8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89670/A Series

MB89673/677A/P677A/PV670A

■ DESCRIPTION

The MB89670/A series has been developed as a line of proprietary 8-bit, single-chip microcontrollers.
In addition to the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ CPU core which can operate at low voltage but at high speed, the microcontrollers contain pheripheral functions such as timers, a serial interface, an A/D converter, a UART, an up/down counter, and an external interrupt.

The MB89670/A series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices.
*: F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

- $\mathrm{F}^{2} \mathrm{MC}$-8L family CPU core
Instruction set optimized for controllers $\left\{\begin{array}{l}\text { Multiplication and division instructions } \\ \text { 16-bit arithmetic operations } \\ \text { Test and branch instructions } \\ \text { Bit manipulation instructions, etc. }\end{array}\right.$
- High-speed processing at low voltage
- Minimum execution time: $0.4 \mu \mathrm{~s} / 3.5 \mathrm{~V}, 0.8 \mu \mathrm{~s} / 2.7 \mathrm{~V}, 2.0 \mu \mathrm{~s} / 2.2 \mathrm{~V}$
- I/O ports: max. 69 channels
(Continued)

PACKAGE

80-pin Plastic QFP

(FPT-80P-M11)
(FPT-80P-M06)

(MQP-80C-P01)

MB89670/A Series

(Continued)

- Timers: 9 channels (MB89670A: 12 channels)

8 -bit PWM timer: 3 channels (MB89670A: 6 channels) (also usable as a reload timer)
16-bit timer/counter
21-bit time-base timer
$8 / 16$-bit timer (8 bits $\times 2$ channels or 16 bits)
$8 / 16$-bit up/down counter timer (8 bits $\times 2$ channels or 16 bits)

- Two serial interfaces

8 -bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various equipment.)
UART: 1 channel (with full-duplex double buffer)

- External interrupts: 8 channels

Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Buzzer output
- 10-bit A/D converter

8-channel input

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)

- Bus interface function Including hold and ready functions

MB89670/A Series

PRODUCT LINEUP

Part number Parameter	MB89673*1	MB89677A	MB89P677A	MB89PV670A
Classification	Mass production products (mask ROM products)		One-time PROM product (for development)	Piggyback/ evaluation product (for development)
ROM size	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$\begin{gathered} 32 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal mask ROM) } \end{gathered}$	$32 \mathrm{~K} \times 8$ bits (internal PROM)	$48 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	384×8 bits	$1 \mathrm{~K} \times 8$ bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $6.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$ to $57.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$			
Ports	Output ports (N-channel open-drain): 14 (12 also serve as peripherals.) Output ports (CMOS): 8 (All also serve as peripherals.) I/O ports (N-channels open-drain): 7 (All also serve as peripherals.) I/O ports (CMOS): 32 (All also serve as peripherals.) Input ports: 8 (All also serve as peripherals.) Total: 69			
Option	Specify when	ering masking	Set with EPROM programmer	Setting not possible
21-bit timebase timer	21 bits ($0.81 \mathrm{~ms}, 3.27 \mathrm{~ms}, 26.21 \mathrm{~ms}, 419 \mathrm{~ms} / 10 \mathrm{MHz}$)			
8/16-bit up/ down counter	8 bits $\times 2$ channels or 16 bits $\times 1$ channelTimer operationUp/down counter operation (successive double mode, quadruple mode)			
16-bit timer/ counter	16-bit timer operation 16 -bit event counter operation (edge selectability)			
8/16-bit timer counter	8 bits $\times 2$ channels or 16 bits $\times 1$ channel Reload timer operation (toggled output capable) Event counter operation			
8-bit PWM timer 1, 8-bit PWM timer 2	8 bits $\times 2$ channels reload timer operation (toggled output capable) 8 bits $\times 2$ channels PWM operation (four fixed frequency) 8 bits $\times 1$ channel PPG operation (variable frequency) Capable of output switching between 2 channels			
8-bit PWM timer 3, 8-bit PWM timer 4, 5, 6	8 -bit reload timer operation (toggled output capable) 8 -bit PWM operation (four fixed frequency) Capable of output switching between 2 channels			
8-bit serial I/O	8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks)			

(Continued)

MB89670/A Series

(Continued)

Part number	MB89673*1	MB89677A	MB89P677A	MB89PV670A
Parameter	Variable data length (7 or 8 bits) Internal baud rate generator Error detection function Intenal full-duplex double buffer NRZ transfer format			
UART	CLK synchrnous/asynchronous data transfer capable			

*1: 8-bit PWM timer 4, 5, and 6 is not provided for the MB89673.
*2: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.
■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89673 MB89677A MB89P677A	MB89PV670A
FPT-80P-M06	\bigcirc	\times
FPT-80P-M11	\bigcirc	\times^{*}
MQP-80C-P01	\times	\bigcirc

\bigcirc : Available \times : Not available
*: Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available 80QF-80QF2-8L-UP

+ (MQP-80C-P01 or FPT-80P-M06) \rightarrow for conversion to FPT-80P-M11
80QF-80QF2-8L-DWN
Note: For more information about each package, see section "■ Package Dimensions."

MB89670/A Series

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89P677A, the program area starts from address 8007H but on the MB89677A and MB89PV670A starts from 8000н.
(On the MB89P677A, addresses 8000 н to 8006 н comprise the option setting area, option settings can be read by reading these addresses. On the MB89677A and MB89PV670A, addresses 8000н to 8006н could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P677A.)
- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV670A, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section "■ Mask Options."
Take particular care on the following point:

- Options are fixed on the MB89PV670A.

■ CORRESPONDENCE BETWEEN THE MB89670/A AND MB89670R/AR SERIES

- The MB89670R/AR series is the reduction version of the MB89670/A series.

For their differences, refer to the MB89670R/AR series data sheet.

