11-MD311

Version : A.002

Issue Date : 2006/12/28

File Name : SP-MD311-A.002.doc

Total Page : 6

Micro-actuator Driver

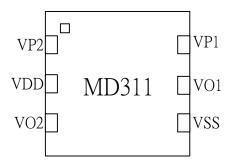
新竹市展業一路 9 號 7 樓之 1 SILICON TOUCH TECHNOLOGY INC.

9-7F-1, Prosperity Rd I, Science-Based Industrial Park Hsinchu, Taiwan, R.O.C.

Tel: 886-3-5727171 Fax: 886-3-5727390

11- MD311

Micro-actuator Driver


General Specifications

11-MD311 is a micro-actuator driver IC with miniature package. It is one channel low voltage bi-directional motor driver IC. The design is optimal for driving different type micro-actuator, such as voice coil motor, piezo-actuator, or other dc motor actuators. It is suitable for camera module application or other portable device.

Features and Benefits

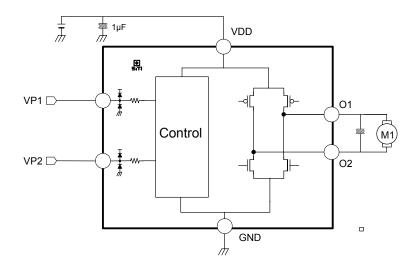
- ◆ Low voltage operation (V_{DD Min} = 1.8 V)
- ◆ Low input current
- ♦ Zero standby current
- ♦ High frequency switch (1MHz)
- ◆ Thin, small package (LFCSP6)

Pin Assignment

Pin Num.	Pin Name	Description				
1	VP2	Driver control pin2				
2	VDD	Power supply pin1				
3	VO2	Driver output 2				
4	VSS	Ground				
5	VO1	Driver output 1				
6	VP1	Driver control pin1				
BULK		Ground				

Characteristic	Symbol	Rating	Unit
Supply Voltage	V_{DD}	4.5	٧
Input Voltage	V _{P1}	V _{DD} +0.4	V
I _O Peak Current	I _{OPeak}	400	mA
I _{ODC} Current	I _{ODC}	280	mA
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	T _{OPR}	-40 ~ 80	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

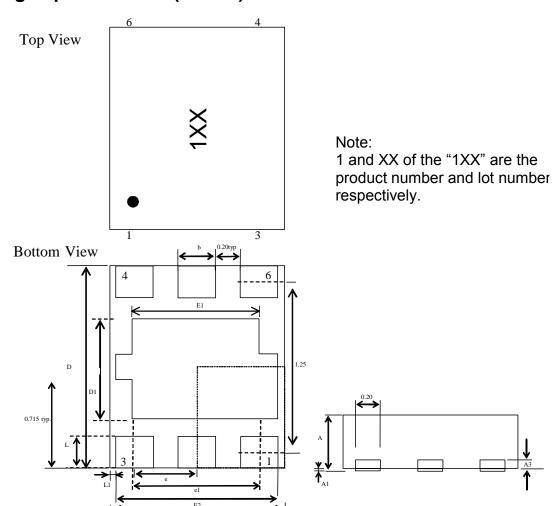
Electrical Characteristic


Ob and about the	Sym.	Condition	Limit			Unit	
Characteristic			Min.	Тур.	Max.		
Supply Voltage	V_{DD}		1.8	2.8	4.5	V	
Standby Current	I _{DD}	No load	-	-	3	μ A	
VP1 VP2 and PD Input Terminal $(T_J = 25^{\circ}C)$							
Input Voltage "H"	V_{IH}	-	0.8*V _{DD}	-	V _{DD} +0.4	V	
Input Voltage "L"	V _{IL}	-	-0.4	-	0.2*V _{DD}	V	
Input Current "H"	I _{IH}	$V_{IN} = V_{DD}$	-	-	±1	μ A	
Input Current "L"	I _{IL}	V _{IN} = 0 V	-	-	±1	μ A	
Output Terminal (O1, O2)							
Propagation Delay (Low to High)	T _{IN_LH}	Rload = 10ohm	-	70	120	ns	
Propagation Delay (High to Low)	T _{IN_HL}	Rload = 10ohm	-	35	70	ns	
Output Resistance (Upper)	R _{OH}	I _{OUT} =200mA	-	1.32	1.6	Ohm	
Output Resistance (Low)	R _{OL}	I _{OUT} =200mA		0.73	0.9	Ohm	

Truth Table

Inp	out	Output		
VP1	VP2	O1	O2	
L	L	Н	Н	
L	Н	Н	L	
Н	L	L	Н	
Н	Н	L	L	

Function Block



Application Notes

- □ The O1/O2 output H/H or L/L will brake the motor. Though the active current of driver is near to zero, if the application is required to turn off driver, please turn off the driver's power from VDD.
- ☐ The capacitor connected between the output nodes O1/O2 will reduce the noise generating by motor when the motor is switched to opposed direction.

Package Specifications (CSP6)

SYMBOL	DIMENSION (mm)			DIMENSION (mil)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	-	-	0.425	-	-	16.7
A1	0.00	0.02	0.05	0	0.8	2
A3	0.127 REF			5 REF		
b	0.22	0.30	0.38	8.7	11.8	15
D	1.50	1.60	1.70	59.1	63.0	66.9
D1	0.5	0.6	0.7	19.7	23.6	27.6
E	1.30	1.40	1.50	51.1	55.1	59.1
E1	1.00	1.10	1.20	39.4	43.3	47.2
E2	1.30 BASIC			51.2 BASIC		
L	0.25	0.30	0.35	9.8	11.8	13.8
L1	0.05 BASIC			2.00 BASIC		
е	0.50 BASIC			20.0 BASIC		
e1	1.00 BASIC			39.4 BASIC		
У	-	-	0.08	-	_	3

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.