Signetics

8X350 2K-Bit TTL Bipolar RAM (256×8)

Military Bipolar Memory Products

Product Specification

DESCRIPTION

The 8X350 bipolar RAM is designed principally as a working storage element in an 8X305 based system. Internal circuitry is provided for direct use in 8X305 applications. When used with the 8X305, the RAM address and data busses are tied together and connected to the IV bus of the system.

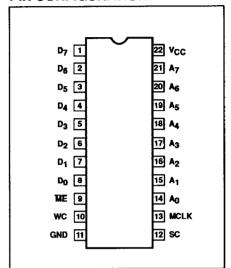
The data inputs and outputs share a common I/O bus with 3-State outputs.

ORDERING INFORMATION

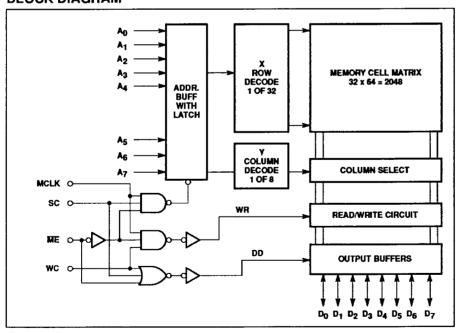
DESCRIPTION	ORDER CODE
22-pin Ceramic DIP 400mil-wide	8X350/BWA

FEATURES

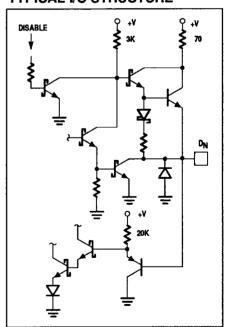
- On-chip address latches
- Schottky clamped
- One master enable input
- Directly Interfaces with the 8X305 bipolar microprocessor with no external logic
- May be used on left or right bank


1

- Common I/O:
 - Inputs: PNP bufferedOutputs: 3-State


APPLICATIONS

• 8X305 working storage


PIN CONFIGURATION

BLOCK DIAGRAM

TYPICAL I/O STRUCTURE

8X350

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC} Supply voltage		+7	V _{DC}	
Vı	Input voltage	+5.5		
V _o V _o	Output voltage High Output voltage Off-state	+5.5 +5.5	V _{DC} V _{DC}	
T _A Operating temperature range		-55 to +125	°C	
T _{STG}	Storage temperature range	-65 to +150	°C	

DC ELECTRICAL CHARACTERISTICS -55°C $\leq T_A \leq +125$ °C, 4.75V $\leq V_{CC} \leq 5.25$ V²

SYMBOL	PARAMETER	TEST CONDITIONS ¹	LIMITS			UNIT
			Min	Тур	Max	
Input voitag	e					
V _{IL}	Low				0.8	V
V_{IH}	High		2.0	1		V
V _{IK}	Clamp ³	$V_{CC} = 4.75V$, $I_i = -18mA$			-1.2	٧
Output volt	age					
		V _{CC} = 4.75V				
VoL	Low ⁴	I _{OL} = 9.6mA			0.5	٧
V _{OH}	High ⁵	l _{OH} = -2mA	2.4			V
input curre	nt					
		V _{CC} = 5.25V				
l _E	Low	V _I = 0.45V			-150	μΑ
l _{iH}	High	V _I = 5.5V			50	μΑ
Output cur	ent					
		V _{CC} = 5.25V				
loz	Hi-Z state	\overline{ME} = High, $V_0 = 5.5V$			60	μΑ
		\overline{ME} = High, V_O = 0.5V		1	-100	μA
los	Short circuit ^{3, 6, 13}	SC = WC, ME = Low		i	1	,
-00		$V_{CC} = 5.25V$, $V_{O} = 0V$, High stored	-15	ĺ	-85	mA
Supply cur	·ent ⁷	•				
Icc		V _{CC} = 5.25V			200	mA
Capacitano	e ¹³					
		ME = High, V _{CC} = 5.0V				
CIN	Input	$V_1 = 2.0V$		5	10	pF
C _{OUT}	Output	$V_0 = 2.0V$	- 1	8	13	рF

