$4 \text{ M SRAM} (256\text{-kword} \times 16\text{-bit})$

HITACHI

ADE-203-1259 (Z) Preliminary Rev. 0.0 Mar. 21, 2001

Description

The Hitachi HM62V16256CBP Series is 4-Mbit static RAM organized 262,144-word \times 16-bit. HM62V16256CBP Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is packaged in 48 bumps chip size package with 0.75 mm bump pitch for high density surface mounting.

Features

Single 2.5 V and 3.0 V supply: 2.2 V to 3.6 V

• Fast access time: 55 ns/70 ns (max)

• Power dissipation:

— Active: $5.0 \text{ mW/MHz} \text{ (typ)}(V_{CC} = 2.5 \text{ V})$

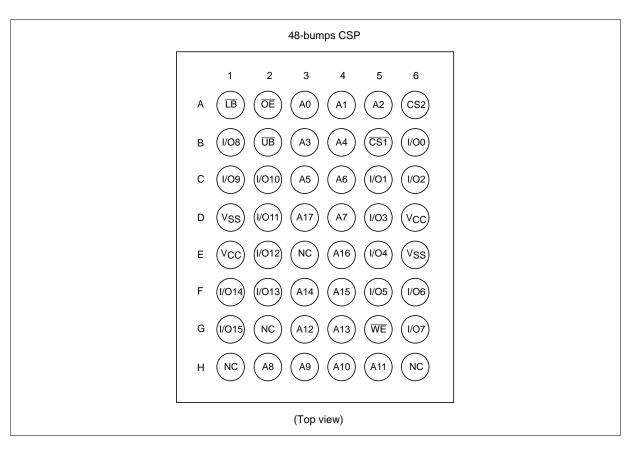
: $6.0 \text{ mW/MHz (typ) (V_{CC} = 3.0 \text{ V})}$

— Standby: $2 \mu W \text{ (typ) } (V_{CC} = 2.5 \text{ V})$

: $2.4 \mu W \text{ (typ) } (V_{CC} = 3.0 \text{ V})$

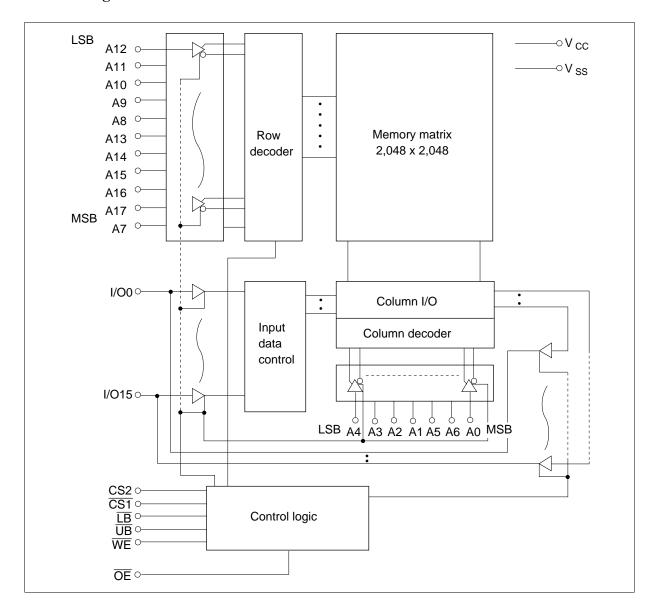
Completely static memory.

- No clock or timing strobe required
- Equal access and cycle times
- Common data input and output.
 - Three state output
- Battery backup operation.
 - 2 chip selection for battery backup


Preliminary: The specification of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specification.

Ordering Information

Type No.	Access time	Package
HM62V16256CLBP-5 HM62V16256CLBP-7	55 ns 70 ns	48-bumps CSP with 0.75 mm bump pitch (TBP-48)
HM62V16256CLBP-5SL HM62V16256CLBP-7SL	55 ns 70 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 to A17	Address input
I/O0 to I/O15	Data input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
ŌĒ	Output enable
LB	Lower byte select
UB	Upper byte select
V _{cc}	Power supply
V _{SS}	Ground
NC	No connection

