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Preface

This book is the primary reference and Technical Manual for the
MiniRISC™ CW400x Building Blocks. It contains a complete functional
and operational description of the Building Blocks. For layout guidelines,
see Chapter 8 of the MiniRISC CW400x Microprocessor Core Technical
Manual. For complete physical and electrical specifications, see the
MiniRISC CW400x Building Blocks Technical Manual Specifications
Addendum.

Audience This document assumes that you have some familiarity with microproces-
sors and related support devices. This book is written for:

♦ Engineers and managers who are evaluating the processor for pos-
sible use in a system

♦ Engineers who are designing the processor into a system

Organization This document has the following chapters and appendixes:

♦ Chapter 1, Introduction

♦ Chapter 2, Adding a Coprocessor

♦ Chapter 3, Multiply/Divide Unit (MDU)

♦ Chapter 4, Memory Management Unit (MMU)

♦ Chapter 5, Basic BIU and Cache Controller (BBCC)

♦ Chapter 6, Adding or Removing Write Buffers

♦ Chapter 7, Timer

♦ Chapter 8, Debugger (DBX)
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MiniRISC™ CW400x Building Blocks Technical Manual Specifications
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MiniRISC™ CW400x Microprocessor Core Technical Manual,
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MiniRISC™ CW400x Microprocessor Core Technical Manual CW4001
and CW4002 Specifications Addendum, Order No. C14030.AD1
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Conventions
Used in This
Manual

The first time a word or phrase is defined in this manual, it is italicized.

The following signal naming conventions are used throughout this
manual:

♦ A level-significant signal that is true or valid when the signal is LOW
always has an overbar ( ) over its name.

♦ An edge-significant signal that initiates actions on a HIGH-to-LOW
transition always has an overbar ( ) over its name.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive.

Hexadecimal numbers are indicated by the prefix “0x” before the
number—for example, 0x32CF. Binary numbers are indicated by a sub-
scripted “2” following the number—for example, 0011.0010.1100.11112.
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Chapter 1
Introduction

This chapter introduces LSI Logic’s MiniRISC CW400x building blocks.
Chapter 2 describes how to attach a coprocessor to the CW400x Core,
while Chapters 3 through 8 describe the building blocks in detail. For
building block Methodologies and Layout Guidelines, see Chapter 8 of
the MiniRISC CW400x Microprocessor Core Technical Manual.

This chapter contains the following sections:

♦ Section 1.1, “System Overview,” page 1-1

♦ Section 1.2, “CW400x Features Summary,” page 1-3

♦ Section 1.3, “MiniRISC Product Family,” page 1-3

♦ Section 1.4, “CoreWare Program,” page 1-4

1.1
System
Overview

The MiniRISC CW400x Microprocessor Core family, components of the
LSI Logic CoreWare® Library, are exceptionally compact, high-
performance microprocessors compatible with the MIPS R4000 MIPS-II
Instruction Set (for details see Chapter 4 of the MiniRISC CW400x Micro-
processor Core Technical Manual). The CW400x can be easily designed
into a wide range of products. The CW400x can be combined with indus-
try standard cores and proprietary functional building blocks to create a
completely customized embedded system on a chip. LSI Logic currently
provides the following optional building blocks:

♦ Multiply/Divide Unit (MDU)

♦ Memory Management Unit (MMU)

♦ Basic Bus Interface Unit and Cache Controller (BBCC)

♦ Write Buffers

♦ Timer

♦ Debugger (DBX)
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System designers can use these building blocks (unmodified or modified)
and/or add their own customized logic to the CW400x Core.

LSI Logic also provides the following external modules (for more informa-
tion, see Chapter 6 of the MiniRISC CW400x Microprocessor Core Tech-
nical Manual):

♦ Global Output Enable Module (GOE)

♦ MMU Stub (to be used if there is no MMU in the system)

The CW400x has been optimized for low-power and cost-sensitive appli-
cations such as portable telecommunications, digital cameras, and con-
sumer multimedia systems.

The CW400x’s FlexLink Interface allows customer-specific microproces-
sor instructions. The core implements a simple three-stage pipeline and
provides a single cache/memory interface for both instructions and data.
The core implements full scan to achieve greater than 99% fault
coverage.

Figure 1.1 shows how the CW400x Microprocessor Core interfaces with
system logic in a typical customer design.

Figure 1.1
CW400x in a Typical
System

 CW400x

 MMU or

Coprocessor

CBus

RAM/ROM

Cache
DRAM

DMA

Timer

BIU and
Cache

Controller
(BBCC)

Write Buffer(s)
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BBusCBus
Interface

Controller

Controller

FlexLink
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GOE

MMU Stub

MD96.171
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1.2
CW400x
Features
Summary

The CW400x has the following features:

♦ MIPS-II Instruction Set Compatible

♦ Configurable, compact, modular design and unified bus architecture

♦ Simple three-stage pipeline: Fetch, Execute, and Writeback

♦ WAITI (Wait for Interrupt) Instruction for power savings

♦ Powerful FlexLink Interface allows customer-specific microprocessor
instructions

♦ High-performance Coprocessor Interface for user-definable copro-
cessors and high-performance hardware Floating Point Unit

♦ 32-bit memory and cache interfaces

♦ Optional building blocks: Timer, MMU, MDU, BBCC

♦ 3.3-volt operation

♦ Implementation of full scan to achieve 99% fault coverage

♦ 85-MHz worst case commercial maximum clock rate using high-
performance 0.35-micron process

♦ 85 MIPS peak, 64 MIPS sustained with standard compiled MIPS
code at 85 MHz

♦ Performance and software development, VHDL, Verilog, and gate-
level, timing-accurate models available

♦ Compatible with the full range of MIPS, third party software develop-
ment, and system verification environment tools

♦ Fully testable in embedded ASIC designs

♦ MR4001 Lead Vehicle chip available with cache, MMU, and MDU

1.3
MiniRISC
Product Family

The MiniRISC product family has all the necessary tools to develop a
system on a chip, including:

♦ LSI Logic’s MiniSIM™ architectural simulator

♦ Verilog and VHDL models

♦ A system verification environment

♦ A PROM monitor

♦ Third party software support

♦ A core bond-out chip for emulation
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1.4
CoreWare
Program

Through the CoreWare program, LSI Logic lets customers combine the
CW400x Microprocessor Core with other cores on a single chip to create
products uniquely suited to specific applications. This approach – combining
high-performance building blocks, sophisticated design software, and expert
support – provides unparalleled design flexibility and lets designers create
high-quality, leading-edge products for a wide range of markets.

The CoreWare program consists of three main elements: a library of
cores, a design development and simulation package, and expert appli-
cations support. The CoreWare library contains a wide range of complex
cores based on accepted and emerging industry standards, including
high-speed interconnection, digital video, DSP, and others. LSI Logic pro-
vides a complete framework for device and system development and
simulation. LSI Logic’s advanced ASIC technologies consistently produce
Right-First-Time™ silicon. LSI Logic’s in-house experts provide design
support from system architecture definition through chip layout and test
vector generation.

1.4.1
CoreWare
Building Blocks

The CoreWare building blocks include elements based on the LSI Logic
high-performance standard products as well as other, industry-standard
products. The CoreWare building blocks, which include embedded
MiniRISC MIPS processors, bus interface controllers, and a family of
floating-point processors, are fully supported library elements for use in
the LSI Logic hardware development environment. The building blocks
include gate-level simulation models with timing information, so design-
ers can accurately simulate device performance and trade off various
implementation options. In addition to gate-level simulation models, the
building blocks also include behavioral simulation models.

1.4.2
Design
Environment

The new ASIC families are supported by LSI Logic’s comprehensive
system-on-a-chip design methodology. This design methodology uses
both internally developed and industry-standard tools integrated with the
LSI ToolKit. LSI ToolKit is a system of software and libraries that lets
engineers use third-party software to access LSI Logic's technology.
Designers can select from a suite of industry standard simulators, syn-
thesizers, timing analyzers, and test tools that are seamlessly integrated
into a common environment for verification and sign-off.
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1.4.3
Expert Support

LSI Logic’s in-house experts support the CoreWare program with high-
level design experience in a wide variety of application areas. These
experts provide design support from system architecture definition
through chip layout and test vector generation. They help determine how
many functions to integrate on a single chip, trading off functionality ver-
sus cost to find the most cost-effective solution.
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Chapter 2
Adding a Coprocessor

This chapter explains how to integrate a customer-defined coprocessor
with the MiniRISC CW400x Microprocessor Core. An example of a
customer-defined coprocessor might be a Floating Point Unit or Graphics
Processor.

This chapter contains the following sections:

♦ Section 2.1, “Overview,” page 2-1

♦ Section 2.2, “Connection Block Diagram,” page 2-3

♦ Section 2.3, “Signals,” page 2-3

♦ Section 2.4, “Instructions,” page 2-6

♦ Section 2.5, “Read/Write Transactions,” page 2-7

♦ Section 2.6, “Condition Bits,” page 2-10

♦ Section 2.7, “Interrupt Protocol,” page 2-10

♦ Section 2.8, “Instruction Cancellation,” page 2-11

♦ Section 2.9, “Global Instruction Register Module (GIR),” page 2-11

2.1
Overview

A coprocessor is a user-defined, external sub-module to the CW400x.
Since a coprocessor is not a stand-alone unit, it can either pass data
through the CW400x, or pass it directly to, and from, external memory.

A CW400x coprocessor can:

♦ Read the data bus for instructions

♦ Read/write to external memory (Load/Store)

♦ Read/write to CW400x registers (MTCz/MFCz)

♦ Stall and interrupt the CW400x
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The system designer must adhere to four guidelines to correctly imple-
ment an interface between the CW400x Microprocessor Core and a
coprocessor.

1. The coprocessor must be compatible with the CW400x three-stage
pipeline. Figure 2.1 shows a typical pipeline flow of instruction
fetches and data transactions. For more information, see Section 2.3,
“Pipeline Architecture,” of the MiniRISC CW400x Microprocessor
Core Technical Manual. The coprocessor should execute instructions
in lock-step with the CW400x (whatever instructions are in the
Instruction Fetch (IF)/Execute (X)/Writeback (WB) Stages in a spe-
cific cycle in the CW400x should be the same ones in the coproces-
sor’s IF/X/WB Stages).

Figure 2.1
Typical Pipeline
Flow

2. The system designer must implement a defined set of signals
between the CW400x and the coprocessor. These signals allow the
coprocessor to perform the four transaction types listed above.

3. The coprocessor must conform to specific signal protocol when per-
forming the four transactions listed above.

4. The user must include two modules, in addition to the coprocessor,
as part of the CW400x-coprocessor interface:

– GOE (Global Output Enable Module), which is external to the
coprocessor

– GIR (Global Instruction Register Module), which is internal to the
coprocessor

For more information on the GOE, see Chapter 6 of the MiniRISC
CW400x Microprocessor Core Technical Manual. For more information
on the GIR, see Section 2.9, “Global Instruction Register Module (GIR).”

IF X1 X2 WB

IF  X1 WB

IF WBX1

2. LOAD / STORE / MTCz / MFCz

1. ADD

Example Instruction

3. ORI

MD96.172
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2.2
Connection
Block Diagram

Figure 2.2 shows how the coprocessor connects to the CW400x Micro-
processor Core and a BIU. Notice the required interface modules, the
GOE and the GIR, are included. LSI Logic recommends that the GIR be
integrated into the coprocessor, and that the GOE remain external to the
coprocessor.

Figure 2.2
Coprocessor in a
CW400x System

2.3
Signals

This section describes the signals that comprise the bit-level interface of
a coprocessor. Tables 2.1 through 2.3 summarize the coprocessor sig-
nals. Detailed descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The

GRUN_OUTxP3

CKILLXP

BINTPz1

COPEXISTPx2

BCPCONDP[3:0]

ADDRP[31:0]

COP_RUNN

COPxOEN

BIRDYP

BRESETN

BDRDYP

PCLKP

CIP_DN

GIR

Coprocessor x

CW400x

GOE

BIU

SE

SI SO

1. z = 3, 4, or 5. Coprocessor 1 connects to BINTP3, Coprocessor 2 connects to BINTP4,
Coprocessor 3 connects to BINTP5.

2. x = 1, 2 or 3.
3. x = 1 or 2. MD96.173

DATAP[31:0]
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mnemonics for active LOW signals end with an “N” and have an overbar
over their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

Table 2.1
Coprocessor Input
Signals Summary

Input Source Description

ADDRP[31:0] CW400x Address Bus

BRESETN BIU Coprocessor Reset

BDRDYP BIU Load Word Ready - Data on Data Bus

BIRDYP BIU Instruction Ready

CIP_DN CW400x CW400x Instruction/Data Indication

CKILLXP CW400x Cancel Instruction in Execute Stage

COPxOEN GOE Coprocessor Enable (x =1, 2, or 3)

COP_RUNN GOE Coprocessor Run1

PCLKP System Logic System Clock

SE System Logic Scan Enable

SI Scan Chain Scan Data In

1. Since the GOE does not have a COP_RUNN signal, the user must connect
COP_RUNN to either CRUN_INN, BRUN_INN, or MRUN_INN. LSI Logic rec-
ommends using the least loaded of the three.

Table 2.2
Coprocessor Output
Signals Summary

Output Destination Description

BCPCONDP[3:0] CW400x Coprocessor Condition

BINTPz CW400x Interrupts1 (z = 0, 1, 2, 3, 4, or 5)

COPEXISTPx GOE Coprocessor Exists (x = 1, 2, or 3)

GRUN_OUTxP GOE Coprocessor Run (x = 1 or 2)

SO Scan Chain Scan Data Out

1. Coprocessor 1 connects to BINTP3, Coprocessor 2 connects to BINTP4,
Coprocessor 3 connects to BINTP5 to maintain MIPS compatibility.

Table 2.3
Coprocessor
Bidirectional Signals
Summary

Bidirectional Connect Description

DATAP[31:0] CW400x Data Bus
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ADDRP[31:0] Address Bus Input
The CW400x drives these signals with the instruction or
data address.

BCPCONDP[3:0]
Coprocessor Condition Output
These signals inform the CW400x of the corresponding
Coprocessor Condition. BCPCONDP[3:0] correspond to
Coprocessors 3, 2, 1, 0. The CW400x tests these signals
during the Execute Stage of BCzF, BCzFL, BCzT, and
BCzTL instructions.

BDRDYP Load Word Ready - Data on Data Bus Input
The BIU asserts this signal to inform the coprocessor that
DATAP[31:0] contains valid data for a data fetch.

BINTPz Interrupt (z = 0, 1, 2, 3, 4, or 5) Output
The coprocessor asserts this signal to cause the
CW400x to take an Interrupt Exception when interrupts
are enabled. To maintain MIPS compatibility, Coproces-
sor 1 connects to BINTP3, Coprocessor 2 connects to
BINTP4, Coprocessor 3 connects to BINTP5.

BIRDYP Instruction Ready Input
The BIU asserts this signal to inform the coprocessor that
DATAP[31:0] contains valid data for an instruction fetch.

BRESETN Coprocessor Reset Input
The BIU asserts this signal to reset the coprocessor. (If
the BBCC is present, the BBCC BCPURESETN output
drives this input.)

CIP_DN CW400x Instruction/Data Indication Input
This signal qualifies the type of memory fetch. The
CW400x drives this signal HIGH to indicate that it is
performing an instruction fetch. The CW400x drives this
signal LOW to indicate that it is performing a data fetch.

CKILLXP Cancel Instruction in Execute Stage Input
After the CW400x kills an instruction in the Execute
Stage, it asserts this signal to cause the coprocessor to
also kill the instruction in the Execute Stage.

COPEXISTPx Coprocessor Exists (x = 1, 2, or 3) Output
The coprocessor asserts this signal to inform the GOE
that it is Coprocessor x.
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COP_RUNN Coprocessor Run Input
The GOE asserts this signal to inform the coprocessor
that it can continue running. The GOE deasserts this sig-
nal to stall the coprocessor.

COPxOEN Coprocessor Enable (x = 1, 2, or 3) Input
This signal from the GOE indicates which Coprocessor
(1, 2, or 3) drives the data bus.

DATAP[31:0] Data Bus Bidirectional
These signals transfer data to, and from, the CW400x.

GRUN_OUTxP
Coprocessor Run (x = 1 or 2) Output
This output is an input to the GOE. Deasserting this sig-
nal LOW stalls the CW400x.

PCLKP System Clock Input
This signal is the global clock input.

SE Scan Enable Input
Asserting this signal enables the scan chain.

SI Scan Data In Input
This signal is the scan data input.

SO Scan Data Out Output
This signal is the scan data output.

2.4
Instructions

Table 2.4 summarizes the predefined instructions that the CW400x sup-
ports for Coprocessors 1 through 3. For more detailed descriptions, see
Section 4.10, “Coprocessor Instructions,” of the MiniRISC CW400x
Microprocessor Core Technical Manual.

The user can define new coprocessor instructions, as long as they
adhere to the opcode bit encoding defined in Chapter 4 of the MiniRISC
CW400x Microprocessor Core Technical Manual.



Read/Write Transactions 2-7

Table 2.4
Coprocessor
Instructions

2.5
Read/Write
Transactions

This section explains how the CW400x sends and receives data to, and
from, an attached coprocessor. It also provides a functional description
and waveform for each coprocessor transaction type. The coprocessor
must decode its own instructions off the data bus, DATAP[31:0], and
know when to read, and write, DATAP[31:0].

There are several guidelines to observe, and several signals to monitor,
when performing these transactions. Control signals are valid during run
cycles (COP_RUNN asserted), and pipe stages are extended by stalls.
The GOE asserts the Run/Stall Signal, COP_RUNN, for every bus cycle,
including the first cycle of the X2 Stage. (For a detailed description of the
pipeline stages and Run/Stall Cycles, see Chapter 2 of the MiniRISC
CW400x Microprocessor Core Technical Manual.)

The coprocessor should also monitor the CKILLXP signal to determine
when to invalidate an instruction. The coprocessor should use CKILLXP
to prevent writes (MTCz/CTCz/LWCz) to coprocessor registers, to pre-
vent altering the coprocessor state. Using CKILLXP properly in load
invalidation is crucial to maintaining coprocessor integrity. If CKILLXP is
asserted in either the X1 or X2 Stage, the load is not scheduled, and is,
thus, invalidated. If the CKILLXP occurs in the X1 Stage, the X2 Stage
will not occur. However, once the load passes the X2 Stage, it has been
scheduled and cannot be invalidated.

Instruction Description

BCzT Branch on Coprocessor z True1

1. z = 1, 2, or 3.

BCzF Branch on Coprocessor z False

BCzTL Branch on Coprocessor z True Likely

BCzFL Branch on Coprocessor z False Likely

CTCz Move Control to Coprocessor z

CFCz Move Control from Coprocessor z

LWCz Load Word to Coprocessor z

MTCz Move to Coprocessor z

MFCz Move From Coprocessor z

SWCz Store Word from Coprocessor z
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2.5.1
CW400x
Register Writes
from
Coprocessor
(CFCz, MFCz)

The data for CFCz or MFCz should be available on the data bus during
the second Execute (X2) Stage of the instruction whenever COPxOEN
is asserted. If the data is not ready to be driven onto the data bus, the
coprocessor should stall the CW400x by deasserting GRUN_OUTxP.

When the coprocessor does drive the data bus (COPxOEN asserted),
the data should be valid on the rising edge of the clock. This cycle (X2
Stage) is a CW400x Register write, so the CW400x latches the data from
the data bus. The coprocessor must monitor the appropriate COPxOEN
to know when to drive the data bus.

Figure 2.3
CFCz, MFCz
Waveforms

2.5.2
Coprocessor
Register Writes
from Memory
(LWCz)

The CW400x Coprocessor Interface supports two mechanisms for reads
from external memory (loads): load scheduling and non-load scheduling.
The CW400x executes instructions while it is waiting for the load data
from external memory, until a data dependency occurs, then it stalls. The
coprocessor should emulate this behavior if it supports load scheduling,
that is, it should continue to execute instructions and stall only if there is
a data dependency. Assertion of BDRDYP informs the coprocessor that
the LWCz has fetched the data, and the data is ready on the data bus.
The coprocessor should immediately write the data on the bus back to
the Coprocessor Register File to preserve the pipeline.

If the coprocessor does not support load-scheduling, it should signal a
stall in the Execute Stage by deasserting GRUN_OUTxP in the X2
Stage. The CW400x waits until the load data is ready (the BIU asserts
BDRDYP and the coprocessor asserts GRUN_OUTxP) before resuming
execution. When BDRDYP is asserted, the coprocessor should latch the
load data from the data bus and write it in to its register file in the next
run cycle (WB).

PCLKP

DATAP[31:0]

COP_RUNN

X21X11IF1 WB1

X12 X22 X22 X22IF2

COPxOEN

WB2X2

BIUCOP COP BIU COP

1. MFCz and CFCz transaction with no stall in Execute Stage.
2. MFCz and CFCz transaction with stall in Execute Stage.

MD96.174
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Figure 2.4 shows load scheduling LWCz waveforms. Figure 2.5 shows
non-load scheduling LWCz waveforms.

Figure 2.4
Load Scheduling
LWCz Waveforms

Figure 2.5
Non-Load
Scheduling LWCz
Waveforms

2.5.3
Coprocessor
Register Writes
from CW400x
(CTCz, MTCz)

The data for MTCz or CTCz is always ready on the data bus during the
last cycle of the instruction’s X2 Stage. Thus, the data latched in the final
cycle of the X2 Stage is the valid data. The data asserted in the previous
cycles in the X2 Stage should be disregarded. If the coprocessor
requires more than one cycle to latch the data, or is not ready to latch
the data, it should deassert GRUN_OUTxP to stall the CW400x.

Figure 2.6 shows MTCz/CTCz Waveforms.

Figure 2.6
MTCz/CTCz
Waveforms

PCLKP

BDRDYP

DATAP[31:0] Data

COP_RUNN

Cache Miss Scheduled Load

X2 WBX1

Data

MD96.175

PCLKP X2 X2X2X2X2X2X1 WB

GRUN_OUTP

COP_RUNN

DATAP[31:0]

BDRDYP

Data

MD96.176

PCLKP

DATAP[31:0] BIU Data

X2X2X2X2X2X1 WB

CIP_DN

COP_RUNN

MD96.177

COP Data
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2.5.4
Memory Writes
from
Coprocessor to
External
Memory (SWCz)

The data for the write to memory should be ready in the X2 Stage of the
store (SWCz). If it is not, the coprocessor should stall the pipeline by
deasserting GRUN_OUTxP. The coprocessor should always drive the
data bus with the data for the store when the appropriate COPxOEN is
asserted during the X2 Stage.

See Figure 2.3 for the waveform. Substitute SWCz for MTCz/CTCz as
the instruction being executed.

2.6
Condition Bits

The CW400x supports the Branch on Coprocessor Condition for Copro-
cessors 0 through 3. The instructions BCzT/L and BCzF/L branch to
Coprocessor z depending on the state of the Condition Bit. The copro-
cessor can set these bits in any way. The Coprocessor Usability Bit must
be set in the CW400x Status Register for the coprocessor instructions
relating to the Condition Bits to function properly.

2.7
Interrupt
Protocol

The coprocessor can request an interrupt by asserting one of the
BINTP[5:0] Inputs to the CW400x, causing an interrupt exception. The
interrupt from the coprocessor should be asserted until the CW400x
writes a Clear Interrupt value to the coprocessor’s Control Register.

Even though asserting one of the BINTP[5:0] Inputs for one run cycle
causes the CW400x to take an exception, to be compatible with the
MIPS architecture, the coprocessor must hold the interrupt HIGH until it
is cleared by the CW400x.

The coprocessor should signal the interrupt to the CW400x in the Exe-
cute Stage of the instruction causing the interrupt. The CW400x asserts
CKILLXP in the same run cycle, informing the coprocessor to cancel the
instruction in the Execute Stage.

Figure 2.7 shows a waveform of a coprocessor sending an interrupt.
Note that CKILLXP is asserted during the X Stage of two instructions.
The first instruction is the one that caused the interrupt. The second is
the one following the interrupt. For more details regarding the instruction
cancellation mechanism, see Chapter 5, in the MiniRISC CW400x Micro-
processor Core Technical Manual.
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Figure 2.7
Coprocessor
Sending Interrupt

2.8
Instruction
Cancellation

When an exception occurs, the CW400x indicates to the coprocessor
which instructions to cancel by asserting CKILLXP at the appropriate
time. The duration of the instruction cancellation signal (CKILLXP)
depends on when the exception was signalled (in the IF, X, or WB
Stage).

The example in Figure 2.8 shows an exception signalled in the Execute
Stage of the exceptional instruction. The CW400x asserts CKILLXP for
two run cycles to cancel the Execute Stage of the exceptional instruction
and the following instruction in the pipeline, which is currently in the IF
Stage.

Figure 2.8
Instruction
Cancellation

2.9
Global
Instruction
Register Module
(GIR)

All coprocessors are required to include a Global Instruction Register
(GIR) as the interface between the coprocessor decode and the data bus
(see Figure 2.9). This module allows the coprocessor to latch the correct
instruction off the data bus for a decode. A master-slave type circuit is
used in the instruction bus latching. The instruction is latched in the mas-
ter at the rising edge of the clock cycle when BIRDYP is HIGH. The
instruction is then latched into the slave and made available to the
decode at the rising edge of the clock cycle in the next run cycle.

Figure 2.10 shows a typical transaction. The instruction is on the data
bus at Point A, and is latched in by the master flip-flop. It is gated by the

COP_RUNN

PCLKP

BINTPz1

CKILLXP

X1 X1 X1 WB

1. z = 3, 4, or 5. Coprocessor 1 connects to BINTP3, Coprocessor 2
connects to BINTP4, Coprocessor 3 connects to BINTP5. MD96.178

WB

COP_RUNN

PCLKP X XXXIF

CKILLXP

MD96.179
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slave only in the instruction’s X Stage, Point B. The slave gate logic is
complicated because load scheduling must be taken into account (data
from a scheduled load can be asserted on the bus at any time).

Figure 2.9
Global Instruction
Register Logic

Figure 2.10
Instruction
Grabbing

cp

d q

cp

d q

BIRDYP

1

0 to Decode

gn

d q

PCLKP

CIP_DN

COP_RUNN

DATAP[31:0]

GSCAN_ENABLEP

d q

gn

32

MD96.180

PCLKP

BIRDYP

DATAP[31:0]

CIP_DN

A B
X StageIF Stage

COP_RUNN

Valid
Instr

Valid
Instr

MD96.181
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Chapter 3
Multiply/Divide Unit
(MDU)

This chapter describes the MiniRISC Multiply/Divide Unit (MDU) building
block for the CW400x.

This chapter contains the following sections:

♦ Section 3.1, “Overview,” page 3-1

♦ Section 3.2, “Architecture,” page 3-3

♦ Section 3.3, “Connection Block Diagram,” page 3-5

♦ Section 3.4, “Signals,” page 3-5

♦ Section 3.5, “Instructions,” page 3-8

♦ Section 3.6, “Operation,” page 3-11

3.1
Overview

The Multiply/Divide Unit (MDU) is a high-performance arithmetic engine,
closely coupled to the MiniRISC CW400x Microprocessor Core through
the FlexLink Interface. It supports the following arithmetic functions:

♦ 32-bit x 32-bit signed and unsigned integer multiplication, with
2-cycle latency

♦ 32-bit x 32-bit signed and unsigned integer multiplication-
accumulation, with a 2-cycle latency and a throughput of one
multiply-accumulate per cycle

♦ 32-bit signed and unsigned division, with a 34-cycle latency for the
quotient and a 35-cycle latency for the remainder

♦ MFHI, MFLO, MTHI, MTLO instructions for moving data between the
CW400x and the MDU

The MDU generates hardware interlocks if the CW400x tries to read from
the MDU’s HI or LO Registers before it has written the results from any
previous MDU operations to the HI and LO Registers.
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Multiplication is a full 32-bit by 32-bit operation. The MDU takes the oper-
ands from CRSP[31:0] and CRTP[31:0], multiplies them, and writes the
higher 32 bits of the result into the HI Register, and the lower 32 bits into
the LO Register. It takes two cycles to complete a multiplication.

Multiplication-accumulation is similar to multiplication, except, instead of
writing the result back to the HI/LO Registers, the MDU adds (MADD) or
subtracts (MSUB) the multiplication result from the previous result in the
HI/LO Registers. A multiplication-accumulation takes two cycles to com-
plete. The MDU supports one instruction per cycle throughput.

For division, the MDU takes CRSP[31:0] as the dividend and CRTP[31:0]
as the divisor. After performing the division, the MDU puts the quotient
into the LO Register, and the remainder into the HI Register. The latency
for the quotient is 34 cycles, and for the remainder it is 35 cycles.

Based on the latency and throughput of the various operations, the MDU
does not generate a hardware interlock for the following pieces of code:

MULT(U) or MADD(U) or MSUB(U)
NOP
MFHI or MFLO
------------------------------
MULT(U) or MADD(U) or MSUB(U)
MADD(U) or MSUB(U) 1

MADD(U) or MSUB(U)
NOP
MFHI or MFLO
------------------------------
DIV(U)
33 NOP’s
MFLO
MFHI

No overflow exceptions occur for any multiplications, multiplication-
accumulations, or divisions.

The MDU has no hardware detection for division-by-zero, which takes
34/35 cycles to complete, and causes the HI/LO Registers to contain
undefined values.

1. Note that MADD or MSUB adds its result to that of the immediately preceding instruction
even though the preceding MDU Instruction has not completed when this MADD or MSUB
is executed.
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3.2
Architecture

Logically, the MDU consists of two parts: the Control Unit, and the Data-
path (which has a unified Multiply and Divide Unit). This configuration
allows the multiplier to share resources with the divider. Figure 3.1 illus-
trates the high-level structure of the MDU.

Figure 3.1
MDU Architecture

CRSP[31:0]

Booth Recoding and

MULT Array

64-Bit Adder

HILO

Control

Set-up for the MULT Array

CRSP[31:0] CRTP[31:0]

Flip-Flop

CRTP[31:0]

Bypass

AXBUSP[31:0]

Unit

Datapath

HI[31:0] LO[31:0]

Logic1

Flip-Flop

64-Bit Adder

CRSP[31:0]

1. Power-saving logic which blocks the operands for non-MDU instructions. MD96.17
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The Control Unit decodes the instructions from CIR_TOPP[5:0] and
CIR_BOTP[5:0], and asserts ASELP if it decodes valid MDU Instructions.
It also generates interlocks between the MULT/DIV/MADD/MSUB and
the MFHI/LO Instructions if needed, and forwards the multiply/divide
result to AXBUSP[31:0].

The multiply operation starts in the Execute Stage. To minimize power
dissipation, the MDU loads operands off CRSP[31:0] and CRTP[31:0]
only after decoding a valid MDU Instruction. The Multiply Unit uses 3-bit
Booth recoding to encode the 32-bit multiplier. A multiply array sums par-
tial products to produce a 64-bit sum, and a carry bit. In multiplication-
accumulation, the result of the multiply operation is added to or sub-
tracted from the previous result, contained in the HI/LO registers. The
lower 32 bits of the result are loaded into the LO Register, and the higher
32 bits are loaded into the HI Register.

The Divide Unit implements a nonrestoring algorithm, and the operation
is set off in Phase 1 of the Execute Stage. When the operation is com-
pleted, the MDU loads the quotient into the LO Register and the remain-
der into the HI Register.

Since it takes two cycles to complete a multiplication or a multiplication-
accumulation, and 34/35 cycles to complete a division, the Control Unit
stalls the CW400x (by asserting ASTALLP), if there is an attempt to read
the HI/LO Registers before an outstanding operation is finished.
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3.3
Connection
Block Diagram

Figure 3.2 shows how to attach the MDU to the CW400x, the building
blocks, and system logic.

Figure 3.2
Attaching the MDU

3.4
Signals

This section describes the signals that comprise the bit-level interface of
the MDU. Tables 3.1 and 3.2 summarize the MDU signals. Detailed
descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for active LOW signals end with an “N” and have an overbar over
their names; the mnemonics for active HIGH signals end in a “P.”

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

PCLKP

ASELP

ASTALLP

AXBUSP[31:0]

CIR_BOTP[5:0]

CIR_TOPP[5:0]

CKILLXP

CRSP[31:0]

CRTP[31:0]

CRX_VALIDN

GSCAN_ENABLEP

GSCAN_INP

System
ClockCW400x

PCLKP

ASELP

ASTALLP

AXBUSP[31:0]

CIR_BOTP[5:0]

CIR_TOPP[5:0]

CKILLXP

CRSP[31:0]

CRTP[31:0]

MDU

BBCC

GOE

BCPURESETN

CPIPE_RUNN

Global Scan Enable

Scan Chain Test Output
from Another Module

GSCAN_OUTP

Scan Chain Test Input
to Another Module MD96.18

(Unconnected Output)
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Note that the CRX_VALIDN CW400x FlexLink Interface signal does not
connect to the MDU. This signal indicates when CRSP[31:0] and
CRTP[31:0] are valid during stall cycles, and is intended for the imple-
mentation of arithmetic operations that write results directly to the
CW400x registers. Since all the MDU operations write results back to the
HI/LO Registers, and an MFHI/LO instruction is needed to move results
back to the CW400x registers, the MDU does not use CRX_VALIDN.