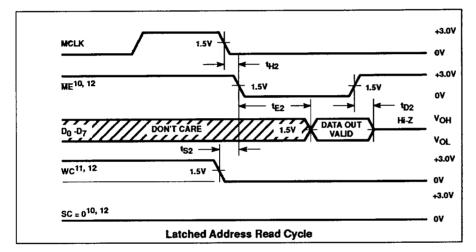
2K-Bit TTL Bipolar RAM (256 × 8)

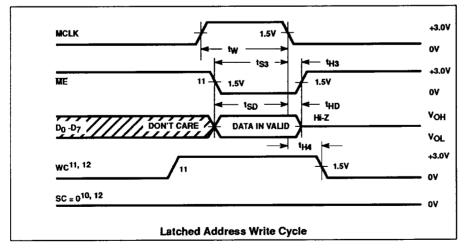
TRUTH TABLE

MODE	ME	sc	wc	MCLK	BUSSED DATA/ ADDRESS LINES
Hold address Disable data out	1	x	×	х	Hi-Z data out
Input new address	0	1	0	1	Address Hi-Z
Hold address Disable data out	0	1	0	0	Hi-Z data out
Hold address Write data	0	0	1	1	Data in
Hold address Disable data out	0	0	1	o	Hi-Z data out
Hold address Read data	0	0	0	×	Data out
Undefined state ¹²	0	1	1	1	-
Hold address ¹² Disable data out	0	1	1	0	Hi-Z data out

X = Don't care

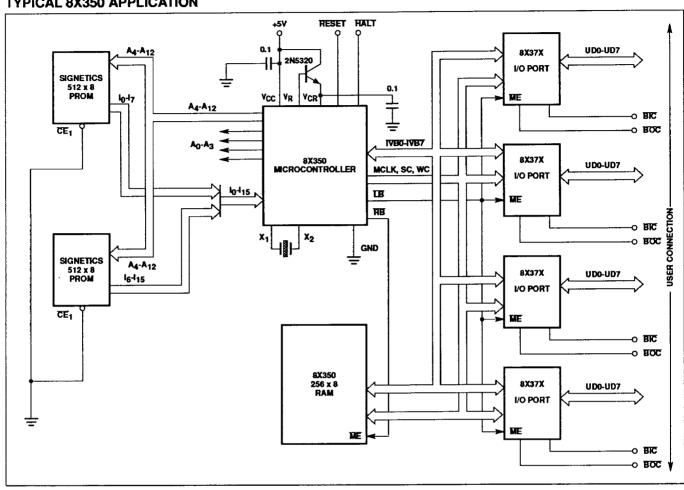
AC ELECTRICAL CHARACTERISTICS -55°C ≤ T_A ≤ +125°C, 4.75V ≤ V_{CC} ≤ 5.25V²

