

General Information

The GD16523 multiplexes sixteen data inputs into a single data output, the bit rates of the inputs are selectable (see table below).

The data inputs are forward clocked by the differential input (DCLKP / DCLKN).

The GD16523 tolerates up to 1.7 $\rm UI_{PP}$ (155 MHz) jitter on the input data and forward clock.

A double PLL system combined with an elastic buffer ensures low output jitter. Each PLL has a separate PCMOS lock-detect output.

The VCXO reference clock input is differential and the frequency is selectable 78 MHz or 155 MHz.

Data inputs are differential LVPECL inputs. 2.5 GHz clock and data outputs are differential CML with internal 50 Ω terminations.

The GD16523 requires only one supply voltage of +3.3 V and consumes less than 1 W.

The GD16523 is available in a 100 pin TQFP package (14×14 mm) with heat slug on bottom surface.

BRS1	BRS0	Input Bit Rate (IBR)	Output Bit Rate (OBR)
0	0	9.0 - 10.1 Mbit/s	143 - 163 Mbit/s
0	1	36 - 40 Mbit/s	575 - 650 Mbit/s
1	0	72 - 81 Mbit/s	1150 - 1300 Mbit/s
1	1	143 - 163 Mbit/s	2300 - 2600 Mbit/s

2.5 Gbit/s 16:1 Multiplexer GD16523

Preliminary

Features

- 2.5 Gbit/s 16:1 Multiplexer.
- Forward clocked input data.
- Differential reference clock input.
- 2.5 GHz clock output.
- LVTTL lock detect outputs.
- Single power supply: +3.3 V.
- Power consumption: less than 1 W.
- Available in a 100 pin TQFP package (14 × 14 mm) with exposed heat slug on bottom surface.

Functional Details

The GD16523 multiplexes the sixteen data inputs (DIP/N0-15) into a single data output (DOUT) with DIP/N0 as the first bit to be output and DIP/N15 as the last. The data inputs are differential LVPECL type and the output is differential CML, driving 10 mA in a 50 Ω load connected to VCC. Furthermore the input data is forward clocked by the DCLK input.

To reduce noise on the output to a minimum a double PLL system has been implemented. The first PLL in addition to a passive loop filter requires an external crystal VCO (VCXO). The centre frequency of the VCXI input which is driven by the external VCXO can be selected to be in either range 143 - 163 MHz or 72 -81 MHz by the XSEL pin. The second PLL requires only a passive external loop filter typically consisting of a resistor and a capacitor.

The noise performance on the output of the chip depends on three noise generating sources, the forward clock (DCLK), the external VCO (VCXO) and the internal VCO, see Figure 1. The output noise is a combination of theese three curves. First the noise follows the DCLK curve until the loop-bandwidth of LPF1 then the noise follows the curve of VCXO until the loop-bandwidth of LPF2, and finally it follows the noise of the internal VCO, see Figure 2.

Figure 1. Noise sources contributing to the output noise. Normalized to same signal power and carrier frequency.

Figure 2. Spectrum of output clock, with optimized LBW2.

Above the PLL1 loop-filter frequency the noise performance is determined by the VCXO therefore the PLL1 loop-filter frequency should be set as low as possible. At the same time the the jitter on the forward clock integrated at frequencies above the PLL1 loop-filter frequency may not exceed 1.7 UI_{PP} (155 MHz). The optimum PLL1 loop bandwidth is therefore the frequency above which the integrated noise is just below 1.7 UI_{PP} (155 MHz).

The optimum loop bandwidth of PLL2 is the frequency where the VCO curve crosses the VCXO curve, see Figure 1.

A PCMOS lock detect output pin is available for each PLL, indicating if the corresponding PLL is in lock. To enable this function a 5 - 10 nF capacitor should be connected to each of the NLDC pins. This capacitor filters the NLDET signal generated internally by XORing the two signals going to the PFD and putting this through a charge pump to the NLDC pin. This filtering enables the NLOCK pin to go low when the corresponding PLL is in lock and high when out of lock.

A high level on the CSEL input bypasses the PLL1 so that the write signal to the elastic buffer goes directly to the PFD2. It also bypasses the divider between the Clock Generator and the PFD2. Note that changing the bit rate in this mode changes the loop-bandwidth of the PPL2.

The auxillary output SLBOP/SLBON is a second data output to accommodate near-end loop back. To save power in normal operation and reduce noise in the receiver the output can be turned off by setting LSEL low.