Table 3.1
MDU Input Signals
Summary

Table 3.2
MDU Output
Signals Summary

ASELP MDU Select Output
The MDU asserts this signal to inform the CW400x that
the current instruction is an MDU Instruction. This pre-
vents the CW400x from signalling a Reserved Instruction
Exception.

ASTALLP MDU Stall Request Output
The MDU asserts this signal to request a stall of the pipe-
line. The MDU asserts ASTALLP if it discovers any data

Input Source Definition

BCPURESETN BBCC Global Reset

CIR_BOTP[5:0] CW400x Instruction Register Bottom Six Bits

CIR_TOPP[5:0] CW400x Instruction Register Top Six Bits

CKILLXP CW400x Kill Instruction in Execute Stage

CPIPE_RUNN GOE CW400x Pipe Run

CRSP[31:0] CW400x CW400x Source Register (rs ) Bus

CRTP[31:0] CW400x CW400x Source Register (rt ) Bus

GSCAN_ENABLEP System Logic Scan Test Mode Enable

GSCAN_INP System Logic Scan Test Input

PCLKP System Logic System Clock

Output Destination Definition

ASELP CW400x MDU Select

ASTALLP CW400x MDU Stall Request

AXBUSP[31:0] CW400x MDU Result Bus

GSCAN_OUTP System Logic Scan Test Output
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dependencies that prevent it from executing the upcom-
ing MDU Instruction. The CW400x might override this
stall if CKILLXP is also asserted, because the CW400x
kills the upcoming MDU Instruction.

AXBUSP[31:0]
MDU Result Bus Output
The MDU puts the result from the HI or LO Registers
onto this bus.

BCPURESETN
Global Reset Input
Asserting this signal resets the MDU, and kills any out-
standing MDU Instructions. The contents inside the HI
and LO Registers become unknown.

CIR_BOTP[5:0]
Bottom Six Bits of Instruction Register Input
These signals from the CW400x contain the bottom six
bits of the Instruction Register. These signals allow the
MDU to decode its own instructions.

CIR_TOPP[5:0]
Top Six Bits of Instruction Register Input
These signals from the CW400x contain the top six bits
of the Instruction Register. These signals allow the MDU
to decode its own instructions.

CKILLXP Instruction Killed in Execute Stage Input
The CW400x asserts this signal to request that the MDU
kill the MDU Instruction that is in the Execute Stage.

CPIPE_RUNN CW400x Pipeline Run Indicator Input
The GOE Module asserts this signal to inform the MDU
that the core is in a Pipeline Run Cycle. The GOE deas-
serts this signal to inform the MDU that the core is in a
Pipeline Stall Cycle. For more information on the GOE,
see the MiniRISC CW400x Microprocessor Core Techni-
cal Manual.

CRSP[31:0] CW400x Source Register ( rs ) Bus Input
These signals contain the rs Operand of the current
instruction from the CW400x.
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CRTP[31:0] CW400x Source Register ( rt ) Bus Input
These signals contain the rt Operand of the current
instruction from the CW400x.

GSCAN_ENABLEP
Scan Test Mode Enable Input
Asserting this signal enables scan testing.

GSCAN_INP Scan Test Input Input
Another module drives this signal with the scan test input.

GSCAN_OUTP
Scan Test Output Output
The MDU drives this signal with the scan test output.

PCLKP System Clock Input
This signal is the global clock input.

3.5
Instructions

All MDU Instructions are in one of the three formats shown in Figures
3.3 through 3.5.

Table 3.3 lists all of the MDU Instructions and their corresponding opcode
bits. Table 3.4 summarizes and describes the Multiply/Divide Instructions.

Figure 3.3
MFHI, MFLO

Figure 3.4
MTHI, MTLO

Figure 3.5
MULT(U), DIV(U),
MADD(U), MSUB(U)

31 16 15 11 10 6 5 0

00000000000000002 rd Address 000002 MDU Opcode

31 26 25 21 20 6 5 0

0000002 rs Address 0000000000000002 MDU Opcode

31 26 25 21 20 16 15 6 5 0

0000002 rs Address rt Address 00000000002 MDU Opcode
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Table 3.3
MDU Instructions

Instruction Description Opcode

DIV Divide Signed Numbers 011010

DIVU Divide Unsigned Numbers 011011

MADD1 Multiply, and Add the Result to HI/LO Registers 011100

MADDU1 Unsigned Multiply, and add result to HI/LO Registers 011101

MFLO Move from LO Register 010010

MFHI Move from HI Register 010000

MSUB1 Multiply, then Subtract the Result from HI/LO Registers 011110

MSUBU1 Unsigned Multiply, then Subtract the Result from HI/LO Registers 011111

MTHI Move to HI Register 010001

MTLO Move to LO Register 010011

MULT Multiply Signed Numbers 011000

MULTU Multiply Unsigned Numbers 011001

1. MR400x-specific instruction.
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Table 3.4
Multiply/Divide
Instruction Summary1

Instruction Format and Description

Multiply and Add MADD rs, rt
Multiplies the contents of Registers rs and rt as two’s complement values.
Adds the 64-bit result to Special Registers HI and LO2.

Multiply and Add
Unsigned

MADDU rs, rt
Multiplies the contents of Registers rs and rt as unsigned values. Adds the
64-bit result to Special Registers HI and LO2.

Multiply and Subtract MSUB rs, rt
Multiplies the contents of Registers rs and rt as two’s complement values.
Subtracts the 64-bit result from Special Registers HI and LO2.

Multiply and Subtract
Unsigned

MSUBU rs, rt
Multiplies the contents of Registers rs and rt as unsigned values. Subtracts
the 64-bit result from Special Registers HI and LO2.

Multiply MULT rs, rt
Multiplies the contents of Registers rs and rt as two’s complement values.
Stores the 64-bit result into Special Registers HI and LO2.

Multiply Unsigned MULTU rs, rt
Multiplies the contents of Registers rs and rt as unsigned values. Stores the
64-bit results into Special Registers HI and LO2.

Divide DIV rs, rt
Divides the content of Register rs by the content of Register rt as two’s
complement values. Stores the 32-bit quotient into Special Register LO, and
the 32-bit remainder into Special Register HI.

Divide Unsigned DIVU rs, rt
Divides the content of Register rs by the content of Register rt as unsigned
values. Stores the 32-bit quotient into Special Register LO, and the 32-bit
remainder into Special Register HI.

Move From HI
Register

MFHI rd
Moves the content of Special Register HI into Register rd .

Move From LO
Register

MFLO rd
Moves the content of Special Register LO into Register rd .

Move To HI Register MTHI rd
Moves the content of Register rd into Special Register HI.

Move To LO Register MTLO rd
Moves the content of Register rd into Special Register LO.

1. These instructions require the addition of a Multiply/Divide Unit.
2. The HI and LO Registers are used as one 64-bit register.
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Table 3.5 shows the execution time of multiply and divide instructions
when using the MDU.

Table 3.5
Execution Time of
Multiply/Divide
Instructions Using
MDU

3.6
Operation

This section explains MDU operation and contains waveforms for each
operation.

3.6.1
MULT Followed
by MFHI/LO

Figure 3.6 shows a MULT followed by a MFHI/LO.

Figure 3.6
MULT Followed by
MFHI/LO

a. The MDU asserts ASELP as soon as it decodes a valid instruction
to prevent the CW400x from generating a Reserved Instruction
Exception.

b. The MDU asserts ASTALLP for interlock since the CW400x tries to
read the result (MFHI/LO) before it is ready.

c. Both the HI and LO results are ready. The MDU writes them back
into the HI/LO Registers at this rising clock edge. At the same time,

Multiply Operands Number of Cycles

MULT 2

MADD/MSUB1

1. With the results accumulating in the HI and LO Reg-
isters. The throughput is one instruction per cycle.

2

DIV 34 (quotient) 35 (remainder)

CIR_TOPP[5:0]

ASTALLP

AXBUSP[31:0]

ASELP

21 3

CRSP[31:0]/
CRTP[31:0]

CIR_BOTP[5:0]/

PCLKP

MULT MF HI/LO

a

b

c

Source Operands

Result

MD96.185
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the MDU forwards them to AXBUSP[31:0] so that the CW400x can
latch the result back to its register file.

3.6.2
DIV Followed by
a MFLO

Figure 3.7 shows a DIV followed by a MFLO.

Figure 3.7
DIV Followed by MFLO

a. The quotient result is ready, and the MDU writes it back into the LO
Register at this rising clock edge. At the same time, the MDU also
forwards the quotient to AXBUSP[31:0] so that the CW400x can latch
the result back to its register file.

b. The remainder result is ready, and the MDU writes it back to the HI
Register at this rising clock edge.

CIR_TOPP[5:0]

ASTALLP

AXBUSP[31:0]1

ASELP

21 3 4 5

CRSP[31:0]/
CRTP[31:0]

CIR_BOTP[5;0]/

PCLKP

1. Contains the LO result.

DIV MFLO

Quotient

32 Cycles

a b

Adjust
Cycle

Remainder
Adjust
Cycle

Source Operands

Result

MD96.186

MFLO
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3.6.3
MULT Followed
by MADD/MSUB

Figure 3.8 shows a MULT followed by a MADD/MSUB.

Figure 3.8
MULT Followed by
MADD/MSUB

a. The MDU writes the result of MULT back into the HI/LO Registers.

b. The MDU writes the result of MADD back into the HI/LO Registers,
and the HI Result is also forwarded to AXBUSP[31:0] at the same
rising clock edge.

Note that sequences like the following do not require MDU stalls:

MULT
MADD
MSUB
MADD
MADD

The MDU accumulates each MADD and MSUB multiplication result
(added to, or subtracted from, the result of the preceding instruction)
instead of overwriting it, even if the preceding instruction is not finished
when the MADD or MSUB is executed.

3.6.4
DIV Followed by
MADD/MSUB

If there are any unkilled MADD or MSUB Instructions issued during an
outstanding DIV, the MDU does not generate any interlocks. The MDU
preempts the DIV in the middle of its operation, executes the MADD or
MSUB, and then adds or subtracts the division result to whatever values
the HI/LO Registers contain when the DIV is preempted. Therefore, the
HI/LO Results are unknown.

CIR_TOPP[5:0]

ASTALLP

AXBUSP[31:0]

ASELP

21 3 4 5

CRSP[31:0]/
CRTP[31:0]

PCLKP

MD96.4

MULT MADD MFHI

MULT1 MADD1

a b

Result

1. Operands for MULT and MADD.
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3.6.5
Destructive
MDU
Instructions

Any MULT, MULTU, DIV, DIVU, MTHI, or MTLO kill outstanding MULT(U),
DIV(U), MADD(U), or MSUB(U) Instructions. Therefore, for a sequence
of instructions like the one below, MFHI gets the result of the MTHI, so
the content of the LO Register is undefined.

MULT
MULT
MTHI
MFHI

The same happens to the HI Register during an MTLO.

3.6.6
Effect of
CKILLXP on
MDU
Operations

Figure 3.9 shows the effect of CKILLXP on a MULT. The same waveform
applies to MADD, MSUB, and DIV. CKILLXP kills the MULT(2) Instruction
which is in its Execute Stage. MULT(1) finishes gracefully, and the MFLO
gets the LO Result of MULT(1). The MDU does not generate any inter-
lock stalls.

Figure 3.9
Effect of CKILLXP
on a MULT
Operation

CKILLXP

CPIPE_RUNN

ASTALLP

AXBUSP[31:0]

21 3 4

CIR_TOPP[5:0]

PCLKP

MD96.5

MULT(1) MULT(2) MFLO

ASELP

Result1

1. LO result of MULT(1).
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Figure 3.10 shows the effect of CKILLXP on a MFHI or MFLO.

Figure 3.10
Effect of CKILLXP
on a MFLO/HI
Operation

Cycle 1: A MULT or DIV is issued.

Cycle 2: A MFLO or MFHI is issued. The assertion of CKILLXP kills the
MFLO/HI; however, because of the critical timing, ASTALLP
remains asserted. The CW400x detects the assertion of
CKILLXP, and ignores ASTALLP. CPIPE_RUNN does not go
HIGH even though ASTALLP is asserted. This example
assumes that there are no other stalls (for example, stalls ini-
tiated by the CW400x itself or the coprocessors); otherwise,
CPIPE_RUNN might still go HIGH due to other stalls.

Cycle 3: The CW400x moves on to the next instruction, which is not an
MDU Instruction; thus, ASTALLP and ASELP are both
deasserted.

3.6.7
Effect of
CPIPE_RUNN
on MDU
Operations

Figure 3.11 shows the effect of CPIPE_RUNN on an MDU Operation.
CKILLXP kills the MULT(2) Instruction, which is in its Execute Stage.
MULT(1) finishes correctly, and the MFLO gets the LO Result of
MULT(1). The MDU does not generate interlock stalls.

CKILLXP

CPIPE_RUNN

ASTALLP

AXBUSP[31:0]

21 3

CIR_TOPP[5:0]

PCLKP

MD96.6

ASELP

1. Non-MDU instruction.

MULT/DIV MFLO/HI Instruction1
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Figure 3.11
Effect of
CPIPE_RUNN on a
MFLO/HI
Operation

Cycle 1: A MULT or DIV is issued.

Cycle 2: Another MULT or DIV is issued. CPIPE_RUNN goes HIGH by
the end of Cycle 2. This extends the Execute Stage of the
second MULT or DIV, and prevents the instruction from being
executed.

Cycle N: CPIPE_RUNN goes LOW, and the MULT/DIV which has been
held in its Execute Stage, proceeds again. However, CKILLXP
is asserted by the end of the cycle, which kills this second
MULT or DIV. The HI/LO Registers still hold the results of the
first MULT or DIV.

In conclusion, both CKILLXP and CPIPE_RUNN have effects only on the
MDU Instruction in its Execute Stage. CPIPE_RUNN can extend an
instruction’s Execute Stage, and CKILLXP can kill an instruction in its
Execute Stage if it is asserted in the last Execute Cycle of that instruc-
tion. After an instruction has passed beyond its Execute Stage, neither
input signals have any effect on the operation of that instruction. For
example, if CKILLXP or CPIPE_RUNN goes HIGH in the twentieth cycle
of a DIV operation, the DIV keeps going without stalling or being killed.

CKILLXP

CPIPE_RUNN

CRSP[31:0]/

ASTALLP

21 N

CIR_TOPP[5:0]

PCLKP

MD96.7

ASELP

MULT/DIV

CRTP[31:0]

MFLO/HI MFLO/HI

Source Operands
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3.6.8
Effect of
BCPURESETN

The MDU acknowledges the assertion of BCPURESETN within one
clock cycle. However, since the CW400x requires a minimum of two clock
cycles to reset correctly, LSI Logic recommends asserting BCPURE-
SETN for at least two clock cycles.

Asserting BCPURESETN:

♦ Causes outstanding MDU Instructions to stall (not finish)

♦ Resets the state machine for the divide operation

♦ Deasserts ASTALLP if it has been asserted

♦ Causes the contents in HI/LO Registers to be undefined
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Chapter 4
Memory Management
Unit (MMU)

This chapter describes the Memory Management Unit (MMU) building
block for the CW400x. For information on the MMU Stub, the logic
required if the system has no MMU, see Chapter 6 of the MiniRISC
CW400x Microprocessor Core Technical Manual.

This chapter contains the following sections:

♦ Section 4.1, “Overview,” page 4-1

♦ Section 4.2, “Function and Operation,” page 4-2

♦ Section 4.3, “MMU Modules,” page 4-5

♦ Section 4.4, “Signals,” page 4-6

♦ Section 4.5, “TLB Registers,” page 4-10

♦ Section 4.6, “Address Translation Functional Waveform,” page 4-15

♦ Section 4.7, “TLB Exceptions,” page 4-16

♦ Section 4.8, “Differences from the R3000 MMU,” page 4-20

♦ Section 4.9, “Operation Peculiarities and Details,” page 4-21

4.1
Overview

The MiniRISC Memory Management Unit (MMU) translates virtual
addresses from the MiniRISC CW400x Core into physical addresses.
The MMU is MIPS-compatible and similar in design and function to the
MIPS R3000 MMU.

The eight-entry fully-associative Translation Lookaside Buffer (TLB) is a
cache of Page Table Entries (PTE) for the operating system. The Page
Table contains the information for mapping processes from virtual to
physical addresses. Caching PTEs minimizes the size of the Page Table
structure implemented in hardware. The TLB is implemented as an
8-entry, 20-bit data Content-Addressable Memory (CAM) coupled with a
23-bit RAM array custom-designed for the MMU.
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4.2
Function and
Operation

The MMU takes virtual addresses from the MiniRISC CW400x Core and
translates them to physical addresses. Figure 4.1 illustrates how the
MMU performs this translation by replacing the 20 most significant bits
(Bits [31:12]) of the Virtual Address (called the Virtual Page Number, or
VPN) with 20 bits from the Page Table (called the Page Table Entry, or
PTE). The MMU reads the PTE from the TLB.

Figure 4.1
Virtual to Physical
Address Mapping

Before the PTE can replace the VPN, the MMU uses the TLB Virtual
Page Number CAM (TLB, VPN, CAM) to determine which of the PTEs
stored in the TLB to use.

The TLB is a 8 x 20 array of CAM cells that can be read, and written,
and used in Match Cycles. In a Match Cycle, the CW400x passes a VPN
from the Address Bus, ADDRP[19:0], to the CAM array, which activates
a match line for the entry in the TLB that matches. Once this match line
is driven, the CAM notes a match. The match line drives the word line in
the adjoining 8 x 23 PTE RAM, which in turn, drives the 23-bit PTE RAM
word out of the RAM array and onto the MMU Address Bus,
MADDROUTP[19:0].

Figure 4.2 shows an example where the address in CAM Entry 1
matches the virtual address. The MMU drives RAM Entry 1 as the phys-
ical address.

31

31 12

12 0

0

VPN

PTE

Offset

Offset

Physical Address

Virtual Address

MD96.187

11

11
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Figure 4.2
CAM Entry
Matching Virtual
Address

The 20-bit PTE/VPN size allows for a 12-bit offset field, which allows for
up to 4 Kbytes of cache with a physical address. The 23-bit word consists
of the PTE, the Valid Bit, the Dirty Bit and the No-cache Bit. The Valid
Bit set to one indicates that the TLB entry is valid. The Dirty Bit set to
one indicates that the page is writable. The No-cache Bit set to one indi-
cates that the entry is not cacheable.

In addition to the soft-mapping made possible by the TLB, the MMU per-
forms hard-mapping. To perform hard mapping, the MMU implements the
R3000 kseg0/kseg1 Memory Map. The CW400x generates addresses
that are within kseg0 or kseg1. The MMU maps these addresses imme-
diately to the lowest 512 Mbytes of physical space, not actually using the
TLB for this map function. If the CW400x address is in kseg1, the MMU
signals that the access is not to be cached.

For further details, see the MMU Stub section in Chapter 6 of the
MiniRISC CW400x Microprocessor Core Technical Manual.

Under the following conditions, the MMU does not softmap the VPN to a
PTE:

♦ The MMUENP input is inactive, which disables the MMU.

♦ The two MSBs of the address are 102, which indicates operation in
kseg1 or kseg0 (defined in the MIPS architecture to be unmapped
segments in kernel space). These segments are physically mapped
to the address where the two MSBs are 002 by the MMU Stub.

♦ The current cycle is not a Bus Run Cycle.

CAM

0

1

2

3

4

5

6

7

RAM

0

1

2

3

4

5

6

7
MD96.188
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There are several conditions in which, although an exception has been
generated, the MMU performs a translation on the available data. The
exception handler software should prevent any erroneous memory
accesses based on this falsely translated address. These conditions are:

♦ There is no VPN match, which causes an exception. A reference to
kernel space causes a TLB Miss Exception. A reference to user
space causes a UTLB Miss Exception.

♦ The VPN match points to a PTE RAM entry with the Valid Bit LOW.
This condition indicates that the page is invalid, and causes a TLB
Miss Exception to the CW400x.

♦ The Dirty Bit is not set for the current page. This condition occurs
only if the entry was valid; it indicates that an attempt was made to
write to memory that is protected (clean), which causes a TLB Mod-
ified Exception to the CW400x. This condition occurs only for a store
cycle.

Figure 4.3 illustrates the conditions that cause TLB Exceptions.

Figure 4.3
TLB Miss
Exception
Conditions

If there is a TLB hit, and the entry is valid and dirty (the Valid and Dirty
Bits are set), the VPN in the MMU replaces the address with the PTE.

VPN
Match

MSB
 = 1

 V = 1

 D = 1Write

No

UTLB Miss
Yes

No

VPN

No

Yes

Yes

Yes No

No

PTETLB Modified

Yes

TLB Miss

MD96.189



MMU Modules 4-5

If there is a TLB Modified Exception or a TLB Miss Exception because
the entry was invalid, the MMU encodes the eight match lines and writes
them to the CW400x Index Register. If the TLB Miss Exception or UTLB
Miss Exception was simply due to no VPN match, the MMU writes the
value of the Random Register to the Index Register, and sets the P Bit.
Setting the P Bit suggests that the entry needs to be replaced; however,
the operating system does not need to use the P Bit.

4.3
MMU Modules

The following modules are part of the MMU:

♦ TLB

♦ MMU Stub

♦ GIR

4.3.1
TLB

The TLB is made of a 8 x 20 CAM, tightly coupled with a 8 x 23 RAM.
The CAM match lines drive the word lines in the RAM. The entire TLB
is a fully-customized, special high-density structure capable of writes and
reads to the CAM and RAM portions. It also performs Match Cycles. The
match lines are driven out so that the values can be encoded.

The CW400x must load the Index Register (IR) before writing to or read-
ing from the Hi (CAM) or Lo (RAM) words in the TLB. The IR drives the
address for a write or read to the TLB. Writes to the TLB occur at the
end of the first X2 Cycle, and because of this, the MMU generates a stall
to hold the CW400x in X2 for one more cycle, so it can complete the
write. Thus, every TLB write requires two X2 Cycles. TLB reads require
only one X2 Cycle.

The TLB also detects the TLB Shutdown condition (multiple matching
entries), and shuts down the read, to prevent permanent hardware
damage.

4.3.2
MMU Stub

The stand-alone MMU Stub Module is also a part of the MMU. This mod-
ule registers the address for every Bus Run Cycle and also translates
the CW400x address, if in kseg0 or kseg1, to the least significant
512 Mbytes of physical memory. In addition, it indicates that the address
received by the MMU Stub was in kseg0 or kseg1, and has been hard-
mapped, rather than mapped through the TLB (see Section 6.2, “MMU
Stub,” of the MiniRISC CW400x Microprocessor Core Technical Manual).
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4.3.3
GIR

The Global Instruction Register (GIR) is the specified interface to the
CW400x Data Bus, DATAP[31:0]. It guarantees that instructions are reg-
istered, since they are to be fetched at the end of the IF Stage of the
instruction. The GIR guarantees that a valid instruction is loaded during
the run cycle in which the IF Stage occurred. Thus, designers do not
need to design logic to:

♦ Detect stalls from other instructions

♦ Distinguish between data and instructions on the unified bus
(DATAP[31:0])

When the instruction is passed out of the GIR, it has reached the X Stage.

For more information on the GIR, see Section 2.9, “Global Instruction
Register Module (GIR).”

4.4
Signals

This section describes the signals that comprise the bit-level interface of
the MMU. Tables 4.1 through 4.3 summarize the MMU signals. Detailed
descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for active LOW signals end with an “N” and have an overbar over
their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

Table 4.1
MMU Input
Signals Summary

Input Source Definition

ADDRP[19:0] CW400x CW400x Virtual Address Bus

BBUS_STEALN BIU BBus Bus Steal

BIRDYP BIU BBus Instruction Data Ready

BSYSRESETN BIU Reset

CADDR_ERRORP CW400x CW400x Memory Address Error

CIP_DN CW400x CW400x Instruction/Data Indication

(Sheet 1 of 2)
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ADDRP[19:0] CW400x Virtual Address Bus Input
These signals are the 20 MSBs of the CW400x Address
Bus (the Virtual Page Number).

BBUS_STEALN
BBus Bus Steal Input
The BIU asserts this signal to inform the MMU that the
BIU has stolen the BBus, and the MMU should not drive
the BBus or write the value on the BBus into a register
(because the CW400x is not controlling the bus).

BIRDYP BBus Instruction Data Ready Input
The BIU asserts this signal to inform the MMU that
DATAP[31:0] contains valid data for an instruction fetch.
This is a control signal to the GIR. For more information
on the GIR, see Section 2.9, “Global Instruction Register
Module (GIR).”

CKILLXP CW400x CW400x Instruction Killed in Execute Stage

CMEM_FETCHP CW400x CW400x Memory Fetch Request

CSTOREP CW400x CW400x Store to Memory Request

MMUENP System Logic MMU Enable

MRUN_INN GOE System Running

PCLKP System Logic System Clock

Table 4.1 (Cont.)
MMU Input
Signals Summary

Input Source Definition

(Sheet 2 of 2)

Table 4.2
MMU Output
Signals Summary

Output Destination Definition

MADDROUTP[19:0] BIU CW400x Physical Address Bus

MNOCACHEP BIU MMU Non-Cacheable Page

MRUN_OUTP GOE MMU Running

MTLBMISSEXCP CW400x MMU TLB Miss Exception

MTLBMODEXCP CW400x MMU TLB Modified Exception

MUTLBMISSEXCP CW400x MMU User TLB Miss Exception

Table 4.3
MMU Bidirectional
Signals Summary

Bidirectional Connect Description

DATAP[31:0] CW400X CW400x Data Bus
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BSYSRESETN
Reset Input
The BIU asserts this signal to inform the MMU that the
system is in reset state, and to reset the MMU. This sig-
nal must be valid for at least one clock cycle, although
LSI Logic recommends that for future design flexibility,
this signal be valid for at least three clock cycles.

CADDR_ERRORP
CW400x Memory Address Error Input
The CW400x asserts this signal to inform the MMU that
a memory transaction address error has occurred. The
CW400x can assert this signal in either the IF or the X2
Stage. This information is necessary to store the Bad Vir-
tual Address in the BadVA Register.

CIP_DN CW400x Instruction/Data Indication Input
The CW400x drives this signal LOW to inform the MMU
that the decoded MMU MTC0/MFC0 Instruction has
entered the X2 Stage, and that the MMU (if
BBUS_STEALN is not asserted) can either write a regis-
ter or drive data on DATAP[31:0].

This signal qualifies the type of memory fetch when a
memory fetch is indicated by CMEM_FETCHP. The
CW400x drives this signal HIGH to indicate that it is per-
forming an instruction fetch. The CW400x drives this sig-
nal LOW to indicate that it is performing a data fetch.

CKILLXP CW400x Instruction Killed in Execute Stage Input
The CW400x asserts this signal to inform the MMU that
the instruction currently executing in the X Stage (X1 or
X2) has been cancelled due to an exception.

Asserting this signal causes the MMU to ignore:

♦ any MTC0 Instruction currently in the X1 or X2 Stage
before the write occurs to the register,

♦ or any MFC0 Instruction in the X1 Stage, before the
read data is driven on the bus.

If this signal is not asserted by the end of the X1 Stage,
the MMU drives the data during the X2 Stage of an
MFC0 Instruction.
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CMEM_FETCHP
CW400x Memory Fetch Request Input
The CW400x asserts this signal to inform the MMU that
the CW400x is now ready to load data from memory. This
indicates that the MMU is now able to drive
MADDROUTP[19:0] in a translation. The CW400x asserts
this signal in the X1 Stage. It is valid at the rising edge of
the clock in the X2 Stage.

CSTOREP CW400x Store to Memory Request Input
The CW400x asserts this signal to inform the MMU that
the CW400x is now ready to store data to memory. The
MMU can now drive MADDROUTP[19:0] in a translation.
The CW400x asserts this signal in the X1 Stage. It is
valid at the rising edge of the clock in the X2 Stage.

DATAP[31:0] CW400x Data Bus Bidirectional
These signals transfer data to and from the CW400x.

MADDROUTP[19:0]
CW400x Physical Address Bus Output
The MMU drives the 20 MSBs of the translated CW400x
Address Bus (the Page Table Entry) onto these signals.
When the MMU is not translating, these signals are a reg-
istered version of ADDRP[19:0].

MMUENP MMU Enable Input
Asserting this signal enables the MMU. It should be a bit
in a register elsewhere in the design, or it should be hard-
wired HIGH.

MNOCACHEP MMU Non-Cacheable Page Output
The MMU asserts this signal to indicate that the MMU is
preventing data from being stored into, or read from, the
cache.

MRUN_INN System Running Input
The GOE asserts this signal LOW to inform the MMU that
the system is running. The GOE deasserts this signal
HIGH to inform the MMU that the system is stalled. The
cause of this stall is unknown to the MMU.

MRUN_OUTP MMU Running Output
The MMU asserts this signal HIGH to indicate that it is
running. The MMU deasserts this signal LOW in the first
X2 Cycle of a MTC0 EntryHi/EntryLo Instruction and
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deasserts it one cycle later, indicating that the MMU
requires a stall cycle.

MTLBMISSEXCP
MMU TLB Miss Exception Output
The MMU asserts this signal to indicate that it has
detected an MMU TLB Miss Exception condition.

MTLBMODEXCP
MMU TLB Modified Exception Output
The MMU asserts this signal to indicate that it has
detected a MMU TLB Modified Exception condition.

MUTLBMISSEXCP
MMU User TLB Miss Exception Output
The MMU asserts this signal to indicate that it has
detected a MMU User TLB Miss Exception condition.

PCLKP System Clock Input
This signal is the global clock input. It is used to clock
elements in the CW400x Interface.

4.5
TLB Registers

This section describes:

♦ TLB Exception Processing Registers

♦ Other TLB Registers

4.5.1
TLB Exception
Processing
Registers

Table 4.4 lists the TLB Exception Processing Registers and their
addresses.

Table 4.4
TLB Exception
Processing
Register
Addresses

Address Register Name

0 Index

1 Random

4 Context (Read Only)

8 Bad Virtual Address (Read Only)
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4.5.1.1 Index Register (R0)

The Index Register contains the matching TLB entry for any TLB-
generated exception. If the exception was caused by no matching entries
in the TLB, the Index Register contains a random number from the Ran-
dom Register. This number is the address of a possible TLB entry to be
replaced.

The MiniRISC MMU Probe Bit differs in function from the R3000’s. The
MMU sets the Probe Bit when it writes the value from the Random Register
to the Index Register, not when executing the TLBP Instruction, as in the
R3000. The MMU sets the Index Register Probe Bit only on a TLB Miss. A
TLB hit-based exception does not cause the MMU to set the Probe Bit.

When attempting to write to the Index Register, the CW400x stalls and
drives the data bus in the X2 Stage of the pipeline. The CW400x writes
the register at the end of the X2 Stage. Index Register reads occur dur-
ing the X2 Stage when the CW400x has stalled and allowed the MMU
to drive the data bus.

The Index Register contains:

♦ the address of the TLB entry to be accessed in a MTC0 EntryHi,
MTC0 EntryLo, MFC0 EntryHi, or MFC0 EntryLo,

♦ the address of the matching TLB entry on any TLB-generated
exception,

♦ or a random number from the Random Register that is the address
of a TLB entry that can be replaced when there are no TLB matches.

Figure 4.4 shows the format of the Index Register. Upon reset, the con-
tent of this register is undefined.

Figure 4.4
Index Register

P Probe 31
The MMU sets this bit to indicate that no TLB entry
matched the Virtual Page Number and that the Index
Field contains a random entry address to be used for
replacement.

31 30 11 10 8 7 0

P Reserved Index Reserved
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Reserved Reserved Bits [30:11], [7:0]
These bits are not writable, and read as zero.

Index Index Bits [10:8]
The MMU uses these bits to:

♦ Indirectly index the address of the TLB entry of an
upcoming TLB access by a CW400x MTC0/MFC0
Instruction

♦ Indicate the value of a matching TLB entry when that
entry caused a TLB Exception

♦ Hold the random number from the Random Register
after a TLB Miss

4.5.1.2 Random Register (R1)

The MMU Random Register is smaller than the R3000 Random Register
because the MMU TLB is smaller (8 entries, instead of 64). Therefore,
the Random Field in the register only requires three bits, instead of six.
Entries can be made safe, or reserved, by writing a value to the Random
Field. For example, writing a five to the Random Register, makes Entries
0 through 4 safe.