MB89670/A series	MB89673	-	MB89677A	MB89P677A	MB89PV670A
MB89670R/AR series	MB89673R	MB89675R	MB89677AR		

MB89670/A Series

PIN ASSIGNMENT

(Top view)

(FPT-80P-M11)

MB89670/A Series

PIN DESCRIPTION

Pin no.		Pin name	$\underset{\text { type }}{\text { Circuit }}$	Function
QFP**	$\begin{gathered} \text { QFP'2 }^{2} \\ \text { MQFP }^{3} \end{gathered}$			
11	13	X0	A	Clock oscillator pins
12	14	X1		
9	11	MOD0	B	Operating mode selection pins Connect directly to Vcc or Vss.
10	12	MOD1		
14	16	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor and a hysteresis input. " L " is output from this pin by an internal reset source. The internal circuit is initialized by the input of " L ".
38 to 31	40 to 33	$\begin{aligned} & \text { P00/AD0 to } \\ & \text { P07/AD7 } \end{aligned}$	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O.
30 to 23	32 to 25	$\begin{aligned} & \text { P10/A08 to } \\ & \text { P17/A15 } \end{aligned}$		General-purpose I/O ports When an external bus is used, these ports function as upper address output pins.
22	24	P20/BUFC	F	General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
21	23	P21/\AK	F	General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR.
20	22	P22/HRQ	D	General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
19	21	P23/RDY	D	General-purpose output port When an external bus is used, this port functions as a ready input.
18	20	P24/CLK	F	General-purpose output port When an external bus is used, this port functions as a clock output.
17	19	$\mathrm{P} 25 / \overline{\mathrm{WR}}$	F	General-purpose output port When an external bus is used, this port functions as a write signal output.
16	18	P26/ $\overline{\mathrm{RD}}$	F	General-purpose output port When an external bus is used, this port functions as a read signal output.
15	17	P27/ALE	F	General-purpose output port When an external bus is used, this port functions as an address latch signal output.

*1: FPT-80P-M11
*2: FPT-80P-M06
*3: MQP-80C-P01

MB89670/A Series

Pin no.		Pin name	Circuittype	Function
QFP ${ }^{11}$	$\begin{gathered} \text { QFP' }^{+2} \\ \text { MQFP } \end{gathered}$			
46	48	P30/PWM20	D	General-purpose I/O port Also serves as the PWM20 output for the 8 -bit PWM timer.
45	47	P31/PWM21	D	General-purpose I/O port Also serves as the PWM21 output for the 8-bit PWM timer.
44	46	P32/UDZ1	E	General-purpose I/O port Also serves as the Z-phase input for the 16 -bit up/down counter/timer.
43	45	P33/UDB1	E	General-purpose I/O port Also serves as the B-phase input for the 16-bit timer/ counter.
42	44	P34/UDA1	E	General-purpose I/O ports Also serves as the A-phase input for the 16-bit up/down counter/timer.
41	43	P35/UDZ2	E	General-purpose I/O port Also serves as the Z-phase input for the 16-bit up/down counter/timer.
40	42	P36/UDB2	E	General-purpose I/O port Also serves as the B-phase input for the 16 -bit up/down counter/timer.
39	41	P37/UDA2	E	General-purpose I/O port Also serves as the A-phase input for the 16-bit up/down counter/timer.
55	57	P40/PWM00	D	General-purpose I/O port Also serves as the PWM00 output for the 8-bit PWM timer.
54	56	P41/PWM01	D	General-purpose I/O port Also serves as the PWM01 output for the 8-bit PWM timer.
52	54	$\begin{aligned} & \text { P42/PWM10/ } \\ & \text { BZ2 } \end{aligned}$	D	General-purpose I/O port Also serves as the PWM10 and the BZ2 output for the 8bit PWM timer.
51	53	P43/PWM11	D	General-purpose I/O port Also serves as the PWM11 output for the 8-bit PWM timer.
50	52	$\mathrm{P} 44 / \mathrm{TCl}$	E	General-purpose I/O port Also serves as the TCl input for the 8/16-bit timer/ counter.
49	51	P45/TCO1	D	General-purpose I/O port Also serves as the TCO1 output for the 8/16-bit timer/ counter.

[^0](Continued)

Pin no.		Pin name	Circuit type	Function
QFP*1	$\begin{gathered} \text { QFP" }{ }^{2} \\ \text { MQFP' } \end{gathered}$			
48	50	P46/TCO2	D	General-purpose I/O port Also serves as the TCO2 output for the 8/16-bit timer/ counter.
47	49	P47/EC	E	General-purpose I/O port Also serves as input for the16-bit timer/counter. The EC input is a hysteresis input type.
74 to 67	76 to 69	P50/AN0 to P57/AN7	1	N -ch open-drain output ports Also serve as the analog input for the A/D converter.
66	68	$\begin{array}{\|l\|} \hline \text { P60/INT0/ } \\ \text { ADST } \end{array}$	J	General-purpose input port The software pull-up resistor is provided. Also serves as an external interrupt input (INTO) and an A/D converter external activation. This port is a hysteresis input type.
65 to 59	67 to 61	P61/INT1 to P67/INT7	J	General-purpose input ports A software pull-up resistor is provided. Also serve as an external interrupt input (INT1 to INT7). These ports are a hysteresis input type.
4	6	P70/BZ1	G	N-ch open-drain I/O port Also serves as a buzzer output.
3	5	P71/UCK	K	N -ch open-drain I/O port Also serves as a UART clock I/O (UCK) switchable to CMOS.
2	4	P72/UO	K	N-ch open-drain I/O port Also serves as a UART data output (UO) switchable to CMOS.
1	3	P73/UI	G	N -ch open-drain I/O port Also serves as a UART data input (UI).
80	2	P74/SCK	K	N-ch open-drain I/O port Also serves as the clock I/O for the serial I/O (SCK) switchable to CMOS.
79	1	P75/SO	K	N -ch open-drain I/O port Also serves as the data output (SO) for the serial I/O switchable to CMOS.
78	80	P76/SI	G	N -ch open-drain I/O port Also serves as the data input (SI) for the serial I/O.
$\begin{aligned} & 8 \text { to } 5 \\ & 57, \\ & 58 \end{aligned}$	$\begin{gathered} 10 \text { to } 7 \\ 59, \\ 60 \end{gathered}$	$\begin{aligned} & \text { P80 to P83 } \\ & \text { P85, } \\ & \text { P84 } \end{aligned}$	H	N-ch open-drain output ports
53	55	Vcc	-	Power supply pin
13, 56	15,58	Vss	-	Power supply (GND) pin
75	77	AVcc	-	A/D converter power supply pin
76	78	AVR	-	A/D converter reference voltage input pin
77	79	AVss	-	A/D converter power supply pin Use this pin at the same voltage as V ss.