The two bit rate select signals BRS1 and BRS0 select the bit rate of the chip.

BRS1	BRS0	DIP/N015	DOUTP/N
1	1	155 Mbit/s	2.5 Gbit/s
1	0	77 Mbit/s	1.25 Gbit/s
0	1	38 Mbit/s	622 Mbit/s
0	0	9.7 Mbit/s	155 Mbit/s

Application Details

PLL Loop Filters

The loop filters can be made as shown in Figure 3. The values in Figure 3 are the same as used in the production test sets. For optimal jitter performance the values of LPF1 should be adjusted according to the jitter on the input data and the values for LPF2 should be adjusted according to the jitter on the VCXO.

Figure 3. Loop Filters

For noise and jitter reasons it is important that the capacitor (C2) is connected to VCCA close to the VCTL pin.

Biasing the Data Inputs

All the data inputs are biased internally on the chip with the resistive network as shown in Figure 4.

The data inputs can be used both differential and single-ended without any external pull-ups/downs and can also be AC-coupled.

The VBB input may be shorted to the VBBS output and de-copled with at least one external capacitor on either pin 23 or 61.

Figure 4. Data Inputs

Mnemonic:	Pin numbers:	Pin Type:	Description:
DIP0 DIN0 DIP1 DIN1 DIP2 DIN2 DIP3 DIN3 DIP4 DIN4 DIP5 DIN5 DIP6 DIN6 DIP7 DIN7 DIP8 DIN8 DIP9 DIN9 DIP10 DIN10 DIP11 DIN11 DIP12 DIN12 DIP13 DIN13 DIP14 DIN14 DIP15 DIN15	26, 27 28, 29 30, 31 32, 33 34, 35 36, 37 39, 40 41, 42 43, 44 45, 46 47, 48 49, 50 53, 54 55, 56 57, 58 59, 60	LVPECL IN	Differential data inputs multiplexed to the serial output starting with DIP0, followed by DIP1, DIP2DIP15. Pre-biased to VBB.
DCLKP, DCLKN	63, 64	LVPECL IN	Differential clock input. These pins are used to forward clock the data inputs.
VCXIP, VCXIN	88, 89	LVPECL IN	Differential VCXO clock input for PLL1.
VCTL	96	ANL IN	Internal VCO frequency control input.
CSEL	71	LVTTL IN	PLL1 bypass select signal. Low PLL1 is active. High PLL1 is by- passed. Unconnected is same as Low.
LSEL	72	LVTTL IN	Loop select. When LSEL is low SLBOP/N output buffer is powered down, when LSEL is high it is powered up. Unconnected is same as Low.
XSEL	73	LVTTL IN	Select input for reference clock frequency. Low selects 77 MHz; high selects 155 MHz. Unconnected is same as High.
BRS0, BRS1	68, 69	LVTTL IN	Bit rate select. Unconnected selects 1,1. BRS1 BRS0 DIP0DIP15 DOUTP/N 1 1 155.52 Mbit/s 2.488 Gbit/s 1 0 77.76 Mbit/s 1.244 Gbit/s 0 1 38.88 Mbit/s 622 Mbit/s 0 0 9.72 Mbit/s 155 Mbit/s
DOUTP, DOUTN	9, 10	CML OUT	Multiplexed data output. On-chip terminated, refer to Figure 6.
SLBOP, SLBON	3, 4	CML OUT	Near-end loop back output. On-chip terminated, refer to Figure 6.
SLTCK	91	LVTTL IN	Clock source select input. Low selects internal VCO; high selects TCK input as clock source. Unconnected is same as Low.
ТСК	92	LVTTL IN	Test clock input. This pin is used as clock source instead of the internal VCO when the SLTCK input pin is high.
CKOP, CKON	18, 19	CML OUT	Clock output in phase with the multiplexed data output. On-chip terminated, refer to Figure 6.
CHAP1	84	ANL OUT	Charge-pump 1 output. Sinks current when VCXO is leading. Sources current when VCXO is lagging, use positive transfer VCXO.
CHAP2	93	ANL OUT	Charge-pump 2 output. Sources current when internal VCO is leading. Sinks current when internal VCO is lagging. Internal VCO is negative transfer.
VBB	23, 61	ANL IN	Reference voltage input for differential data inputs.
VBBS	22	ANL OUT	Reference voltage output for differential data inputs.
NLOCK1	77	PCMOS OUT	PLL1 lock detect output. High when PLL1 is out of lock. Low when PLL1 is in lock.
NLOCK2	78	PCMOS OUT	PLL2 lock detect output. High when PLL2 is out of lock. Low when PLL2 is in lock.
NLDC1	80	ANL IN/OUT	A capacitor should be connected to this pin to set the time con- stant for the NLOCK1 output.