The Random Register provides the address of a Random Entry in the
TLB that can be replaced when a TLB miss occurs. The Random Reg-
ister Module consists of a three-bit counter and a three-bit register that
is the output of the counter. The CW400x can load the register using the
MTC0 Random Instruction, and read the counter using the MFC0 Ran-
dom Instruction. The MMU loads the counter value into the register and
counts continually every run cycle, as long as the MMU is enabled. When
the counter reaches seven, the MMU reloads it with the value in the reg-
ister. Loading a value into the random register allows the CW400x to
reserve certain entries in the TLB.

When the CW400x attempts to write to the Random Register, the
CW400x stalls and drives the data bus in the X2 Stage of the pipeline.
The CW400x writes the register at the end of the X2 Stage. Random
Register reads occur during the X2 Stage when the CW400x has stalled
and allowed the MMU to drive the data bus.

Figure 4.5 shows the format of the Random Register. Upon reset, the
content of this register is undefined.
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Figure 4.5
Random Register

Reserved Reserved Bits [31:11], [7:0]
These bits are not writable, and read as zero.

Random Random Register Counter [10:8]
These bits contain the Random Register count. A write to
this register initializes the counter. A read from this regis-
ter reads from the counter.

4.5.1.3 Context Register (R4)

LSI Logic has included this register to maintain R3000 compatibility. It
provides a register and format useful for TLB Exception Handlers. How-
ever, the MiniRISC MMU does not implement the full R3000 Context Reg-
ister. LSI Logic has removed the Physical Table Entry (PTE) Base Field.
The BadVPN Field is in the same location as in the R3000, Bits [20:2].

The CW400x cannot write to this register. When the CW400x reads from
this register, the MMU drives Bits [30:12] of the BadVA Register onto the
data bus.

Figure 4.6 shows the format of the Context Register. Upon reset, the
content of this register is undefined.

Figure 4.6
Context Register

Res Reserved Bits [30:21], [1:0]
These bits are not writable, and read as zero.

BadVPN Bad Virtual Page Number [20:2]
This field holds the virtual page number from the BadVA
Register, which contains the virtual page number that
caused the last Address Error or MMU Exception.

31 11 10 8 7 0

Reserved Random Reserved

31 21 20 2 1 0

Res BadVPN Res
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4.5.1.4 Bad Virtual Address (BadVA) Register (R8)

The Bad Virtual Address (BadVA) Register is a read-only register that
saves the bad virtual address associated with an illegal access (an
address exception, either an address error or a TLB Exception). This reg-
ister saves only addresses for addressing errors (CW400x Cause Regis-
ter Exception Code AdEL, AdES, TLBMOD, TLBL, or TLBS), not bus
errors.

Figure 4.7 shows the format of the Bad Virtual Address Register. Upon
reset, the content of this register is undefined.

Figure 4.7
Bad Virtual Address
Register

BadVA Bad Virtual Address [31:0]
This field stores the virtual address that was the cause of
either an Address Error or an MMU Exception.

4.5.2
Other TLB
Registers

The EntryHi and EntryLo Registers are the TLB entries.

4.5.2.1 TLB EntryHi Register (R10)

This register refers to the CAM entries.

Figure 4.8
TLB EntryHi Register

VPN Virtual Page Number [31:12]
This 20-bit field contains the Virtual Page Number for an
entry in the TLB. This is the value compared with the 20
MSBs of the address from the CW400x Microprocessor
(CAM) to detect a TLB hit.

Reserved Reserved Bits [11:0]
These bits are not writable, and read as zero.

31 0

BadVA

31 12 11 0

VPN Reserved
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4.5.2.2 TLB EntryLo Register (R2)

This register refers to the RAM entries.

Figure 4.9
TLB EntryLo Register

PTE Page Table Entry [31:12]
This 20-bit field contains the Page Table Entry for each
entry in the TLB. This is the value that replaces the 20
MSBs of the address from the CW400x Microprocessor
to generate a physical address.

N Non-Cacheable 11
This bit set to one, indicates that caching this page is not
allowed.

D Dirty 10
This bit set to one, indicates that this line is dirty and is
writable. Writing to a page with this bit cleared to zero
causes a TLB Modified Exception.

V Valid 9
This bit set to one, indicates that this line is valid. An
access to a line with this bit cleared to zero causes a TLB
Load or TLB Store Miss Exception.

1 One 8
This bit is hardwired to one for MIPS compatibility.

Reserved Reserved Bits [7:0]
These bits are not writable, and read as zero.

4.6
Address
Translation
Functional
Waveform

Figure 4.10 shows the timing for a simple MMU address translation. A
Match Cycle can occur every cycle, and therefore is independent of the
instruction pipeline. A translation occurs for each Bus Run Cycle. The ris-
ing edge of the clock starts the Match Cycle. If there is a match, the
MMU drives data onto MADDROUTP[19:0]. The MNOCACHEP signal is
directly driven from the RAM contents, or from a kseg1 hard translation.
Asserting MNOCACHEP causes the BIU to invalidate any cache access

31 12 11 10 9 8 7 0

PTE N D V 1 Reserved
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for the current transaction. The MMU determines the type of TLB
Exception from the values in the CAM array. These values are available
after the rising clock edge.

Figure 4.10 is also valid for nontranslated addresses. If the translation
does not occur, the MMU registers the address and drives it onto
MADDROUTP[19:0] after the clock edge, just as it drives a translated
address.

For a detailed description of MMU register reading and writing, see Sec-
tion 2.5, “Read/Write Transactions.”

Figure 4.10
MMU Address
Translation

4.7
TLB Exceptions

The following exceptions are valid for the MiniRISC MMU. None of them
are maskable. For more information on exceptions, see Chapter 5 of the
MiniRISC CW400x Microprocessor Core Technical Manual.

Three types of TLB exceptions that can occur in the MiniRISC MMU:

♦ If the input Virtual Page Number (VPN) does not match the VPN of
any TLB entry, it causes a:

– UTLB Miss, for kuseg

– TLB Miss, for kseg2

♦ If an entry matches, but the Valid Bit is not set, it causes a TLB Miss.

♦ If the dirty bit in a matching TLB entry is not set and the access is
a write, it causes a TLB Modified Exception.

PCLKP

CSTOREP
CMEM_FETCH

MRUN_INN

ADDRP[19:0]

MADDROUTP[19:0]

MNOCACHEP

MTLBMISSEXCP
MUTLBMISSEXCP

MTLBMODEXCP
MD96.196

Virtual Address

Physical Address

Virtual Address Virtual Address
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For more information on kuseg and kseg2, see Section 6.2 of the
MiniRISC CW400x Microprocessor Core Technical Manual.

4.7.1
TLB Miss
Exception

4.7.1.1 Cause

A TLB Miss Exception occurs when the MMU does not map a virtual
address reference to memory and the most significant bit of the address
is one, or when a virtual address reference to memory matches an
invalid TLB Entry (the Valid Bit in the matching EntryLo Register is zero).

4.7.1.2 Handling

The CW400x branches to the General Exception Vector (0x80000080 or
0xBFC00180) and sets the TLBL or TLBS Code in the Cause Register
ExcCode Field to indicate whether the miss was due to an instruction
fetch, a load operation (TLBL), or a store operation (TLBS).

The EPC Register points to the instruction that caused the exception,
unless the instruction is in a branch delay slot and the branch is taken.
In that case, the EPC Register points to the branch instruction that pre-
ceded the exceptional instruction, and the CW400x sets the BD Bit of the
Cause Register.

The MMU saves the KUp, IEp, KUc, and IEc Bits of the Status Register
into the KUo, IEo, KUp, and IEp Bits, respectively, and clears the KUc
and IEc Bits.

When this exception occurs, the BadVA and Context Registers contain
the virtual address that failed address translation. If the exception was
caused by an invalid entry, the Index Register contains the address of
the invalid entry. If the exception was caused by an unmapped reference,
the Index Register contains the value from the Random Register, and the
P Bit is set. The value in the Random Register is the address of a sug-
gested entry to be replaced.

4.7.1.3 Servicing

The Index Register refers to the invalid or suggested entry to be
replaced. The operating system should load the entry's EntryLo Register
with the appropriate PTE that contains the physical page frame and
access control bits.
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4.7.2
TLB Modified
Exception

4.7.2.1 Cause

A TLB Modified Exception occurs when a store operation's virtual
address reference to memory matches a TLB entry that is marked valid
but not dirty (the Valid Bit is set, but the Dirty Bit is not set for the match-
ing entry).

4.7.2.2 Handling

The CW400x branches to the General Exception Vector (0x80000080 or
0xBFC00180) and sets the TLBMOD Code in the Cause Register
ExcCode Field.

The EPC Register points to the instruction that caused the exception,
unless the instruction is in a branch delay slot and the branch is taken.
In that case, the EPC Register points to the branch instruction that pre-
ceded the exceptional instruction, and the CW400x sets the BD Bit of the
Cause Register.

The MMU saves the KUp, IEp, KUc, and IEc Bits of the Status Register
into the KUo, IEo, KUp, and IEp Bits, respectively, and clears the KUc
and IEc Bits.

When this exception occurs, the BadVA and Context Registers contain
the virtual address that failed address translation.

4.7.2.3 Servicing

The BadVA Register and Index Register hold the address and index of
the failing virtual address and entry. The operating system should trans-
fer control to the appropriate system routine.

4.7.3
UTLB Miss
Exception

4.7.3.1 Cause

A virtual address reference to unmapped user memory space (the most
significant bit in the address is zero) causes a UTLB Miss Exception.

4.7.3.2 Handling

The CW400x branches to the UTLB Miss Exception Vector (0x80000000
or 0xBFC00100) and sets the TLBL or TLBS Code in the Cause Register
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ExcCode Field to indicate whether the miss was due to an instruction
fetch or load operation (TLBL) or a store operation (TLBS).

The EPC Register points to the instruction that caused the exception,
unless the instruction is in a branch delay slot and the branch is taken.
In that case, the EPC Register points to the branch instruction that pre-
ceded the instruction that caused the exception, and the CW400x sets
the BD Bit of the Cause Register.

The MMU saves the KUp, IEp, KUc, and IEc Bits of the Status Register
into the KUo, IEo, KUp, and IEp Bits, respectively, and clears the KUc
and IEc Bits.

When this exception occurs, the BadVA and Context Registers contain
the virtual address that failed address translation. The Index Register
contains the value from the Random Register and the P Bit is set, indi-
cating no matching TLB entries.

4.7.3.3 Servicing

The value in the Index Register refers to a suggested entry to be
replaced. The operating system should load the entry's EntryLo Register
with the appropriate PTE that contains the physical page frame and
access control bits. The operating system should load the respective
EntryHi with the Virtual Page Number.
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4.8
Differences
from the R3000
MMU

This section explains the differences between the MiniRISC MMU Build-
ing Block and the MIPS R3000 MMU.

4.8.1
Writing and
Reading MMU
Registers

Each register in the MiniRISC MMU is part of the CP0 Register Set, but
the MMU does not have access to the internal CW400x data bus. There-
fore, the CW400x must stall at least one cycle to allow the external data
bus (DATAP[31:0]) to be driven with the data for the MTC0 or MFC0
Instruction. The MMU ignores the address bus (ADDRP[31:0]) during an
MTC0/MFC0 Instruction, since the instruction itself contains all informa-
tion necessary for the write.

In contrast to the R3000, the MiniRISC MMU allows direct TLB access.
This makes the TLBP, TLBR, TLBWI, and TLBWR Instructions obsolete.
The MTC0/MFC0 EntryHi/EntryLo Instructions directly access the data in
the CAM/RAM instead of requiring an MTC0 EntryHi/TLBWI-type instruc-
tion combination. This difference makes the MMU design simpler and
smaller, as well as more testable. To access a TLB entry, software must
load the Index Register with the value to be accessed, then perform a
MTC0/MFC0 EntryHi/EntryLo Instruction.

4.8.2
Unique
Features of the
MiniRISC MMU

Other differences between the MiniRISC MMU and a MIPS R3000 MMU
are:

♦ The MMU only implements an 8-entry TLB, there are no PID Fields
and no G Bit. To maintain a compatibility with MIPS code, the G Bit
is set HIGH for MFC0 EntryLo Instructions. All TLB entries are
assumed to be global.

♦ The Context Register only implements the BadVPN Field, not the
PTE Base Field.
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4.9
Operation
Peculiarities
and Details

This section describes conditions in which the pipeline, or events, cause
unexpected results unless these conditions are prevented.

4.9.1
MTC0 X2/IF TLB
Miss
Peculiarities

This section explains scenarios in which an exception in the IF Stage of
an instruction following a MTC0/MFC0 Instruction (whose action occurs
one cycle later, in the X2 Stage) causes an unexpected result.
Figure 4.11 illustrates the pipeline stages for each instruction when this
situation occurs.

Figure 4.11
MTC0
Inconsistency
Pipeline

♦ Index Register (IR)

If a write to the IR is followed by an instruction that causes a TLB
Miss Exception due to a faulty Instruction Fetch (IF), the MMU gen-
erates the exception at the end of the IF Stage. The write to the IR
from the MTC0 IR Instruction does not occur until the end of the X2
Stage, which causes the MMU to write this value over the value gen-
erated by the IF Exception. This causes an incorrect value to be
passed to the operating system. In addition, if the MTC0 IR, MFC0
IR sequence is followed by an instruction generating a TLB Miss
Condition in the IF Stage, the IF causes the MMU to overwrite the
IR with the value causing the exception, before the MFC0 Instruction
can do the IR read. This overwrite causes the register to have an
unexpected value.

♦ Translation Lookaside Buffer (TLB)

The state of the TLB must be preserved so the CW400x can exam-
ine it. If, however, an MTC0 EntryHi or MTC0 EntryLo Instruction

IF X1 X2 WB

IF X WB

MTC0 IR

Next instruction

Write to Register

Write to IR due to
TLB Miss Exception MD96.197
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occurs, followed by an IF TLB Miss, the instruction might replace the
entry in the TLB that caused the IF Exception.

♦ Random Register (RR)

The MMU might produce an unexpected result when using the RR
to protect low address entries in the TLB. If the MTC0 Instruction is
an MTC0 RR, increasing the value held in the RR to protect more
addresses (say from 1 to 3), and the instruction following creates an
IF TLB Miss, the RR address written to the IR might be in the region
of the TLB that the previous MTC0 RR is attempting to protect (1 or
2). In this case, if the value in the IR is read and used as a replace-
ment location for a new TLB entry, the address might be inside the
newly protected area. To prevent this condition, ensure that a MCT0
RR Instruction that increases the protected area is not followed by
an instruction that can cause a TLB Miss. The converse situation
(decreasing the protected area) can cause a nonoptimal page
replacement scheme for the missed page, causing fewer locations
than possible to be considered.

Programmers should avoid creating software that executes an
MTC0/MFC0 Instruction before any instruction that might cause an IF
Exception. Software should only perform TLB maintenance in non-
mapped space. If this is not possible, the programmer must ensure that
the page containing the instruction that follows the MTC0 Instruction is
valid, and not on a page that is not loaded into the TLB.

There is another case where a previous instruction's write to the MMU
registers overwrites the current instruction's writes. However, in this case,
the overwrite does not cause an error, so nothing special need be done.
This situation occurs, for example, when the instruction labeled MTC0 IR
in Figure 4.11 is a Store or Load Instruction with a TLB Miss Exception
in the X2 Stage, followed by any instruction generating a TLB Miss in the
IF Stage. The write to the IR in the X2 Stage would, in this case, be
caused by an exception, not an MTC0 Instruction. The exception from
the store or load should be taken. In this case, the correct exception
overwrites the write to the IR because of the second exception.
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4.9.2
Exceptions
Between MTC0
EntryHi/EntryLo
Instructions

Unlike the R3000, the MiniRISC MMU TLB EntryHi and EntryLo Regis-
ters are actually located in the TLB. Because of this difference, the TLB
Entry is not updated in one cycle, as in the R3000. If an exception occurs
between a MTC0 EntryHi and an MTC0 EntryLo Instruction, the MMU
TLB enters an intermediate state, only partially updated. (In the R3000,
these instructions only write to separate registers that are then loaded
simultaneously into the TLB with a TLBW Instruction. This causes the
entire entry to be written at once, removing the possibility of an interme-
diate state stored in the TLB if an exception occurs.)

Because of this condition, it is necessary to prevent exceptions and inter-
rupts from occurring between MTC0 EntryHi and EntryLo Instructions (in
either order) to maintain R3000-compatibility.

4.9.3
Register
Consistency in
the Pipeline

It is possible to corrupt all of the MMU registers unexpectedly when a
WB Exception in one instruction is followed by an IF Exception (an
address error, or MMU exception, that causes a write to the MMU regis-
ters) in the following instruction (see Figure 4.12).

Figure 4.12
WB Exception
Followed by an IF
Exception

Since WB Exceptions do not write the MMU registers, and it is not known
until after the IF Exception occurs that the registers should not be written,
this condition unexpectedly corrupts the MMU registers. Therefore, if the
value in the registers is important, it is important to ensure that this con-
dition does not occur. In general, if these registers are important, LSI
Logic recommends that the user prevent the generation of an IF or X2
Exception in the subsequent code (usually the exception handler).

This condition also occurs during simultaneous exceptions. The CP0 pri-
oritizes exceptions based on the type of exception and which stage of
the pipeline it is in. Therefore, it is possible that the MMU exception (or

IF X

IF X WB

First instruction

Next instruction

WB Exception

IF Exception

WB

MD96.198
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address error) will cause a lower priority exception than the exception
that is actually recognized. However, this exception writes the MMU reg-
isters, causing the MMU registers to be in an unexpected state.

4.9.4
TLB
Initialization

Initializing the TLB requires at least one NOP Cycle with a valid clock
signal, and that all control inputs be inactive. The MMU generates this
required NOP when executing an MT/MFC0 to those MMU registers not
in the TLB.

To properly and quickly initialize the TLB and prevent an intermediate
state, assert BSYSRESETN for at least one, preferably three clock
cycles. Asserting BSYSRESETN forces all control inputs LOW and
allows the gated clock to clock the TLB during a reset cycle.
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Chapter 5
Basic BIU and Cache
Controller (BBCC)

This chapter describes the Basic BIU and Cache Controller (BBCC)
building block for the CW400x Core. For information on how to add or
remove a write buffer, see Chapter 6.

This chapter contains the following sections:

♦ Section 5.1, “Overview,” page 5-1

♦ Section 5.2, “Features,” page 5-2

♦ Section 5.3, “Functional Description,” page 5-3

♦ Section 5.4, “Signals,” page 5-8

♦ Section 5.5, “Interfaces,” page 5-25

♦ Section 5.6, “Cache-Miss Penalty, BBus Latency,” page 5-65

♦ Section 5.7, “Adding Cache,” page 5-66

♦ Section 5.8, “BBus Arbitration,” page 5-80

♦ Section 5.9, “Timing Considerations,” page 5-83

5.1
Overview

The Basic BIU and Cache Controller (BBCC) is a generic bus interface
unit and cache controller for use with the CW400x Microprocessor Core.
It serves as the CW400x’s interface to on-chip memory (OCM), the
cache RAMs, and other devices. Figure 5.1 shows a block diagram of a
system using the CW400x and the BBCC.
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Figure 5.1
CW400x System
with the BBCC

5.2
Features

The BBCC supports:

♦ Two-way set associative or direct-mapped Instruction-cache
(I-cache)

♦ Direct-mapped Data-cache (D-cache)

♦ Cache sizes of 1 to 32 Kbytes (for D-cache and each I-cache set)

♦ Locking of I-cache Set 0 lines

♦ Snooping on I-cache and/or D-cache

♦ Software Cache Test Mode

♦ Hardware Cache Test Mode

♦ Minimum cache miss penalty of two clock cycles

♦ 1-8 deep write buffer (one internal entry, with support for seven exter-
nal write buffer entries)

♦ Load Scheduling

♦ Instruction Streaming

♦ Data Streaming

CW400x

BBCC

CBus

OCM

Write
Buffer

Caches

BBus

Device

Device

MD96.199
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♦ Read Priority

♦ Block Fetching

♦ Burst Writes

♦ Reset Control

♦ System Configuration Register

5.3
Functional
Description

The BBCC consists of four modules:

♦ Cache Controller (CC)

♦ Queue Controller (QC)

♦ BBus Controller (BC)

♦ System Configuration Module (BSYS)

Figure 5.2 shows the communication between the modules and which
modules control the external interfaces.

Figure 5.2
BBCC Internal
Block Diagram

QC

CC

BC
CW400x BBus

BSYS

Write
OCMBuffer

Reset and
System

System Configuration

Refill Control

Queue Information

Queue Control

Cache Information

Cache RAMs

Register Control

Configuration

(CBus)

Register Output

MD96.200
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5.3.1
Cache
Controller (CC)

The Cache Controller (CC) controls the system instruction and data
caches. It identifies instruction and data transactions, checks if the
appropriate line is in cache, and (if the line is in cache) performs the
requested transaction. The CC also informs the QC of the status of the
transaction (cache hit/miss and other cache-related information), and
allows the BC to read and write the cache and Tag RAMs.

The CC has the following features:

♦ Cache Configuration: The CC allows for the I-cache to be config-
ured to be direct-mapped or two-way set associative. The D-cache is
always direct-mapped.

♦ Instruction Set 0 Line-locking: Each line of I-cache Set 0 can be
locked (Lock Bit) to guarantee that the contents of the selected lines
remain in cache.

♦ Flexible Cache Size: The CC supports maximum cache sizes of
64 Kbytes for I-cache (32 Kbytes for each set) and 32 Kbytes for
D-cache. The minimum supported size is 1 Kbyte for I-cache
(2 Kbytes for two-way set associative) and 1 Kbyte for D-cache.
Smaller I-caches can be supported with a small amount of additional
logic.

♦ Software Cache Test Mode: The CC allows the CW400x to directly
write/read to/from the cache and Tag RAMs.

♦ Direct Cache Access: The CC allows the BC to directly access the
cache and Tag RAMs. This mechanism can be used to perform
Hardware Test of the cache RAMs.

♦ Snooping: The CC provides logic to check the tags and invalidate
lines in the D-cache and I-cache. If snooping is performed on only
D-cache or I-cache, each snoop requires two clock cycles. If both
D-cache and I-cache snooping are performed, each snoop requires
four clock cycles.

♦ Integrated Instruction-cache Set 0 and Data-cache: I-cache Set 0
and D-cache share the same physical data and Tag RAMs.

5.3.2
Queue
Controller (QC)

The Queue Controller (QC) orders memory requests to the main memory.
It consists of three queues:

♦ Instruction Fetch Queue (one entry)
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♦ Data Fetch Queue (one entry)

♦ Data Store Queue (one internal entry, with the ability to add up to
seven additional write buffer entries external to the BBCC)

The QC monitors the CW400x memory transaction signals, then enters
requests into the appropriate queues. The QC arbitrates requests in the
queue and generates transaction requests to the BC. The QC also issues
the Ready Signals to the CW400x, and when necessary, stalls the system.

The QC has the following features:

♦ Burst Writes: When consecutive stores are to the same page, and
the BBus device is able to handle burst writes, the QC gives priority
to stores.

♦ Read Priority: If configured to do so, the QC gives data fetches
higher priority than stores, when possible.

♦ OCM Control: The QC issues the write enable and output enable
signals to the OCM.

♦ Variable Write Buffer Depth: One store queue entry is internal to
the BBCC, and up to seven additional write buffer entries can be
added externally.

5.3.3
BBus Controller
(BC)

The BBus is the Basic Bus, which serves as a generic interface to
memory, DMA controllers, DRAM controllers, and other devices. Its
characteristics are:

♦ 32-bit bus with separate address and data buses

♦ Zero to n wait states (one-cycle transactions are possible)

♦ Burst transactions (BBCC supports bursts of 1, 2, 4, and 8 words)

♦ Back to back transactions

♦ Maximum bandwidth of 200 Mbytes/s at 50 MHz

♦ Bus error and bus retry reporting

♦ Multiple bus masters possible

For more information on the BBus, see Section 5.5.2, “Basic Bus (BBus).”

The BBus Controller (BC) handles the BBus. The BC handles requests
by the CW400x, and uses a direct cache access interface to refill the
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cache with instructions or data. The BC also uses a direct cache access
interface to refill the caches during Hardware Cache Test Mode.

The BC has two modes: Master and Slave. When the BC is master, there
are two types of requests: memory reads and memory writes. When the
BC is a slave (when an external device is granted the bus and starts a
BBus transaction), the BC can perform a direct cache access operation,
or snoop on the BBus transaction.

The BC has the following features:

♦ Block Fetching Support

♦ System Configuration Control

♦ Snooping Support

5.3.4
System
Configuration
Module (BSYS)

The System Configuration Module issues reset signals to the system, and
contains the System Configuration Register. The BC controls the System
Configuration Register. When the CW400x loads or stores to the address
0xBFFF0000, the transaction accesses the System Configuration Register
rather than memory. All the bits of the System Configuration Register are
output by the BBCC on BS_CONFIGP[31:0]. Some of the bits are pre-
defined; those that are not predefined are available for use by the system
designer. Figure 5.3 shows the System Configuration Register.

Figure 5.3
System Configuration
Register

A Available 31, [29:14]
These bits are currently unassigned and are available.

W Write Buffer Enable 30
Setting this bit, enables the Write Buffer.

E Data Error 13
The BBCC sets this bit when a Bus Error occurs during
a data load/store. Writing a zero to this bit, clears it.

31 30 29 14 13 12 10 9 8 7 6 5 4 3 2 1 0

A W A E PS CM R DRS D IRS 1E IE
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PS Page Size [12:10]
Writing these bits, informs the BBCC of the page size so
it can determine whether stores are burst writes (consec-
utive stores to the same page).

CM Cache Mode [9:8]
Writing these bits, sets the Cache Mode.

R Read Priority Enable 7
Setting this bit, causes the BBCC to give loads higher pri-
ority than stores, when possible.

DRS D-Cache Block Refill Size [6:5]
Writing these bits, sets the D-cache Block Refill Size.

D D-Cache Enable 4
Setting this bit, enables the Data Cache.

IRS I-Cache Block Refill Size [3:2]
Writing these bits, sets the I-cache Block Refill Size.

PS Page Size PS Page Size

000 16 words 100 256 words

001 32 words 101 512 words

010 64 words 110 1024 words

011 128 words 111 2048 words

CM Cache Mode

00 Normal

01 I-Cache Software Test - Data RAM

10 I-Cache Software Test - Tag RAM

11 D-Cache Software Test - Tag RAM

DRS Refill Size

00 1 word

01 2 words

10 4 words

11 8 words
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1E I-Cache Set 1 Enable 1
Setting this bit, enables the Instruction Cache Set 1.

IE I-Cache Enable 0
Setting this bit, enables the Instruction Cache.

5.4
Signals

This section describes the signals that comprise the bit-level interface of
the BBCC. Tables 5.1 through 5.3 summarize the BBCC signals. Detailed
descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for active LOW signals have an overbar over their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

IRS Refill Size

00 1 word

01 2 words

10 4 words

11 8 words

Table 5.1
BBCC Input Signals
Summary

Input Source Description

ADDRP[14:2] CW400x CW400x Address Bus

BADDRPI[31:2] BBus BBus Address Input Bus

BCACHE_SELP BBus Hardware Cache Test Mode

BDATAPI[31:0] BBus BBus Data Input Bus

BDSNOOP User-Specified Value Data Snoop Enable

BERRORN BBus BBus Bus Error

BGNTN BBus BBus Bus Grant

BIP_DNI BBus BBus Instruction/Data Input Indicator

BISETP BBus BBus Instruction Cache Set

BISNOOP User-Specified Value Instruction Snoop Enable

BIUOEN Global Output Enable BBCC Data Output Enable

(Sheet 1 of 3)
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BLKGNTN BBus BBus Block Transaction Grant

BOCMEXISTP User-Specified Value On-Chip Memory (OCM) Exists Indicator

BOCMSELP OCM OCM Memory Transaction

BRDYNI BBus BBus Ready Input

BRESETN System Logic/Reset Module Reset

BRETRYN BBus BBus Bus Retry

BRUN_INN Global Output Enable Run Enable

BSTARTNI BBus BBus Transaction Start Input

BTAGTESTN BBus BBus Tag RAM Transaction

BTXNI BBus BBus Transaction Indicator Input

BWBURST_REQN BBus BBus Burst Write Request

BWRNI BBus BBus Write Transaction Indicator Input

CBYTEP[3:0] CW400x CBus Byte Enables

CIP_DN CW400x Instruction/Data Indicator

CKILLMEMP CW400x Kill Memory Transaction Request

CMEM_FETCHP CW400x Fetch Indicator

CSTOREP CW400x Store Indicator

IDLCKP I-Set 0/D Tag RAM Lock Bit

IDMATCHP I-Set 0/D Tag Match Logic Tag Match

IDVLDP[3:0] I-Set 0/D Tag RAM Valid Bits

I1MATCHP I-Set 1 Tag Match Logic Tag Match

I1VLDP[3:0] I-Set 1 Tag RAM Valid Bits

MADDROUTP[31:2] MMU Mapped Address

MEARLYKS1P MMU MMU Early kseg1 Indicator

MNOCACHEP MMU Mapped Address Not Cacheable

PCLKP System Logic System Clock

SE System Logic Scan Enable

SI Scan Chain Scan Data In

TST System Logic Test Enable

WB_ADDRP[31:2] Write Buffer Write Buffer Address

WB_ARRIVEBFLDP Write Buffer Write Buffer Store Arrived Before Load

WB_BYTEP[3:0] Write Buffer Write Buffer Byte Enables

Table 5.1 (Cont.)
BBCC Input Signals
Summary

Input Source Description

(Sheet 2 of 3)
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WB_CFGP Write Buffer Write Buffer Store to System Configuration Register

WB_DATAP[31:0] Write Buffer Write Buffer Data

WB_FULLP Write Buffer Write Buffer Full

WB_STPNDP Write Buffer Write Buffer Store Pending

WB_VWBFLDP Write Buffer Write Buffer Valid Write Before Load

Table 5.1 (Cont.)
BBCC Input Signals
Summary

Input Source Description

(Sheet 3 of 3)

Table 5.2
BBCC Output Signals
Summary

Output Destination Description

BADDRPO[31:2] BBus BBus Address Output Bus

BB_SLVDOEN Global Output Enable Slave Data Output Enable

BBUS_STEALN Various, External Logic CBus Bus Steal Indicator

BCPURESETN CW400x CW400x Reset

BDATAPO[31:0] BBus BBus Data Output Bus

BDOEP BBus BBCC Data Output Enable Request

BDRDYP CW400x Load Data Ready

BIBERRORP CW400x Instruction Bus Error

BIP_DNO BBus BBus Instruction/Data Output Indicator

BIRDYP CW400x Instruction Data Ready

BLKREQN BBus BBus Block Transaction Request

BMCNTLOEP BBus BBCC Master Control Output Enable Request

BQ_OCMOEP OCM OCM Output Enable

BQ_OCMWEN OCM OCM Write Enable

BRDYNO BBus BBus Ready Output

BREQN BBus BBus Bus Request

BRUN_OUTP Global Output Enable Run Enable Output

BSCNTLOEP BBus BBus Slave Control Output Enable Request

BS_CONFIGP[31:0] Various, External Logic System Configuration Register

BSNOOPWAITP BBus BBus Snoop Wait

(Sheet 1 of 3)
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BSTARTNO BBus BBus Transaction Start Output

BSYSRESETN Various, External Logic Reset

BTXNO BBus BBus Transaction Indicator Output

BWBURST_GNTN BBus BBus Burst Write Grant

BWRNO BBus BBus Write Transaction Indicator Output

BW_ARRIVEBFLDP Write Buffer Store Arrived Before Load

BW_CFGSELP Write Buffer Store to System Configuration Register

BW_DFDONEP Write Buffer Data Fetch Done

BW_DFQADDRP[3:0] Write Buffer Data Fetch Queue Address Bits

BW_DFQUPDATEP Write Buffer Data Fetch Queue Update

BW_RDSTQP Write Buffer Read Store Queue

BW_STPNDP Write Buffer Store Pending

BW_WRSTQP Write Buffer Write Store Queue

BYTENO[3:0] BBus BBus Byte Enables Output

BZ_IDDCLKP I-Set 0/D Data RAM I-Cache Set 0/D-Cache Data RAM Clock

BZ_IDDOEP I-Set 0/D Data RAM I-Cache Set 0/D-Cache Data RAM Output Enable

BZ_IDDWEP[3:0] I-Set 0/D Data RAM I-Cache Set 0/D-Cache Data RAM Write Enables

BZ_IDTCLKP I-Set 1 Tag RAM I-Cache Set 0/D-Cache Tag RAM Clock

BZ_IDTWEP[5:0] I-Set 1 Tag RAM I-Cache Set 0/D-Cache Tag RAM Write Enables

BZ_IDT_OEN External 3-state Gates I-Cache Set 0/D-Cache Tag RAM Output Enable

BZ_INDEXP[12:0] Cache RAMs Cache RAM Index

BZ_IP_DN Cache RAMs Instruction/Data Cache Select

BZ_IP_DN_L Tag Match Logic Instruction/Data Cache Select, Registered

BZ_I1DCLKP I-Set 1 Data RAM I-Cache Set 1 Data RAM Clock

BZ_I1DOEP I-Set 1 Data RAM I-Cache Set 1 Data RAM Output Enable

BZ_I1DWEP I-Set 1 Data RAM I-Cache Set 1 Data RAM Write Enable

BZ_I1TCLKP I-Set 0/Data Tag RAM I-Cache Set 1 Tag RAM Clock

BZ_I1TWEP[4:0] I-Set 0/Data Tag RAM I-Cache Set 1 Tag RAM Write Enables

Table 5.2 (Cont.)
BBCC Output Signals
Summary

Output Destination Description
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BZ_I1T_OEN External 3-state Gates I-Cache Set 1 Tag RAM Output Enable

BZ_LOCKP I-Set 0/Data Tag RAM Cache RAM Lock Bit

BZ_TAGP[21:0] Cache Tag RAMs Cache RAM Tag

BZ_TAG4MATCHP[21:0] Tag Match Logic Tag for Tag Match

BZ_VALIDP[3:0] Cache Tag RAMs Cache RAM Valid Bits

SO Scan Chain Scan Data Out

Table 5.2 (Cont.)
BBCC Output Signals
Summary

Output Destination Description

(Sheet 3 of 3)
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ADDRP[14:2] CW400x Address Bus Input
The CW400x drives the lower bits of the unmapped
address for CBus transactions onto these inputs. These
signals are valid in the clock cycle before the run cycle.

