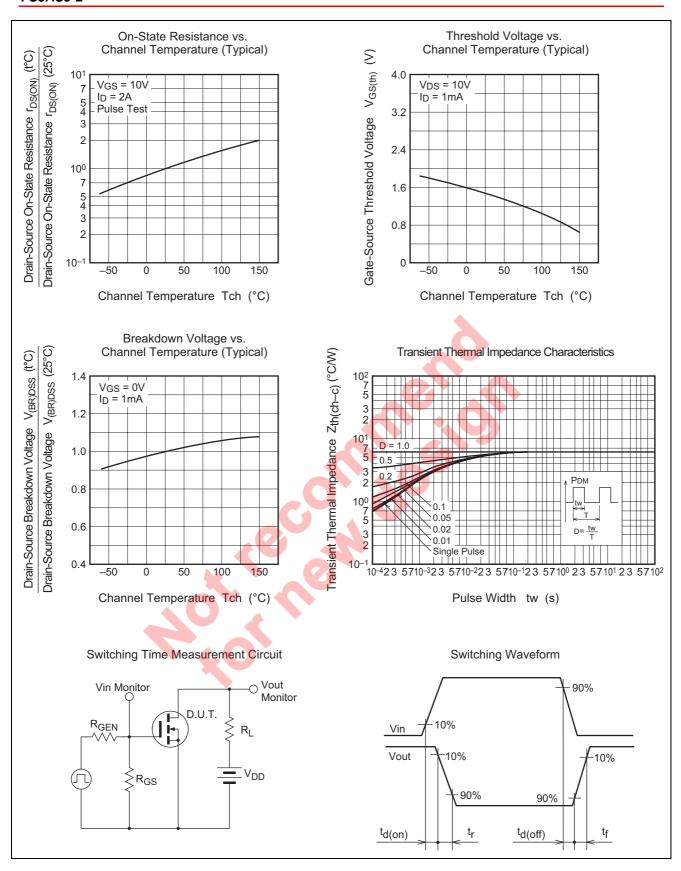
Motor control, Lamp control, Solenoid control, DC-DC converters, etc.

Maximum Ratings

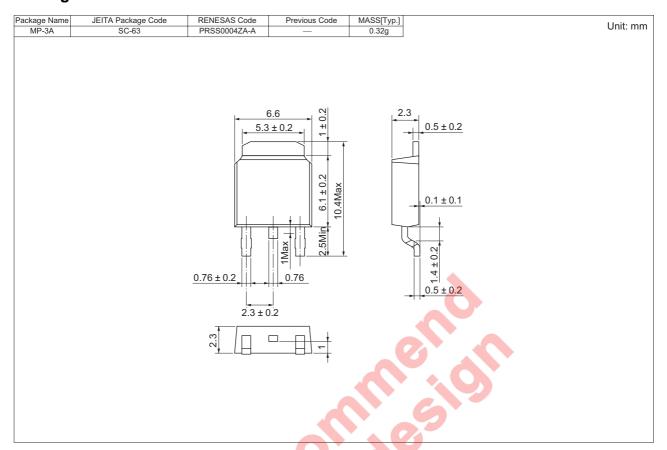
 $(Tc = 25^{\circ}C)$


Parameter	Symbol	Ratings	Unit	Conditions
Drain-source voltage	V _{DSS}	100	V	V _{GS} = 0 V
Gate-source voltage	V _{GSS}	±20	V	$V_{DS} = 0 V$
Drain current	I _D	5	А	
Drain current (Pulsed)	I _{DM}	20	А	
Avalanche drain current (Pulsed)	I _{DA}	5	А	L = 100 μH
Source current	Is	5	А	
Source current (Pulsed)	I _{SM}	20	А	
Maximum power dissipation	P_D	20	W	
Channel temperature	Tch	- 55 to +150	°C	
Storage temperature	Tstg	- 55 to +150	°C	
Mass	<u> </u>	0.32	g	Typical value


Electrical Characteristics


 $(Tch = 25^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions		
Drain-source breakdown voltage	V _{(BR)DSS}	100	_	_	V	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$		
Gate-source leakage current	I _{GSS}	_	_	±0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		
Drain-source leakage current	I _{DSS}	_	_	0.1	mA	V _{DS} = 100 V, V _{GS} = 0 V		
Gate-source threshold voltage	$V_{GS(th)}$	1.0	1.5	2.0	V	$I_D = 1 \text{ mA}, V_{DS} = 10 \text{ V}$		
Drain-source on-state resistance	r _{DS(ON)}	_	0.31	0.40	Ω	$I_D = 2 A, V_{GS} = 10 V$		
Drain-source on-state resistance	r _{DS(ON)}	_	0.34	0.46	Ω	$I_D = 2 A, V_{GS} = 4 V$		
Drain-source on-state voltage	V _{DS(ON)}	_	0.62	0.8	V	$I_D = 2 A, V_{GS} = 10 V$		
Forward transfer admittance	y _{fs}	_	6	_	S	$I_D = 2 A, V_{DS} = 5 V$		
Input capacitance	Ciss	_	360	_	pF	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$		
Output capacitance	Coss	_	75	_	pF	f = 1MHz		
Reverse transfer capacitance	Crss	_	20	_	pF			
Turn-on delay time	t _{d(on)}	_	10	_	ns	$V_{DD} = 50 \text{ V}, I_D = 2 \text{ A},$		
Rise time	t _r	_	7	_	ns	$V_{GS} = 10 \text{ V},$		
Turn-off delay time	t _{d(off)}	_	35	_	ns	$R_{GEN} = R_{GS} = 50 \Omega$		
Fall time	t _f	_	15	_ (ns			
Source-drain voltage	V_{SD}	_	1.0	1.5	V	I _S = 2 A, V _{GS} = 0 V		
Thermal resistance	R _{th(ch-c)}	_	_	6.25	°C/W	Channel to case		
Reverse recovery time	t _{rr}	_	80	(4)	ns	$I_S = 5 \text{ A}, d_{is}/dt = -100 \text{ A}/\mu \text{s}$		
Reverse recovery time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								


Performance Curves

Package Dimensions

Order Code

Lead form	Standard packing	Qı	uantity	Standard order code	Standard order code example
Surface-mounted type	Taping		3000	Type name – T +Direction (1 or 2) +3	FS5ASJ-2-T13
Surface-mounted type	Plastic Magazine (Tube)		75	Type name	FS5ASJ-2

Note: Please confirm the specification about the shipping in detail.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and received in the development of such information in the development of such and the procedure of the development of such and the procedure of the development of such and the procedure of the development of such and the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510