M66256FP

5120×8-Bit Line Memory (FIFO)
REJ03F0250-0200
Rev. 2.00
Sep 14, 2007

Description

The M66256FP is a high-speed line memory with a FIFO (First In First Out) structure of 5120-word $\times 8$-bit configuration which uses high-performance silicon gate CMOS process technology.

It has separate clock, enable and reset signals for write and read, and is most suitable as a buffer memory between devices with different data processing throughput.

Features

- Memory configuration: 5120 words $\times 8$ bits (dynamic memory)
- High-speed cycle: 25 ns (Min)
- High-speed access: 18 ns (Max)
- Output hold: 3 ns (Min)
- Fully independent, asynchronous write and read operations
- Variable length delay bit
- Output: 3 states

Application

Digital photocopiers, high-speed facsimile, laser beam printers.

Block Diagram

Pin Arrangement

M66256FP

Outline: 24P2U-A

Absolute Maximum Ratings

($\mathrm{Ta}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC}	-0.5 to +7.0	V	A value based on
GND pin				
Input voltage	V_{I}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Power dissipation	Pd	440	mW	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5	5.5	V
Supply voltage	GND	-	0	-	V
Operating ambient temperature	Topr	0	-	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Function

When write enable input $\overline{\mathrm{WE}}$ is " L ", the contents of data inputs D_{0} to D_{7} are written into memory in synchronization with rise edge of write clock input WCK. At this time, the write address counter is also incremented simultaneously.

The write function given below are also performed in synchronization with rise edge of WCK.
When $\overline{\mathrm{WE}}$ is " H ", a write operation to memory is inhibited and the write address counter is stopped.
When write reset input $\overline{\mathrm{WRES}}$ is " L ", the write address counter is initialized.
When read enable input $\overline{R E}$ is " L ", the contents of memory are output to data outputs Q_{0} to Q_{7} in synchronization with rise edge of read clock input RCK. At this time, the read address counter is also incremented simultaneously.

The read functions given below are also performed in synchronization with rise edge of RCK.
When $\overline{\mathrm{RE}}$ is " H ", a read operation from memory is inhibited and the read address counter is stopped. The outputs are in the high impedance state.

When read reset input $\overline{\operatorname{RRES}}$ is "L", the read address counter is initialized.

Switching Characteristics

$\left(\mathrm{Ta}=0\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right)$

Item	Symbol	Min	Typ	Max	Unit
Access time	t_{AC}	-	-	18	ns
Output hold time	t_{OH}	3	-	-	ns
Output enable time	toEN	3	-	18	ns
Output disable time	todis	3	-	18	ns

Timing Conditions

($\mathrm{Ta}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted)

Item	Symbol	Min	Typ	Max	Unit
Write clock (WCK) cycle	$\mathrm{t}_{\text {wck }}$	25	-	-	ns
Write clock (WCK) "H" pulse width	twck	11	-	-	ns
Write clock (WCK) "L" pulse width	twCKL	11	-	-	ns
Read clock (RCK) cycle	trck	25	-	-	ns
Read clock (RCK) "H" pulse width	$\mathrm{t}_{\text {RCKH }}$	11	-	-	ns
Read clock (RCK) "L" pulse width	$\mathrm{t}_{\text {RCKL }}$	11	-	-	ns
Input data setup time to WCK	t_{DS}	7	-	-	ns
Input data hold time to WCK	t_{DH}	3	-	-	ns
Reset setup time to WCK or RCK	$\mathrm{t}_{\text {RESS }}$	7	-	-	ns
Reset hold time to WCK or RCK	$t_{\text {RESH }}$	3	-	-	ns
Reset nonselect setup time to WCK or RCK	$\mathrm{t}_{\text {nRess }}$	7	-	-	ns
Reset nonselect hold time to WCK or RCK	$\mathrm{t}_{\text {NRESH }}$	3	-	-	ns
$\overline{\text { WE }}$ setup time to WCK	twes	7	-	-	ns
$\overline{\text { WE }}$ hold time to WCK	$t_{\text {WEH }}$	3	-	-	ns
$\overline{\text { WE }}$ nonselect setup time to WCK	$\mathrm{t}_{\text {NWES }}$	7	-	-	ns
$\overline{\text { WE }}$ nonselect hold time to WCK	$\mathrm{t}_{\text {NWEH }}$	3	-	-	ns
$\overline{\text { RE }}$ setup time to RCK	$\mathrm{t}_{\text {RES }}$	7	-	-	ns
$\overline{\mathrm{RE}}$ hold time to RCK	$\mathrm{t}_{\text {REH }}$	3	-	-	ns
$\overline{\mathrm{RE}}$ nonselect setup time to RCK	$\mathrm{t}_{\text {NRES }}$	7	-	-	ns
$\overline{\mathrm{RE}}$ nonselect hold time to RCK	$t_{\text {NREH }}$	3	-	-	ns
Input pulse rise/fall time	tr, tf	-	-	20	ns
Data hold time*	t_{H}	-	-	20	ms