*1: FPT-80P-M11
*2: FPT-80P-M06
*3: MQP-80C-P01

MB89670/A Series

- External EPROM pins (MB89PV670A only)

Pin no.	Pin name	I/0	Function
$\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \\ & 86 \\ & 87 \\ & 88 \\ & 89 \\ & 90 \\ & 91 \end{aligned}$	A15 A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
$\begin{aligned} & 93 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	1	Data input pins
96	Vss	O	Power supply (GND) pin
$\begin{gathered} 98 \\ 99 \\ 100 \\ 101 \\ 102 \end{gathered}$	O4 05 06 07 08	I	Data input pins
103	$\overline{\mathrm{CE}}$	O	ROM chip enable pin Outputs "H" during standby.
104	A10	O	Address output pin
105	$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$	0	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & \hline 107 \\ & 108 \\ & 109 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	O	Address output pins
110	A13	O	
111	A14	O	
112	Vcc	O	
$\begin{gathered} 81 \\ 92 \\ 97 \\ 10 \end{gathered}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89670/A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Crystal or ceramic oscillation type - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square-\infty$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS output - CMOS inout - Pull-up resistor optional (except P22 and P23)
E		- CMOS output - CMOS input - The peripheral is a hysteresis input type. - Pull-up resistor optional

(Continued)
(Continued)

Type	Circuit	Remarks
F		- CMOS output
G		- N-ch open-drain output - Hysteresis input - Pull-up resistor optional
H		- N-ch open-drain output
1		- N-ch open-drain output - Analog input
J		- Hysteresis input - With software pull-up resistor
K		- CMOS output - Hysteresis input - Pull-up resistor optional

MB89670/A Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AV cc and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AV cc $=\mathrm{DAVC}=\mathrm{Vcc}$ and $\mathrm{AVss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D and D / A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{cc} ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89670/A Series

PROGRAMMING TO THE EPROM ON THE MB89P677A

The MB89P677A is an OTPROM version of the MB89670/A series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in the EPROM mode is diagrammed below.

MB89670/A Series

3. Programming to the EPROM

In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007н to 7FFFн (note that addresses 8007н to FFFFн while operating as a normal operating mode assign to 0007н to 7FFFH in EPROM mode).
Load option data into addresses 0000 н to 0006 н of the EPROM programmer. (For information about each corresponding option, see "7. Bit Map for PROM Options.")
(3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M11	ROM-80QF2-28DP-8L
FPT-80P-M06	ROM-80QF-28DP-8L2

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Depending on the EPROM programmer, inserting a capacitor of about $0.1 \mu \mathrm{~F}$ between Vpp and Vss or Vcc and Vss can stabilize programming operations.

MB89670/A Series

7. PROM Option Bit Map

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Vacancy	Reset pin	Po	Oscillation stabilization time	
0000H	Readable	Readable	Readable	Readable	$\begin{aligned} & \text { 1: Yes } \\ & 0: \text { No } \end{aligned}$	$\begin{aligned} & \text { 1: Yes } \\ & \text { 0: No } \end{aligned}$	$\begin{aligned} & \text { 00: } 2^{4 / F_{c}} \\ & 10: 2^{17} / F_{c} \end{aligned}$	$\begin{aligned} & 01: 2^{14 / \mathrm{Fc}_{c}} \\ & 11: 2^{18} / \mathrm{Fc} \end{aligned}$
0001H	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0 : Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0 : Yes		
0002H	P37 Pull-up 1: No 0: Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0 : Yes	P31 Pull-up 1: No 0 : Yes	P30 Pull-up 1: No 0: Yes
0003H	P47 Pull-up 1: No 0 : Yes	P46 Pull-up 1: No 0: Yes	P45 Pull-up 1: No 0: Yes	P44 Pull-up 1: No 0: Yes		P42 Pull-up 1: No 0: Yes	P41 Pull-up 1: No 0 : Yes	
0004H	Vacancy Readable							
0005H	Vacancy Readable	Vacancy Readable	Vacancy Readable	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0: Yes	P71 Pull-up 1: No 0 : Yes	P70 Pull-up 1: No 0: Yes
0006H	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	P04 to P07 Pull-up 1: No 0 : Yes	P00 to P03 Pull-up 1: No 0 : Yes		

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

MB89670/A Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at $4000_{\text {н to }}$ FFFFн.
(3) Program to 4000 to FFFFн with the EPROM programmer.

MB89670/A Series

BLOCK DIAGRAM

1. MB89673

2. MB89677A/89P677A/89PV670A

MB89670/A Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89670/A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89670/A series is structured as illustrated below.

MB89670/A Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX):
Extra pointer (EP):
Stack pointer (SP):
A 16-bit register for index modification
A 16-bit pointer for indicating a memory address
A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89670/A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89670/A Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89677A. On the MB89673, there are 16 banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to addresses 0180 to 01 FFн using an external circuit. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

Register Bank Configuration

MB89670/A Series

I/O MAP

-: Unused, X: Undefined, M: Set using the mask option
(Continued)

Address	Read/write	Register name	Register description	Initial value	
20н	(R/W)	ADC1	A/D converter control register 1	0000	0000 B
21H	(R/W)	ADC2	A/D converter control register 2	X000	0001 B
22н	(R/W)	ADCH	A/D converter data register H	----	--XXB
23н	(R/W)	ADCL	A/D converter data register L	XXXX	XXXXB
24	(R/W)	T2CR	Timer 2 control register	X000	XXX0B
25 н	(R/W)	T1CR	Timer 1 control register	X000	XXX0B
26н	(R/W)	T2DR	Timer 2 data register	XXXX	XXXXB
27 H	(R/W)	T1DR	Timer 1 data register	XXXX	XXXXB
28н	(R/W)	CNTR1	PWM timer control register 1	0000	0000 B
29н	(R/W)	CNTR2	PWM timer control register 2	0000	0000 B
2 Ан	(R/W)	CNTR3	PWM timer control register 3	XXX0	0000 B
2Вн	(W)	COMR2	PWM timer compare register 2	XXXX	XXXXB
2 CH	(W)	COMR1	PWM timer compare register 1	XXXX	XXXXB
2D ${ }_{\text {H}}$	Vacancy				
2Ен	Vacancy				
$2 \mathrm{~F}_{\mathrm{H}}$	Vacancy				
30н	$\begin{aligned} & (\mathrm{R}) \\ & (\mathrm{W}) \end{aligned}$	UDCR1 RCR1	Up/down counter register 1 Reload compare register1	$\begin{aligned} & X X X X \\ & X X X X \end{aligned}$	$\begin{aligned} & X \times X X B \\ & X X X X B \end{aligned}$
31н	$\begin{aligned} & \text { (R) } \\ & (\mathrm{W}) \end{aligned}$	UDCR2 RCR2	Up/down counter register 2 Reload compare register2	$\begin{aligned} & X X X X \\ & X X X X \end{aligned}$	$\begin{aligned} & X \times X X B \\ & X X X X B \end{aligned}$
32н	(R/W)	CCRA1	Counter control register A1	0000	0000 B
33н	(R/W)	CCRA2	Counter control register A2	0000	0000 B
34	(R/W)	CCRB1	Counter control register B1	0000	0000 B
35	(R/W)	CCRB2	Counter control register B2	0000	0000 B
36н	(R/W)	CSR1	Counter status register 1	0000	0000 B
37	(R/W)	CSR2	Counter status register 2	0000	0000 B
38н	(R/W)	EIC1	External interrupt 1 control register 1	0000	0000 B
39н	(R/W)	EIC2	External interrupt 1 control register 2	0000	0000 B
ЗАн	(R/W)	EIE2	External interrupt 2 enable register	0000	0000 B
3Вн	(R/W)	EIF2	External interrupt 2 flag register	X X X X	0000 B
$3 \mathrm{CH}_{\boldsymbol{H}}$	Vacancy				
3D	Vacancy				
ЗЕн	Vacancy				
3F\%	Vacancy				