BADDRPI[31:2]
BBus Address Input Bus Input
When the BBCC is a slave on the BBus, the BBus master
drives the address bus for BBus transactions onto these
inputs.

BADDRPO[31:2]
BBus Address Output Bus Output
When the BBCC is a master on the BBus, the BBCC drives
the address for BBus transactions onto these outputs.

BB_SLVDOEN Slave Data Output Output
This signal is valid when the BBCC asserts
BBUS_STEALN. The BBCC asserts this signal to the Glo-
bal Output Enable Module (GOE) to indicate that in the next
clock cycle, one of the cache RAMs will drive DATAP[31:0].

BBUS_STEALN
CBus Bus Steal Output
The BBCC asserts this signal to indicate that it will control
driving data on DATAP[31:0] during the next clock cycle.

BCACHE_SELP
Hardware Cache Test Mode Input
This signal connects to the BBus. Asserting this signal
causes the BBCC to interpret BBus transactions as Hard-
ware Cache Mode transactions.

BCPURESETN
CW400x Reset Output
The BBCC asserts this signal to reset the CW400x.

BDATAPI[31:0]
BBus Data Input Bus Input
The BBus device drives the input data for BBus transac-
tions onto these signals.

Table 5.3
BBCC Bidirectional
Signals Summary

Bidirectional Connect Description

DATAP[31:0] Various, External Logic Data Bus
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BDATAPO[31:0]
BBus Data Output Bus Output
The BBCC drives the output data for BBus transactions
onto these signals.

BDOEP BBus Data Output Enable Request Output
This signal is provided for systems with a 3-state BBus
design. The BBCC asserts this signal to inform the BBus
output enable logic that the BBCC wants to place
BDATAPO[31:0] on the appropriate 3-state bus.

BDRDYP Load Data Ready Output
The BBCC asserts this signal to inform the CW400x that
DATAP[31:0] contains valid data for a data fetch.

BDSNOOP Data Snoop Enable Input
Asserting this signal causes the BBCC to snoop on the
D-cache when writes are performed by an external mas-
ter on the BBus.

BERRORN BBus Bus Error Input
Asserting this signal informs the BBCC that the current
BBus transaction terminated with an error.

BGNTN BBus Bus Grant Input
Asserting this signal informs the BBCC that it has been
granted mastership of the BBus.

BIBERRORP Instruction Bus Error Output
The BBCC asserts this signal to inform the CW400x that
the current instruction fetch terminated with an error.

BIP_DNI BBus Instruction/Data Input Indicator Input
This signal is used during Hardware Cache Test Mode.
The BBus drives this signal HIGH to inform the BBCC
that the I-cache is being accessed. The BBus drives this
signal LOW to inform the BBCC that the D-cache is being
accessed.

BIP_DNO BBus Instruction/Data Output Indicator Output
The BBCC drives this signal HIGH to indicate that an
instruction transaction is being performed on the BBus.
The BBCC drives this signal LOW to indicate that an data
transaction is being performed on the BBus.
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BIRDYP Instruction Data Ready Output
The BBCC asserts this signal to inform the CW400x that
DATAP[31:0] contains valid data for an instruction fetch.

BISETP BBus Instruction Cache Set Input
This signal is used during Hardware Cache Test Mode.
The BBus drives this signal HIGH to inform the BBCC
that the I-cache Set 1 is being accessed. The BBus
drives this signal LOW to inform the BBCC that the
I-cache Set 0 is being accessed.

BISNOOP Instruction Snoop Enable Input
Asserting this signal causes the BBCC to snoop on the
I-cache when writes are performed by an external master
on the BBus.

BIUOEN BBCC Data Output Enable Input
The Global Output Enable Module (GOE) asserts this
signal to cause the BBCC to drive DATAP[31:0].

BLKGNTN BBus Block Transaction Grant Input
Asserting this signal informs the BBCC that it has been
granted permission to perform a block transaction on the
BBus.

BLKREQN BBus Block Transaction Request Output
The BBCC asserts this signal to request a block transac-
tion on the BBus.

BMCNTLOEP BBCC Master Control Output Enable Request Out-
put
This signal, which connects to the BBus, is provided for
systems with a 3-state BBus design. The BBCC asserts
this signal to inform the BBus output enable logic that the
BBCC is attempting to place BADDRPO[31:2], BIP_DNO,
BSTARTNO, BTXNO, and BWRNO on their appropriate
3-state buses.

BOCMEXISTP On-Chip Memory (OCM) Exists Indicator Input
Asserting this signal informs the BBCC that the system
has OCM.

BOCMSELP OCM Memory Transaction Input
Asserting this signal informs the BBCC that the current
CBus transaction is for the OCM.
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BQ_OCMOEP OCM Output Enable Output
The BBCC asserts this signal to cause the OCM to drive
its data onto DATAP[31:0].

BQ_OCMWEN OCM Write Enable Output
This output connects to the OCM. The BBCC asserts this
signal to enable writes to the OCM.

BRDYNI BBus Ready Input Input
Asserting this signal informs the BBCC that the BBus
transaction will finish at the end of the current clock cycle.

BRDYNO BBus Ready Output Output
The BBCC asserts this signal to indicate that the BBus
transaction will finish at the end of the current clock cycle.

BREQN BBus Bus Request Output
The BBCC asserts this signal to request mastership of
the BBus.

BRESETN Reset Input
Asserting this signal causes the BBCC to reset and gen-
erate the BCPURESETN and BSYSRESETN signals.

BRETRYN BBus Bus Retry Input
Asserting this signal informs the BBCC that it should retry
the current BBus transaction.

BRUN_INN Run Enable Input
The GOE asserts this signal to inform the BBCC that the
next clock cycle will be a run cycle.

BRUN_OUTP Run Enable Output Output
The BBCC asserts this signal to the GOE to enable the
system to run. The BBCC deasserts this signal to the
GOE to cause the system to stall.

BSCNTLOEP BBus Slave Control Output Enable Request Output
This signal is provided for systems with a 3-state BBus
design. The BBCC asserts this signal to inform the BBus
output enable logic that the BBCC wants to place the
BRDYNO signal on the appropriate 3-state bus.
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BS_CONFIGP[31:0]
System Configuration Register Output
The BBCC places the value of the System Configuration
Register on these signals.

BSNOOPWAITP
BBus Snoop Wait Output
The BBCC asserts this signal to inform other devices
attached to the BBus that they should not start another
BBus transaction because the BBCC is performing both
I-cache and D-cache snooping on a BBus transaction.

BSTARTNI BBus Transaction Start Input Input
Asserting this signal informs the BBCC that a BBus trans-
action is starting.

BSTARTNO BBus Transaction Start Output Output
The BBCC asserts this signal to indicate when it starts a
BBus transaction.

BSYSRESETN
Reset Output
The BBCC asserts this signal to reset the system.

BTAGTESTN BBus Tag RAM Transaction Input
This signal is used during Hardware Cache Test Mode.
The BBus drives this signal LOW to inform the BBCC that
the Tag RAM is being accessed. The BBus drives this
signal HIGH to inform the BBCC that the Data RAM is
being accessed.

BTXNI BBus Transaction Indicator Input Input
Asserting this signal informs the BBCC that a BBus trans-
action is in progress.

BTXNO BBus Transaction Indicator Output Output
The BBCC asserts this signal to indicate that a BBus
transaction is in progress.

BWBURST_GNTN
BBus Burst Write Grant Output
The BBCC asserts this signal to indicate that it will
perform a burst write.
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BWBURST_REQN
BBus Burst Write Request Input
Asserting this signal requests that the BBCC perform a
burst write.

BWRNI BBus Write Transaction Indicator Input Input
Asserting this signal informs the BBCC that the current
BBus transaction is a write.

BWRNO BBus Write Transaction Indicator Output Output
The BBCC asserts this signal to indicate that the current
BBus transaction is a write.

BW_ARRIVEBFLDP
Store Arrived Before Load Output
The BBCC asserts this signal to inform the Write Buffer
that the current CBus store transaction is occurring while
the Data Fetch Queue is empty.

BW_CFGSELP
Store to System Configuration Register Output
The BBCC asserts this signal to inform the Write Buffer
that the current CBus store is to the System Configura-
tion Register.

BW_DFDONEP
Data Fetch Done Output
The BBCC asserts this signal to inform the Write Buffer
that a data fetch transaction has just completed.

BW_DFQADDRP[3:0]
Data Fetch Queue Address Bits Output
These signals are a few bits of the address from the Data
Fetch Queue. The Write Buffer uses these bits to detect
load/store dependencies.

BW_DFQUPDATEP
Data Fetch Queue Update Output
The BBCC asserts this signal to inform the Write Buffer
that the Data Fetch Queue is being updated.

BW_RDSTQP Read Store Queue Output
The BBCC asserts this signal to initiate a read operation
to the Write Buffer.
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BW_STPNDP Store Pending Output
The BBCC asserts this signal to inform the Write Buffer
that a store is pending in the Store Queue.

BW_WRSTQP Write Store Queue Output
The BBCC asserts this signal to initiate a write operation
to the Write Buffer.

BYTENO[3:0] BBus Byte Enables Output Output
These signals are the byte enables from the BBCC. The
BBCC asserts the byte enables HIGH to inform the BBus
device that the corresponding bytes are valid on
BDATAPO[31:0].

The following table shows the correspondence between
byte enables and the data bus bytes.

BZ_IDDCLKP I-Cache Set 0/D-Cache Data RAM Clock Output
This output is connected to the I-cache Set 0/D-cache
Data RAM clock input.

BZ_IDDOEP I-Cache Set 0/D-Cache Data RAM Output Enable
Output

The BBCC asserts this signal to enable the I-cache
Set 0/D-cache Data RAM to drive data onto DATAP[31:0].

BZ_IDDWEP[3:0]
I-Cache Set 0/D-Cache Data RAM Write Enables

Output
The BBCC asserts these signals to enable writes to the
I-cache Set 0/D-cache Data RAM from DATAP[31:0].

The following table shows the correspondence between
write enables and the data bus bytes.

Byte
Enable

Corresponding
BDATAPO[31:0] Byte

BYTENO3 [31:24]
BYTENO2 [23:16]
BYTENO1 [15:8]
BYTENO0 [7:0]

Write
Enable

Corresponding
DATAP[31:0] Byte

BZ_IDDWEP3 [31:24]
BZ_IDDWEP2 [23:16]
BZ_IDDWEP1 [15:8]
BZ_IDDWEP0 [7:0]
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BZ_IDTCLKP I-Cache Set 0/D-Cache Tag RAM Clock Output
This output is connected to the I-cache Set 0/D-cache
Tag RAM clock input.

BZ_IDTWEP[5:0]
I-Cache Set 0/D-Cache Tag RAM Write Enables

Output
The BBCC asserts these signals to enable writes to the
I-cache Set 0/D-cache Tag RAM. Figure 5.16 on page
5-48 shows the correspondence between byte enables
and what is enabled.

BZ_IDT_OEN I-Cache Set 0/D-Cache Tag RAM Output Enable
Output

This output is an input to a set of external 3-state gates.
The BBCC asserts this signal to enable the 3-state gates
to drive data from the I-cache Set 0/D-cache Tag RAM
onto DATAP[31:0].

BZ_INDEXP[12:0]
Cache RAM Index Output
These signals are connected to the cache RAM address
inputs.

BZ_IP_DN Instruction/Data Cache Select Output
The BBCC drives this signal HIGH to read/write from/to
the I-cache, and drives this signal LOW to read/write
from/to the D-cache.

BZ_IP_DN_L Instruction/Data Cache Select , Registered Output
This output is an input to the tag match logic. This signal
is the same as BZ_IP_DN, but delayed by one clock
cycle.

BZ_I1DCLKP I-Cache Set 1 Data RAM Clock Output
This output is connected to the I-cache Set 1 Data RAM
clock input.

BZ_I1DOEP I-Cache Set 1 Data RAM Output Enable Output
The BBCC asserts this signal to enable the I-cache Set 1
Data RAM to drive data onto DATAP[31:0].

BZ_I1DWEP[3:0]
I-Cache Set 1 Data RAM Write Enable Output
The BBCC asserts this signal to enable writes to the
I-cache Set 1 Data RAM.
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BZ_I1TCLKP I-Cache Set 1 Tag RAM Clock Output
This output is the I-cache Set 1 Tag RAM clock input.

BZ_I1TWEP[4:0]
I-Cache Set 1 Tag RAM Write Enables Output
The BBCC asserts these signals to enable writes to the
I-cache Set 1 Tag RAM. Figure 5.18, on page 5-48,
shows the correspondence between byte enables and
what is enabled.

BZ_I1T_OEN I-Cache Set 1 Tag RAM Output Enable Output
This output is an input to a set of external 3-state gates. The
BBCC asserts this signal to enable the 3-state gates to drive
data from the I-cache Set 1 Tag RAM onto DATAP[31:0].

BZ_LOCKP Cache RAM Lock Bit Output
This output is connected to the Lock Bit input to the
I-Set 0/D Tag RAM. The BBCC asserts this signal to lock
the I-Set 0 Tag RAM line.

BZ_TAGP[21:0]
Cache RAM Tag Output
These signals contain the tag which the BBCC writes to
the cache Tag RAMs.

BZ_TAG4MATCHP[21:0]
Tag for Tag Match Output
This signal is an input to the tag match logic. These sig-
nals contain the tag which is compared against the tag in
the Tag RAMs to determine if there is a cache hit or miss.

BZ_VALIDP[3:0]
Cache RAM Valid Bits Output
These signals are the Valid Bits which are written to the
cache Tag RAMs.

CBYTEP[3:0] CBus Byte Enables Input
These signals are the byte enables from the CW400x.
The CW400x asserts the byte enables HIGH to inform
the BBCC that the corresponding bytes are valid on
DATAP[31:0].
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The following table shows the correspondence between
byte enables and the data bus bytes.

CIP_DN Instruction/Data Indicator Input
The CW400x drives this signal HIGH to indicate that it is
performing an instruction fetch. The CW400x drives this
signal LOW to indicate that it is performing a data fetch
or store.

CKILLMEMP Kill Memory Transaction Request Input
The CW400x asserts this signal to request that the BBCC
kill the current CBus transaction. CKILLMEMP is valid
only during run cycles.

CMEM_FETCHP
Fetch Indictor Input
The CW400x asserts this signal to inform the BBCC that
the current CBus transaction is a fetch.

CSTOREP Store Indictor Input
The CW400x asserts this signal to indicate that the cur-
rent CBus transaction is a store.

DATAP[31:0] Data Bus Bidirectional
These signals are the CBus data bus.

IDLCKP Lock Bit Input
This signal is the Lock Bit from the I-cache Set 0/D-cache
Tag RAM.

IDMATCHP Tag Match Input
The I-Set 0/D Tag Match Logic asserts this signal to
inform the BBCC that the tag from the I-cache Set 0/
D-cache Tag RAM matched the appropriate bits of
BZ_TAG4MATCHP[21:0].

IDVLDP[3:0] Valid Bits Input
These signals are the Valid Bits from the I-cache Set 0/
D-cache Tag RAM.

Byte
Enable

Corresponding
DATAP[31:0] Byte

CBYTEP3 [31:24]
CBYTEP2 [23:16]
CBYTEP1 [15:8]
CBYTEP0 [7:0]
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I1MATCHP Tag Match Input
The I-Set 1 Tag Match Logic asserts this signal to inform
the BBCC that the tag from the I-cache Set 1 Tag RAM
matched the appropriate bits of BZ_TAG4MATCHP[21:0].

I1VLDP[3:0] Valid Bits Input
These signals are the Valid Bits from the I-cache Set 1
Tag RAM.

MADDROUTP[31:2]
Mapped Address Input
These signals are the mapped CBus address from the
MMU or MMU Stub.

MEARLYKS1P
MMU Early kseg1 Indicator Input
The MMU or MMU Stub asserts this signal to inform the
BBCC that the CBus unmapped (virtual) address is in
kseg1 (non-cacheable address space).

MNOCACHEP Mapped Address Not Cacheable Input
The MMU or MMU Stub asserts this signal to inform the
BBCC that the current CBus transaction is non-cacheable.

PCLKP System Clock Input
This signal is the global clock input.

SE Scan Enable Input
Asserting this signal enables the scan chain.

SI Scan Data In Input
This signal is the scan data input.

SO Scan Data Out Output
This signal is the scan data output.

TST Test Enable Input
Asserting this signal puts the BBCC in Test Mode for scan.

WB_ADDRP[31:2]
Write Buffer Address Input
These signals are the address of the earliest store trans-
action held in the Write Buffer.
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WB_ARRIVEBFLDP
Write Buffer Store Arrived Before Load Input
The Write Buffer asserts this signal to inform the BBCC
that the earliest store transaction held in the Write Buffer
was started while the Data Fetch Queue was empty.

WB_BYTEP[3:0]
Write Buffer Byte Enables Input
The Write Buffer drives these signals, which are the byte
enables of the earliest store transaction held in the Write
Buffer.

WB_CFGP Write Buffer Store to Configuration Register Input
The Write Buffer asserts this signal to inform the BBCC
that the earliest store transaction held in the Write Buffer
is to the System Configuration Register.

WB_DATAP[31:0]
Write Buffer Data Input
These signals are the data of the earliest store transac-
tion held in the Write Buffer.

WB_FULLP Write Buffer Full Input
The Write Buffer asserts this signal to inform the BBCC
that the Write Buffer is full.

WB_STPNDP Write Buffer Store Pending Input
The Write Buffer asserts this signal to inform the BBCC
that the Write Buffer contains a valid store transaction.

WB_VWBFLDP
Write Buffer Valid Write Before Load Input
The Write Buffer asserts this signal to inform the BBCC
that the Write Buffer contains a valid store transaction
that should have a higher priority than data fetch
transactions.
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5.5
Interfaces

This section describes the BBCC interfaces to the following:

♦ CBus

♦ Basic Bus (BBus)

♦ Caches

♦ On-Chip Memory (OCM)

♦ Write Buffer

5.5.1
CBus

5.5.1.1 CBus Transactions

This section describes the use of the CBus signals.

CBus transactions occur during run cycles. The Global Output Enable
Module (GOE, see Chapter 6 of the MiniRISC CW400x Microprocessor
Core Technical Manual) asserts BRUN_INN to inform the BBCC that the
following clock cycle will be a run cycle. When a clock cycle is not a run
cycle (BRUN_INN deasserted), the system stalls (a stall cycle).

The CW400x CIP_DN, CMEM_FETCHP, and CSTOREP signals are
valid in the clock cycle before the run cycle, and indicate what type of
transaction will occur during the run cycle. The signals are decoded as
shown in Table 5.4.

All other combinations do not occur, so designers can simplify the decod-
ing to that in Table 5.5.

Table 5.4
Transaction Type
Signal Decoding

BRUN_INN CIP_DN CMEM_FETCHP CSTOREP Transaction

1 - - - No Operation
0 1 1 0 Instruction Fetch
0 0 1 0 Data Fetch
0 0 0 1 Store
0 0 0 0 Coprocessor

Table 5.5
Transaction Type Signal
Decoding Simplified

BRUN_INN CIP_DN CMEM_FETCHP CSTOREP Transaction

1 - - - No Operation
0 1 - - Instruction Fetch
0 0 1 - Data Fetch
0 - - 1 Store
0 - 0 0 Coprocessor



5-26 Basic BIU and Cache Controller (BBCC)

The CW400x drives the lower bits of the unmapped address for CBus
transactions onto ADDRP[14:2]. These signals are valid in the clock
cycle before the run cycle.

MADDROUTP[31:2] are the mapped CBus transaction address from the
MMU or MMU Stub. These signals are valid during the run cycle. The
MMU or MMU Stub holds these signals stable until the next run cycle.

If ADDRP[31:29] = 1012, the MMU or MMU Stub asserts MEARLYKS1P
to inform the BBCC that the CBus unmapped (virtual) address is in
kseg1 (non-cacheable address space).

The MMU or MMU Stub assert MNOCACHEP to indicate that
MADDROUTP[31:2] is a non-cacheable address, either because the
address is in kseg1 or because the MMU is setup to make the address
non-cacheable.

The CW400x asserts CKILLMEMP to request that the BBCC kill the
memory transaction. CKILLMEMP is valid during run cycles.

The CW400x drives CBYTEP[3:0] to indicate which bytes it is requesting
to read or write. They are only valid for data transactions. CBYTEP[3:0]
is not used for instruction fetches since instruction fetches are always
word fetches. CBYTEP[3:0] holds its value during stall cycles.

CBus fetch transactions are normally completed when the BBCC asserts
BIRDYP (instruction ready) or BDRDYP (data ready) to the CW400x. At
this time, the data for the fetch is on DATAP[31:0]. For instruction fetches,
BIRDYP must be received before the CW400x pipeline can proceed. For
data fetches, the CW400x pipeline can proceed without receiving a
BDRDYP assertion, as long as no dependency occurs with the data
fetch, and no other data fetch transaction needs to be started. Only one
data fetch can be outstanding at any time. For stores, the CW400x pipe-
line can proceed unless the Write Buffer is full, in which case the BBCC
stalls the CW400x pipeline.

The BBCC asserts BBUS_STEALN to indicate that the next clock cycle
will be bus-stolen. A clock cycle is bus-stolen when the BBCC assumes
control of DATAP[31:0] so it can place data on it for an instruction or data
fetch. When the BBCC places the data for an instruction or data fetch on
DATAP[31:0], it asserts BIRDYP or BDRDYP. For block fetches, the
BBCC asserts BBUS_STEALN for each word, in order to write it to the
cache. When the data for a cache refill is also the data required by the
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CW400x for an instruction or data fetch, the BBCC asserts BIRDYP or
BDRDYP, and is said to be streaming the data to the CW400x.

Figure 5.4 shows examples of some CBus transactions.

Figure 5.4
CBus Transactions

Cycle 1: The CBus signals indicate that the next cycle will be a store
to address 0x00023000. The data for the store (0x8D830000)
is on DATAP[31:0].

Cycle 2: MADDROUTP[31:2] contains the mapped address (in this
case it is the same as the unmapped address) for the store.
The store is to a cacheable address, as shown by
MNOCACHEP. The next cycle will be an instruction fetch from
address 0x00021424.

Cycle 3: MADDROUTP[31:2] contains the mapped address for the
instruction fetch. BIRDYP indicates that the data for the
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0x00023000 0x00021424 0x00023000 0x00021428

MD96.41

0x0002142C

0x00021420 0x00023000 0x00021424 0x00023000 0x00021428

0x8D830000 0x0001F600 0x40800000 0x0001F600 0x00000000

1 2 3 4 5
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instruction fetch is on DATAP[31:0]. The next cycle will be a
data fetch from address 0x00023000.

Cycle 4: MADDROUTP[31:2] contains the mapped address for the
data fetch. BDRDYP indicates that the data for the data fetch
is on DATAP[31:0]. The next cycle will be an instruction fetch
from address 0x00021428.

Cycle 5: MADDROUTP[31:2] contains the mapped address for the
instruction fetch. BIRDYP indicates that the data for the
instruction fetch is on DATAP[31:0]. The next cycle will be a
move-from-coprocessor or a move-to-coprocessor.

5.5.1.2 Bus Error During an Instruction Fetch

When a transaction terminates unsuccessfully, the BBCC reports a bus
error to the CW400x. Instruction fetch bus errors are handled differently
than data transaction bus errors. On an instruction fetch, the CW400x
must wait for BIRDYP to be asserted before the CW400x pipeline can
proceed. Therefore, bus errors that are signaled for instruction fetches
occur during the instruction fetch. The BBCC asserts BIBERRORP and
BIRDYP to signal a bus error to the CW400x. Figure 5.5 shows a Bus
Error during an Instruction Fetch.
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Figure 5.5
Bus Error During
Instruction Fetch

Cycle 1: CBus signals indicate that the next cycle will be an instruction
fetch from address 0x00021800.

Cycle 2: MADDROUTP[31:2] contains the mapped address for the
instruction fetch. The GOE deasserts BRUN_INN to indicate
that the CW400x will stall in the next clock cycle.

Cycle 5: BIRDYP and BIBERRORP are asserted, signaling a bus error.
The next cycle will be an instruction fetch from address
0x00021804.

Cycle 6: The instruction fetch from address 0x00021804 is killed by the
assertion of CKILLMEMP. The next cycle will be an instruction
fetch from the exception handler (address 0x80000080).
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5.5.1.3 Bus Error During a Data Transaction

For data transactions, bus errors might not occur during the data trans-
action, since the pipeline can proceed before the data transaction is com-
plete. In this case, the BBCC signals a bus error by setting System
Configuration Register Bit 13 (E Bit). This bit is reset by writing a zero to
it. This signal can be used to detect the bus error by tying it to one of
the CW400x interrupts. The CW400x CP0 Status Register should be
setup to detect this interrupt, or the bus error will not be detected.
Figure 5.6 shows a Bus Error during a Data Transaction.

Figure 5.6
Bus Error During
Data Transaction PCLKP
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Cycle 1: The CBus signals indicate that the next cycle will be a data
fetch from address 0x00023020.

Cycle 2-4: The CW400x continues to fetch instructions.

Cycle 5: The BBCC asserts BDRDYP. The BBCC asserts
BS_CONFIGP13, which is tied to Interrupt 0 of the CW400x,
and hold it. The next cycle will be an instruction fetch from
the exception handler (address 0x80000080).

For more details about the CBus Interface, see the MiniRISC CW400x
Microprocessor Core Technical Manual.

5.5.2
Basic Bus
(BBus)

The BBus has a simple, generic bus protocol to interface to BBus
devices. The BBCC contains two sets of inputs/outputs to interface to the
BBus, one set for when the BBCC is the master on the BBus, the other
for when the BBCC is a slave on the BBus.

5.5.2.1 Single Transactions

This section describes the use of the main signals on the BBus for simple
transactions with the BBCC as a bus master.

The BBCC asserts BSTARTNO at the beginning of transactions for one
clock cycle, then deasserts it until the beginning of a new transaction.
The BBCC asserts BTXNO at the beginning of a transactions, and con-
tinues to assert it for the duration of the transaction. BTXNO might stay
asserted between back-to-back BBus transactions.

The BBCC asserts BWRNO to indicate the transaction is a write. It deas-
serts this signal to indicate the transaction is a read. The BBCC holds
this signal stable for the duration of the transaction. The BBCC drives
BIP_DNO LOW to indicate the transaction is a data transaction. It drives
this signal HIGH to indicate the transaction is an instruction fetch. The
BBCC also holds this signal stable for the duration of the transaction.

The BBCC puts the transaction address on BADDRPO[31:2] and the
data to be stored on BDATAPO[31:0]. The BBus device drives data on
BDATAPI[31:0] for instruction and data fetches. The BBCC also drives
BYTENO[3:0] to indicate which bytes are being fetched or stored. The
BBCC asserts all the byte enables for instruction fetches and cacheable
data fetches; otherwise it asserts only the byte enables for the bytes
which the CW400x requested to read or write.
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The BBus device asserts BRDYNI when it places data on BDATAPI[31:0]
(for fetches) or when the BBus device has received the data from
BDATAPO[31:0] (for stores). The BBCC supports one-cycle transactions,
so BRDYNI can be asserted in the first clock cycle (the same clock cycle
that BSTARTNO is asserted).

The BBus device asserts BERRORN when the transaction terminates in
an error. The BBus device asserts BRETRYN to request that the BBCC
do the transaction over again.

Figure 5.7 shows some BBus transactions.

Figure 5.7
BBus Transactions

Cycle 1: The BBCC asserts BSTARTNO and BTXNO LOW to indicate
the beginning of a BBus transaction, BIP_DNO LOW to
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indicate that it is a data transaction, and BWRNO LOW to indi-
cate that it is a write transaction. BADDRPO[31:2] shows that
the transaction address is 0x00021400. Since this is a store
operation, BDATAPO[31:0] contains the data to be stored.
BYTENO[3:0] indicates that all four bytes will be written.

Cycle 2: The BBCC deasserts BSTARTNO. The BBus device asserts
BRDYNI to indicate that it has received the data from
BDATAPO[31:0]. The transaction is terminated at the end of this
clock cycle, when the BBCC detects the BRDYNI assertion.

Cycle 3: The previous BBCC transaction is finished, and the BBCC
asserts BSTARTNO to start a new transaction. This transaction
is a back-to-back with the previous store, so the BTXNO stays
asserted. BIP_DNO and BWRNO indicate that this is an
instruction fetch from address 0x0002106C.

Cycle 4: The BBCC deasserts BSTARTNO, and waits for the assertion
of BRDYNI.

Cycle 5: The BBus device asserts BRDYNI, and drives the data on
BDATAPI[31:0]. The transaction is terminated at the end of this
clock cycle, at which time the BBCC registers the data from
BDATAPI[31:0]. It asserts BBUS_STEALN so that it can place
the data on DATAP[31:0] in the next clock cycle.

Cycle 8: The BBCC starts a data fetch transaction from address
0x00021404.

Cycle 9: The BBus device asserts BRDYNI and places the data on
BDATAPI[31:0]. The BBCC asserts BBUS_STEALN so it can
put the data on DATAP[31:0] in the next clock cycle.

5.5.2.2 Block Fetching

The BBCC executes a block fetch transaction to refill the caches. The
transaction must be a cacheable transaction, and the System Configura-
tion Register must be written so that the block size is more than one
word. In the System Configuration Register, the block size can be set to
1, 2, 4, or 8 words.

For a four-word block size, the BBCC stops the refill once the line has
all the words valid. For example, if Words 2 and 3 of a line are valid, and
a cache miss occurs on Word 0, the BBCC does a block fetch for only
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Words 0 and 1. For block sizes of 1, 2, or 8, the BBCC tries to fetch 1,
2, or 8 words, respectively.

The BBCC also stops block fetches if a subsequent store occurs within
the same eight-word block as a block fetch. Stopping block fetches pre-
vents a block fetch from overwriting a later value in the cache. The BBCC
stops block fetches if a new store operation address matches the refill
address in Bits [9:5]. In this case, the BBCC continues to expect the cur-
rently requested word, but does not write that word to the cache when it
is received.

The BBCC starts block fetches with the word which was fetched by the
CW400x. For example, if the block size is eight words, and the fetch was
for 0x0002101C, the order of the block fetch is: 0x0002101C,
0x00021000, 0x00021004, 0x00021008, 0x0002100C, 0x00021010,
0x00021014, 0x00021018.

When the BBCC is able to do a block fetch, it asserts BLKREQN with
the start signal, BSTARTNO. The BBus device asserts BLKGNTN to
acknowledge the request for a block fetch. If the BBus device does not
assert BLKGNTN, the block transfer ends. BLKGNTN is sampled by the
BBCC when BRDYNI is asserted.

If the BBus device asserts BERRORN or BRETRYN, the BBCC ends the
block fetch. The BBCC signals a bus error to the CW400x if the BBus
device asserts BERRORN while the BBCC is fetching the first word of the
block fetch. If the BBus device asserts BERRORN while the BBCC is
fetching a subsequent word of the block fetch, the BBCC ends the block
fetch, but does not report the bus error to the CW400x. The BBCC retries
a transaction if the BBus device asserts BRETRYN while the BBCC is
fetching the first word of the block fetch. If the BBus device asserts
BRETRYN while the BBCC is fetching a subsequent word of the block
fetch, the BBCC ends the block fetch, but does not retry the transaction.