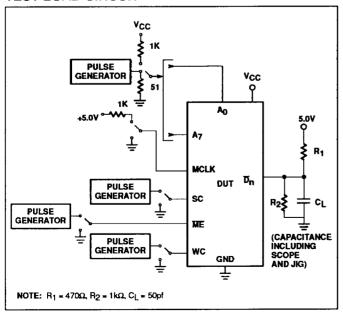

SYMBOL	L PARAMETER TO FI	FROM	LIMITS			UNIT	
				Min	Тур	Max	
t _{E1} t _{E2}	Output enable time Output enable time	Data out Data out	SC- ME-			40 40	ns ns
t _{D1}	Output disable time Output disable time	Data out Data out	SC+ ME+			40 40	ns ns
t _W	Master clock pulse width ⁸			50			ns
t _{SA} t _{HA}	Setup time Hold time	MCLK- Address	Address MCLK-	40 10			ns ns
t _{SD}	Setup time Hold time	MCLK- Data in	Data in MCLK-	45 10			ns ns
t _{S3} t _{H3}	Setup time Hold time	MCLK- ME+	ME- MCLK-	50 5			ns ns
t _{S1} t _{H2}	Setup time Hold time	MCLK- ME-	ME- MCLK-	40 5			ns ns
t _{S2} t _{H1} t _{H4}	Setup time Hold time Hold time	ME- SC- WC-	SC-, WC- MCLK- MCLK-	5 5 5			ns ns ns


NOTES:

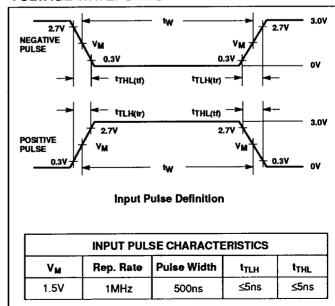
- 1. All voltage values are with respect to network ground terminal.
- 2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a one-minute warm-up. This testing will be guaranteed by testing at -40°C using instant on testing.
- 3. Test each pin one at a time.
- 4. Measured with a logic Low stored. Output sink current is supplied through a resistor to V_{CC} .
- 5. Measured with a logic High stored.
- 6. Duration of the short circuit should not exceed 1 second.
- 7. I_{CC} is measured with the Write enable and Memory enable inputs grounded, all other inputs \geq 4.0V and the output open.
- 8. Minimum required to guarantee a Write into the slowest bit.
- 9. Applied to the 8X305 based system with the data and address pins tied to the IV Bus.
- 10. SC + ME = 1 to avoid bus conflict.
- 11. WC + ME = 1 to avoid bus conflict.
- 12. The SC and WC outputs from the 8X305 are never at 1 simultaneously.
- 13. Guaranteed, but not tested.

TIMING DIAGRAM





MEMO	RY TIMING DEFINITIONS
t _{S1}	Required delay between beginning of Master Enable Low and falling edge of Master Clock.
tsa	Required delay between beginning of valid address and falling edge of Master Clock.
te i	Delay between beginning of Select Command Low and beginning of valid data output on the IV Bus.
t _{E2}	Delay between when Master En- able becomes Low and beginning of valid data output on the IV Bus.
t _{HA}	Required delay between falling edge of Master Clock and end of valid Address.
t _{D1}	Delay between when Select Command becomes High and end of valid data output on the IV Bus.
t _{D2}	Delay between when Master En- able becomes High and end of val- id data output on the IV Bus.
t H1	Required delay between falling edge of Master Clock and when Select Command becomes Low.
[‡] H2	Required delay between falling edge of Master Clock and when Master Enable becomes Low.
t _{S2}	Required delay between when Select Command or Write Command becomes Low and when Master Enable becomes Low.
t _W	Minimum width of the Master Clock pulse.
tso	Required delay between beginning of valid data input on the IV Bus and falling edge of Master Clock.
t _{S3}	Required delay between when Master Enable becomes Low and falling edge of Master Clock.
[‡] HD	Required delay between beginning of valid data input on the IV Bus.
1 нз	Required delay between falling edge of Master Clock and when Master Enable becomes High.
t _{H4}	Required delay between falling edge of Master Clock and when Write Command becomes Low.


TYPICAL 8X350 APPLICATION

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

8X350

DEFINITIONS				
Data Sheet Identification	Product Status	Definition		
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.		
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.		
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.		

Signetics reserves the right to make changes without notice in the products, including circuits, standard cells, and/or software, described or contained herein, in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics Products for use in such applications do so at their own risk, and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

6

Signetics Company 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-227-1817 Ext. 900 Signetics registers eligible circuits under the Semiconductor Chip Protection Act. © 1992 Signetics Company All rights reserved. Printed in U.S.A.