-: Unused, X: Undefined, M: Set using the mask option

MB89670/A Series

(Continued)

Address	Read/write	Register name	Register description	Initial value	
40H	(R/W)	USMR	UART mode register	0000	0000 B
41н	(R/W)	USCR	UART control register	0000	0000 B
42н	(R/W)	USTR	UART status register	0000	$1 \times X X B$
43н	$\begin{aligned} & \text { (R) } \\ & (\mathrm{W}) \end{aligned}$	$\begin{aligned} & \text { RXDR } \\ & \text { TXDR } \end{aligned}$	UART receiver data register UART transmitter data register	$\begin{aligned} & \mathrm{XXXX} \\ & \mathrm{XXXX} \end{aligned}$	$\begin{aligned} & X X X X B \\ & X X X X B \end{aligned}$
44	Vacancy				
45 н	(R/W)	RRDR	Baud rate generator reload data register	XXXX	XXXXB
46 +	Vacancy				
47 ${ }^{\text {}}$	Vacancy				
48 ${ }^{*}$	(R/W)	CNTR \#4	PWM timer control register \#4	0×00	0000 B
49 ${ }^{*}$	(R/W)	COMP \#4	PWM timer compare register \#4	XXXX	XXXXB
4А ${ }^{*}$	(R/W)	CNTR \#5	PWM timer control register \#5	0×00	0000 B
$4 \mathrm{Br}{ }^{*}$	(R/W)	COMP \#5	PWM timer compare register \#5	XXXX	XXXXB
$4 \mathrm{CH}^{*}$	(R/W)	CNTR \#6	PWM timer control register \#6	0×00	0000 B
4D ${ }^{*}$	(R/W)	COMP \#6	PWM timer compare register \#6	X XXX	XXXXB
$\begin{aligned} & \text { 4E to } \\ & 7 \text { A }_{H} \end{aligned}$	Vacancy				
7Вн	Vacancy				
7 CH	(W)	ILR1	Interrupt level setting register 1	1111	1111 B
7D	(W)	ILR2	Interrupt level setting register 2	1111	1111 B
7Ен	(W)	ILR3	Interrupt level setting register 3	1111	1111 B
7 FH	Vacancy				

-: Unused, X: Undefined, M: Set using the mask option
*: For the MB89673, these are vacancies.
Note: Do not use vacancies.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	*
	AV cc	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
A/D converter reference input voltage	AVR	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	AVR must not exceed $\mathrm{AV} \mathrm{cc}+0.3 \mathrm{~V}$.
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo1	Vss-0.3	$\mathrm{Vcc}+0.3$	V	Except P80 to P85
	Vo2	Vss-0.3	Vss +7.0	V	P80 to P85
"L" level maximum output current	IoL	-	20	mA	
"L" level average output current	Iolav1	-	4	mA	Average value (operating current \times operating rate)
	Iolav2	-	8	mA	Average value (operating current \times operating rate) P80 to P85
"L" level total maximum output current	ऽloL	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-20	mA	
" H " level average output current	Iohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	ऽ ${ }_{\text {loн }}$	-	-50	mA	
" H " level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	Po	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: Use $A V c c$ and $V_{c c}$ set at the same voltage.
Take care so that AVR does not exceed $A V c c+0.3 \mathrm{~V}$ and AV cc does not exceed V_{cc}, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	2.2*	6.0	V	Normal operation assurance range MB89673/677A
		2.7*	6.0	V	Normal operation assurance range MB89PV670A/P677A
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	

* : These values vary with the operating frequency, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an minimum execution time of $4 / \mathrm{Fc}$.
Since the operating voltage range is dependent on the minimum execution time, see minimum execution time if the operating speed is switched using a gear.

MB89670/A Series

3. DC Characteristics

(Continued)

MB89670/A Series

(Continued)
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current ${ }^{11}$	Icc 1	V cc	$\begin{aligned} & \hline \mathrm{Fc}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \text { tinst }^{2}=0.4 \mu \mathrm{~s} \end{aligned}$	-	12	20	mA	
	Icc2		$\begin{aligned} & \mathrm{Fc}=10 \mathrm{MHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \mathrm{thnst}^{2}=6.4 \mu \mathrm{~s} \end{aligned}$	-	1	2	mA	MB89673 MB89677A MB89PV670A
				-	1.5	2.5	mA	MB89P677A
	Iccs 1			-	3	7	mA	
	Iccs2			-	1	1.5	mA	
	Icch		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { Stop mode } \end{aligned}$	-	-	1	mA	
	IA	AVcc	$\mathrm{Fc}=10 \mathrm{MHz}$ When A/D converter starts	-	6	8	mA	
	Іан		$\begin{aligned} & \mathrm{F}_{\mathrm{C}}=10 \mathrm{MHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ When A/D converter stops	-	-	1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than AV cc, AVss, Vcc, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The measurement conditions of the power supply current are as follows: the external clock and open output pins.
*2: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

MB89670/A Series

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST } " L " ~ p u l s e ~ w i d t h ~}$	tzzzH	-	48 thcyl	-	ns	

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	t_{R}	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89670/A Series

(3) Clock Timing

($\mathrm{A} \mathrm{V}_{\text {ss }}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	10	MHz	
Clock cycle time	txcyl	X0, X1		100	1000	ns	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0		20	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	X0		-	10	ns	External clock