Block Diagram

Operation Table

CS1	CS2	WE	OE	ŪB	LB	I/00 to I/07	I/O8 to I/O15	Operation
Н	×	×	×	×	×	High-Z	High-Z	Standby
×	L	×	×	×	×	High-Z	High-Z	Standby
×	×	×	×	Н	Н	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Dout	Dout	Read
L	Н	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	Н	L	L	Н	High-Z	Dout	Upper byte read
L	Н	L	×	L	L	Din	Din	Write
L	Н	L	×	Н	L	Din	High-Z	Lower byte write
L	Н	L	×	L	Н	High-Z	Din	Upper byte write
L	Н	Н	Н	×	×	High-Z	High-Z	Output disable

Note: $H: V_{IH}, L: V_{IL}, \times: V_{IH} \text{ or } V_{IL}$

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to V _{ss}	V _{cc}	-0.5 to + 4.6	V
Terminal voltage on any pin relative to V _{ss}	V _T	-0.5^{*1} to $V_{CC} + 0.3^{*2}$	V
Power dissipation	P _T	1.0	W
Storage temperature range	Tstg	–55 to +125	°C
Storage temperature range under bias	Tbias	-20 to +85	°C

Notes: 1. V_T min: -3.0 V for pulse half-width ≤ 30 ns.

2. Maximum voltage is +4.6 V.

DC Operating Conditions

Parameter		Symbol	Min	Тур	Max	Unit	Note
Supply voltage		V _{cc}	2.2	2.5/3.0	3.6	V	
		V _{SS}	0	0	0	V	
Input high voltage	$V_{cc} = 2.2 \text{ V to } 2.7 \text{ V}$	V _{IH}	2.0	_	V _{cc} + 0.3	V	
	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	V_{IH}	2.0	_	$V_{cc} + 0.3$	V	
Input low voltage	V_{cc} = 2.2 V to 2.7 V	V _{IL}	-0.2	_	0.4	V	1
	$V_{\rm cc}$ = 2.7 V to 3.6 V	V _{IL}	-0.3	_	0.6	V	1
Ambient temperature range		Та	-20	_	70	°C	

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 30 ns.

DC Characteristics

Symbol	Min	Typ* ¹	Max	Unit	Test conditions
I _{LI}	_	_	1	μΑ	Vin = V _{ss} to V _{cc}
I _{LO}	_	_	1	μΑ	
I _{cc}	_	5	20	mA	$\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}},$ Others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
I _{CC1}	_	18	25	mA	Min. cycle, $\underline{\text{duty}} = 100\%$, $I_{\text{I/O}} = 0 \text{ mA}$, $\overline{\text{CS1}} = V_{\text{IL}}$, $\overline{\text{CS2}} = V_{\text{IH}}$, $\overline{\text{Others}} = V_{\text{IH}}/V_{\text{IL}}$
I _{CC2}	_	2	5	mA	$\begin{split} &\text{Cycle time} = 1 \mu\text{s}, \text{duty} = 100\%, \\ &\text{I}_{\text{I/O}} = 0 \text{mA}, \overline{\text{CS1}} \leq 0.2 \text{ V}, \\ &\text{CS2} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ &\text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{V}_{\text{IL}} \leq 0.2 \text{ V} \end{split}$
I_{SB}	_	0.1	0.3	mΑ	CS2 = V _{IL}
I _{SB1} *2	_	0.8	20	μΑ	$ \begin{array}{l} 0 \; V \leq \text{Vin} \\ (1) \; 0 \; V \leq \text{CS2} \leq 0.2 \; \text{V or} \\ (2) \; \overline{\text{CS1}} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V}, \\ \text{CS2} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V or} \\ (3) \; \overline{\text{LB}} = \overline{\text{UB}} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V} \\ \text{CS2} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V} \\ \overline{\text{CS1}} \leq 0.2 \; \text{V} \end{array} $
I _{SB1} *3	_	0.8	10	μA	-
V V _{OH}	2.0	_	_	V	I _{OH} = -0.5 mA
V V _{OH}	2.4	_	_	V	I _{OH} = -1 mA
V V _{OH}	V _{cc} - 0	.2—	_	V	I _{OH} = -100 μA
′ V _{oL}	_	_	0.4	V	I _{oL} = 0.5 mA
V V _{OL}	_	_	0.4	V	I _{OL} = 2 mA
			0.2	V	I _{OL} = 100 μA
	I _{LI} I _{LO} I _{LO} I _{LO} I _{LO} I _{CC} I _{CC1} I _{CC2} I _{SB} I _{SB1} ** ² I _{SB1} ** ³ I _{VOH} I _{VOH} I _{VOH} I _{VOL} I _{VOL}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notes: 1. Typical values are at V_{cc} = 2.5 V/3.0 V, Ta = +25°C and not guaranteed.