Figure 5.8 shows an example of a block fetch with a four-word block size.



Interfaces 5-35

Figure 5.8
Block Fetch with
Four-Word Block
Size

Cycle 1: The BBCC asserts the BSTARTNO and BTXNO signals to
start an instruction fetch from address 0x00022004
(BADDRPO[31:0]). The BBCC asserts BLKREQN to indicated
that it is able to perform a block fetch.

Cycle 3: The BBus device asserts BRDYNI to indicate that it has placed
the data on BDATAPI[31:0]. It also asserts BLKGNTN to indi-
cate that it can perform a block fetch.

Cycle 4: The BBCC places the address 0x00022008 on BADDRPO[31:2]
for the next fetch of the block fetch.

Cycle 5: The BBus device asserts BRDYNI and BLKGNTN to continue
the block fetch.
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Cycle 6: The BBCC places the address 0x0002200C on BADDRPO[31:2]
for the next fetch of the block fetch.

Cycle 7: The BBus device asserts BRDYNI and BLKGNTN to continue
the block fetch.

Cycle 8: The BBCC places the address 0x00022000 on BADDRPO[31:2]
for the next fetch of the block fetch. Since the block size is four,
the address wrapped to the first word of the line. The BBCC
deasserts BLKREQN to indicate that this is the last word of the
block fetch.

Cycle 9: The BBus device asserts BRDYNI for the last fetch.

5.5.2.3 Burst Writes

Burst writes are writes that occur back-to-back to the same page. They
are different from block fetches in that each burst write transaction is sep-
arate. The BBCC still asserts BSTARTNO at the beginning of the subse-
quent writes. The BBCC performs burst writes when:

♦ a BBus device requests it by asserting BWBURST_REQN,

♦ the BBCC is currently doing a store transaction,

♦ and the following data transaction is a store residing in the Write
Buffer which stores to the same page (page size is defined in the
System Configuration Register) as the current store.

When these conditions are met, the BBCC asserts BWBURST_GNTN to
indicate that it will perform a burst write. Although the BWBURST_REQN is
sampled at all times, and the BBCC asserts/deasserts BWBURST_GNTN
based on the state of BWBURST_REQN, BWBURST_REQN is only mean-
ingful when the BRDYNI is asserted by the BBus device, because that is the
clock cycle in which the next BBus transaction is determined.

Figure 5.9 shows a series of burst writes.



Interfaces 5-37

Figure 5.9
Series of Burst
Writes

Cycle 1: The BBCC starts a word store to address 0x00021C00
(BADDRPO[31:0]).

Cycle 4: The BBus device asserts BRDYNI to indicate that it has received
the data from BDATAPO[31:0]. It also asserts BWBURST_REQN
to request a burst write. The BBCC responds by asserting
BWBURST_GNTN, indicating that the next transaction will be a
store to the same page.

Cycle 5: The BBCC starts a new store to the same page. The address in
this case is 0x00021C04 (BADDRPO[31:0]). BYTENO[3:0] indi-
cates that only Byte 0 will be stored.

Cycle 7: The BBus device again asserts BRDYNI and BWBURST_REQN.
However, the BBCC does not assert BWBURST_GNTN in
response.
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5.5.2.4 Bus Mastership

The BBus can have multiple bus masters, with only one bus master tak-
ing control of the bus at a time. The arbitration of bus ownership can
occur while a transaction is in progress, because the transfer of owner-
ship from one master to another does not affect the transaction in
progress. Bus masters should not begin transactions until BTXNO is
deasserted, so there are no conflicts on the bus.

BREQN and BGNTN control ownership of the bus. The BBCC asserts
BREQN when it does not have ownership of the bus, but needs control
of the bus. The BBCC also asserts BREQN any time that it has two or
more transactions queued. When BGNTN is asserted, the BBCC has
ownership of the bus, and can start a BBus transaction after BTXNI has
been deasserted.

When the BBCC requests the BBus, the BBCC normally starts a trans-
action when BGNTN is asserted and BTXNI is deasserted. An exception
is when the bus request is for the System Configuration Register. In this
case, the BBCC performs an internal transaction which is not visible on
the BBus. The BBCC deasserts BREQN when the System Configuration
Register transaction is completed.

Figure 5.10 shows examples of bus arbitration.
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Figure 5.10
Examples of Bus
Arbitration

Cycle 1: The BBCC asserts BREQN to indicate that it needs the BBus.
The external arbiter asserts BGNTN in reply to give ownership
of the bus to the BBCC.

Cycle 2: The BBCC detects BGNTN asserted and begins a data fetch
BBus transaction. The BBCC asserts BLKREQN to indicate a
block fetch. Because there was only one transaction queued,
the BBCC deasserts BREQN.

Cycle 3: The BBus device asserts BRDYNI, but not BLKGNTN. The
transaction is complete when the BBCC detects the BRDYNI
assertion at the end of this clock cycle. Another transaction
was queued, so the BBCC asserts BREQN again.

Cycle 4: BGNTN is not asserted, so no transaction occurs.
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Cycle 5: The external arbiter asserts BGNTN, giving ownership of the
bus to the BBCC.

Cycle 6: The BBCC begins an instruction fetch transaction, requesting
a block fetch. It deasserts the BREQN, since it no longer
needs the bus.

Cycle 7: The BBus device asserts BRDYNI and BLKGNTN. The trans-
action continues.

Cycle 8: The BBCC deasserts BLKREQN, indicating that this is the last
fetch of the block fetch.

Cycle 9: The BBus device asserts BRDYNI, and the transaction com-
pletes at the end of this clock cycle.

5.5.2.5 Hardware Cache Test

Hardware Cache Test Mode allows the caches to be accessed through
the BBus. When the BBCC is not the master on the BBus, and
BCACHE_SELP is asserted, the BBCC is in Cache Test Mode.
BCACHE_SELP acts as a select to the BBCC. When BCACHE_SELP is
asserted and a transaction is started on the BBus, the BBCC assumes
it is the target of the transaction; when BCACHE_SELP is not asserted,
the BBCC assumes that the transaction is to another device on the
BBus.

Hardware Cache Test Mode transactions are all two-cycle transactions.
The cache transaction is determined by the inputs:

♦ BIP_DNI (instruction or data cache)

♦ BWRNI (read or write transaction)

♦ BTAGTESTN (tag portion or data portion of cache)

♦ BISETP (which instruction set)

For hardware test reads, the BBCC asserts BBUS_STEALN in the first
clock cycle, to perform the read from the designated RAM at the end of
the first clock cycle. In the second clock cycle, the data is available from
the RAM, and is returned on BDATAPO[31:0]. For hardware test writes,
the BBCC asserts BBUS_STEALN in the second clock cycle, and per-
forms the write at the end of the second clock cycle.

Reads from the data portion of the caches are straightforward; the data
from the cache is simply returned on BDATAPO[31:0]. Write transactions
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to the data portion of the cache cause the BBCC to do a write-first type
transaction. The BBCC writes the data and tag, sets the corresponding
Valid Bit for the word, and clears the other Valid Bits in the line. Reads
from the tag portion of the cache have the same format as in Software
Cache Test Mode; the tag is in the upper portion of the bus, and the Lock
and Valid Bits are in the lower portion of the bus. Writes to the tag portion
of the cache are similar to software test writes; the tag portion of
BADDRPI[31:2] is written as the tag, and the lower five bits of
BDATAPI[31:0] are used as the Lock and Valid Bits.

Figure 5.11 shows some hardware cache test transactions.

Figure 5.11
Hardware Cache
Test Transactions PCLKP
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Cycle 1: The BBus device initiates a transaction to the BBCC
(BCACHE_SELP asserted). The transaction is a write to the
Data RAM of I-cache Set 0 at address 0x80000000. This cor-
responds to Line 0 of the cache Tag RAM, and Word 0 of the
Cache Data RAM.

Cycle 2: The data for the write should be on BDATAPI[31:0] during this
clock cycle. The BBCC asserts BBUS_STEALN to steal
DATAP[31:0] for the write, and asserts BRDYNO to signal the
transaction is complete.

Cycle 3: DATAP[31:0] is driven with the data to be written to the RAM.
The write is performed at the beginning of the clock cycle. A
new hardware cache test transaction is started. This time it is
a read from the Tag RAM of the I-cache Set 0, at address
0x00000004. This corresponds to Line 0 of the cache Tag
RAM. The BBCC asserts BBUS_STEALN to perform the read
from the RAM.

Cycle 4: The BBCC puts the data from the read onto BDATAPO[31:0].
The BBCC asserts BRDYNO. The data reflects what was writ-
ten in the Tag RAM from the write to the Data RAM, which uses
a write-first type of transaction. The upper bits contain the tag
from the write address, and the appropriate Valid Bit is set.

Cycle 5: The BBus device starts a write to the Tag RAM of the I-cache
Set 1. The address 0x40000008 corresponds to Line 0 of the
Tag RAM.

Cycle 6: The data written to the Tag RAM is the tag portion of
BADDRPI[31:2] and the lower five bits of BDATAPI[31:0]. In
this case, the Lock Bit and two of the Valid Bits are set. The
BBCC asserts BRDYNO.

Cycle 7: The BBus device starts a read from the Data RAM of the D-cache.

Cycle 8: The BBCC returns data on BDATAPO[31:0], and asserts
BRDYNO.

5.5.2.6 Snooping

Snooping occurs when:

♦ BISNOOP and/or BDSNOOP signal are asserted,

♦ the BBCC is not a master on the BBus,
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♦ BCACHE_SELP is not asserted,

♦ and a BBus write transaction occurs.

When these conditions are met, the BBCC does a tag comparison on the
appropriate line(s) in the caches, and if the tags match, it invalidates the
cache line(s). Snooping the I-cache requires two clock cycles (for either
direct-mapped or two-way set associative) and snooping the D-cache
requires two clock cycles. If both I-cache and D-cache snooping are
enabled (BISNOOP and BDSNOOP set), then snooping requires four clock
cycles. To help assure that the BBus device does not perform write trans-
actions more frequently than it is possible to snoop on, the BBCC asserts
BSNOOPWAITP when both I-cache and D-cache snooping are enabled.

Figure 5.12 shows I-cache and D-cache snooping.

Figure 5.12
I-Cache and
D-Cache Snooping

Cycle 1: The BBus device begins a write transaction. The BBus device
does not assert BCACHE_SELP, and BISNOOP and
BDSNOOP are asserted, so the BBCC snoops on address
0x000200D4 (BADDRPI[31:2]). The BBCC asserts
BBUS_STEALN to read the appropriate tag from the D-cache.
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When both D-cache snooping and I-cache snooping are
enabled, the BBCC performs the D-cache snooping first.

Cycle 2: The tag match logic performs the D-cache tag comparison in
this clock cycle. If the tag in the Tag RAM matched the
BADDRPI Tag, the BBCC turns off (clears) the Valid Bits for
that line. The BBCC asserts BBUS_STEALN so that it can
perform the Tag RAM write, if necessary. The BBCC asserts
BSNOOPWAITP, indicating that it will perform both D-cache
and I-cache snooping.

Cycle 3: The BBCC asserts BBUS_STEALN so it can read the appro-
priate tag from the I-cache (both tags if two-way set associa-
tive I-cache).

Cycle 4: The tag comparison is done in this clock cycle. The BBCC
asserts BBUS_STEALN so that it can write the Valid Bits if
necessary. The BBCC deasserts BSNOOPWAITP since this is
the last clock cycle.

5.5.2.7 Bidirectional BBus

The BBus inputs and outputs can be made into a bidirectional bus by
adding 3-state gates, and using the BMCNTLOEP, BDOEP, and
BSCNTLOEP BBCC outputs. When BMCNTLOEP is asserted,
BSTARTNO, BTXNO, BWRNO, BIP_DNO, and BADDRPO[31:2] from the
BBCC should be driven onto their 3-state buses. When BDOEP is
asserted, BDATAPO[31:0] from the BBCC should be driven onto its 3-
state bus. When BSCNTLOEP is asserted, the BRDYNO from the BBCC
should be driven onto its 3-state bus.

For all 3-state buses, it is important that one and only one driver be driv-
ing the bus at all times. This involves assuring that there is a default
driver when no driver needs to drive the bus, and that there is a resolu-
tion to having multiple drivers trying to drive the bus at the same time.

The following example shows how to create a default driver module for
the BBus Data Bus. If the BBus Data Bus is connected to the BBCC and
two other devices (Device X and Device Z, for example), the BBCC can
be made the default driver by implementing Table 5.6 in logic.
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Table 5.6
Example Data
Output Enable
Logic

BDOEP BBCC BBus Data Output Enable Request Input
The BBCC asserts this signal to inform the BBus output
enable logic that the BBCC wants to place its data
(BDATAPO[31:0]) on the 3-state bus.

XDOEP Device X BBus Data Output Enable Request Input
Device X asserts this signal to inform the BBus output
enable logic that Device X wants to place its data
(XDATAPO[31:0]) on the 3-state bus.

ZDOEP Device Z BBus Data Output Enable Request Input
Device Z asserts this signal to inform the BBus output
enable logic that Device Z wants to place its data
(ZDATAPO[31:0]) on the 3-state bus.

BBCC_DOEP BBCC Data Output Enable Output
The BBus output enable logic asserts this signal to cause
the set of 3-state gates to place BDATAPO[31:0] on the
3-state bus.

DEVX_DOEP Device X Data Output Enable Output
The BBus output enable logic asserts this signal to cause
the set of 3-state gates to place XDATAPO[31:0] on the
3-state bus.

DEVZ_DOEP Device Z Data Output Enable Output
The BBus output enable logic asserts this signal to cause
the set of 3-state gates to place ZDATAPO[31:0] on the
3-state bus.

Figure 5.13 shows the gates for Table 5.6 logic. The buffer gates are
added to make the delay through the module approximately equal for all
inputs to outputs. The equal delay causes the switching of the 3-state
gates to occur nearly simultaneously. The duplicate outputs are included

Inputs Outputs
BDOEP XDOEP ZDOEP BBCC_DOEP DEVX_DOEP DEVZ_DOEP

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 0
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because the data bus is 32-bits wide, and having multiple drivers
improves the driving of the 32 3-state gates (each output can drive 16
3-state gates). Figure 5.14 shows how the default driver logic should be
hooked up in the system.

Figure 5.13
Default Driver
Logic

BDOEP

XDOEP
ZDOEP

BBCC_DOEP1

BBCC_DOEP0

XDOEP

BDOEP
ZDOEP

DEVX_DOEP1

DEVX_DOEP0

ZDOEP

BDOEP
XDOEP

DEVZ_DOEP1

DEVZ_DOEP0
MD95.256
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Figure 5.14
Default Driver
Logic in System

5.5.3
Caches

The BBCC interfaces to either two or four cache RAMs. A system with a
two-way set associative I-cache requires four RAMs. Otherwise, only two
RAMs are required. All of the signals to the RAMs (clock, write enables,
output enables, data) come from the BBCC except for DATAP[31:0]. The
outputs of the RAMs go to DATAP[31:0], the BBCC, and to logic that
determines if there was a tag match.

Because the caches use the unmapped address to access the cache
RAMs, if an MMU is in the system, the size of the caches must be
smaller than the MMU page size. If the MMU Stub is installed, rather
than the MMU, this limitation does not apply.

The Instruction address space and Data address space are assumed to
be nonoverlapping. When the CW400x performs a store to an address,
no checking is performed to determine if that address is contained in the
I-cache.

Figures 5.15 through 5.18 show the contents of each RAM for a 1 Kbyte
cache, and which portions of the RAM each write enable controls.
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Figure 5.15
I-Cache Set 0/D-Cache
Data RAM

Figure 5.16
I-Cache Set 0/D-Cache
Tag RAM

Figure 5.17
I-Cache Set 1 Data
RAM

Figure 5.18
I-Cache Set 1 Tag RAM

There are two operating modes for the CW400x interface to the caches:
Normal and Software Cache Test. The System Configuration Register
determines in which mode the BBCC operates.

There are three modes for the BBus Interfaces to the caches: Normal,
Hardware Test, and Snooping. These modes are determined by the
transactions on the BBus.

5.5.3.1 Normal Instruction Cache Transactions

When an instruction fetch is initiated by the CW400x, the BBCC does a
tag lookup in the first non-bus-stolen cycle. In this cycle, the BBCC looks
at whether there was a tag match (IDMATCHP and I1MATCHP) and the

31 24 23 16 15 8 7 0

Byte 3 Byte 2 Byte 1 Byte 0

BZ_IDDWEP3 BZ_IDDWEP2 BZ_IDDWEP1 BZ_IDDWEP0

26 5 4 3 2 1 0

Tag L V3 V2 V1 V0

BZ_IDTWEP[5:0] Bit = 5 4 3 2 1 0

31 0

Instruction

BZ_I1DWEP

25 4 3 2 1 0

Tag V3 V2 V1 V0

BZ_I1TWEP[4:0] Bit = 4 3 2 1 0
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Valid Bits (IDVLDP[3:0] and I1VLDP[3:0]) to determine whether the
instruction is in the I-cache. In the same cycle, the I-cache places its data
onto DATAP[31:0]. If the instruction is in the I-cache (a cache hit), the
BBCC asserts the BIRDYP to the CW400x, and the CW400x uses the
data on DATAP[31:0]. If the instruction is not in the I-cache, the BBCC
does not assert BIRDYP, and the CW400x stalls until the instruction is
fetched from the external memory.

The I-cache can be direct-mapped or two-way set associative. For two-
way set associative I-cache, when a tag miss occurs and both lines con-
tain valid instructions, the BBCC replaces one of the lines. At each tag
miss when both sets contain valid instructions, the BBCC alternates
between which set it replaces. The first time it replaces Set 0, the second
time Set 1, then Set 0, then Set 1, and so on.

Each line of I-cache Set 0 can be locked (Lock Bit) to guarantee that the
contents of the selected lines remain in cache. Locking is useful for keep-
ing certain code in the cache all the time, such as an exception handler,
or some other time-critical code. Setting the Lock Bit in the Tag RAM dur-
ing Software Cache Test Mode locks a line in the I-cache. The Lock Bit
can only be modified while in Software Cache Test Mode or Hardware
Cache Test Mode.

The clocks to the Data RAMs of the caches are delayed clocks, so that
stores can happen in the first cycle of the store.

Figure 5.19 shows some normal I-cache transactions.
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Figure 5.19
Normal I-Cache
Transactions PCLKP
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Cycle 2: The next cycle will be an instruction fetch from address
0x0002181C.

Cycle 3: The tag look-up is done in this cycle, since the cycle is not
bus-stolen. IDMATCHP HIGH indicates that the current
address matched the tag in Instruction Set 0. However, the
Valid Bit corresponding to the fetched word, IDVLDP3, is zero.
This indicates a tag miss. BIRDYP is not asserted, and the
CW400x stalls. Even though there was a cache miss, the
caches still drive DATAP[31:0] (in this case it is Set 0; indi-
cated by BZ_IDDOEP HIGH). Since the BIRDYP was not
asserted, the CW400x ignores the value on DATAP[31:0]. The
BBCC asserts BBUS_STEALN to show that the next cycle will
be bus-stolen.

Cycle 4: The GOE asserts BIUOEN, and the BBCC drives DATAP[31:0]
with the instruction for the instruction fetch during this bus-sto-
len cycle. The BBCC asserts BIRDYP. At the beginning of this
cycle, the BBCC also writes the data into Set 0 of the I-cache
(note BZ_IDDWEP[3:0] and BZ_IDDCLKP), and sets the
appropriate Valid Bit in the Set 0 Tag RAM (note
BZ_IDTWEP[5:0] and BZ_IDTCLKP). The next cycle is an
instruction fetch from address 0x00021820.

Cycle 5: The tag look-up is done in this cycle, since the cycle is not
bus-stolen. The tag matched Set 0, and the appropriate Valid
Bit was set. These conditions indicate a I-cache hit in Set 0.
The Set 0 RAM drives DATAP[31:0], and the BBCC asserts
BIRDYP to inform the CW400x that the instruction is on
DATAP[31:0].

5.5.3.2 Normal Data Cache Transactions

D-cache fetches are similar to I-cache fetches, except the D-cache is
always direct-mapped, and the lines are not lockable.

Stores to D-cache occur if the store is in cacheable address space. The
write to the Data RAM occurs at the beginning of the first non-bus-stolen
cycle, using a delayed clock. Also at the beginning of the clock cycle, if the
store is a full-word store, the BBCC writes the appropriate Valid Bit to the
Tag RAM. If the store is a partial store, then no Valid Bits are written. In
this same cycle, the tag match is done. Based on the tag match and the
Valid Bits, the BBCC might stall the CW400x to update the Tag RAM.
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This stalling is necessary for the following cases:

♦ Full word store, no tag match: allocate line (update tag, clear other
Valid Bits)

♦ Partial store, no tag match, word was valid: invalidate word

♦ CKILLMEMP or MNOCACHEP asserted, word was valid or full word
store: invalidate word

If the Tag RAM needs to be updated, it is updated at the beginning of
the next non-bus-stolen cycle.

Figure 5.20 shows some D-cache transactions.
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Figure 5.20
D-Cache
Transactions

Cycle 1: The next cycle will be a store to address 0x00021C20.
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Cycle 2: Since the cycle is not bus-stolen (BBUS_STEALN was not
asserted in the previous cycle), the data is written to the
D-cache RAM, using CBYTEP[3:0] to control which bytes are
written. In this case, the transaction is a full-word store, and
so the BBCC writes the corresponding Valid Bit. Both of these
transactions occur at the beginning of the cycle; the Valid Bit
is written on the normal rising edge, and the data is written
with a delayed clock.

During this cycle, the BBCC checks whether the tag matches
and whether the appropriate Valid Bit is on. The Valid Bit is set
since it was just written, and the tag does not match (note
IDMATCHP). These conditions indicate a cache miss, and so the
BBCC allocates the line for the new data by updating the tag, and
clearing the appropriate Valid Bits. Since a Tag RAM fix-up cycle
is needed, the BBCC stalls the CW400x by deasserting
BRUN_OUTP, which causes BRUN_INN to be deasserted.

Cycle 3: Since this cycle is not bus-stolen, the BBCC updates the
D-cache Tag RAM. The BBCC writes the Tag and the appro-
priate Valid Bits. If the cycle had been BUS_STOLEN, the
BBCC would have continued stalling, waiting for a non-bus-
stolen cycle. The next cycle will be an instruction fetch from
address 0x00021090.

Cycle 4: This cycle is non-bus-stolen, and the instruction is in I-cache
Set 0. The BBCC asserts BIRDYP and puts the instruction
onto DATAP[31:0] by asserting BZ_IDDOEP. The next cycle
will be a data fetch from address 0x00021C20.

Cycle 5: This cycle is non-bus-stolen, and the data is in the D-cache.
The BBCC asserts BDRDYP and puts the data onto
DATAP[31:0] by asserting BZ_IDDOEP. The next cycle will be
an instruction fetch from address 0x00021094.

5.5.3.3 Software Cache Test Mode

Software Cache Test Mode allows the CW400x to write and read to
cache RAMs that it would not normally have direct access to: the I-cache
Data RAMs and the I-cache and D-cache Tag RAMs. This mode is useful
for initializing the cache RAMs on reset, or for locking code into the
I-cache Set 0.
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When the System Configuration Register is written such that CM Bits
(BS_CONFIGP[9:8]) indicate that the BBCC is in Software Cache Test
Mode, the BBCC interprets loads and stores differently. All loads come
from the appropriate cache RAM, unless the address is in the kseg1
address space. All stores are written to the appropriate cache RAM if
they are not in kseg1. When BS_CONFIGP[9:8] indicate that the BBCC
is in Software Cache Test Mode for the I-cache, 1E Bit (BS_CONFIGP1)
in the System Configuration Register specifies the I-cache set.

During Software Cache Test Mode, the MMU should be disabled, and the
software test code should be in kseg1. The D Bit (BS_CONFIGP4) in the
System Configuration Register must be set for Software Cache Test
Mode, regardless of whether D-cache exists. Asserting CKILLMEMP
causes unexpected results (sometimes the transaction occurs, and other
times it does not), so CKILLMEMP must not be asserted during Software
Cache Test Mode.

Table 5.7 shows the settings of the System Configuration Register for the
various Software Cache Test Modes.

Table 5.7
System
Configuration
Register Settings
for Software Cache
Test Mode

The address for the RAMs is the normally used index, and is dependent
on the size of the caches. For the Data RAMs, the lower two bits of the
address are ignored. All loads and stores are interpreted as full word
transactions. For the Tag RAMs, the lower four bits are ignored. Loads
and stores to the Tag RAMs are line operations.

During stores to the Data RAM of the I-cache, the data is on DATAP[31:0].
During stores to the Tag RAM of the I-cache or D-cache, the tag originates
from the upper bits of MADDROUTP[31:2] (the tag normally used for the
cache) and is placed on BZ_TAGP[21:0]. The Lock Bit originates from
DATAP4, and the Valid Bits originate from DATAP[3:0]. The BBCC places
these bits on BZ_LOCKP and BZ_VALIDP[3:0] to write them to the RAMs.
Because the data on DATAP[31:0] is not available at the rising edge of the

Cache Mode
BS_CONFIGP[9:8]

D-Cache Enable
BS_CONFIGP4

I-Cache
Set 1 Enable

BS_CONFIGP1
Software Cache
Test Mode

01 1 0 I-Cache Set 0 Data
01 1 1 I-Cache Set 1 Data
10 1 0 I-Cache Set 0 Tag
10 1 1 I-Cache Set 1 Tag
11 1 - D-Cache Tag
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Tag RAM clock, writing to the Tag RAM requires two clock cycles. The
BBCC stalls the CW400x for one cycle by deasserting BRUN_OUTP, and
writes the data on a subsequent non-bus-stolen cycle.

Fetches from the I-cache Data RAM are straightforward. The RAM
places the 32 bits of its data on DATAP[31:0]. Figure 5.21 shows data
returned from reading the Tag RAM of a 1 Kbyte cache while in Software
Cache Test Mode.

Figure 5.21
Tag RAM Read Data

The following is sample code to lock six instructions in the I-cache.

SETUP_T0:
li t0, 0x000002fd # sw test to write tags to Set 0
li t1, 0xbfff0000 # address of Configuration Register
sw t0, 0(t1) # store to Configuration Register
lw r0, 0(t1) # to flush Write Buffer
addi r0, r0, 1 # force dependency on load

li t0, 0x80000000 # tag
li t1, 0x1f # lock, all words valid
li t2, 0x13 # lock, two words valid

sw t1, 0x80(t0) # line 0
sw t2, 0x90(t0) # line 1

SETUP_D0:
li t0, 0x000001fd # sw test to write data to Set 0
li t1, 0xbfff0000 # address of Configuration Register
sw t0, 0(t1) # store to Configuration Register
lw r0, 0(t1) # to flush Write Buffer
addi r0, r0, 1 # force dependency on load

li t0, 0x80000000 # tag doesn’t really matter
li t1, 0x3c0eb000 # lui t6, 0xb000
li t2, 0x8dcf0000 # lw t7, 0(t6)
li t3, 0x21ef0001 # addi t7, t7,1
li t4, 0xadcf0000 # sw t7, 0(t6)
li t5, 0x03e00008 # jr ra
li t6, 0x00000000 # nop

sw t1, 0x80(t0) # Instruction 0

31 10 9 5 4 3 2 1 0

Tag Res L V3 V2 V1 V0
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sw t2, 0x84(t0) # Instruction 1
sw t3, 0x88(t0) # Instruction 2
sw t4, 0x8c(t0) # Instruction 3
sw t5, 0x90(t0) # Instruction 4
sw t6, 0x94(t0) # Instruction 5

5.5.3.4 BBus Normal Cache Interface

When the BBCC is a master on the BBus, it places the data for cache-
able transactions in the cache. There are two types of cache transac-
tions: write-first and write-subsequent. The transaction can be to the
I-cache Set 0, the I-cache Set 1, or the D-cache. Each transaction gen-
erates a bus steal, so that the BBCC can write the cache RAMs. The
write-first type transaction writes the data (always a full word) to the
appropriate Data RAM, updates the tag with the tag of the BBus trans-
action address, sets the Valid Bit for the word which is written, and clears
all the other Valid Bits. The write-subsequent type transaction writes the
data to the appropriate Data RAM, and sets the corresponding Valid Bit.

Figure 5.22 shows some normal BBus cache transactions.
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Figure 5.22
Normal BBus
Cache
Transactions

Cycle 1: The BBCC asserts BBUS_STEALN, which indicates that in
the next cycle it will drive DATAP[31:0].

Cycle 2: At the beginning of the cycle, the BBCC writes the I-cache
Set 0 Tag RAM with a write-first type of operation; it writes the
tag (corresponding to address 0x00021000 for a 1-Kbyte
cache), sets the appropriate Valid Bit, and resets the other
Valid Bits. Also at the beginning of the cycle, the BBCC writes
the instruction on DATAP[31:0] into the I-cache Set 0 Data
RAM, using the delayed clock. This instruction is also the
instruction being fetched, so the BBCC asserts BIRDYP.

Cycle 3: The BBCC asserts BBUS_STEALN to bus steal the next cycle.

Cycle 4: The BBCC again writes the instruction to the I-cache Set 0
Data RAM. This time, however, the BBCC writes only one
Valid Bit to the Tag RAM. This operation is a write-subsequent
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type. The BBCC asserts BIRDYP again, to indicate that the
instruction on DATAP[31:0] is the fetched instruction. This
example demonstrates streaming; the BBCC transmits the
instruction to the CW400x at the same time as the instruction
is written to the cache.

5.5.3.5 BBus Hardware Test Cache Interface

The Hardware Cache Test Mode cache interface is similar to the Normal
Mode cache interface. The write-first and write-subsequent type of oper-
ations are used to write to the Data RAMs. In addition, the BBus trans-
action might indicate that the BBCC should read the Data RAMs, or
write/read the Tag RAMs.

Hardware Cache Test Mode transactions are all similar. The BBCC
asserts BBUS_STEALN, and performs the appropriate RAM transaction.
For Data RAM reads, the 32-bit data is read from the RAM and output
enabled onto DATAP[31:0]. For Tag RAM reads, the format is the same
as that of Software Cache Test Mode; the tag is on the upper bits of
DATAP[31:0], the Lock Bit is DATAP4, and the Valid Bits are DATAP[3:0].
For Tag RAM writes, the tag portion of the address on BADDRPI[31:2]
is placed on BZ_TAGP[21:0], and the BBCC writes these signals to the
RAMs. The Lock and Valid Bits are from BDATAPI[4:0], and are placed
on BZ_LOCKP and BZ_VALIDP[3:0] to be written to the RAMs.

5.5.3.6 Snooping

The BBCC monitors transactions on the BBus. When another device on
the BBus writes to memory, the BBCC generates a snoop transaction.
Snooping requires two cycles for the I-cache, and two cycles for the
D-cache. The BBCC uses the inputs BISNOOP and BDSNOOP to deter-
mine whether or not to snoop on the caches. If both BISNOOP and
BDSNOOP are asserted, snooping takes four clock cycles. Each cycle,
the BBCC asserts BBUS_STEALN.

For each snoop operation, in the first cycle the BBCC compares
BZ_TAG4MATCHP[21:0] (which contains the value from the tag portion
of BADDRPI[31:2]) and the tag in the Tag RAM. During the second cycle
of the snoop, if there is a tag match, the BBCC invalidates the line.
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5.5.4
On-Chip
Memory (OCM)

On-chip memory (OCM) resides on the CBus, and is accessed in one
clock cycle. Asserting BOCMEXISTP informs the BBCC that OCM exists.
Transactions to the OCM do not cause BBus transactions; the transactions
are only to the OCM, not to external memory. OCM can be used as a data
scratchpad or as a boot ROM. The address space for the OCM must be
in kseg1 (non-cacheable space). The OCM uses both ADDRP[31:2] and
MADDROUTP[31:2] to address the memory. For reads, the OCM uses
ADDRP[31:2]; for writes, it uses MADDROUTP[31:2]. The OCM must
select which address to use. The OCM must also assert BOCMSELP to
the BBCC when MADDROUTP[31:2] matches the OCM address space.
The BBCC provides the output enable and write enable to the OCM. If
OCM is installed, the OCM is output enabled onto DATAP[31:0] for every
non-bus-stolen kseg1 fetch, regardless of whether the address matched
the OCM or not.

The OCM uses the unmapped address to access the RAM. Thus, if an
MMU is in the system, the OCM must be smaller in size than the MMU
page size. If the MMU Stub is installed, rather than the MMU, this limita-
tion does not apply.