X0 and X1 Timing and Conditions

X0

Clock Conditions

When a crystal
or

When an external clock is used

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}_{\mathrm{c}}, 8 / \mathrm{Fc}_{\mathrm{c}}, 16 / \mathrm{Fc}_{\mathrm{c}}, 64 / \mathrm{Fc}_{\mathrm{c}}$	$\mu \mathrm{s}$	$(4 / \mathrm{Fc})$ tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{c}}=10 \mathrm{MHz}$

MB89670/A Series

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR series)

*: Fujitsu Acoustic Resonator $\mathrm{C} 1=\mathrm{C} 2=20 \mathrm{pF} \pm 8 \mathrm{pF}$ (built-in FAR)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency $\left(\mathbf{T}_{\mathrm{A}}=+\mathbf{2 5} \mathbf{C}\right)$	Temperature characteristics of FAR frequency $\left(\mathbf{T}_{\mathrm{A}}=\mathbf{- 2 0} \mathbf{C}\right.$ to $\left.\mathbf{+ 6 0} \mathbf{0}^{\circ} \mathbf{C}\right)$
FAR-C4CB-08000-M02	8.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$
FAR-C4CB-10000-M02	10.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$

Inquiry: FUJITSU LIMITED

Sample Application of Ceramic Resonator

Resonator manufacturer	Resonator	Frequency	C1 (pF)	C2 (pF)	R (k $\Omega)$
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	-
	KBR-8.0MWS	8.0 MHz	33	33	-
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	-

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited

European Sales Headquarters: TEL 44-1252-770000

- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

MB89670/A Series

(6) Clock Output Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	tovc	CLK	-	1/2 tinst*	-	$\mu \mathrm{s}$	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl	CLK		$1 / 4$ trint -0.07	1/4 tinst	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

(7) Bus Read Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{RD}}$ \downarrow time	taviL	$\begin{aligned} & \overline{\mathrm{RD}, \mathrm{~A} 15 \text { to } 08,} \\ & \mathrm{AD} 7 \text { to } 0 \end{aligned}$	-	1/4 tinst ${ }^{*}$ - 0.06	-	$\mu \mathrm{S}$	
$\overline{\mathrm{RD}}$ pulse width	trimh	$\overline{\mathrm{RD}}$		1/2 tinst * 0.02	-	$\mu \mathrm{S}$	
Valid address \rightarrow Data read time	tavov	AD7 to 0, A15 to 08		-	1/2 tinst *	$\mu \mathrm{s}$	Wait
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Data read time	trLov	$\overline{\mathrm{R}}, \mathrm{AD7}$ to 0		-	$1 / 2$ trist ${ }^{*}-0.08$	$\mu \mathrm{s}$	No wait
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhox	AD7 to 0, $\overline{\mathrm{RD}}$		0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trHLH	$\overline{\text { RD, ALE }}$		1/4 tinst ${ }^{*}$ - 0.04	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Address loss time	trhax	$\overline{\mathrm{RD}}, \mathrm{A} 15$ to 08		1/4 tinst ${ }^{*}$ - 0.04	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trlch	RD, CLK		1/4 tinst ${ }^{*}$ - 0.04	-	$\mu \mathrm{s}$	
CLK $\downarrow \rightarrow \overline{\mathrm{RD}} \uparrow$ time	tcler	$\overline{\mathrm{RD}}$, CLK		0	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ BUFC \downarrow time	trlbl	$\overline{\mathrm{RD}}, \mathrm{BUFC}$		-5	-	ns	
BUFC $\uparrow \rightarrow$ Valid address time	tbhav	A15 to 08, AD7 to 0, BUFC		5	-	ns	

*: For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

(8) Bus Write Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address \rightarrow ALE \downarrow time	$\mathrm{tavLL}^{\text {l }}$	$\begin{aligned} & \text { AD7 to 0, ALE, } \\ & \text { A15 to } 08 \end{aligned}$	-	$1 / 4$ tinst $^{*}{ }^{2}-0.064$	-	$\mu \mathrm{s}$	
ALE \downarrow time \rightarrow Address loss time	tLlax	AD7 to 0, ALE, A15 to 08		$5^{* 1}$	-	ns	
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	$\overline{\mathrm{WR}}$, ALE		$1 / 4$ tinst $^{*}{ }^{2}-0.06$	-	$\mu \mathrm{s}$	
$\overline{\text { WR }}$ pulse width	twlwh	$\overline{\mathrm{WR}}$		$1 / 2$ tinst ${ }^{2}-0.02$	-	$\mu \mathrm{s}$	
Writing data $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovwL	AD7 to 0, $\overline{W R}$		$1 / 2$ tinst ${ }^{2}-0.06$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Address loss time	twhax	WR, A15 to 08		$1 / 4$ tinst $^{*}{ }^{2}-0.04$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ Data hold time	twhDx	AD7 to 0, $\overline{\mathrm{WR}}$		$1 / 4$ tinst $^{*}{ }^{2}-0.04$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twHLH	$\overline{\text { WR, ALE }}$		$1 / 4$ tinst $^{*}-0.04$	-	$\mu \mathrm{s}$	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twlch	$\overline{\text { WR, CLK }}$		$1 / 4$ tinst ${ }^{2}-0.04$	-	$\mu \mathrm{s}$	
CLK $\downarrow \rightarrow \overline{\mathrm{WR}} \uparrow$ time	tclwh	$\overline{\text { WR, CLK }}$		0	-	ns	
ALE pulse width	tLHLL	ALE		$1 / 4$ tinst $^{*}{ }^{2}-0.035$	-	$\mu \mathrm{s}$	
ALE $\downarrow \rightarrow$ CLK \uparrow time	tLLCH	ALE, CLK		$1 / 4$ tinst $^{*}{ }^{2}-0.03$	-	$\mu \mathrm{s}$	

*1: These characteristics are also applicable to the bus read timing.
*2: For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

(9) Ready Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY valid \rightarrow CLK \uparrow time	trvch	RDY, CLK	-	60	-	ns	*
CLK $\uparrow \rightarrow$ RDY invalid time	tchyx	RDY, CLK		0	-	ns	*

*:These characteristics are also applicable to the read cycle.

Note: The bus cycle is also extended in the read cycle in the same manner.