Mnemonic:	Pin numbers:	Pin Type:	Description:
NLDC2	82	ANL IN/OUT	A capacitor should be connected to this pin to set the time con- stant for the NLOCK2 output.
VEE	12, 25, 38, 51, 62, 65, 67, 74, 75, 81, 87, 90	PWR	0 V Power for core and PECL I/O.
VEEA	95, 97, 98	PWR	0 V Power for VCO.
VEEO	13, 14	PWR	0 V Power for high-speed outputs.
VCC	1, 24, 52, 66, 70, 76, 79, 83, 85, 86	PWR	+3.3 V Power for core and PECL I/O.
VCCA	94, 99, 100	PWR	+3.3 V Power for VCO.
VCCO	6, 7, 15, 16, 21	PWR	+3.3 V Power for high-speed outputs.
NC	2, 5, 8, 11, 17, 20		
Heat sink	Package	e bottom	Internally connected to VEE.

Package Pinout

Figure 5. Package Pinout. Top View.

Maximum Ratings

These are the limits beyond which the component may be damaged. All voltages in the table are referred to V_{EE} . All currents in the table are defined positive out of the pin.

Symbol:	Characteristic:	Conditions:	MIN.:	TYP.:	MAX.:	UNIT:
V _{cc}	Power supply		-0.5		6	V
I _o CML	CML output current		-15		15	mA
V	Applied voltage (all inputs)		-0.5		V _{cc} +0.5	V
Vo	Applied voltage (all outputs)		-0.5		6.0	V
V _{IO} ESD,CML	Static Discharge Voltage	Note 1	500			V
I, LVPECL	LVPECL input current		-1		1	mA
I _O PCMOS	PCMOS output source current		-250		250	μA
I _O PCMOS	PCMOS output sink current		-250		250	μA
I _O CHAP, NLDC	Charge pump output current		-250		250	μA
To	Operating temperature	Case	-40		+110	°C
Ts	Storage temperature		-65		+150	°C

Note 1: Human body model (100 pF, 1500 Ω) MIL 883 std.

DC Characteristics

 T_{CASE} = -40 °C to +85 °C. Appropriate heat sink may be required. Device is DC tested in the temperature range 0 °C to 85 °C. Specifications from -40 °C to 0 °C are guaranteed by design and evaluated during the engineering test. V_{CC} = 2.97 V to 3.6 V.

All voltages in the table are referred to V_{EE} .

All input signal and power currents in the table are defined positive into the pin. All output signal currents are defined positive out of the pin.

Symbol:	Characteristic:	Conditions:	MIN.:	TYP.:	MAX.:	UNIT:
V _{cc}	Supply voltage		+2.97	+3.3	+3.6	V
Icc	Supply current				277	mA
P _{DISS}	Power dissipation	Note 1			1000	mW
V _{IH} LVPECL	LVPECL-input HI voltage		V _{cc} -1.17		V _{cc} -0.87	V
V _{IL} LVPECL	LVPECL-input LO voltage		V _{cc} -2.01		V _{cc} -1.47	V
I _{IH} LVPECL	LVPECL-input current	V_{IH} MAX to V_{IL} MIN	-200		+100	μA
V _I LVTTL	LVTTL-input HI voltage		2.0		V _{cc}	V
V _{IL} LVTTL	LVTTL-input LO voltage		0.0		0.8	V
I _{IH} LVTTL	LVTTL-input HI current				800	μA
I _{IL} LVTTL	LVTTL-input LO current		-1000			μA
IVCTL	VCTL leakage current	$V_{EE} < V_{VCTL} < V_{CC} - 0.25$	-30			μA
V _{OH} CML	CML-output voltage swing	Note 2	400	500	800	mV
Z _{OUT} CML	CML-output impedance to V_{cc}		35	50	65	Ω
V _{OH} PCMOS	PCMOS-output HI voltage	Note 3		V _{cc} -300		mV
V _{oL} PCMOS	PCMOS-output LO voltage	Note 3		V _{EE} +300		mV
I _{OH} CHAP,NLDC	Charge pump output source current			100		μA
I _{OL} CHAP,NLDC	Charge pump output sink current			-100		μA
V _{VBBS}	Reference output voltage		V _{cc} -1.4		V _{cc} -1.2	V
I _{VBBS}	Reference output current		0.1		3.0	mA
V _{VBB}	Input data reference voltage		V _{cc} -1.50		V _{cc} -1.1	V

Note 1: This includes externally dissipated heat in 50 Ω termination loads connected to the CML-outputs.