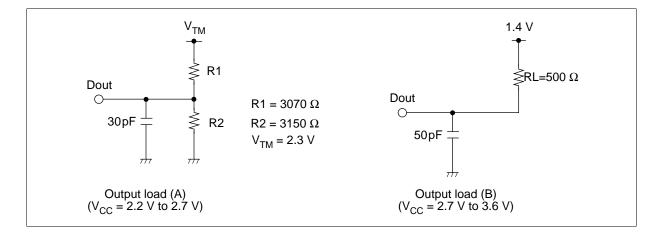
^{2.} This characteristic is guaranteed only for L-version.

^{3.} This characteristic is guaranteed only for L-SL version.

Capacitance (Ta = +25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{I/O} = 0 V	1

Note: 1. This parameter is sampled and not 100% tested.


AC Characteristics (Ta = -20 to +70°C, $V_{CC} = 2.2$ V to 3.6 V, unless otherwise noted.)

Test Conditions

- Input pulse levels: $V_{IL} = 0.4 \text{ V}$, $V_{IH} = 2.0 \text{ V}$ ($V_{CC} = 2.2 \text{ V}$ to 2.7 V) $V_{IL} = 0.4 \text{ V}$, $V_{IH} = 2.2 \text{ V}$ ($V_{CC} = 2.7 \text{ V}$ to 3.6 V)
- Input rise and fall time: 5 ns
- Input timing reference levels: 1.1 V ($V_{CC} = 2.2 \text{ V}$ to 2.7 V)
- Output timing reference levels: 1.1 V ($V_{CC} = 2.2 \text{ V}$ to 2.7 V)
- Input timing reference levels: 1.4 V ($V_{CC} = 2.7 \text{ V}$ to 3.6 V)
- Output timing reference levels: 1.4 V (HM62V16256CBP–5, $V_{CC} = 2.7 \text{ V}$ to 3.6 V)

: $2.0 \text{ V}/0.8 \text{ V} \text{ (HM62V16256CBP-7, V}_{CC} = 2.7 \text{ V to } 3.6 \text{ V)}$

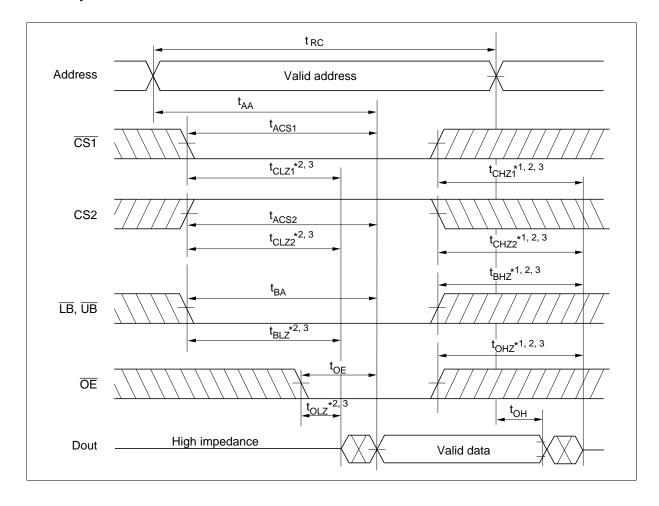
• Output load: See figures (Including scope and jig)