MB89670/A Series

(10) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsoov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst******	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısH	SCK		1 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst******	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

(11) Peripheral Input Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıİH1	TCl	-	1 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	tIHLL1	TCI		1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıIIH2	EC, INT0 to INT7		2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	tIHIL2	EC, INT0 to INT7		2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 3	tıİн3	ADST	A/D mode	64 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 3	tıHIL3	ADST		64 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 3	tıІІн3	ADST	Sense mode	64 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 3	tıHIL3	ADST		64 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

(12) Up/down Counter Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
AIN input "1" pulse width	taHL	$\begin{aligned} & \text { P36, P37, } \\ & \text { P33, P34, } \end{aligned}$	-	2 tins**	-	$\mu \mathrm{s}$	
AIN input "0" pulse width	tall			2 tins**	-	$\mu \mathrm{s}$	
BIN input "1" pulse width	tвнL			2 tins**	-	$\mu \mathrm{s}$	
BIN input "0" pulse width	tbil			2 tinst*	-	$\mu \mathrm{s}$	
AIN $\uparrow \rightarrow \mathrm{BIN} \uparrow$ time	taubu			1 tinst*	-	$\mu \mathrm{s}$	
BIN $\uparrow \rightarrow$ AIN \downarrow time	tbuad			1 tinst*	-	$\mu \mathrm{s}$	
AIN $\downarrow \rightarrow$ BIN \downarrow time	tabbo			1 tins**	-	$\mu \mathrm{s}$	
$\mathrm{BIN} \downarrow \rightarrow \mathrm{AIN} \uparrow$ time	tbdau			1 tinst*	-	$\mu \mathrm{s}$	
BIN $\uparrow \rightarrow$ AIN \uparrow time	tbuau			1 tins**	-	$\mu \mathrm{s}$	
AIN $\uparrow \rightarrow$ BIN \downarrow time	taubd			1 tins**	-	$\mu \mathrm{s}$	
BIN $\downarrow \rightarrow$ AIN \downarrow time	tbdad			1 tins**	-	$\mu \mathrm{s}$	
AIN $\downarrow \rightarrow \mathrm{BIN} \uparrow$ time	tadbu			1 tins**	-	$\mu \mathrm{s}$	
ZIN input "1" pulse width	tzHL	P32, P35		1 tins**	-	$\mu \mathrm{s}$	
ZIN input "0" pulse width	tzul			1 tins*	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

MB89670/A Series

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	-	10	bit	
Linearity error			-	-	± 2.0	LSB	$\begin{aligned} & \mathrm{AV} \mathrm{cc}= \\ & \mathrm{AVR}=\mathrm{V} \mathrm{cc} \end{aligned}$
Differential linearity error			-	-	± 1.5	LSB	
Total error			-	-	± 3.0	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss - 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	Vfst	ANO to AN7	AVR - 3.5 LSB	AVR-1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity	-	-	-	-	4	LSB	
A/D mode conversion time			-	-	13.2	$\mu \mathrm{S}$	At $10-\mathrm{MHz}$ oscillation
Analog port input current	Iain	AN0 to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-	AN0 to AN7	0	-	AVR	V	
Reference voltage		AVR	0	-	AVcc	V	
Reference voltage supply current	If	AVR	-	200	-	$\mu \mathrm{A}$	$\mathrm{AVR}=5.0 \mathrm{~V}$

Precautions: • The smaller | AVR - AVss |, the greater the error would become relatively.

- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. $10 \mathrm{k} \Omega$ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time $=6 \mu \mathrm{~s}$ at 10 MHz oscillation).

An analog input equivalent circuit is shown below.
If $\mathrm{R}>10 \mathrm{k} \Omega$, it is recommended
to connect an external capacitor
of approx. $0.1 \mu \mathrm{~F}$.
Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the sampling period after A / D activation, resulting in inaccurate A / D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.
It is recommended to keep the input impedance to the analog pin not exceed $10 \mathrm{k} \Omega$. If it exceeds $10 \mathrm{k} \Omega$, it is recommended to connect a capacitor of approx. $0.1 \mu \mathrm{~F}$ for the analog input pin.
Except for the sampling period after A/D activation, the input leakage current of the analog input pin is less than $10 \mu \mathrm{~A}$.

MB89670/A Series

(1) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 11111110") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error

The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.

(Continued)

MB89670/A Series

(Continued)

MB89670/A Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

$\mathrm{V}_{\text {ннs }}$: Threshold when input voltage in hysteresis characteristics is set to " H " level
$\mathrm{V}_{\text {ILs: }}$ Threshold when input voltage in hysteresis characteristics is set to " L " level

MB89670/A Series

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

MB89670/A Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89670/A Series

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) $)$
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. $($ Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
$\sim:$	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: \quad Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89670/A Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ +--	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+\text { off })\end{array}\right.$	AL	-	-	++--	06
MOV A,ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (})\end{array}\right)$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ +--	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) $\leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow(e x t+1)$	AL	AH	dH	+	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{l}+1)$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3		$($ (A) $) \leftarrow(\mathrm{T})$	-	-	-	----	82
MOVW @A,T	4		$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	(AX) $\leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2		$(\mathrm{A}) \leftarrow$ (PS)	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	---	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	(A) $\leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	_	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89670/A Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow(A)+(R i)+C$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	$++++$	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) +off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ (IX) +off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	$++++$	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	- - - -	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	- - - -	C2
INCW A	3	1	$(A) \leftarrow(A)+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	$+++-$	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	- - - -	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(A) \leftarrow(A)-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	- - - -	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	$++\mathrm{R}-$	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	$++++$	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d8}$	-	-	-	$++\mathrm{R}-$	64
AND A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ (dir)	-	-	-	+ + R -	65

(Continued)

MB89670/A Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	--- -	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZ V C	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		--	41			
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1		-	-	-	----	90