Reads from the OCM take place at the beginning of the run cycle, using
ADDRP[31:2] as the address. If the first run cycle is bus-stolen, then the
OCM must do the read over, this time using MADDROUTP[31:2] as the
address. Alternatively, a gated clock can be used for the OCM, which
would cause the read to be only done once. The data from the OCM is
output enabled onto DATAP[31:0] during the first non-bus-stolen cycle. At
this time, the BBCC asserts BIRDYP or BDRDYP to the CW400x.

Writes to the OCM take place at the end of the run cycle. This enables
the CW400x to have time to place the store data on DATAP[31:0] before
the write occurs. Writes occur in the first non-bus-stolen cycle after the
run cycle. Because writes occur at the end of the cycle, instead of the
beginning, it is not possible to write data to the OCM while executing
instructions out of the OCM (since the write to the OCM is followed by
an instruction fetch, which occurs at the beginning of the cycle). One way
to work around this limitation, at the expense of some performance, is to
force the system to stall whenever a write to OCM takes place. This stall-
ing is easily done by ANDing BRUN_OUTP with BQ_OCMWEN, and
using this modified BRUN_OUTP signal as an input to the GOE Module.

The address match logic for BOCMSELP should be based on
MADDROUTP[31:2] and a registered version of MEARLYKS1P. The
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registered MEARLYKS1P signal is needed to remember whether the
transaction was in the kseg1 address space; since MADDROUTP[31:2]
is mapped, the information needs to be held separately. The range for
the address match is determined by the size of the OCM.

Using a gated clock for the OCM saves power. If the operating frequency
is slow, ADDRP[31:2] can be decoded, and the OCM can be clocked only
when ADDRP[31:2] matches the OCM address space. This method
might be too slow, since ADDRP[31:2] is one of the later-arriving signals.
Power can still be saved by clocking the OCM only on kseg1 run cycles.

Figure 5.23 shows some OCM transactions. In this example, the OCM is
1 Kbyte, and has an address space from 0xB000000 to 0xB00003FF.
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Figure 5.23
OCM Transactions

Cycle 1: The CBus signals indicate that the next cycle will be an
instruction fetch from address 0x00021430.

Cycle 2: MADDROUTP[31:2] contains the mapped address for the
instruction fetch. The next cycle will be a data fetch from
0xB0000040, which is an OCM address.

Cycle 3: MADDROUTP[31:2] contains the mapped address for the
data fetch. The OCM asserts BOCMSELP to indicate that the
transaction is for the OCM. The BBCC asserts the output

PCLKP

BRUN_INN

CIP_DN

CMEM_FETCHP

CSTOREP

ADDRP[31:2]1

MEARLYKS1P

MNOCACHEP

BIRDYP

BDRDYP

DATAP[31:0]

MADDROUTP[31:2]1

0x00021430 0xB0000040 0x00021434 0xB0000040

0x0002142C 0x00021430 0x10000040 0x00021434 0x10000040

0x00021438

BOCMSELP

BQ_OCMOEP

0x8D8B0000 0xAD8B0000 0x12345678 0x8D8B0000 0x12345678

BQ_OCMWEN

1 2 3 4 5

1. Values shown are [31:0]. MD95.232
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enable to the OCM, and BDRDYP to the CW400x. The next
cycle will be an instruction fetch from 0x00021434.

Cycle 4: The next cycle will be a store to address 0xB0000040, an
OCM address.

Cycle 5: The OCM asserts BOCMSELP to indicate that the transaction
is for the OCM. The BBCC asserts the write enable to the
OCM, and the store occurs at the end of this cycle.

The following is sample Verilog code for a 1-Kbyte OCM. It uses the
mg922 RAM and a gated clock.

module cw400x_ocm (pclkp, runn, ocmoep, ocmwen, mearlyks1p,
 addrp, upper_maddroutp, maddroutp,
 ocmselp, datap );

//****************** PORT DECLARATIONS ********************
input

pclkp, runn, ocmoep, ocmwen, mearlyks1p;

input [29:10]
upper_maddroutp;

input [9:2]
addrp, maddroutp;

output
ocmselp;

inout [31:0]
datap;

//*************** END OF PORT DECLARATIONS ****************
//********************** PARAMETERS ***********************
parameter
start_adrs = 19’h40000; // address is 0xB0000000
//****************** END OF PARAMETERS ********************
//************************ WIRES **************************
wire

gclkp;

wire [9:2]
adrsp;

//********************** END OF WIRES *********************
//************************** REGS *************************
reg

gatep, kseg1p;
//********************** END OF REGS **********************
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//******************** INFER REGISTERS ********************
always @ (posedge pclkp)

kseg1p <= runn ? kseg1p : mearlyks1p;

always @ (pclkp or mearlyks1p or runn or ocmwen)
if (pclkp == 1’b0)

gatep <= ((mearlyks1p & ~runn) | ~ocmwen);

assign gclkp = pclkp & gatep;
//**************** END OF INFER REGISTERS *****************
assign adrsp = ocmwen ? addrp : maddroutp;
assign ocmselp = kseg1p & (upper_maddroutp == start_adrs);
//****************** RAM INSTANTIATION ********************
rr32x256_922 ocm_rami(

.a(adrsp[9:2]),

.clk(gclkp),

.oe(ocmoep),

.we(~ocmwen),

.di(datap[31:0]),

.do(datap[31:0]) );

endmodule

5.5.5
Write Buffer

The Write Buffer is an extension to the Store Queue in the BBCC. It is a
FIFO for store transactions. When stores are received from the CW400x,
the store is either placed in the Store Queue in the BBCC, or in one of the
entries of the Write Buffer. The address (from MADDROUTP[31:2]), the
data (from DATAP[31:0]), and the byte enables (from CBYTEP[3:0]) are
held until the store can be done. Additional information about the store
is held in the Store Queue/Write Buffer, such as whether the store was to
the System Configuration Register (BW_CFGSELP), and whether the
store arrived while the data fetch queue was empty (BW_ARRIVEBFLDP).
The Store Queue/Write Buffer entries are loaded with the store informa-
tion at the end of the run cycle (unless it is a bus-stolen cycle, in which
case the entry is loaded after the bus is no longer stolen).

When a store transaction is completed, the store transactions in the
Store Queue and Write Buffer are passed up the FIFO queue. The BBCC
signals starting with “WB_” are inputs to the BBCC from the Write Buffer.
The WB_ARRIVEBFLDP, WB_VWBFLDP, WB_STPNDP, and WB_FULLP
signals are queue management information. The WB_ADDRP[31:2] and
WB_DATAP[31:0] signals are put in the BBCC Store Queue. The BBCC
signals starting with “BW_” are outputs from the BBCC to the Write
Buffer.
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Flushing of the Write Buffer is based on Bits [8:5] of the address. When
Read Priority is on, the Load Queue is given priority over the Store
Queue. However, if the load is preceded by a store to the same block,
then the store must be done before the load for proper operation. Each
entry for the Store Queue/Write Buffer compares Bits [8:5] of its address
to Bits [8:5] of the load transaction’s address. If there is a match, and the
store transaction preceded the load transaction, then the Store Queue
has priority over the Load Queue.

For information on how to attach additional Write Buffers, see Chapter 6.

5.6
Cache-Miss
Penalty, BBus
Latency

The minimum cache-miss penalty for the BBCC is two cycles. The
minimum cache-miss penalty occurs when the BBus device can support
a one-cycle transaction, as shown in Figure 5.24.

Figure 5.24
Cache-Miss
Penalty, BBus
Latency

PCLKP

BRUN_INN

CIP_DN

CMEM_FETCHP

ADDRP[14:2]1

MADDROUTP[31:2]1

BIRDYP

BBUS_STEALN

BSTARTNO

BTXNO

BADDRPO[31:2]1

BRDYNI

0x00021400 0x00021404 0x00021408 0x0002140C

0x000210CC 0x00021400 0x00021404 0x00021408

0x1FFF0000 0x00021408

1  2 3 4 5 6

0x1FFF0000

1. Values shown are [31:0]. MD96.205
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Cycle 1: The previous instruction fetch has been received (the BBCC
asserted BIRDYP), and so the CW400x begins a new instruc-
tion fetch from address 0x00021400.

Cycle 2: The instruction is in the cache, and the BBCC asserts
BIRDYP. The CW400x begins a new instruction fetch from
address 0x00021404.

Cycle 3: The instruction is in the cache, the BBCC asserts BIRDYP.
The CW400x begins a new instruction fetch from address
0x00021408.

Cycle 4: The instruction is not in the cache, so the BBCC does not
assert BIRDYP. The BBCC must generate a BBus transaction
to fetch the instruction. The CW400x stalls, waiting for the
instruction to be returned.

Cycle 5: The BBCC starts a BBus transaction to address 0x00021408.
The BBCC asserts BSTARTNO and BTXNO, and places the
address on BADDRPO[31:2]. In this case, the BBus device
supports a one-cycle BBus transaction, and so the BBus
device asserts BRDYNI in this cycle (in response to
BSTARTNO being asserted), and the BBCC asserts
BBUS_STEALN so that it can put the instruction on
DATAP[31:0].

Cycle 6: The BBCC asserts BIRDYP to indicate that the instruction is
on DATAP[31:0]. The CW400x begins a new instruction fetch.

As seen in Figure 5.24, the latency to start a BBus transaction is one
cycle after the cache-lookup cycle. This accounts for the first cache-miss
penalty cycle. Also, the latency from the assertion of BRDYNI to the
assertion of BIRDYP is one cycle. This accounts for the second cache-
miss penalty cycle.

5.7
Adding Cache

The BBCC interfaces to four cache RAMs if the system has a two-way
set associative I-cache, otherwise it interfaces to two cache RAMs.
Figure 5.25 shows the cache RAMs for a system. The D-cache and
I-cache Set 0 share the same RAMs. However, the D-cache and I-cache
Set 0 are distinct portions of the RAM and act as separate caches, not
a unified cache. BZ_IP_DN, which is used as the highest bit of the
address, determines which portion of the RAM to access.
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Figure 5.25
Cache RAMs for a
System

The Data RAMs of the caches are word-wide (32-bits wide), and the low-
est address bit is Bit 2 of the address (BZ_INDEXP0). Each location of
the Tag RAMs is associated with a cache line, and the lowest address
bit is Bit 4 of the address (BZ_INDEXP2).

5.7.1
RAM Sizes

Tables 5.8 through 5.12 show the RAM sizes needed for various cache
configurations. Note that although some configurations call for RAMs
greater than 4 Kbytes deep, the 500 Kbyte memory compiler currently
only supports mg922 RAMs up to 4 Kbytes in depth. Shaded entries rep-
resent RAM configurations that are not supported with the current
500 Kbyte mg922 RAM compiler.

The caches use the unmapped address to access the cache RAMs.
Thus, if an MMU is in the system, the size of the caches must be smaller
than the MMU page size. If the MMU Stub is installed, rather than the
MMU, this limitation does not apply.

D-Cache
Data

I-Cache
Set 0
Data

I-Cache
Set 1
Data

D-Cache Tags

I-Cache Set 0 Tags

I-Cache Set 1 Tags

MD95.244

Table 5.8
Direct Mapped I-Cache

1K 2K 4K 8K 16K 32K

Tag 64 x 27 128 x 26 256 x 25 512 x 24 1K x 23 2K x 22

Data 256 x 32 512 x 32 1K x 32 2K x 32 4K x 32 8K x 32
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Table 5.9
Two-Way Set
Associative I-Cache

1K 2K 4K 8K 16K 32K

Tag 64 x 27
64 x 26

128 x 26
128 x 25

256 x 25
256 x 24

512 x 24
512 x 23

1K x 23
1K x 22

2K x 22
2K x 21

Data 256 x 32
256 x 32

512 x 32
512 x 32

1K x 32
1K x 32

2K x 32
2K x 32

4K x 32
4K x 32

8K x 32
8K x 32

Table 5.10
D-Cache

1K 2K 4K 8K 16K 32K

Tag 64 x 27 128 x 26 256 x 25 512 x 24 1K x 23 2K x 22

Data 256 x 32 512 x 32 1K x 32 2K x 32 4K x 32 8K x 32

Table 5.11
Direct-Mapped I-Cache
with D-Cache

I-Cache 1K 2K 4K 8K 16K 32K

1K
D-Cache

Tag 128 x 27 192 x 27 320 x 27 576 x 27 1088 x 27 2112 x 27

Data 512 x 32 768 x 32 1280 x 32 2304 x 32 4352 x 32 8448 x 32

2K
D-Cache

Tag 192 x 27 256 x 26 384 x 26 640 x 26 1152 x 26 2176 x 26

Data 768 x 32 1K x 32 1536 x 32 2560 x 32 4608 x 32 8704 x 32

4K
D-Cache

Tag 320 x 27 384 x 26 512 x 25 768 x 25 1280 x 25 2304 x 25

Data 1280 x 32 1536 x 32 2K x 32 3K x 32 5K x 32 9K x 32

8K
D-Cache

Tag 576 x 27 640 x 26 768 x 25 1K x 24 1536 x 24 2560 x 24

Data 2304 x 32 2560 x 32 3K x 32 4K x 32 6K x 32 10K x 32

16K
D-Cache

Tag 1088 x 27 1152 x 26 1280 x 25 1536 x 24 2K x 23 3K x 23

Data 4352 x 32 4608 x 32 5K x 32 6K x 32 8K x 32 12K x 32

32K
D-Cache

Tag 2112 x 27 2176 x 26 2304 x 25 2560 x 24 3K x 23 4K x 22

Data 8448 x 32 8704 x 32 9K x 32 10K x 32 12K x 32 16K x 32
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5.7.2
Examples

This subsection describes four example RAM configurations:

♦ Example 1: 1-Kbyte D-Cache and 2-Kbyte Two-Way Set Associative
I-Cache (1 Kbyte Each Set)

♦ Example 2: 4-Kbyte D-Cache and 2-Kbyte Two-Way Set Associative
I-Cache (1 Kbyte Each Set)

♦ Example 3: 2-Kbyte D-Cache and 4-Kbyte Direct Mapped I-Cache

♦ Example 4: 8-Kbyte Non-Partitioned Cache

Table 5.12
Two-Way Set
Associative I-Cache
with D-Cache

I-Cache 1K 2K 4K 8K 16K 32K

1K
D-Cache

Tag 128 x 27
64 x 26

192 x 27
128 x 25

320 x 27
256 x 24

576 x 27
512 x 23

1088 x 27
1K x 22

2112 x 27
2K x 21

Data 512 x 32
256 x 32

768 x 32
512 x 32

1280 x 32
1K x 32

2304 x 32
2K x 32

4352 x 32
4K x 32

8448 x 32
8K x 32

2K
D-Cache

Tag 192 x 27
64 x 26

256 x 26
128 x 25

384 x 26
256 x 24

640 x 26
512 x 23

1152 x 26
1K x 22

2176 x 26
2K x 21

Data 768 x 32
256 x 32

1K x 32
512 x 32

1536 x 32
1K x 32

2560 x 32
2K x 32

4608 x 32
4K x 32

8704 x 32
8K x 32

4K
D-Cache

Tag 320 x 27
64 x 26

384 x 26
128 x 25

512 x 25
256 x 24

768 x 25
512 x 23

1280 x 25
1K x 22

2304 x 25
2K x 21

Data 1280 x 32
256 x 32

1536 x 32
512 x 32

2K x 32
1K x 32

3K x 32
2K x 32

5K x 32
4K x 32

9K x 32
8K x 32

8K
D-Cache

Tag 576 x 27
64 x 26

640 x 26
128 x 25

768 x 25
256 x 24

1K x 24
512 x 23

1536 x 24
1K x 22

2560 x 24
2K x 21

Data 2304 x 32
256 x 32

2560 x 32
512 x 32

3K x 32
1K x 32

4K x 32
2K x 32

6K x 32
4K x 32

10K x 32
8K x 32

16K
D-Cache

Tag 1088 x 27
64 x 26

1152 x 26
128 x 25

1280 x 25
256 x 24

1536 x 24
512 x 23

2K x 23
1K x 22

3K x 23
2K x 21

Data 4352 x 32
256 x 32

4608 x 32
512 x 32

5K x 32
1K x 32

6K x 32
2K x 32

8K x 32
4K x 32

12K x 32
8K x 32

32K
D-Cache

Tag 2112 x 27
64 x 26

2176 x 26
128 x 25

2304 x 25
256 x 24

2560 x 24
512 x 23

3K x 23
1K x 22

4K x 22
2K x 21

Data 8448 x 32
256 x 32

8704 x 32
512 x 32

9K x 32
1K x 32

10K x 32
2K x 32

12K x 32
4K x 32

16K x 32
8K x 32
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5.7.2.1 Example 1: 1-Kbyte D-Cache and 2-Kbyte Two-Way Set
Associative I-Cache (1 Kbyte Each Set)

Tables 5.13 through 5.16 show the signal connections for the RAMs.

Table 5.13
D-Cache/I-Cache
Set 0 Data RAM

RAM Port BBCC Connection Function

CLK BZ_IDDCLKP Clock

A8 BZ_IP_DN Select D-Cache Or I-Cache Portion

A[7:0] BZ_INDEXP[7:0] Address

WE[31:24] BZ_IDDWEP3 Byte 3 Write Enable

WE[23:16] BZ_IDDWEP2 Byte 2 Write Enable

WE[15:8] BZ_IDDWEP1 Byte 1 Write Enable

WE[7:0] BZ_IDDWEP0 Byte 0 Write Enable

OE[31:0] BZ_IDDOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

Table 5.14
D-Cache/I-Cache
Set 0 Tag RAM

RAM Port BBCC Connection Function

CLK BZ_IDTCLKP Clock

A6 BZ_IP_DN Select D-Cache or I-Cache Portion

A[5:0] BZ_INDEXP[7:2] Address

WE[26:5] BZ_IDTWEP5 Tag Write Enable

WE4 BZ_IDTWEP4 Lock Bit Write Enable

WE[3:0] BZ_IDTWEP[3:0] Valid Bits Write Enables

OE[26:0] Tied HIGH Output Enable

DI[26:5] BZ_TAGP[21:0] Tag

DI4 BZ_LOCKP Lock Bit

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[26:5] IDTAGP[21:0] Tag (to Match Logic)

DO4 IDLCKP Lock Bit

DO[3:0] IDVLDP[3:0] Valid Bits
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In addition to hooking up the RAMs, the system designer must code the
tag match logic and the logic to put the tag on DATAP[31:0] (for Software
Cache Test Mode and Hardware Cache Test Mode). In Verilog code, the
tag match logic is:

assign idmatchp = (bz_tag4matchp[21:0] == idtagp[21:0]);
assign i1matchp = (bz_tag4matchp[21:0] == i1tagp[21:0]);

The Verilog code for the 3-state gates to place the Tag RAM outputs onto
DATAP[31:0] is:

assign datap = bz_idt_oen ? 32’hz : {idtagp[21:0], 5’h0,
idlckp, idvldp[3:0]};

assign datap = bz_i1t_oen ? 32’hz : {i1tagp[21:0], 6’h0,
i1vldp[3:0]};

Table 5.15
I-Cache Set 1
Data RAM

RAM Port BBCC Connection Function

CLK BZ_I1DCLKP Clock

A[7:0] BZ_INDEXP[7:0] Address

WE BZ_I1DWEP Write Enable

OE BZ_I1DOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

Table 5.16
I-Cache Set 1
Tag RAM

RAM Port BBCC Connection Function

CLK BZ_I1TCLKP Clock

A[5:0] BZ_INDEXP[7:2] Address

WE[25:4] BZ_I1TWEP4 Tag Write Enable

WE[3:0] BZ_I1TWEP[3:0] Valid Bits Write Enables

OE[25:0] Tied HIGH Output Enable

DI[25:4] BZ_TAGP[21:0] Tag

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[25:4] I1TAGP[21:0] Tag (to Match Logic)

DO[3:0] I1VLDP[3:0] Valid Bits
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5.7.2.2 Example 2: 4-Kbyte D-Cache and 2-Kbyte Two-Way Set
Associative I-Cache (1 Kbyte Each Set)

In this example, the combined D-cache and I-cache Set 0 RAM sizes are
irregular; they are not a power-of-two size. In this case, the address and
tag must be manipulated. The address to the RAM is limited when the
I-cache is accessed. Also, the tag for the D-cache is smaller, so some
bits of the tag are forced to zero when it is written to the RAM.
Figure 5.26 shows the RAM configuration.

Figure 5.26
Example 2 RAM
Configuration

Tables 5.17 through 5.20 show the signal connections for the RAMs.

D-Cache
Tags

Non-Existent

I-Cache Set 1 Data

MD96.42

I-Cache Set 0 Data

D-Cache
Data

Non-Existent

4 K

1 K

3 K

I-Cache Set 1 Tags

I-Cache Set 0 Tags
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Table 5.17
D-Cache/I-Cache
Set 0 Data RAM

RAM Port BBCC Connection Function

CLK BZ_IDDCLKP Clock

A10 BZ_IP_DN Select D-Cache or I-Cache Portion

A[9:8] BZ_INDEXP[9:8] &1

{~BZ_IP_DN, ~BZ_IP_DN}2
Address High Bits
(Force to Zero for I-Cache)

A[7:0] BZ_INDEXP[7:0] Address Low Bits

WE[31:24] BZ_IDDWEP3 Byte 3 Write Enable

WE[23:16] BZ_IDDWEP2 Byte 2 Write Enable

WE[15:8] BZ_IDDWEP1 Byte 1 Write Enable

WE[7:0] BZ_IDDWEP0 Byte 0 Write Enable

OE[31:0] BZ_IDDOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

1. & means logical AND.
2. ~ means that the signal is connected through an inverter.

Table 5.18
D-Cache/I-Cache
Set 0 Tag RAM

RAM Port BBCC Connection Function

CLK BZ_IDTCLKP Clock

A8 BZ_IP_DN Select D-Cache or I-Cache Portion

A[7:6] BZ_INDEXP[9:8] &1

{~BZ_IP_DN, ~BZ_IP_DN}2
Address High Bits
(Force to Zero for I-Cache)

A[5:0] BZ_INDEXP[7:2] Address Low Bits

WE[26:5] BZ_IDTWEP5 Tag Write Enable

WE4 BZ_IDTWEP4 Lock Bit Write Enable

WE[3:0] BZ_IDTWEP[3:0] Valid Bits Write Enables

OE[26:0] Tied HIGH Output Enable

DI[26:7] BZ_TAGP[21:2] Tag High Bits

DI[6:5] BZ_TAGP[1:0] &1

{BZ_IP_DN, BZ_IP_DN}
Tag Low Bits
(Force to Zero for D-Cache)

DI4 BZ_LOCKP Lock Bit

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[26:5] IDTAGP[21:0] Tag (to Match Logic)

DO4 IDLCKP Lock Bit

DO[3:0] IDVLDP[3:0] Valid Bits

1. & means logical AND.
2. ~ means that the signal is connected through an inverter.
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The match logic is the same as in Example 1, except that the tag for the
D-cache is smaller. One way to handle this is to force some of the bits
of BZ_TAG4MATCHP[21:0] to zero when the D-cache is accessed. The
BZ_IP_DN_L signal, a registered version of BZ_IP_DN, is provided for
ANDing with the bits to force them to zero.

assign new_tag4matchp = {bz_tag4matchp[21:2],
bz_tag4matchp[1:0] & {bz_ip_dn_l, bz_ip_dn_l}};

assign idmatchp = (new_tag4matchp[21:0] == idtagp[21:0]);
assign i1matchp = (bz_tag4matchp[21:0] == i1tagp[21:0]);

The Verilog code for the 3-state gates to place the Tag RAM outputs onto
DATAP[31:0] is the same as in Example 1:

assign datap = bz_idt_oen ? 32’hz : {idtagp[21:0], 5’h0,
idlckp,idvldp[3:0]};

assign datap = bz_i1t_oen ? 32’hz : {i1tagp[21:0], 6’h0,
i1vldp[3:0]};

Table 5.19
I-Cache Set 1
Data RAM

RAM Port BBCC Connection Function

CLK BZ_I1DCLKP Clock

A[7:0] BZ_INDEXP[7:0] Address

WE BZ_I1DWEP Write Enable

OE BZ_I1DOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

Table 5.20
I-Cache Set 1
Tag RAM

RAM Port BBCC Connection Function

CLK BZ_I1TCLKP Clock

A[5:0] BZ_INDEXP[7:2] Address

WE[25:4] BZ_I1TWEP4 Tag Write Enable

WE[3:0] BZ_I1TWEP[3:0] Valid Bits Write Enables

OE[25:0] Tied HIGH Output Enable

DI[25:4] BZ_TAGP[21:0] Tag

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[25:4] I1TAGP[21:0] Tag (to Match Logic)

DO[3:0] I1VLDP[3:0] Valid Bits
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5.7.2.3 Example 3: 2-Kbyte D-Cache and 4-Kbyte Direct Mapped
I-Cache

In this example, the I-cache is larger than the D-cache, and should be
placed in the lower-addressed portion of the RAM. Again, the address
and tag must be manipulated. The address to the RAM is limited when
the D-cache is accessed. Also, the tag for the I-cache is smaller, so the
same bits of the tag are forced to zero when it is written to the RAM.
Figure 5.27 shows the RAM configuration.

Figure 5.27
Example 3 RAM
Configuration

Tables 5.21 and 5.22 show the signal connections for the RAMs.

MD95.246

I-Cache Tags

D-Cache Data

I-Cache
Data

Non-Existent

4 K

2 K

2 K

D-Cache Tags

Non-Existent

Table 5.21
D-Cache/I-Cache
Data RAM

RAM Port BBCC Connection Function

CLK BZ_IDDCLKP Clock

A10 ~BZ_IP_DN1 Select D-Cache or I-Cache Portion

A9 BZ_INDEXP9 &2

BZ_IP_DN
Address High Bit (Zero for D-Cache)

A[8:0] BZ_INDEXP[8:0] Address Low Bits

WE[31:24] BZ_IDDWEP3 Byte 3 Write Enable

WE[23:16] BZ_IDDWEP2 Byte 2 Write Enable

WE[15:8] BZ_IDDWEP1 Byte 1 Write Enable

(Sheet 1 of 2)
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The match logic is the same as in Examples 1 and 2, except that the tag
for the I-cache is smaller. One way to handle this is to force some of the
bits of BZ_TAG4MATCHP[21:0] to zero when the I-cache is accessed.
The BZ_IP_DN_L signal, a registered version of BZ_IP_DN, is provided
for ANDing with the bits to force them to zero.

assign new_tag4matchp = {bz_tag4matchp[21:2],
bz_tag4matchp[1] & ~bz_ip_dn_l};

WE[7:0] BZ_IDDWEP0 Byte 0 Write Enable

OE[31:0] BZ_IDDOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

1. ~ means that the signal is connected through an inverter.
2. & means logical AND.

Table 5.21 (Cont.)
D-Cache/I-Cache
Data RAM

RAM Port BBCC Connection Function

(Sheet 2 of 2)

Table 5.22
D-Cache/I-Cache
Set 0 Tag RAM

RAM Port BBCC Connection Function

CLK BZ_IDTCLKP Clock

A8 ~BZ_IP_DN1 Select D-Cache or I-Cache Portion

A7 BZ_INDEXP9 &2

BZ_IP_DN
Address High Bit (Zero for D-Cache)

A[6:0] BZ_INDEXP[8:2] Address Low Bits

WE[25:5] BZ_IDTWEP5 Tag Write Enable

WE4 BZ_IDTWEP4 Lock Bit Write Enable

WE[3:0] BZ_IDTWEP[3:0] Valid Bits Write Enables

OE[25:0] Tied HIGH Output Enable

DI[25:6] BZ_TAGP[21:2] Tag High Bits

DI5 BZ_TAGP1 &2

~BZ_IP_DN1
Tag Low Bit (Zero for I-Cache)

DI4 BZ_LOCKP Lock Bit

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[25:5] IDTAGP[21:1] Tag (to Match Logic)

DO4 IDLCKP Lock Bit

DO[3:0] IDVLDP[3:0] Valid Bits

1. ~ means that the signal is connected through an inverter.
2. & means logical AND.
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assign idmatchp = (new_tag4matchp[21:1] == idtagp[21:1]);
assign i1matchp = 1’b0;

The Verilog code that causes the 3-state gates to place the Tag RAM
outputs onto DATAP[31:0] is:

datap = bz_idt_oen ? 32’hz : {idtagp[21:1], 6’h0, idlckp,
idvldp[3:0]};

5.7.2.4 Example 4: 8-Kbyte Non-Partitioned Cache

In this example, the cache is not partitioned, and can be used as either
D-cache or I-cache, depending on the settings of the Cache Enable Bits
in the System Configuration Register. If the D-cache Enable Bit is on,
and the I-cache Enable Bit is not, then the cache is D-cache. If the
I-cache enable bit is on, and the D-cache enable bit is not, then the
cache is I-cache. If both the D-cache and I-cache enable bits are on,
then the cache acts as a unified cache. However, when the cache is uni-
fied, the Lock Bits should not be used, since the data fetches and stores
ignore the Lock Bit. Figure 5.28 shows the RAM configuration.

Figure 5.28
Example 4 RAM
Configuration

Data8 K

Tag

MD95.259
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Tables 5.23 and 5.24 show the signal connections for the RAMs.

The match logic is:

assign idmatchp = (tag4matchp[21:3] == idtagp[21:3]);
assign i1matchp = 1’b0;

The Verilog code for the 3-state gates to place the Tag RAM outputs onto
DATAP[31:0] is:

datap = bz_idt_oen ? 32’hz : {idtagp[21:3], 8’h0, idlckp,
idvldp[3:0]};

Table 5.23
Cache Data
RAM

RAM Port BBCC Connection Function

CLK BZ_IDDCLKP Clock

A[10:0] BZ_INDEXP[10:0] Address

WE[31:24] BZ_IDDWEP3 Byte 3 Write Enable

WE[23:16] BZ_IDDWEP2 Byte 2 Write Enable

WE[15:8] BZ_IDDWEP1 Byte 1 Write Enable

WE[7:0] BZ_IDDWEP0 Byte 0 Write Enable

OE[31:0] BZ_IDDOEP Output Enable

DI[31:0] DATAP[31:0] Data In

DO[31:0] DATAP[31:0] Data Out

Table 5.24
D-Cache/I-Cache
Set 0 Tag RAM

RAM Port BBCC Connection Function

CLK BZ_IDTCLKP Clock

A[8:0] BZ_INDEXP[10:2] Address

WE[23:5] BZ_IDTWEP5 Tag Write Enable

WE4 BZ_IDTWEP4 Lock Bit Write Enable

WE[3:0] BZ_IDTWEP[3:0] Valid Bits Write Enables

OE[23:0] Tied HIGH Output Enable

DI[23:5] BZ_TAGP[21:3] Tag

DI4 BZ_LOCKP Lock Bit

DI[3:0] BZ_VALIDP[3:0] Valid Bits

DO[23:5] IDTAGP[21:3] Tag (to Match Logic)

DO4 IDLCKP Lock Bit

DO[3:0] IDVLDP[3:0] Valid Bits
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5.7.3
Adding Smaller
Caches

Systems that require I-caches smaller than 1 Kbyte require the minor nec-
essary logic that allows the BBCC to work with I-caches as small as
32 bytes. This logic generates additional Cache RAM Tag bits and
appends these bits to BZ_TAGP[21:0]. It also generates additional bits of
the tag for tag match and appends these bits to BZ_TAG4MATCHP[21:0].

5.7.3.1 Cache RAM Tag

To support smaller I-caches, additional low order bits must be appended
to BZ_TAGP[21:0]. The additional bits of the Cache RAM Tag should be
selected from either MADDROUTP[9:5] or the appropriate BBus address.
The additional bits of the Cache RAM Tag must also be put through a
transparent-low latch to provide sufficient hold time for the cache RAMs.
The Verilog code for the Cache RAM Tag additional logic follows:

assign bbus_tagp[9:5] = bmcntloep ? baddrpo[9:5] :
baddrpi[9:5];

assign bz_tagp_d[9:5] = bbus_stealn ? maddroutp[9:5] :
bbus_tagp[9:5];

always @ (clock or bz_tagp_d)
if (clock == 1’b0) low_bz_tagp[4:0] <= bz_tagp_d[9:5];

5.7.3.2 Tag for Tag Match

To support smaller I-caches, additional low order bits must be appended
to BZ_TAG4MATCHP[21:0]. The tag for tag match additional logic is only
needed if the system requires the BBCC to snoop. If the system requires
snooping, the tag for tag match additional logic supplies lower order bits
to be appended to BZ_TAG4MATCHP[21:0]. If the system does not
require snooping, the appropriate bits of MADDROUTP[9:5] supply the
lower order bits to be appended to BZ_TAG4MATCHP[21:0] (for example,
“assign low_bz_tag4matchp[4:0] = maddroutp[9:5]” ). The Verilog code
for the tag for tag match additional logic follows:

always @ (posedge clock)
bbus_stolen <= bbus_stealn;

always @ (posedge clock)
bbus_tagp_l[9:5] <= bbus_tagp[9:5];

assign low_bz_tag4matchp[4:0] =
bbus_stolen ? maddroutp[9:5] : bbus_tagp_l[9:5];
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5.8
BBus
Arbitration

BBus arbitration occurs independently of transactions on the BBus. While
a device is currently doing a transaction, another device can be granted
mastership of the bus.