Note 2: With 50 Ω load impendance connected.

Note 3: The PCMOS output is based on GIGA's Charge Pump output cell.

Figure 6. CML Output Circuit. All capacitors (except 0.1 μ F) are parasitic capacitances.

AC Characteristics

 T_{CASE} = -40 °C to +85 °C. Appropriate heat sink may be required. Device is DC tested in the temperature range 0 °C to 85 °C. Specifications from -40 °C to 0 °C are guaranteed by design and evaluated during the engineering test. $V_{\rm CC}$ = 2.97 V to 3.6 V.

Symbol:	Characteristic:	Conditions:	MIN.:	TYP.:	MAX.:	UNIT:
J _{Gen}	Jitter generation	12 kHz to 20 MHz, Note 1 5 kHz to 20 MHz, Note 1			5 0.08	mUI _{rms} UI _{PP}
J _{Tol}	Input data jitter tolerance	See Figure 8, Note 2	1.7			UI_{PP}
t _{LH} CML	CML output rise time	Design target, Note 3	60		110	ps
t _{HL} CML	CML output fall time	Design target, Note 3	60		110	ps
C _{DUTY} VCXI	VCXI input clock duty cycle			50		%
C _{DUTY} CKOP/N	Output clock duty cycle			50		%
t _{SU}	Input data set-up time before DCLK				800	ps
t _{HO}	Input data hold time from DCLK				800	ps
F _{VCXI}	VCXI input frequency	XSEL is High XSEL is Low	144 72	155.52 77.76	162 81	MHz MHz
F _{DOUTP,DOUTN}	Output data bit rate	Note 4	2.3	2.488	2.6	Gbit/s
K _{VCO}	VCO gain constant	VCTL = 2.0 V		100		MHz/V
t _{LOCK}	Lock response time	Note 4		200	TBD	μs
t _{PD}	Time from DCLK to first bit is output	Note 4		38		ns
t _{sosk}	Serial output skew		TBD-50		TBD+50	ps
Fvco min	VCO frequency	VCTL = V _{cc} -0.25 V			2.3	GHz
Fvco max	VCO frequency	VCTL = 0 V	2.6			GHz

1 UI = 402 ps, VCTL of VCXO is kept DC, PLL2 is in lock and Loop Filter 2 is optimized. 1 UI = 6430 ps. The tolerance is reduced 0.2 UI_{PP} per 10 μ A sunk from the CHAP1 output. Note 1:

Note 2:

20% - 80%, loaded with 50 Ω and 0.5 pF in parallel to VCC. See Figure 6. Note 3:

Note 4: With 10 nF on NLDC.

	f0 [Hz]	f1 [Hz]	f2 [Hz]	f3 [Hz]	f4 [Hz]	A1 [UI _{p-p}]	A2 [UI _{p-p}]	A3 [UI _{p-p}]
OC-3/STS-3	10	30	300	6.5k	65k	0.15	1.5	15
STM-1	0.125	19.3	500	6.5k	65k	0.15	1.5	15

Figure 7. Minimum required jitter tolerance on a SONET or SDH Line.

Jitter Frequency (log) [Hz]

The total jitter on the inputs integrated from DC to a certain frequency may not exceed the shown curve.

Figure 9. 100 pin TQFP. All dimensions are in mm. Exposed heat slug is mounted on bottom of the package.

Device Marking

TBD

Ordering Information

Product Name:	Package Type:	Case Temperature Range:	Options:
GD16523-100BA	100 pin EDQUAD TQFP	-40+85 °C	

Mileparken	22, DK-2740 Skovlunde
Denmark	
Phone	: +45 7010 1062
Fax	: +45 7010 1063
E-mail	: <u>sales@giga.dk</u>
Web site	: http://www.giga.dk

Please check our Internet web site for latest version of this data sheet.

The information herein is assumed to be reliable. GIGA assumes no responsibility for the use of this information, and all such information shall be at the users own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. GIGA does not authorise or warrant any GIGA Product for use in life support devices and/or systems. Distributor:

GD16523,(Club Device) Data Sheet Rev. 11 - Date: 2 March 2000