MB89670/A Series

INSTRUCTION MAP

L H	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NOP	SWAP	RET	RETI			MOV A, ext		CLRI	SET	$\begin{aligned} & \mathrm{B} \\ & \mathrm{ir}: 0 \end{aligned}$	$\begin{array}{l\|} \hline \mathrm{ir}: 0, \mathrm{rel} \end{array}$	INCW	w_{A}	@A	$\begin{aligned} & \mathrm{w} \\ & , \mathrm{PC} \end{aligned}$
1	A	${ }^{\text {DIVU }}$ A	JMP addr16	CALL addr16	$\begin{array}{\|r\|} \hline \text { PUSHW } \\ \text { IX } \end{array}$	$\begin{array}{\|r\|} \hline \text { POPW } \\ \text { IX } \end{array}$	MOV ext,A		CLRC	SETC	$\begin{array}{\|c\|} \hline \text { CLRB } \\ \text { dir: } 1 \end{array}$	BBC dir: $1, \mathrm{re}$	INCW SP	$\begin{array}{\|c\|} \hline \mathrm{DECW} \\ \mathrm{SP} \end{array}$	$\begin{gathered} \hline \mathrm{IOVW} \\ \mathrm{SP}, \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline \mathrm{W} \\ \mathrm{l}, \mathrm{SP} \end{gathered}$
2	$\left\lvert\, \begin{aligned} & \text { ROLC } \\ & \text { A } \end{aligned}\right.$	CMP ${ }^{\text {a }}$	$\begin{array}{\|c\|} A D D C \\ A \end{array}$	$\mathrm{SUBC}_{\mathrm{A}}$	$\underset{A, T}{ }$	XOR ${ }^{\text {a }}$	AND ${ }^{\text {a }}$	OR ${ }^{\text {a }}$	MOV @A,T	MOV A,@A	$\begin{gathered} \text { CLRB } \\ \text { dir: } 2 \end{gathered}$	BBC dir: 2,rel	$\stackrel{I N C W}{I X}$	$\left\lvert\, \begin{gathered} \text { DECW } \\ \text { IX } \\ \hline \end{gathered}\right.$	$\begin{gathered} \mathrm{JVW} \\ \mathrm{IX}, \mathrm{~A} \end{gathered}$	/w
3	RORC A	$\underset{\mathrm{A}}{\mathrm{CMPW}}$	$\begin{array}{r} \text { ADDCW } \\ \mathrm{A} \end{array}$	$\begin{array}{r} \text { SUBCW } \\ \text { A } \end{array}$	$\underset{\text { A, T }}{\mathrm{XCHW}}$	XORW A	ANDW A	${ }^{\text {ORW }}$ A	MOVW @A,T	$\begin{gathered} \text { MOVW } \\ \text { A,@A } \end{gathered}$	$\begin{gathered} \mathrm{CLRB} \\ \text { dir: } 3 \end{gathered}$	BBC dir: 3,rel	$\mathrm{NCW}_{\mathrm{EP}}$	$\begin{gathered} \mathrm{DECW} \\ \mathrm{EP} \end{gathered}$	$\begin{gathered} \mathrm{OVW} \\ \mathrm{EP}, \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{VVW} \\ \mathrm{~A}, \mathrm{EP} \end{gathered}$
4	MOV A,\#d8	CMP A,\#d8	$\begin{array}{\|r\|} \hline \text { ADDC } \\ \text { A, \#d8 } \end{array}$	$\begin{gathered} \text { SUBC } \\ \text { A,\#d8 } \end{gathered}$		XOR A,\#d8	AND A,\#d8	OR A,\#d8	DAA	DAS	$\text { ir: } 4$	$\begin{aligned} & 3 \mathrm{BC} \\ & \text { dir: } 4, \mathrm{rel} \end{aligned}$	MOVW A,ext	$\left\lvert\, \begin{array}{\|c\|} \hline \text { MOVW } \\ \text { ext,A } \end{array}\right.$	$\begin{aligned} & \text { 10VW } \\ & \text { A,\#d16 } \end{aligned}$	${ }_{\mathrm{N}, \mathrm{PC}}$
5	A,dir	CMP A,dir	ADDC A,dir	$\underset{\text { A,dir }}{\text { SUBC }}$	dir,A	XOR A,dir	$\underset{\text { A,dir }}{\text { AND }}$	A,dir	$\underset{\text { dir,\#d8 }}{\mathrm{MOV}}$	$\begin{gathered} \text { CMP } \\ \text { dir,\#d8 } \end{gathered}$	$\text { Bir: } 5$	BBC dir: 5 ,rel	MOVW A,dir	$\left\lvert\, \begin{gathered} \mathrm{MOVW} \\ \text { dir,A } \end{gathered}\right.$	MOVW SP,\#d16	$\begin{gathered} \text { CHW } \\ \text { A,SP } \end{gathered}$
6	$\mathrm{A}, @ \mid \mathrm{X}+\mathrm{d}$	$A, @ \mid X+d$	$\mathrm{A}, @ \mid \mathrm{X}+\mathrm{d}$	SUBC A,@IX +d	+d,A	XOR A,@1X +d	AND A,@IX+d	OR A,@1X+d	MOV @1x $+d . \neq 18$	CMP @X $+\mathrm{d}, \mathrm{td} \mathrm{d}$	$\begin{aligned} & \mathrm{LRB} \\ & \text { dir: } 6 \end{aligned}$	BBC dir: 6, rel	MOVW A,@IX +d	MOVW @IX+d,A	$\begin{aligned} & \text { AOVW } \\ & \text { IX,\#d16 } \end{aligned}$	AW, IX
7			$\begin{array}{\|l\|} \hline \text { ADDC } \\ \hline \text { A,@EP } \\ \hline \end{array}$	$\underset{\mathrm{A}, @ \mathrm{EP}}{\mathrm{SUBC}}$	@EP,A	XOR A, @EP	AND A,@EP	OR A,@EP	$\begin{aligned} & \text { MOV } \\ & \text { @EP: }+d 88 \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \text { @EP.\#d8 } \end{aligned}$	$\begin{aligned} & \text { LRB } \\ & \text { dir: } 7 \end{aligned}$	BBC dir: 7,rel	MOVW A,@EP	$\begin{aligned} & \text { MOVW } \\ & \text { @EP,A } \end{aligned}$	MOVW EP,\#d16	$\begin{gathered} \mathrm{CHW} \\ \mathrm{~A}, \mathrm{EP} \end{gathered}$
8	A,RO	CMP A,R0	ADDC A,RO	$\begin{array}{\|c\|} \hline \text { SUBC }, R O \\ \hline \end{array}$	$\underset{\mathrm{RO}, \mathrm{~A}}{\mathrm{MOV}}$	$\underset{\mathrm{A}, \mathrm{RO}}{\mathrm{XOR}}$	$\begin{array}{\|c} \mathrm{AND} \\ \mathrm{~A}, \mathrm{RO} \end{array}$	OR A,RO	$\begin{gathered} \mathrm{MOV} \\ \mathrm{RO}, \# \mathrm{~d} 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 0, \# \mathrm{~d} 8 \end{array}$	$\begin{gathered} \text { ETB } \\ \text { dir: } 0 \end{gathered}$	BBS dir: 0,re	$\operatorname{linc}_{\text {RO }}$	$\mathrm{DEC}_{\mathrm{RO}}$	$\begin{gathered} \text { ALLV } \\ \\ \hline 0 \end{gathered}$	
9	A,R1	CMP $\mathrm{A}, \mathrm{R} 1$	ADDC A,R1	SUBC A,R1	MOV $\mathrm{R} 1, \mathrm{~A}$	XOR A,R1	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	$\begin{aligned} & \text { ETB } \\ & \text { dir: } 1 \end{aligned}$	BBS dir: 1,rel	INC R1	$\mathrm{DEC}_{\mathrm{R} 1}$	$\begin{gathered} \text { ALLV } \\ \# 1 \end{gathered}$	BC
A	A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,\#d8	CMP R2,\#d8	$\begin{aligned} & \text { SETB } \\ & \text { dir: } 2 \end{aligned}$	BBS dir: 2,rel	R2	DEC	$\begin{gathered} \text { ALLV } \\ \# 2 \end{gathered}$	BP
B	$\underset{\mathrm{A}, \mathrm{R} 3}{ }$	CMP A,R3	ADDC A,R3	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \hline \end{array}$	$\underset{\text { R3, A }}{\mathrm{MOV}}$	XOR A,R3	AND A,R3	OR A,R3	MOV R3,\#d8	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 3, \# \mathrm{~d} 8 \\ \hline \end{array}$	$\begin{gathered} \text { SETB } \\ \text { dir: } 3 \end{gathered}$	BBS dir: 3,rel	INC R3	DEC	$\begin{gathered} \text { ALLV } \\ \# 3 \end{gathered}$	BN
C	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{MOV}}$	CMP A,R4	ADDC A,R4	SUBC A,R4	$\underset{\mathrm{R} 4, \mathrm{~A}}{\mathrm{MOV}}$	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{XOR}}$	$\underset{\text { A, R4 }}{\mathrm{AND}}$	OR A,R4	MOV R4,\#d8	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 4, \# \mathrm{~d} 8 \end{array}$	SETB dir: 4	BBS dir: 4, rel	INC R4	$\text { DEC } \mathrm{R4}$	$\begin{gathered} \text { ALLV } \\ \# 4 \end{gathered}$	
D	$\begin{array}{\|c\|} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{R} 5 \\ \hline \end{array}$	$\underset{\text { A,R5 }}{\text { CMP }}$	ADDC A,R5	SUBC A,R5	$\begin{array}{\|c\|} \hline \text { MOV } \\ \text { R5,A } \end{array}$	$\underset{\mathrm{A}, \mathrm{R5}}{\mathrm{XOR}}$	$\underset{\text { AN, R5 }}{ }$	$\mathrm{OR}_{\mathrm{A}, \mathrm{R} 5}$	MOV R5,\#d8	$\begin{gathered} \mathrm{CMP} \\ \mathrm{R} 5, \# \mathrm{~d} 8 \end{gathered}$	$\begin{gathered} \text { SETB } \\ \text { dir: } 5 \end{gathered}$	BBS dir: 5,rel	R5	$\mathrm{DEC}_{\mathrm{R5}}$	$\underset{\# 5}{\mathrm{CALLV}}$	BZ
E	A,R6	CMP A,R6	ADDC A,R6	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \hline \end{array}$	MOV R6,A	XOR A,R6	AND A,R6	OR A,R6	MOV R6,\#d8		$\begin{gathered} \text { SETB } \\ \text { dir: } 6 \end{gathered}$	BBS dir: 6,rel	R6	$\text { DEC } \quad \text { R6 }$	$\begin{array}{r} \text { ALLV } \\ \# 6 \end{array}$	rel
F	$\underset{\mathrm{A}, \mathrm{R} 7}{\mathrm{MOV}}$	CMP A,R7	ADDC A,R7	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \text { A,R7 } \end{array}$	$\underset{\mathrm{RT}, \mathrm{~A}}{\mathrm{MOV}}$	XOR A,R7	AND A,R7	OR A,R7	MOV R7,\#d8	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{R} 7, \# \mathrm{~d} 8 \end{array}$	SETB dir: 7	BBS dir: 7,rel	INC R7	DEC	$\begin{gathered} \text { ALLV } \\ \quad \# 7 \end{gathered}$	BLT