Read Cycle

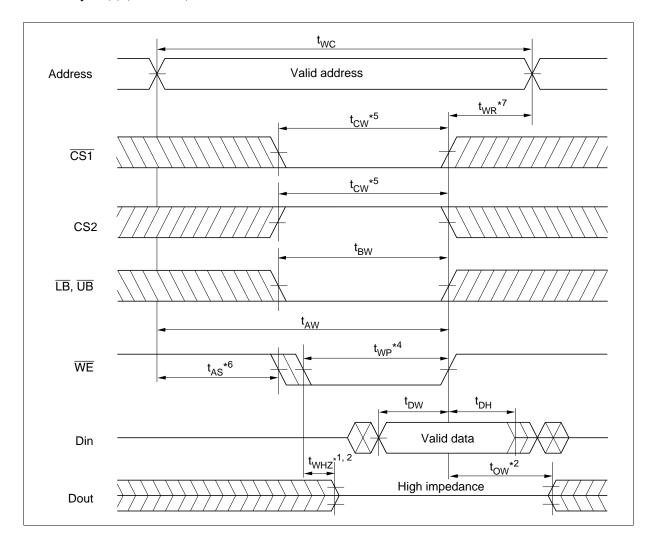
				HM62V16256CBP				
		-5		-7				
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes	
Read cycle time	t _{RC}	55	_	70	_	ns		
Address access time	t _{AA}	_	55	_	70	ns		
Chip select access time	t _{ACS1}	_	55	_	70	ns		
	t _{ACS2}	_	55	_	70	ns		
Output enable to output valid	t _{oe}	_	35	_	40	ns		
Output hold from address change	t _{oh}	10	_	10	_	ns		
LB, UB access time	t _{BA}	_	55	_	70	ns		
Chip select to output in low-Z	t _{CLZ1}	10	_	10	_	ns	2, 3	
	t _{CLZ2}	10	_	10	_	ns	2, 3	
LB, UB enable to low-z	$t_{\scriptscriptstyle BLZ}$	5	_	5	_	ns	2, 3	
Output enable to output in low-Z	t_{OLZ}	5	_	5	_	ns	2, 3	
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	25	ns	1, 2, 3	
	t _{CHZ2}	0	20	0	25	ns	1, 2, 3	
LB, UB disable to high-Z	\mathbf{t}_{BHZ}	0	20	0	25	ns	1, 2, 3	
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1, 2, 3	

Write Cycle

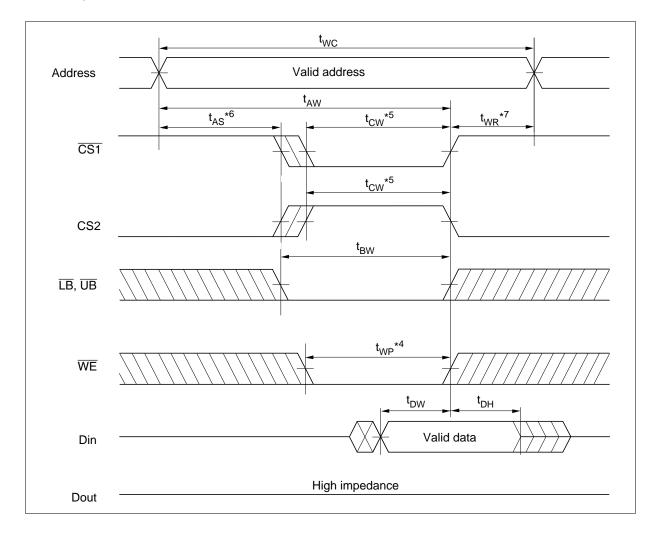
		HIVI62	V162560				
		-5		-7			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	_	70	_	ns	
Address valid to end of write	t _{AW}	50	_	60	_	ns	
Chip selection to end of write	t _{cw}	50	_	60	_	ns	5
Write pulse width	t _{wP}	40	_	50	_	ns	4
LB, UB valid to end of write	t _{BW}	50	_	55	_	ns	
Address setup time	t _{AS}	0	_	0	_	ns	6
Write recovery time	t _{wR}	0	_	0	_	ns	7
Data to write time overlap	t _{DW}	25	_	30	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	ns	
Output active from end of write	t _{ow}	5	_	5	_	ns	2
Output disable to output in High-Z	t _{OHZ}	0	20	0	25	ns	1, 2
Write to output in high-Z	t _{wHZ}	0	20	0	25	ns	1, 2