The criteria the BBCC uses to determine whether it is able to start a
BBus transaction are listed below. Other BBus devices might use similar
criteria.

♦ In the previous cycle, BGNTN was asserted.

♦ In the previous cycle, BTXNI was deasserted (no other device is on
the bus) or BTXNO was asserted (the BBCC was doing a transac-
tion. If a new transaction is started, BTXNO remains asserted, and
the BBCC can maintain control of the bus).

Many types of BBus arbiters can be designed. Figure 5.29 shows a block
diagram of an example arbiter. Figure 5.30 shows a state-transition dia-
gram of an example arbiter.

The rules and assumptions for the arbiter are:

♦ BTXN is a bidirectional bus that is driven by both the BBCC and
another BBus device called Device X.

♦ When neither the BBCC nor Device X request the BBus, the bus
grant is given to the BBCC.

♦ Once the BBCC or the other BBus device is given the bus grant, it
maintains the grant until the bus request is deasserted or a transac-
tion is started.

♦ The bus requests and BTXN are fast signals (signals that come early
in the cycle).

♦ The bus grant signals do not need much setup time.

Figure 5.29
Block Diagram of
Example Arbiter

BBCC BBus Arbiter Device X

BREQN

BGNTN

XREQN

XGNTN

BTXN MD95.247
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Figure 5.30
Example BBus
Arbiter State
Diagram

State ‘00’ is when the BBCC is granted the bus. The arbiter is in State
‘00’ when neither the BBCC nor Device X are requesting the bus or per-
forming a transaction. The arbiter stays in this state until Device X
requests the bus and either the BBCC is not requesting the bus, or the
BBCC starts a transaction.

State ‘11’ is a transition state. The bus is granted to Device X, but the
BBCC is performing a transaction.

State ‘10’ is when Device X is granted the bus. The arbiter stays in this
state until the BBCC requests the bus and either Device X is not request-
ing the bus, or Device X starts a transaction. The arbiter also leaves this
state if neither Device X nor the BBCC are requesting the bus.

Device X Granted Bus,
Wait for TXN

BBCC Granted Bus,
State = 00

Device X Granted Bus,
State = 10

J

D

A

G

BBCC Granted Bus,
Wait for TXN

C

I
K

E

B F

L
H

A: XREQN | (~BREQN & BTXN) : BGNTN = 0 XGNTN = 1
B: ~XREQN & ~BTXN : BGNTN = 1 XGNTN = 0
C: BREQN & ~XREQN & BTXN : BGNTN = 1 XGNTN = 0
D: ~XREQN & ~BTXN : BGNTN = 1 XGNTN = 0
E: ~XREQN & BTXN : BGNTN = 1 XGNTN = 0
F: XREQN: : BGNTN = 0 XGNTN = 1
G: (BREQN & ~XREQN) | (~XREQN & BTXN) : BGNTN = 1 XGNTN = 0
H: (~BREQN & ~BTXN) | (XREQN & ~BTXN) : BGNTN = 0 XGNTN = 1
I: XREQN & BTXN : BGNTN = 0 XGNTN = 1
J: (~BREQN & ~BTXN) | (XREQN & ~BTXN) : BGNTN = 0 XGNTN = 1
K: (~BREQN & BTXN) | (XREQN & BTXN) : BGNTN = 0 XGNTN = 1
L: BREQN & ~XREQN : BGNTN = 1 XGNTN = 0

1. ~ means that the signal is connected through an inverter.
2. & means logical AND.
3. | means logical OR.

State = 11 State = 01

MD96.206
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State ‘01’ is a transition state. The bus is granted to the BBCC, but
Device X is performing a transaction.

The Verilog code for the state machine is:

module arbiter ( pclkp, breqn, xreqn, btxn, bgntn, xgntn );
input pclkp, breqn, xreqn, btxn;
output bgntn, xgntn;

reg bgntn, wait_for_txn;
reg [1:0] state;

always @ (posedge pclkp)
state <= {bgntn, wait_for_txn};

assign xgntn = ~bgntn;

always @ ( state or breqn or xreqn or btxn ) begin
case (state)

2’b00:
begin

bgntn = ~(xreqn | (~breqn & btxn));
wait_for_txn = ~xreqn & ~btxn;

end
2’b11:

begin
bgntn = ~xreqn;
wait_for_txn = ~xreqn & ~btxn;

end
2’b10:

begin
bgntn = ~(xreqn | (~breqn & ~btxn));
wait_for_txn = (~breqn & ~btxn) |

(xreqn & ~btxn);
end

2’b01:
begin

bgntn = ~(~breqn | xreqn);
wait_for_txn = (~breqn & ~btxn) |

(xreqn & ~btxn);
end

endcase
end

endmodule
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5.9
Timing
Considerations

This section describes timing considerations when designing with the
BBCC.

5.9.1
Cache Data
RAM Clocks

The clocks to the Cache Data RAMs are clocked with delayed clocks
(BZ_IDDCLKP, BZ_I1DCLKP). The system designer might need to add
additional delay to these clocks, depending on the loading of
DATAP[31:0] and the placement of the RAMs. Figure 5.31 is a conceptual
drawing of the CW400x, the BBCC, and the Cache Data RAMs. The data
being written to the RAMs can be from the CW400x (for stores) or from
the BBCC (for cache refills).

Figure 5.31
Conceptual
System Diagram

Figure 5.32 shows waveforms for writes to the D-cache/I-cache Set 0
Data RAM. Writes to the I-cache Set 1 Data RAM are similar. The pur-
pose of the delayed clock to the RAM is to allow data setup time to the
RAMs.

GOE

CW400x

BBCC

I-Cache Set 1
Data RAM

D-Cache/I-Cache
Set 0 Data RAM

COEN

BIUOEN
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Figure 5.32
Writes to the
D-Cache/I-Cache
Set 0 Data RAM

Cycle 1: The CW400x performs a store to the RAM. There are two
paths that matter in this case. The first path is the maximum
delay from the GOE Module’s COEN Output Enable (to put the
data from the CW400x onto DATAP[31:0]) to the cache RAM (a
zero-cycle path). The second path is the data from the CW400x
(a one-cycle path). The clock to the RAM should be delayed so
that DATAP[31:0] has enough setup time before the RAM is
clocked. Usually, the longer path is from COEN.

Cycle 2: The BBCC performs a cache refill, and the BIUOEN assertion
enables the output data onto DATAP[31:0]. The data origi-
nates from a register in the BBCC called (in the Verilog code)
DATAREG. In this case, there are also two paths that matter.
The first path is the maximum delay from the GOE Module’s
BIUOEN Output Enable (to put the data from the BBCC onto
DATAP[31:0]) (a zero-cycle path). The second path is the
maximum delay from the DATAREG Register (also a zero-
cycle path). The clock to the RAM should be delayed enough
so that DATAP[31:0] has enough setup time before the RAM
is clocked.

In static timing analysis, check the Cache Data RAMs setup time con-
straint. The CW400x data path should be considered a one-cycle path,
and the paths from COEN, BIUOEN, and DATAREG should be consid-
ered zero-cycle paths. Check the setup time constraint at the best and
worst timing conditions (BCCOM and WCCOM). If necessary, add delay
gates to BZ_IDDCLKP and BZ_I1DCLKP. BZ_IDDCLKP and
BZ_I1DCLKP should not be delayed too much, however, since delays on
these signals cause RAM reads to occur later in the clock cycle.

PCLKP

COEN

BIUOEN

DATAP[31:0]

BZ_I1DWEP

BZ_IDDCLKP

CW400x Data BBCC Data

1 2

MD96.207
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5.9.2
Cache Data
RAM Address

Another timing constraint is the address bus to the Cache Data RAMs,
BZ_INDEXP[12:0] and BZ_IP_DN. Since the clock signals to these
RAMs are delayed, it is especially important to check the address hold
time requirement of these RAMs. Figure 5.33 shows some transactions
to the RAMs with the clock at a 50% duty cycle and Figure 5.34 shows
some transactions to the RAMs with the clock at a 30% duty cycle.

The duty cycle is important since BZ_IP_DN and BZ_INDEXP[12:0]
come from transparent-low latches. These signals change at the falling
edge of PCLKP. At a 50% duty cycle, there is plenty of hold time on the
address to the RAM. At a 30% duty cycle, there is less hold time on the
address since the duty cycle is smaller.

The address to the Cache Data RAMs might need to be delayed,
depending on the:

♦ Required minimum duty cycle

♦ Amount of time BZ_IDDCLKP and BZ_I1DCLKP are delayed

♦ Clock frequency

If the address to the Cache Data RAMs must be delayed, add delay
gates to the BZ_IP_DN and BZ_INDEXP[12:0] signals to the Cache Data
RAMs, but not to the Cache Tag RAMs.

Figure 5.33
RAM Transactions
(Clock with a 50%
Duty Cycle)

PCLKP

BZ_IP_DN

BZ_INDEXP[12:0]

BZ_IDDCLKP

Address Hold Time

Index Index Index

MD96.224
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Figure 5.34
RAM Transactions
(Clock with a 30%
Duty Cycle)

5.9.3
Tag Match Logic

If a real MMU (not the MMU Stub) is in the system, and the system has
a two-way set associative I-cache, MADDROUTP[31:2] (from the MMU
through the tag match logic) might be the critical path. If this is the case,
and if the BBCC does not need to snoop, then this path can be reduced
by replacing BZ_TAG4MATCHP[21:0] with MADDROUTP[31:10]. This
replacement reduces the delay from the MMU to the tag match logic.

MD95.251
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Chapter 6
Adding or Removing
Write Buffers

This chapter explains how to add write buffers to the BBCC by modifying
the LSI Logic cw400x_wb3 Module. It also explains how to remove them.

This chapter contains the following sections:

♦ Section 6.1, “Overview,” page 6-1

♦ Section 6.2, “Signals,” page 6-2

♦ Section 6.3, “Basic Operation of a Write Buffer,” page 6-8

♦ Section 6.4, “Adding a Write Buffer,” page 6-8

♦ Section 6.5, “Removing a Write Buffer,” page 6-10

6.1
Overview

The BBCC contains a single write buffer. It can support up to seven addi-
tional write buffers outside the BBCC, attached as shown in Figure 6.1.
These additional buffers form a first-in-first-out (FIFO) queue; the write
buffer inside the BBCC is at the head of this queue.

Figure 6.1
Typical Write Buffer
Configuration

Additional Write Buffers

BBCC

 Single Write Buffer
...

MD96.208



6-2 Adding or Removing Write Buffers

6.2
Signals

This section describes the signals that comprise the bit-level interface of
a write buffer (WB). Tables 6.1 and 6.2 summarize the write buffer sig-
nals. Detailed descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for active LOW signals end in an “N” and have an overbar over
their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

Table 6.1
Write Buffer Input
Signals Summary

Input Source Description

BHD_ADDRP[31:2] Next Transaction WB’s WB1_ADDRP[31:2],
Ground if last WB

Store Address

BHD_ARRIVEBFLDP1 Next Transaction WB’s
WB1_ARRIVEBFLDP, Ground if last WB

Arrive Before Load

BHD_BYTEP[3:0] Next Transaction WB’s WB1_BYTEP[3:0],
Ground if last WB

Byte Enables

BHD_CFGP Next Transaction WB’s WB1_CFGP,
Ground if last WB

Store to Configuration Register

BHD_DATAP[31:0] Next Transaction WB’s WB1_DATAP[31:0],
Ground if last WB

Store Data

BHD_STPNDP Next Transaction WB’s WB1_STPNDP,
Ground if last WB

Store Pending

BQ_ARRIVEBFLDP1 BBCC Arrive Before Load1

BQ_CFGSELP BBCC Store to Configuration Register

BQD_DFQADDRP[3:0]1 BBCC Data Fetch Address

BQ_DFQUPDATEP BBCC Update Data Fetch Queue

BQO_DFDONEP BBCC Data Fetch Done

BQ_RDSTQP BBCC Read Store Queue

BQ_WRSTQP BBCC Write Store Queue

BRESETN System Logic/Reset Module Reset

CBYTEP[3:0] CW400x CW400x Byte Enables

DATAP[31:0] CW400x Cw400x Store Data

(Sheet 1 of 2)
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BHD_ADDRP[31:2]
Store Address Input
The current WB receives the Store Address from the next
transaction WB on these signals when data moves up the
FIFO queue. If the current WB is the last WB in the
queue, these signals are connected to ground.

MADDROUTP[31:2] CBus CBus Store Address

PCLKP System Logic System Clock

PREV_STPNDP Previous Transaction WB’s WB1_STPNDP
or BBCC’s BW_STPNDP

Store Pending

SE System Logic Scan Enable

SI Previous Transaction WB or BBCC’s SO Scan Data In

1. Needed to implement read priority.

Table 6.1 (Cont.)
Write Buffer Input
Signals Summary

Input Source Description

(Sheet 2 of 2)

Table 6.2
Write Buffer Output
Signals Summary

Output Destination Description

SO Next Transaction WB Scan Data Out

WB1_ADDRP[31:2] Previous Transaction WB’s BHD_ADDRP[31:2],
BBCC’s WB_ADDRP[31:2] if First External WB

Store Address

WB1_ARRIVEBFLDP Previous Transaction WB’s
BHD_ARRIVEBFLDP, BBCC’s
WB_ARRIVEBFLDP if First External WB

Arrive Before Load

WB1_BYTEP[3:0] Previous Transaction WB’s BHD_BYTEP[3:0],
BBCC’s WB_BYTEP[3:0] if First External WB

Byte Enables

WB1_CFGP Previous Transaction WB’s BHD_CFGP,
BBCC’s WB_CFGP if First External WB

Configuration Register Select

WB1_DATAP[31:0] Previous Transaction WB’s BHD_DATAP[31:0],
BBCC’s WB_DATAP[31:0] if First External WB

Store Data

WB1_STPNDP Previous Transaction WB’s BHD_STPNDP,
BBCC’s WB_STPNDP if First External WB

Store Pending

WB1_VWBFLDP OR-Gated to BBCC Valid Write Before Load
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BHD_ARRIVEBFLDP
Arrive Before Load Input
The current WB receives the Arrive Before Load signal
from the next transaction WB on this signal when data
moves up the FIFO queue. If the current WB is the last
WB in the queue, this signal is connected to ground.

BHD_BYTEP[3:0]
Byte Enables Input
The current WB receives the Byte Enables from the next
transaction WB on these signals when data moves up the
FIFO queue. If the current WB is the last WB in the
queue, these signals are connected to ground.

BHD_CFGP Store to Configuration Register Input
The current WB receives the Configuration Register Select
signal from the next transaction WB on this signal when
data moves up the FIFO queue. If the current WB is the
last WB in the queue, this signal is connected to ground.

BHD_DATAP[31:0]
Store Data Input
The current WB receives the Store Data from the next
transaction WB on these signals when data moves up the
FIFO queue. If the current WB is the last WB in the
queue, these signals are connected to ground.

BHD_STPNDP Store Pending Input
The current WB receives the Store Pending signal from
the next transaction WB on this signal when data moves
up the FIFO queue. If the current WB is the last WB in
the queue, this signal is connected to ground.

BQ_ARRIVEBFLDP
Store Arrived Before Load Input
The BBCC BW_ARRIVEBFLDP output connects to this
input. The BBCC asserts this signal to inform the WB that
the current CBus store transaction is occurring while the
Data Fetch Queue is empty. This signal is needed to
implement read priority.

BQ_CFGSELP Store to System Configuration Register Input
The BBCC BW_CFGSELP output connects to this input.
The BBCC asserts this signal to inform the WB that the cur-
rent CBus store is to the System Configuration Register.



Signals 6-5

BQD_DFQADDRP[3:0]
Data Fetch Queue Address Input
The BBCC BW_DFQADDRP[3:0] outputs connect to
these inputs. These signals are a few bits of the address
from the Data Fetch Queue. The WB uses these bits to
detect load/store dependencies. This signal is needed to
implement read priority.

BQ_DFQUPDATEP
Data Fetch Queue Update Input
The BBCC BW_DFQUPDATEP output connects to this
input. The BBCC asserts this signal to inform the WB that
the Data Fetch Queue is being updated.

BQO_DFDONEP
Data Fetch Done Input
The BBCC BW_DFDONEP output connects to this input.
The BBCC asserts this signal to inform the WB that a
data fetch transaction just completed.

BQ_RDSTQP Read Store Queue Input
The BBCC BW_RDSTQP output connects to this input.
The BBCC asserts this signal to initiate a read operation
to the WB.

BQ_WRSTQP Write Store Queue Input
The BBCC BW_WRSTQP output connects to this input.
The BBCC asserts this signal to initiate a write operation
to the WB.

BRESETN Reset Input
Asserting this signal resets the WB.

CBYTEP[3:0] Byte Enables Input
These signals from the CW400x inform the WB (when
asserted HIGH) which corresponding bytes are valid on
DATAP[31:0].

The following table shows the correspondence between
byte enables and the data bus bytes.

Byte
Enable

Corresponding
DATAP[31:0] Byte

CBYTEP3 [31:24]
CBYTEP2 [23:16]
CBYTEP1 [15:8]
CBYTEP0 [7:0]
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DATAP[31:0] CW400x Data Bus Bidirectional
These signals transfer data to, and from, the CW400x.

MADDROUTP[31:2]
Mapped Address Input
These signals are the mapped CBus address from the
MMU or MMU Stub.

PCLKP System Clock Input
This signal is the global clock input.

PREV_STPNDP
Store Pending Input
When the previous transaction WB (which might be in the
BBCC) asserts this signal (by passing along
WB1_STPNDP), it informs the current WB that the previ-
ous transaction WB contains a valid store transaction.

SE Scan Enable Input
Asserting this signal enables the scan chain.

SI Scan Data In Input
This signal is the scan data input.

SO Scan Data Out Output
This signal is the scan data output.

WB1_ADDRP[31:2]
Store Address Output
The current WB uses these signals to pass on its Store
Address to the previous transaction WB (which might be
in the BBCC).

WB1_ARRIVEBFLDP
Arrive Before Load Output
The current WB uses this signal to pass on its Arrive
Before Load signal to the previous transaction WB (which
might be in the BBCC).

If this signal is asserted, it informs the previous transac-
tion WB in the queue (which might be in the BBCC) that
the store transaction held in the current WB was started
while the Data Fetch Queue was empty.
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WB1_BYTEP[3:0]
Byte Enables to Previous Transaction WB Output
The current WB uses these signals to pass on its Byte
Enables to the previous transaction WB (which might be
in the BBCC).

WB1_CFGP Configuration Register Select Output
The current WB uses this signal to pass on its Configu-
ration Register Select signal to the previous transaction
WB (which might be in the BBCC).

WB1_DATAP[31:0]
Store Data to Previous Transaction WB Output
The current WB uses these signals to pass on its store
data to the previous transaction WB (which might be in
the BBCC).

WB1_STPNDP Store Pending Output
The current WB uses this signal to pass on its Store
Pending signal to the previous transaction WB (which
might be in the BBCC).

If this signal is asserted, it informs the previous transac-
tion WB and the next transaction WB (or, if there is no
next transaction WB, then the BBCC) that the current WB
contains a valid store transaction.

If the current WB is the last WB in the queue, this signal
asserted also informs the BBCC that the WB is Full (it is
connected to the BBCC WB_FULLP signal).

WB1_VWBFLDP
Valid Write Before Load Output
The current WB asserts this signal to inform the BBCC
that the current WB contains a valid store transaction has
higher priority than data fetch transactions. All the WB’s
WB1_VWBFLDP outputs are logically ORed to provide
the BBCC’s BW_VWBFLDP input.
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6.3
Basic Operation
of a Write Buffer

The three store pending bits (PREV_STPNDP, BHD_STPNDP, and
WB1_STPNDP) and the Read/Write Indicators (BQ_RDSTQP and
BQ_WRSTQP) determine the source of the WB input.

During a read operation (BQ_RDSTQP HIGH), the BBCC takes data
from the top of the FIFO queue, and subsequent data moves up the
queue. The current WB takes its input from the next WB in queue (the
next transaction WB).

During a write operation (BQ_WRSTQP HIGH), if PREV_STPNDP is
HIGH and WB1_STPNDP is LOW, the current WB is the first nonempty
buffer in the queue; therefore it takes its input from the CW400x. Other-
wise, the current WB holds its current data.

Table 6.3 shows how BHD_STPNDP and WB1_STPNDP control the cur-
rent WB when a read and a write operation happen at the same time.

Table 6.3
Write Buffer
Operation for
Reads and Writes

6.4
Adding a Write
Buffer

Figure 6.2 shows a block diagram of the write buffer connections within
the cw400x_wb3 Module.

BHD_STPNDP WB1_STPNDP Results

x 0 Does Not Clock in New Data

0 1 Clocks in Data from the CW400x

1 1 Clocks in Data from the Next Write Buffer
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Figure 6.2
Write Buffer Connection Diagram
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6.4.1
Connect the
Inputs

Connect the input signals as follows:

♦ Inputs from the next transaction write buffer (BHD_*) - tie to ground

♦ Inputs from the CW400x, CBus, System Logic, and BBCC - these
signals are direct inputs to all of the write buffers (see Figure 6.2).

♦ Inputs from the previous transaction write buffer - connect the previous
transaction WB’s WB1_STPNDP output to the PREV_STPNDP input.
If the previous transaction write buffer is inside the BBCC, then con-
nect the BBCC BW_STPNDP output to the PREV_STPNDP input.

♦ Scan Input - Connect the previous transaction WB’s Scan Out signal,
SO, to the Scan In signal, SI.

6.4.2
Connect the
Outputs

Connect the output signals as follows:

♦ Outputs to the previous transaction write buffer inputs - Connect the
outputs with the corresponding signal names to the previous trans-
action write buffer’s inputs (WB1_* to BHD_*). For example, connect
the WB1_STPNDP output to the BHD_STPNDP input of the previous
transaction write buffer.

♦ Valid Write Before Load Global Output signal - If any of the
WB1_VWBFLDP signals inside the Store Queue are asserted, the
write buffer should be flushed before the Queue Controller lets the
data fetch onto the bus. Therefore, OR all the WB’s WB1_VWBFLDP
signals to generate WB_VWBFLDP. Then connect WB1_VWBFLDP
to the BBCC’s WB_VWBFDP input. The BBCC passes this signal on
to the Queue Controller inside the BBCC.

♦ WB1_STPNDP signal - If there is a valid store operation in the last
write buffer, the write buffer asserts WB1_STPNDP, which indicates
that the Store Queue is full. Therefore, connect the BBCC
WB_FULLP signal to the WB1_STPNDP signal of the last write
buffer. Assertion of WB_FULLP informs the Queue Controller that
the Store Queue is full and therefore the Queue Controller should
stall the CW400x if there are any more data stores issued.

♦ Scan Out - Connect the Scan Out signal, SO, to the next transaction
WB’s Scan In signal, SI.

6.5
Removing a
Write Buffer

Removing a write buffer is the reverse of adding a write buffer. Discon-
nect the inputs and outputs. Ensure that the last (previous) WB’s BHD_*
signals are connected to ground, and that the WB1_STPNDP signal is
connected to the BBCC’s WB_FULLP input (see Figure 6.2).
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Chapter 7
Timer

This chapter describes the Timer building block for the CW400x.

It contains the following sections:

♦ Section 7.1, “Overview,” page 7-1

♦ Section 7.2, “Features,” page 7-1

♦ Section 7.3, “Functional Description,” page 7-2

♦ Section 7.4, “Signals,” page 7-3

♦ Section 7.5, “Registers,” page 7-7

♦ Section 7.6, “Operation,” page 7-9

7.1
Overview

The Timer contains two general-purpose programmable timers (Timer 0
and Timer 1) that can be used to control special functions. Figure 7.1
shows a block diagram of a system using the CW400x and the Timer.

Figure 7.1
CW400x System
with the Timer

7.2
Features

The Timer supports the following features:

♦ Two independent general-purpose 16-bit down counters with pro-
grammable initial count values

 CW400x

CBus

Timer

BIU and
Cache

Controller
(BBCC)

BBusCBus
Interface

MD96.44
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♦ Programmable output modes (Toggle or Pulse)

♦ Special modes: Bus Watch Dog (Timer 1), Interrupt (Timer 0)

♦ External logic half-speed mode

7.3
Functional
Description

Figure 7.2 shows an internal block diagram of the Timer building block.

Figure 7.2
Timer Internal
Block Diagram

The Timer decodes the BBus transaction address (see Table 7.4) from
the BBCC and asserts a select signal to indicate that the BBCC has
selected the Timer.

Each timer is a 16-bit down counter (a 32-bit data bus with the high 16
bits tied to 0) with an Initial Count Register and a Current Count Register.
The Mode Register defines the operation of both counters. The Interrupt
Status Register enables the Timer 0’s Interrupt Mode and provides the
interrupt output. Section 7.5, “Registers,” describes the Mode and Inter-
rupt Status Registers in detail.

BTXN

Initial Count

T0_OUTN, T1_OUTN,

Address Decode

PCLKP

Interrupt

TADDRP[31:2]

BSTARTN

TWR

TRESETN

Registers

Timers 0 and 1 Timers 0 and 1

TCSP, TBRDYN

Status Register

TDATAP[15:0]

MD96.45

Counters/
Current Counts

Counter
Mode Register
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7.4
Signals

This section describes the signals that comprise the bit-level interface of
the Timer. Tables 7.1 through 7.3 summarize the Timer signals. Detailed
descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for signals that are active LOW end with “N” and have an overbar
over their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

Table 7.1
Timer Input Signals
Summary

Input Source Definition

BRDYNODRIVE BBus Controller TBRDYN 3-State Control

BSTARTN BBCC BBus Transaction Start

BTXN BBCC BBus Transaction Active

CTESTP External Logic Running Cache Test, Disable Timer

DATANODRIVE BBus Controller Data Bus 3-State Control

HALFP External Logic Running at Half CW400x Speed Indicator

HCLKP External Logic Half-Speed Clock

PCLKP External Logic System Clock

SE External Logic Scan Test Mode Enable

SI External Logic Scan Test Input

TADDRP[31:2] BBCC BBus Address Bus

TRESETN External Logic Reset

TWR BBCC BBCC Read/Write Indicator
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Table 7.3
BBCC Bidirectional
Signals Summary

BRDYNODRIVE
TBRDYN 3-State Control Input
The BBus controller asserts this signal to enable the
Timer to assert TBRDYN.

BSTARTN BBus Transaction Start Input
The BBCC asserts this signal to inform the Timer that a
BBus transaction is starting.

BTXN BBus Transaction Active Input
The BBCC asserts this signal to inform the Timer that a
BBus transaction is in progress.

CTESTP Running Cache Test, Disable Timer Input
Asserting this signal during a hardware cache test dis-
ables the Timer.

DATANODRIVE
Data Bus 3-State Control Input
Asserting this signal allows the Timer to output data onto
the data bus, TDATAP[31:0].

Table 7.2
Timer Output Signals
Summary

Output Destination Definition

SO External Logic Scan Test Output

TBERRORN External Logic Timer 1 Counted Down to Zero Bus Error

TBRDYN BBCC Timer Data to BBCC Ready

TCSP External Logic Timer Module Selected

TOUTENP BBus Controller Data Bus Output Enable Request

TRDYENP BBus Controller Data Ready Signal Output Enable Request

T0_INTN External Logic Timer 0 Interrupt

T0_OUTN External Logic Timer 0 Output for General Purpose Counting

T1_OUTN External Logic Timer 1 Output for General Purpose Counting

Bidirectional Connect Description

TDATAP[31:0] BBCC BBus Data Bus
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HALFP Running at Half CW400x Speed Indicator Input
Asserting this signal informs the Timer that external logic
is running at half of the CW400x clock speed.

HCLKP Half-Speed Clock Input
This signal is the half-speed clock input.

PCLKP System Clock Input
This signal is the global clock input.

SE Scan Enable Input
Asserting this signal enables the scan chain.

SI Scan Data In Input
This signal is the scan data input.

SO Scan Data Out Output
This signal is the scan data output.

TADDRP[31:2] BBus Address Bus Input
The BBCC drives these signals with the address for the
current BBus transaction.

TBERRORN Timer 1 Counted Down to Zero Bus Error Output
The Timer asserts this signal to indicate that a Bus Error
occurred because Timer 1 counted down to zero, only if
the Mode Register is set to be Watch Dog Mode.

TBRDYN Timer Data to BBCC Ready Output
The Timer asserts this signal to indicate that data is
ready on TDATAP[31:0] (only if BRDYNODRIVE is also
HIGH).

TCSP Timer Module Selected Output
The Timer asserts this signal to indicate that it has been
selected.

TDATAP[31:0] BBus Data Bus Bidirectional
These signals transfer data between the Timer and the
BBCC.

TOUTENP Data Bus Output Enable Request Output
The Timer asserts this signal to request permission from
external logic (usually the BBus controller) to use the
BBus Data Bus, TDATAP[31:0].
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TRDYENP Data Ready Signal Output Enable Request Output
The Timer asserts this signal to external logic (usually the
BBus controller) to request permission to assert
TBRDYN. In turn the external logic must assert
BRDYNODRIVE before the Timer can assert TBRDYN.
See Section 7.6.2, “Bus Control (Request/Grant),” for
more information on use of TRDYENP.

TRESETN Reset Input
External logic asserts this signal to reset the Timer. Usu-
ally the system reset drives this signal.

TWR BBCC Write/Read Indicator Input
The BBCC drives this signal LOW to inform the Timer
that the current BBus transaction is a write. The BBCC
drives this signal HIGH to inform the Timer that the cur-
rent BBus transaction is a read.

T0_INTN Timer 0 Interrupt Output
The Timer asserts this signal to external logic when
Timer 0 is programmed as an interrupt generator (Inter-
rupt Mode), and Timer 0 hits zero.

T0_OUTN Timer 0 Output for General Purpose Counting Out-
put
The Timer asserts this signal to external logic when
Timer 0 hits zero in Toggle Mode. The Timer pulses this
signal to external logic when Timer 0 hits zero in Pulse
Mode.

T1_OUTN Timer 1 Output for General Purpose Counting Out-
put
The Timer asserts this signal to external logic when
Timer 1 hits zero in Toggle Mode. The Timer pulses this
signal to external logic when Timer 1 hits zero in Pulse
Mode.
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7.5
Registers

All Timer registers are memory-mapped as shown in Table 7.4.

Table 7.4
Timer Register
Addresses

The Initial and Current Count Registers are all simple 16-bit registers.

Figure 7.3 shows the Mode Register. The Mode Register controls the
operation of the Timers.

Figure 7.3
Mode Register

Reserved Reserved Bits [31:11], [7:2]
These bits are reserved.

M Timer 1 Watch Dog Mode 10
Setting this bit to one, puts Timer 1 into Watch Dog
Mode. Clearing this bit to zero puts Timer 1 into General
Purpose Mode. Note that if Timer 1 is in Watch Dog
Mode and output is programmed to toggle, Watch Dog
Mode forces the output to be a pulse.

O1 Timer 1 Output Mode 9
Setting this bit to one, puts Timer 1 into Pulse Mode.
Clearing this bit to zero puts Timer 1 into Toggle Mode.
Note that if Timer 1 is in Watch Dog Mode and output is
programmed to toggle, Watch Dog Mode forces the out-
put to be a pulse.

Address Register

0xBFFF0100 Timer 0 Initial Count Register

0xBFFF0104 Timer 0 Current Count Register

0xBFFF0108 Timer 1 Initial Count Register

0xBFFF010C Timer 1 Current Count Register

0xBFFF0110 Mode Register

0xBFFF0114 Interrupt Status Register (Timer 0 Only)

31 11 10 9 8 7 2 1 0

Reserved M O1 E1 Reserved O0 E0



7-8 Timer

E1 Timer 1 Enable 8
Setting this bit to one, enables Timer 1. Clearing this bit
disables Timer 1. When disabled, the Counter holds the
current value.

O0 Timer 0 Output Mode 1
Setting this bit to one, puts Timer 0 into Pulse Mode.
Clearing this bit to zero puts Timer 0 into Toggle Mode.

E0 Timer 0 Enable 0
Setting this bit to one, enables Timer 0. Clearing this bit
to zero, disables Timer 0. When disabled, the Counter
holds the current value.

Timer 0 resets its output anytime Mode Register Bit 1 is being written
with a new value and there is a change in the output mode. Timer 1
resets its output anytime Mode Register Bit 9 is being written with a new
value and there is a change in the output mode. However, if the new
mode is the same as the existing one, the Timer ignores the update and
does not reset the output. This feature allows the timers to be turned on
or off individually.