MASK OPTIONS

No.	Part number	$\begin{aligned} & \hline \text { MB89673 } \\ & \text { MB89677A } \end{aligned}$	MB89P677A	MB89PV670A
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1		Selectable by pin	Selectable by pin	Fixed to without pull-up resistor
2	Pull-up resistors P00 to P03	Selectable by pin	Selectable in 4-pin unit	
3	Pull-up resistors P04 to P07	Selectable by pin	Selectable in 4-pin unit	
4	Power-on reset With power-on reset Without power-on reset	Selectable	Selectable	Fixed to with power-on reset
5	Oscillation stabilization time selection (at 10 MHz) Approx. $2^{18} / \mathrm{Fc}$ (about 26.2 ms) Approx. $2^{17 / F c}$ (about 13.1 ms) Approx. $2^{14 /} \mathrm{Fc}$ (about 1.6 ms) Approx. ${ }^{4} / \mathrm{Fc}$ (about 0 ms) Fc: Clock frequency	Selectable	Selectable	Fixed to Approx. 218/Fc (Approx. 26.2 ms)
6	Reset pin output With reset output Without reset outpu	Selectable	Selectable	Fixed to with reset output

- ORDERING INFORMATION

Part number	Package	Remarks
MB89673PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89677APF	MB89P677APF	80-pin Plastic QFP (FPT-80P-M11)
MB89673PFM		
MB89677APFM		
MB89P677APFM	80-pin Ceramic MQFP (MQP-80C-P01)	
MB89P670ACF		

MB89670/A Series

PACKAGE DIMENSIONS

80-pin Plastic QFP
(FPT-80P-M11)

© 1994 FUJTSU LIMTED F80016S-1C-2
Dimensions in mm (inches)

MB89670/A Series

80-pin Plastic QFP
 (FPT-80P-M06)

© 1994 FUJTSU LIMTED F80010S.SC-2
Dimensions in mm (inches)

MB89670/A Series

80-pin Ceramic MQFP
 (MQP-80C-P01)

© 1994 FUUTSU LIITTED M80001SC--4.2

MB89670/A Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9602

© FUJITSU LIMITED Printed in Japan

[^0]: *1: FPT-80P-M11
 *2: FPT-80P-M06
 *3: MQP-80C-P01