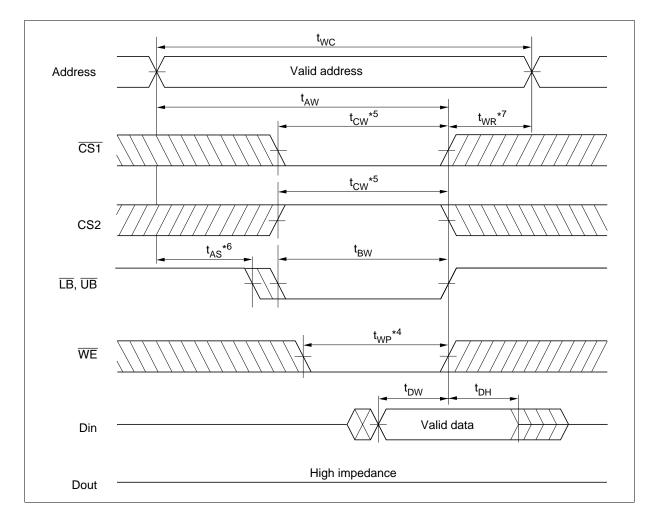

LM62V46256CBD

Notes: 1. t_{CHZ} , t_{OHZ} , t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occures during the overlap of a low $\overline{CS1}$, a high CS2, a low \overline{WE} and a low \overline{LB} or a low \overline{UB} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high, \overline{WE} going low and \overline{LB} going low or \overline{UB} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low, \overline{WE} going high and \overline{LB} going high or \overline{UB} going high. t_{WP} is measured from the beginning of write to the end of write.
- 5. t_{CW} is measured from the later of $\overline{CS1}$ going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- t_{WR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.

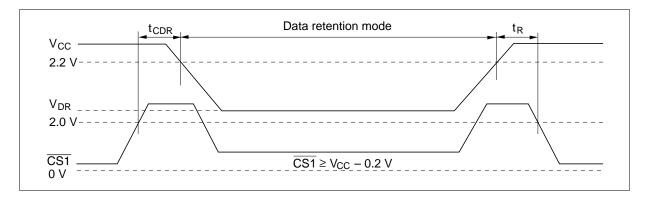
Timing Waveform


Read Cycle

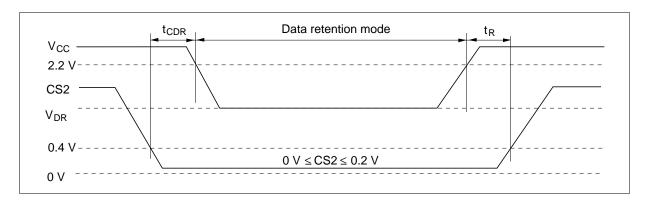

Write Cycle (1) ($\overline{\text{WE}}$ Clock)

Write Cycle (2) ($\overline{\text{CS}}$ Clock, $\overline{\text{OE}} = V_{\text{IH}}$)

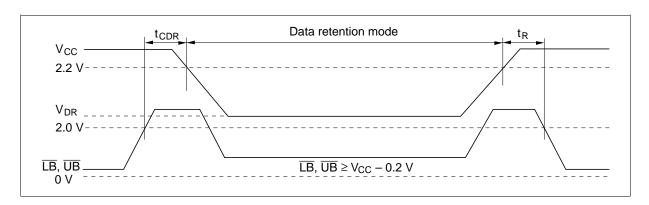
Write Cycle (3) (\overline{LB} , \overline{UB} Clock, $\overline{OE} = V_{IH}$)


Low V_{CC} **Data Retention Characteristics** (Ta = -20 to +70°C)