Notes: Perform reset operation after turning on power supply.

* For 1 -line access, the following should be satisfied:
$\overline{\mathrm{WE}}$ "H" level period $\leq 20 \mathrm{~ms}-5120 \mathrm{t}_{\text {wck }}$ - $\overline{\text { WRES }}$ "L" level period
$\overline{R E}$ "H" level period $\leq 20 \mathrm{~ms}-5120 \mathrm{t}_{\mathrm{Rck}}$ - $\overline{\mathrm{RRES}}$ "L" level period

Test Circuit

Input pulse level: $\quad 0$ to 3 V
Input pulse rise/fall time: 3 ns
Decision voltage input: 1.3 V
Decision voltage output: 1.3 V (However, $\mathrm{t}_{\mathrm{ODIS}(\mathrm{LZ})}$ is 10% of output amplitude and $\mathrm{t}_{\mathrm{ODIS}(\mathrm{HZ})}$ is 90% of that for decision)

The load capacitance C_{L} includes the floating capacitance of connection and the input capacitance of probe.

Parameter	SW1	SW2
todis (LZ)	Closed	Open
todis $(H Z)$	Open	Closed
toEn $(Z L)$	Closed	Open
toEn $(Z H)$	Open	Closed

$t_{\text {odis }} /$ toen Test Condition

Operating Timing

Write Cycle

Write Reset Cycle

Matters that Needs Attention when WCK Stops

Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of $n+1$ cycle. The writing operation is complete at the falling edge after $n+1$ cycle.

To stop reading write data at n cycle, enter WCK before the rising edge after $\mathrm{n}+1$ cycle.
When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

Read Cycle

Read Reset Cycle

Variable Length Delay Bits

1-line (5120 Bits) Delay

A write input data is written into memory at the second rise edge of WCK in the cycle, and a read output data is output from memory at the first rise edge of RCK in the cycle, so that 1-line delay can be made easily.

N-bit Delay Bit

(Making a reset at a cycle corresponding to delay length)

N-bit Delay 2

(Sliding $\overline{\text { WRES }}$ and $\overline{\text { RRES }}$ at a cycle corresponding to delay length)

N-bit Delay 3

(Disabling $\overline{\mathrm{RE}}$ at a cycle corresponding to delay length)
(

Shortest Read of Data "n" Written in Cycle n

(Cycle $\mathrm{n}-1$ on read side should be started after end of cycle $\mathrm{n}+1$ on write side)
When the start of cycle $n-1$ on read side is earlier than the end of cycle $n+1$ on write side, output Qn of cycle n becomes invalid.

In the figure shown below, the read of cycle $n-1$ is invalid.

Longest Read of Data "n" Written in Cycle n: 1-line Delay

(Cycle $\mathrm{n}\langle 1\rangle *$ on read side should be started when cycle $\mathrm{n}\langle 2\rangle *$ on write is started)
Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1>* and the start of writing side n cycle <2>* overlap each other.

Note: <0>*, <1>* and <2>* indicates a line value.

Application Example

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction

Package Dimensions

24P2U-A

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
SSOP24-P-375-0.80	-	0.4	Cu Alloy

(1)

Plastic 24pin 375mil SSOP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	2.65
A1	0.1	0.2	0.3
A2	-	2.3	-
b	0.3	0.35	0.45
c	0.23	0.25	0.3
D	10.2	10.3	10.4
E	7.4	7.5	7.6
e	-	0.8	-
HE	10.0	10.3	10.6
L	0.5	0.7	0.9
L 1	-	1.4	-
Z	-	0.75	-
Z 1	-	-	0.9
y	-	-	0.1
θ	0°	-	8°
b 2	-	0.5	-
e 1	-	9.53	-
I 2	1.27	-	-

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6--2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
7 . With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