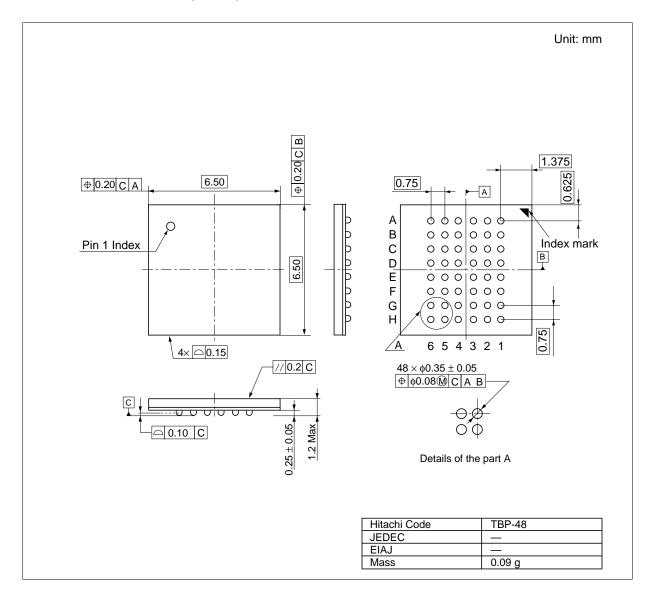
Parameter	Symbol	Min	Typ* ⁴	Max	Unit	Test conditions*3
V _{cc} for data retention	V_{DR}	2.0	_	3.6	V	$\begin{array}{c} \mbox{Vin} \geq \mbox{OV} \\ \mbox{(1)} \ \ \mbox{O} \ \ \mbox{V} \leq \mbox{CS2} \leq \mbox{O.2} \ \mbox{V} \ \mbox{or} \\ \mbox{(2)} \ \ \mbox{CS2} \geq \mbox{V}_{\rm CC} - \mbox{O.2} \ \mbox{V} \ \mbox{or} \\ \mbox{CS1} \geq \mbox{V}_{\rm CC} - \mbox{O.2} \ \mbox{V}, \\ \mbox{CS2} \geq \mbox{V}_{\rm CC} - \mbox{O.2} \ \mbox{V}, \\ \mbox{CS1} \leq \mbox{O.2} \ \mbox{V} \end{array}$
Data retention current	I _{ccdR} *1	_	0.8	20	μА	$\begin{split} &V_{\text{CC}} = 3.0 \text{ V, Vin} \ge 0\text{V} \\ &(1) \ 0 \ \text{V} \le \text{CS2} \le 0.2 \text{ V or} \\ &(2) \ \underline{\text{CS2}} \ge V_{\text{CC}} - 0.2 \text{ V,} \\ &\underline{\text{CS1}} \ge V_{\text{CC}} - 0.2 \text{ V or} \\ &(3) \ \overline{\text{LB}} = \overline{\text{UB}} \ge V_{\text{CC}} - 0.2 \text{ V,} \\ &\underline{\text{CS2}} \ge V_{\text{CC}} - 0.2 \text{ V,} \\ &\underline{\text{CS1}} \le 0.2 \text{ V} \end{split}$
	I _{CCDR} *2	_	8.0	10	μΑ	
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t_{R}	t_{RC}^{*5}	_	_	ns	


Notes: 1. This characteristic is guaranteed only for L-version, 10 μ A max. at Ta = -20 to +40°C.

- 2. This characteristic is guaranteed only for L-SL version, 3 μ A max. at Ta = -20 to +40°C.
- 3. CS2 controls address buffer, \overline{WE} buffer, $\overline{CS1}$ buffer, \overline{OE} buffer, \overline{LB} , \overline{UB} buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , $\overline{CS1}$, \overline{LB} , \overline{UB} , I/O) can be in the high impedance state. If $\overline{CS1}$ controls data retention mode, CS2 must be CS2 \geq V_{CC} 0.2 V or 0 V \leq CS2 \leq 0.2 V. The other input levels (address, \overline{WE} , \overline{OE} , \overline{LB} , \overline{UB} , I/O) can be in the high impedance state.
- 4. Typical values are at V_{cc} = 3.0 V, Ta = +25 °C and not guaranteed.
- 5. t_{RC} = read cycle time.


Low V_{CC} Data Retention Timing Waveform (1) ($\overline{CS1}$ Controlled)

Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)



Low V_{CC} Data Retention Timing Waveform (3) (\overline{LB} , \overline{UB} Controlled)

Package Dimensions

HM62V16256CLBP Series (TBP-48)

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica http://semiconductor.hitachi.com/ Europe Asia http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose.CA 95134

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Tel: <1> (408) 433-1990 Maidenhead Tel: <65>-538-6533/538-8577 Fax: <1> (408) 433-0223 Berkshire SL6 8YA, United Kingdom Fax: <65>-538-6933/538-3877

Tel: <44> (1628) 585000 Fax: <44> (1628) 585200 Hitachi Europe GmbH

Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318

URL: http://www.hitachi.com.sg Hitachi Asia I td

(Taipei Branch Office) 4/F. No. 167. Tun Hwa North Road. Hung-Kuo Building, Taipei (105), Taiwan

Tel: <886>-(2)-2718-3666 Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw

> Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan. Colophon 3.0

Hitachi Asia (Hong Kong) Ltd.

Harbour City, Canton Road Tsim Sha Tsui, Kowloon,

Tel: <852>-(2)-735-9218

Fax: <852>-(2)-730-0281

7/F., North Tower,

Hong Kong

World Finance Centre

Group III (Electronic Components)

URL: http://semiconductor.hitachi.com.hk

HITACHI