Figure 7.4 shows the Interrupt Status Register (Timer 0 only).

Figure 7.4
Interrupt Status
Register

Reserved Reserved Bits [31:2]
These bits are reserved.

IN Timer 0 Interrupt 1
When Timer 0 counts down to zero, it sets this bit to one.
The CW400x writes a zero to this bit to clear it to zero
(sticky bit).

IE Timer 0 Interrupt Enable 0
Setting this bit to one, enables Timer 0 Interrupt Mode.
Clearing this bit to zero, disables Timer 0 Interrupt Mode.

31 2 1 0

Reserved IN IE
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7.6
Operation

This section describes the operation of the Timer.

7.6.1
Reset

A system reset (asserting TRESETN) disables both timers, clears all the
registers to zero, and drives the outputs, T0_OUTN and T1_OUTN,
HIGH. Reset also puts Timer 1 into General Purpose Mode.

7.6.2
Bus Control
(Request/Grant)

Asserting TOUTENP requests permission to drive the BBus Data Bus to
external bus control logic. Asserting TRDYENP requests permission to
drive the ready signal to external bus control logic. The external bus con-
trol logic monitors the BBus Data Bus and ready signals for multiple driv-
ers, and ensures that there is only one driver that can drive the BBus
Data Bus and the ready signals in each cycle.

Once the Timer asserts TOUTENP and TRDYENP, the external logic
should in turn assert BRDYNODRIVE and DATANODRIVE HIGH, which
allows the Timer internal 3-state buffers to drive out the data on to the
BBus Data Bus, TDATAP[31:0], and the Ready signal, TBRDYN. The cur-
rent design requires that the external bus control logic assert BRDYNO-
DRIVE and DATANODRIVE in the same cycle that the Timer asserts
TOUTENP and TRDYENP.

7.6.3
External Logic
Half-Speed
Mode

The External Logic Half-speed Mode is implemented specifically for an
external memory system that can only run at half the speed of the
CW400x, and the Timer Output signal is used for memory refresh.
Asserting HALFP informs the Timer that external logic is running at half
of the CW400x clock speed. During Timer operation, all internal Timer
submodules run at the normal system clock frequency, except the output
logic that controls the switching of the primary Timer outputs (T0_OUTN,
T1_OUTN, and T0_INTN). The HCLKP input controls the output logic at
half the frequency of the system clock. When in Pulse Mode, the Timer
generates a pulse that is one HCLKP cycle long. When in Toggle Mode,
the LOW-to-HIGH toggle transition occurs one HCLKP cycle later than in
Normal-speed Mode.

Figure 7.5 shows a waveform comparing Half-speed Mode with Normal-
speed Mode.
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Figure 7.5
Half-Speed Mode

7.6.4
Timer 0

Timer 0 is a 16-bit general-purpose down counter that can be configured
to either toggle or generate a pulse when it reaches zero. Setting Mode
Register Bit 1 causes Timer 0 to pulse T0_OUTN when it counts down
to zero (Pulse Mode). Clearing Mode Register Bit 1 causes Timer 0 to
toggle T0_OUTN when it counts down to zero (Toggle Mode). The
CW400x system clock drives the Timer.

Setting the Mode Register Bit 0 to one enables Timer 0. When enabled,
Timer 0 loads the value from the Timer 0 Initial Count Register into the
Timer 0 Current Count Register, and starts counting down.

Clearing Mode Register Bit 0 to zero disables Timer 0. When disabled,
Timer 0 stops counting. The Timer 0 Current Count Register retains the
current count value. If the counter is re-enabled, the Timer reloads the
Timer 0 Initial Count Value into the Timer 0 Current Count Register and
proceeds to count down. It does not resume using the retained current
count value.

A system reset (asserting TRESETN) disables Timer 0, clears the
Timer 0 Initial Count Register to zero, and drives T0_OUTN HIGH.

Writing to the Timer 0 Initial Count Register causes the Timer to update
the Timer 0 Current Count Register value and initiate a countdown from
the new value (if the timer is enabled). The Timer also resets T0_OUTN
to the HIGH default state.

Clearing the Timer 0 Initial Count Register to zero disables Timer 0.
When disabled, Timer 0 drives T0_OUTN HIGH and does not count.

When HALFP is asserted, Timer 0 functions internally the same way it
does in Normal Mode (when HALFP is not asserted), except the

PCLKP

T0_OUTN1

HCLKP

T0_OUTN
(Half Speed)

1. Cycle 2 - Timer 0 generates a pulse. Cycle 6 - Timer 0 toggles to LOW.
Cycle 9 - Timer 0 toggles to HIGH.

1 2 3 4 5 6 7 8 9

MD96.212
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T0_OUTN output lasts one system clock cycle longer. When in Pulse
Mode, Timer 0 generates a pulse that is two system clock cycles long.
When in Toggle Mode, Timer 0 toggles output one cycle later than in Nor-
mal Mode. HALFP allows the Timer 0 T0_OUTN output to be used for a
DRAM refresh when an external memory system is running at half speed.

Timer 0 can generate an interrupt signal to a core output. When the
Interrupt Status Register Bit 0 is set to one, Timer 0 drives T0_INTN
LOW and sets the Interrupt Bit in the Interrupt Status Register when
Timer 0 reaches zero. Then Timer 0 reloads from the Initial Count Reg-
ister and counts down again. The T0_INTN output stays LOW until the
Status Bit is cleared by a write to the Interrupt Status Register. Once the
Status Bit is cleared, Timer 0 drives T0_INTN HIGH again. If the Status
Bit is not cleared, when the next count down to zero overflow occurs, the
T0_INTN output stays LOW. Note that if the Status Bit is cleared, the
Timer does not reload the initial count.

Figure 7.6 shows a waveform of Timer 0 being enabled, read, and then
disabled by the CW400x.

Figure 7.6
Timer 0 Enabled, Read,
and Disabled

PCLKP

TDATAP[31:0]

TWR

BSTARTN

TBRYDN

T0_CURRENT[15:0]

1 2 3 4 5 6 7 8 9 10 11 12

TCSP

TADDRP[31:2]

A B C

BTXN

(Internal)

Mode Register Current Register Mode Register

Mode Data Initial-3 Mode Data

Initial Initial-1 Initial-2 Initial-3 Initial-4 Initial-5 Initial-6 Initial-7 Initial-7

MD96.46
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7.6.4.1 Transaction A

Cycle 1: The BBCC asserts TWR and BSTARTN to initiate a write to
the Mode Register, which starts Timer 0 counting. The BBCC
asserts BTXN to start a bus transaction. Timer 0 decodes the
address and asserts TCSP to indicate that the transaction is
to the Timer Module.

Cycle 2: Timer 0 decodes the input, loads from the Timer 0 Initial
Count Register, and asserts TBRDYN to the BBCC.

Cycle 3: The Timer deasserts TBRDYN, and Timer 0 starts counting.

7.6.4.2 Transaction B

Cycle 5: The BBCC asserts BSTARTN to initiate a memory read from
the Timer 0 Current Count Register.

Cycle 6: Timer 0 puts the count value onto TDATAP[31:0] and asserts
TBRDYN to the BBCC.

Cycle 7: The Timer deasserts TBRDYN.

7.6.4.3 Transaction C

Cycle 9: The BBCC asserts signals to the Timer to disable the count-
ing. (The BBCC writes a zero into Bit 0 of the Mode Register
to disable Timer 0.)

Cycle 11: Timer 0 stops counting and holds the count value.
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Figure 7.7 shows a waveform of the Timer 0 output, T0_OUTN.

Figure 7.7
Timer 0 Output

7.6.4.4 Transaction A

Cycle 1-4: Same as in Figure 7.6 on page 7-11.

Cycle 8: Timer 0 reaches zero.

Cycle 9: Timer 0 toggles T0_OUTN (or generates a pulse) and reloads
the Timer 0 Initial Count Value into the counter again.

Cycle 10: Timer 0 starts counting.

7.6.5
Timer 1

Timer 1 is similar to Timer 0, but with one additional feature. Timer 1 can
be programmed as a bus Watch Dog Timer. In this mode, Timer 1 loads
from the Timer 1 Initial Count Register and starts counting down when-
ever the CW400x starts a new Bus Transaction Cycle (other than a Timer
transaction). The BBCC signals a new Bus Transaction Cycle by assert-
ing BTXN and BSTARTN.

TWR

BSTARTN

TBRYDN

1 2 3 4 5 6 7 8 9 10 11 12

TCSP

A B C

BTXN

T0_OUTN

TDATAP[31:0]

TADDRP[31:2]

T1_CURRENT[15:0]
(internal)

PCLKP

Mode Register

Mode Data

Initial Initial-1 Initial-2 Initial-3 Initial-4 0x0000 Initial Initial-1 Initial-2

MD96.47
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Timer 1 is a 16-bit general-purpose down counter that can be configured
to either toggle or generate a pulse when it reaches zero. Setting Mode
Register Bit 9 causes Timer 1 to pulse T1_OUTN when it counts down
to zero (Pulse Mode). Clearing Mode Register Bit 9 causes Timer 1 to
toggle T1_OUTN when it counts down to zero (Toggle Mode). The
CW400x system clock drives the Timer.

Setting the Mode Register Bit 8 to one enables Timer 1. When enabled,
Timer 1 loads the value from the Timer 1 Initial Count Register into the
Timer 1 Current Count Register and starts counting down.

Clearing Mode Register Bit 8 to zero disables Timer 1. When disabled,
Timer 1 stops counting. The Timer 1 Current Count Register retains the cur-
rent count value. If the counter is re-enabled, the Timer reloads the Timer 1
Initial Count Value into the Timer 1 Current Count Register and proceeds to
count down. It does not resume using the retained current count value.

A system reset (asserting TRESETN) disables Timer 1, puts it into Gen-
eral Purpose Mode, clears the Timer 1 Initial Count Register to zero, and
drives T1_OUTN HIGH.

Writing to the Timer 1 Initial Count Register causes the Timer to update
the Timer 1 Current Count Register value and initiate a count down from
the new value (if the timer is enabled). The Timer also resets T1_OUTN
to the HIGH default state.

Clearing the Timer 1 Initial Count Register to zero disables Timer 1.
When disabled, Timer 1 drives T1_OUTN HIGH and does not count.

In Pulse Mode, the pulse lasts one system clock cycle, which allows the
interrupt controller to register the assertion of TBERRORN. Once Timer
1 hits zero, it asserts TBERRORN, disables itself, and waits for the next
bus transaction. If the bus cycle ends earlier, Timer 1 disables itself and
holds the current count value. A new bus transaction causes Timer 1 to
reload the Initial Count Value and proceed to count down.

When HALFP is asserted, Timer 1 functions internally exactly the same as
it does in Normal Mode (when HALFP is not asserted), except the
T1_OUTN output lasts one system clock cycle longer. When in Pulse
Mode, Timer 1 generates a pulse that is two system clock cycles long.
When in Toggle Mode, Timer 1 toggles output one cycle later than in
Normal Mode. HALFP allows Timer 1 T1_OUTN output to be used for a
DRAM refresh when an external memory system is running at half speed.
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Figure 7.8 shows a waveform of Timer 1 being enabled, read, and then
disabled by the BBCC.

Figure 7.8
Timer 1 Enabled, Read,
and Disabled

7.6.5.1 Transaction A

Cycles 1-4 are the same as in Figure 7.6, page 7-11. The BBCC writes
to the Mode Register to enable Timer 1 Watch Dog Mode.

7.6.5.2 Transaction B

Cycle 5: The BBCC starts a BBus transaction to a device other than
Timer 1.

Cycle 6: Timer 1 loads the Timer 1 Initial Count Value.

Cycle 7: The transaction ends.

Cycle 8: Timer 1 latches in the transaction end from BTXN and holds
the current cycle count value.

PCLKP

TWR

BSTARTN

TBRYDN

1 2 3 4 5 6 7 8 9 10 11 12

TCSP

TADDRP[31:2]

BTXN

(internal)

A B C

T1_CURRENT[15:0]

TDATAP[31:0]
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Mode Register Address Mode Register

Data
Mode
Data

Mode
Data

Initial Initial-1 Initial-1 Initial-1 Initial-1 Initial-1
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7.6.5.3 Transaction C

Cycle 9: The BBCC writes a zero into Bit 8 of the Mode Register to dis-
able Timer 1 Watch Dog Mode.

Cycle 11: Timer 1 stops counting and holds the Current Count Value.

Figure 7.9 shows waveforms of Timer 1 behavior when Watch Dog Mode
triggers TBERRORN.

Figure 7.9
Timer 1 Watch Dog
Mode Triggers BERR

7.6.5.4 Transaction A

Cycles 1-4 are the same as in Figure 7.6, page 7-11. The BBCC writes
to the Mode Register to enable Timer 1 Watch Dog Mode.

PCLKP

TWR

BSTARTN

TBRYDN

1 2 3 4 5 6 7 8 9 10 11 12

TADDRP[31:2]

A B

(internal)
T1_CURRENT[15:0]

TDATAP[31:0]

Mode Register Address

Mode DataData Data

Initial Initial-1 Initial-2

T1_OUTN

TBERRORN

BTXN

MD96.49

0x0000 0x0000 0x0000



Operation 7-17

7.6.5.5 Transaction B

Cycle 5: The BBCC asserts BTXN and starts a bus transaction not
related to the Timer.

Cycle 6: Timer 1 starts counting down.

Cycle 9: Timer 1 counts to zero.

Cycle 10: Timer 1 pulses T1_OUTN and TBERRORN to indicate that it
reached zero.
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Chapter 8
Debugger (DBX)

This chapter describes the Debugger (DBX) building block for the
CW400x.

The DBX provides hardware debug support for CW400x systems.

This chapter contains the following sections:

♦ Section 8.1, “Overview,” page 8-1

♦ Section 8.2, “Functional Description,” page 8-2

♦ Section 8.3, “Connection Block Diagram,” page 8-3

♦ Section 8.4, “Signals,” page 8-4

♦ Section 8.5, “Registers,” page 8-8

♦ Section 8.6, “Instructions,” page 8-12

♦ Section 8.7, “Operation,” page 8-13

8.1
Overview

The DBX enables instruction and data access breakpoints as well as
trace breakpointing. It also allows customers to use the MiniRISC
ScanICE Debug System to control and observe internal registers.

The MiniRISC ScanICE Debug System interfaces with the IEEE1149.1
JTAG pins, so no additional pins are required. LSI Logic developed the
ScanICE Debug System for designers using ICE as their debug environ-
ment. Because the CW400x is deeply embedded within the ASIC, the
CW400x's pins cannot be accessed directly. A standard ICE cannot be
plugged into the ASIC’s socket, as could be done in a standard-product
microprocessor-based design. The ScanICE Debug System accesses
the CW400x through its scan chain, thus, providing a virtual ICE. From
the user's point of view, using a debug environment on a host controller,
there is no difference in the debug methodology between a standard
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product microprocessor ICE and the MiniRISC ScanICE Debug System.
ScanICE is also host-independent and nonintrusive.

The DBX attaches to the CW400x FlexLink Interface. The FlexLink Inter-
face allows new instructions to be added to the CW400x default instruc-
tion set. For details on the FlexLink Interface, see the MiniRISC CW400x
Microprocessor Core Technical Manual.

Figure 8.1 shows how the DBX attaches to the CW400x and MiniRISC
Building Blocks.

Figure 8.1
DBX Interface to
the CW400x and
Building Blocks

8.2
Functional
Description

The DBX attaches to the CW400x using the FlexLink Interface, which
gives programmer access to the CW400x Registers. The DBX allows
hardware debugging in real-time using breakpoints; it also allows the
scan chain to load the processor state. For details on the FlexLink Inter-
face, see the MiniRISC CW400x Microprocessor Core Technical Manual.

To detect data and instruction addresses, the DBX monitors the CBus.
See the MiniRISC CW400x Microprocessor Core Technical Manual for
information on the CBus.

Software controls the DBX through instructions that access the DBX
Registers.

CBus
CW400x

I-Cache

DBX

Timer

Bus
Controller

BBus

Set 1

FlexLink

Extended

BIU and
Cache

Controller
(BBCC)

PCI-like
Memory
Interface

I-Cache
Set 0

D-Cache

Interface

MD96.213
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8.3
Connection
Block Diagram

Figure 8.2 shows how to attach the DBX to the CW400x, the building
blocks, and system logic.

Figure 8.2
DBX in a CW400x
System
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8.4
Signals

This section contains a description of the signals that comprise bit-level
interface of the DBX. Tables 8.1 and 8.2 summarize the DBX signals.
Detailed signal descriptions follow the tables.

The signals are described in alphabetical order by mnemonic. Each sig-
nal definition contains the mnemonic and the full signal name. The mne-
monics for active LOW signals end with an “N” and have an overbar over
their names.

In the descriptions that follow, “assert” means to drive TRUE or active
and “deassert” means to drive FALSE or inactive.

Table 8.1
DBX Input Signals
Summary

Input Source Description

ADDRP[31:0] CW400x CBus Address

BCPURESETN BBCC Reset

BIBERRORP BBCC Instruction Bus Error

BRESETN System Logic Reset

CIP_DN CW400x CBus Instruction/Data Flag

CIR_BOTP[5:0] CW400x FlexLink Instruction Opcode Bottom Six Bits

CIR_TOPP[5:0] CW400x FlexLink Instruction Opcode Top Six Bits

CKILLXP CW400x CBus Instruction Killed in Execute Stage

CMEM_FETCHP CW400x CBus Memory Fetch

CRSP[31:0] CW400x FlexLink Source Register (rs ) Bus

CRTP[31:0] CW400x FlexLink Source Register (rt ) Bus

CSTOREP CW400x CBus Store Indicator

GSCAN_ENABLEP System Logic Scan Enable

GSCAN_INP Scan Chain Scan Data In

PCLKP System Logic System Clock

RUNN GOE Run Enable/Stall

SCANCLK System Logic Scan Clock

SCANP_RUNN System Logic Clock Signal Select

SYSCLK System Logic Main System Clock

TST_WIO System Logic Test Enable
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Table 8.2
DBX Output
Signals Summary

ADDRP[31:0] CBus Address Input
These signals contain the fetch and store addresses the
DBX uses to check for breakpoints.

ASELP FlexLink Instruction Select Output
The DBX asserts this signal when the CIR_TOPP[5:0]
signals contain a Computational Instruction.

AXBUSP[31:0]
FlexLink Result Bus ( rd ) Output
During Move from Debug (MFD), these signals contain
the value of an internal DBX Register for the CW400x.

BCPURESETN
Reset Input
The BBCC asserts this signal to reset the DBX.

BIBERRORP BBCC Bus Error Input
The BBCC asserts this signal to inform the DBX that the
current instruction fetch terminated with an error. The
DBX combines this signal with its internal break signal to
create DBREAK_BBEP.

BRESETN Reset Input
Asserting this signal resets the DBX.

CIP_DN CBus Instruction/Data Flag Input
This signal qualifies the type of memory fetch when a
memory fetch is indicated by CMEM_FETCHP. The
CW400x drives this signal HIGH when it is performing an
instruction fetch. The CW400x drives this signal LOW
when it is performing a data fetch.

Output Destination Description

ASELP CW400x FlexLink Instruction Select

AXBUSP[31:0] CW400x FlexLink Result Bus (rd )

DBREAK_BBEP CW400x Internal Break

DEBREAKP System Logic External Break

GSCAN_OUTP Scan Chain Scan Data Out

TOPCLK System Logic Clock Output
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CIR_BOTP[5:0]
FlexLink Instruction Opcode Bottom Six Bits Input
These signals from the CW400x contain the bottom six
bits of the Instruction Register. They allow the DBX to
decode the Computational Instruction.

CIR_TOPP[5:0]
FlexLink Instruction Opcode Top Six Bits Input
These signals from the CW400x contain the top six bits
of the Instruction Register. They allow the DBX to decode
the Computational Instruction.

CKILLXP CBus Instruction Killed in Execute Stage Input
The CW400x asserts this signal to inform the DBX that
the instruction in the Execute Stage is killed.

CMEM_FETCHP
CBus Memory Fetch Input
The CW400x asserts this signal to inform the DBX that it
is performing a memory fetch. CMEM_FETCHP is valid
only during run cycles.

CRSP[31:0] CW400x Source Register ( rs ) Bus Input
These signals contain the rs operand of the current
instruction from the CW400x.

CRTP[31:0] CW400x Source Register ( rt ) Bus Input
These signals contain the rt operand of the current
instruction from the CW400x.

CSTOREP Store Indicator Input
The CW400x asserts this signal to indicate a CBus store
operation. CSTOREP is valid only during run cycles.

DBREAK_BBEP
Bus Error Output
The DBX asserts this signal to cause the CW400x to take
a bus error exception.

DEBREAKP External Break Output
The DBX asserts this signal when an external break con-
dition occurs.

GSCAN_ENABLEP
Scan Enable Input
Asserting this signal enables the scan chain.
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GSCAN_INP Scan Data In Input
This signal is the scan data input.

GSCAN_OUTP Scan Data Out Output
This signal is the scan data output.

PCLKP System Clock Input
The PCLKP clock is the global clock input.

RUNN Run Enable/Stall Input
This signal connects to the GOE CRUN_INN output. The
GOE asserts this signal LOW to enable the CW400x to
go on to the next run cycle. The GOE deasserts this sig-
nal HIGH to stall the CW400x. (For more information on
the GOE, see the MiniRISC CW400x Microprocessor
Core Technical Manual.)

SCANCLK Scan Clock Input
The DBX generates TOPCLK from either the SCANCLK
clock input or the SYSCLK clock input as determined by
the SCANP_RUNN input signal.

SCANP_RUNN
TOPCLK Select Input
When external system logic asserts this signal, the DBX
selects SCANCLK as the source of the TOPCLK output.
When external system logic deasserts SCANP_RUNN,
the DBX selects SYSCLK as the source of the TOPCLK
output clock.

SYSCLK Main System Clock Input
The DBX generates TOPCLK from either the SCANCLK
clock input or the SYSCLK clock input as determined by
the SCANP_RUNN input signal.

TOPCLK Clock Output Output
The DBX generates TOPCLK from either the SCANCLK
clock input or the SYSCLK clock input as determined by
the SCANP_RUNN input signal. TOPCLK then drives
PCLKP.

TST_WIO Test Enable Input
Asserting this signal puts the DBX in Test Mode for scan.
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8.5
Registers

Programmers access the DBX Registers using the MFD and MTD
Instructions (see Section 8.6, “Instructions” on page 8-12). All bits are
read/write, except for the bits that are hardwired to zero.

8.5.1
DCS Register
(7)

The Debug Control and Status (DCS) Register contains the enable and
status bits for the System Scan facilities. All status bits are sticky—debug
events only set the bits if the enables are set. The bits must be cleared
by using an MTD Instruction to update the DCS Register. The UD and
KD Bits are always the same—setting either bit sets both bits. Reset
clears the DE, IBD, EBE Bits. All other bits are unknown.

MTD Instructions have higher priority than status updates.The DBX
updates the DCS Register with MTD data if an MTD Instruction occurs
simultaneously with a status update caused by a break event.

Figure 8.3 shows the format of the DCS Register.

Figure 8.3
DCS Register

TR Trap Enable 31
Setting TR causes debug events to trap to the debug
exception vector. When TR is cleared, trapping is not
enabled, but debug status bits are updated with debug
event information.

UD User Mode Debug Event Detection 30
Setting UD enables debug event detection in User Mode.
UD and KD always contain the same value. Setting either
bit sets both bits.

KD Kernel Mode Debug Event Detection 29
Setting KD enables debug event detection in Kernel
Mode. UD and KD always contain the same value. Set-
ting either bit sets both bits.

TE Trace Detection Enable 28
Setting TE enables trace (nonsequential fetch) event
detection.

31 30 29 28 27 26 25 24 23 22 21 20 6 5 4 3 2 1 0

TR UD KD TE DW DR DAE PCE DE IBD EBE Reserved T W R DA PC DB
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DW Data Write 27
If DAE is set, setting DW enables data write event
detection.

DR Data Read 26
If DAE is set, setting DR enables data read event
detection.

DAE Data Access Breakpoint Enable 25
Setting DAE enables data address breakpoint debug
events.

PCE Program Counter Breakpoint Enable 24
Setting PCE enables program counter breakpoint debug
events.

DE Debug Enable 23
Setting DE enables debug breaks. Clearing DE disables
debug breaks.

IBD Internal Break Disable 22
Setting IBD disables internal breaks. Clearing IBD
enables internal breaks.

EBE External Break Enable 21
Setting EBE enables external breaks. Clearing EBE
disables external breaks.

Reserved Reserved Bits [20:6]
These bits are reserved.

T Trace Event Detected 5
The DBX sets this bit when it has detected a trace event.

W Write Reference Detected 4
The DBX sets this bit when it detects a write to the
address in the BDA Register.

R Read Reference Detected 3
The DBX sets this bit when it detects a read from the
address in the BDA Register.

DA Data Access Debug Condition Detected 2
The DBX sets this bit when it has detected a a data
access debug condition.



8-10 Debugger (DBX)

PC Program Counter Debug Condition Detected 1
The DBX sets this bit when it has detected a program
counter debug condition.

DB Debug Condition Detected 0
The DBX sets this bit when it has detected a debug
event.

8.5.2
BPC Register
(18)

Software uses the Breakpoint Program Counter (BPC) Register to spec-
ify a program counter breakpoint. This register is used in conjunction with
the Breakpoint Program Counter Mask Register described below. A
breakpoint is detected for any instruction fetch in which all unmasked bits
in the BPC Register match the corresponding bits in the program counter
value.

Figure 8.4 shows the format of the BPC Register.

Figure 8.4
BPC Register

8.5.3
BDA Register
(19)

Software uses the Breakpoint Data Address (BDA) Register to specify a
data address breakpoint. This register is used in conjunction with the
Breakpoint Data Address Mask Register listed below. A breakpoint is
detected for any data reference in which all unmasked bits in the BDA
Register match the corresponding bits in the data address.

Figure 8.5 shows the format of the BDA Register. The Reserved Bits, Bits
[1:0], are read as zeroes.

Figure 8.5
BDA Register

31 2 1 0

Breakpoint Program Counter 002

31 2 1 0

Breakpoint Data Address Res
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8.5.4
BPCM Register
(20)

The Breakpoint Program Counter Mask (BPCM) Register masks bits in
the BPC Register. Writing a 1 to any Bit n of the BPCM Register unmasks
the bitwise comparison of Bit n in the BPC Register with Bit n in the pro-
gram counter as the input to the breakpoint detection logic. Conversely,
writing a 0 to Bit n of the BPCM Register masks the comparison, and
forces the breakpoint logic to assume a match between Bit n in the BPC
and Bit n in the program counter regardless of the true result.

Figure 8.6 shows the format of the BPCM Register.

Figure 8.6
BPCM Register

8.5.5
BDAM Register
(21)

The Breakpoint Data Address Mask (BDAM) Register masks bits in the
BDA Register. Writing a 1 to any Bit n of the BDAM Register unmasks
the bitwise comparison of Bit n in the BDA Register with Bit n in the data
reference address as the input to the breakpoint detection logic. Con-
versely, writing a 0 to Bit n of the BDAM Register masks the comparison,
and forces the breakpoint logic to assume a match between Bit n in the
BDA and Bit n in the data reference address regardless of the true result.

Figure 8.7 shows the format of the BDAM Register. The Reserved Bits,
Bits [1:0], are read as zeroes.

Figure 8.7
BDAM Register

31 2 1 0

Breakpoint Program Counter Mask 0

31 2 1 0

Breakpoint Data Address Mask Res
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8.6
Instructions

The MFD and MTD Instructions access the DBX Registers. These
instructions use the FlexLink Interface of the CW400x and are not sup-
ported by compilers or assemblers.

8.6.1
MFD Instruction

The Move from Debug (MFD) Instruction loads the contents of DBX Reg-
ister rd into a General Register rt . This instruction is only valid if rd =
7, 18, 19, 20, or 21. All other rd values are undefined. The values for
each Debug Register rd are indicated in parentheses in the register
descriptions (see Section 8.5, “Registers” on page 8-8).

Operation: T: GPR[rt] <- DEBUG[rd]

Exceptions: None

Figure 8.8 shows the format of the MFD Instruction.

Figure 8.8
MFD Instruction

8.6.2
MTD Instruction

The Move to Debug (MTD) Instruction loads the contents of General
Register rs into a DBX Register rd . This instruction is only valid if rd =
7, 18, 19, 20, or 21. All other rd values are undefined. The values for
each Debug Register rd are indicated in parentheses in the register
descriptions (see Section 8.5, “Registers” on page 8-8).

Operation: T: DEBUG[rd] <- GPR[rs]

Exceptions: None

Figure 8.9 shows the format of the MTD Instruction.

Figure 8.9
MTD Instruction

31 26 25 21 20 16 15 11 10 0

MFD = 0111112 rs = 000002 rt rd 0

31 26 25 21 20 16 15 11 10 0

MTD = 0111102 rs rt = 000002 rd 0
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8.7
Operation

This section describes the operation of the DBX Building Block in a
greater level of detail than the previous sections. It describes breakpoint
operation as well as DBX internal blocks operation.

8.7.1
Breakpoints

To enable breakpoints, the system designer must follow three rules:

♦ Rule #1 : SCANCLK must be LOW when debug is enabled.

♦ Rule #2 : SCANCLK must be LOW when switching back to SYSCLK.

♦ Rule #3 : SCANCLK must be LOW when enabling/disabling scan
mode for scan debug.

When a breakpoint occurs, the DBX sets the proper status bit. All status
bits are sticky—they are never cleared by hardware, and must be cleared
by software.

If the EBE Bit of the DCS Register is set, the breakpoint causes
DEBREAKP to be asserted for at least one cycle, which causes the sys-
tem clock, TOPCLK, to be switched from SYSCLK to SCANCLK. After
the first cycle, the system clock remains SCANCLK as long as
SCANP_RUNN is HIGH. The system then has access to the internal
scan chain of the MR400x through the scan chain input, scan chain out-
put, scan enable, and scan clock signals.

The DCS Status Bits are updated even for instructions that are killed and
would have caused a breakpoint. DCS status bits are also updated for
instructions in a branch likely delay slot. Breakpoints caused by instruc-
tions in delay slots can be misleading because they occur even if the
instruction is not executed.

Breaks are signalled according to the order in which the CW400x accesses
data. An instruction breakpoint might be signalled before a data breakpoint,
if the offending instruction occurs after the data access, because the
CW400x pipeline requires that the instruction access occur first.

8.7.1.1 Trace Breakpoint

A trace breakpoint occurs when the program counter branches to a non-
consecutive address. A trace breakpoint is not necessarily triggered by
a branch instruction. It is only triggered if the instruction stream itself is
nonconsecutive.
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The DE and TE Bits of the DCS Register enable trace breakpoints. No
other user inputs are needed. When the trace breakpoint occurs and TE
is enabled, the CW400x signals an IBus Error, and the Exception Pro-
gram Counter (EPC) Register points to the first out-of-order instruction.
This instruction is killed, but all previous instructions complete execution.

8.7.1.2 Data Write Breakpoint

A data write breakpoint occurs when the CW400x writes data to an
address that matches all of the bits of the BDA Register that are not
masked by the BDAM Register.

The DE, DW, and DAE Bits of the DCS Register enable data write break-
points. The BDA and BDAM Registers must be properly loaded before
the breakpoint is enabled. When the data write breakpoint occurs and
the TE Bit of the DCS Register is set, the CW400x signals a DBus Error,
and the EPC Register points to the offending write instruction. The
instruction is killed, but all previous instructions complete execution.

8.7.1.3 Data Read Breakpoint

A data read breakpoint occurs when the CW400x reads data (not an
instruction fetch) from an address that matches all of the bits of the BDA
Register that are not masked by the BDAM Register.

The DE, DR, and DAE Bits of the DCS Register enable the data read
breakpoint. The BDA and BDAM Registers must be properly loaded
before the breakpoint is enabled. When the breakpoint occurs and the
TE Bit of the DCS Register is set, the CW400x signals a DBus Error, and
the EPC Register points to the offending read instruction. The instruction
is killed, but all previous instructions complete execution.

8.7.1.4 Program Counter Breakpoint

A program counter breakpoint occurs when the CW400x fetches an
instruction from an address that matches all of the bits of the BPC Reg-
ister that are not masked by the BPCM Register.

The DE and PCE Bits of the DCS Register enable this breakpoint. The
BPC and BPCM Registers must be properly loaded before the breakpoint
is enabled. When the Program Counter hits the Program Counter Break-
point and the TE Bit of the DCS Register is set, the CW400x signals an
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IBus Error, and the EPC Register points to the offending instruction. The
instruction is killed, but all previous instructions complete execution.

8.7.1.5 BREAK Instruction Breakpoint

If the DE Bit in the DCS Register is set, the DBX also monitors the
instruction stream for BREAK Instructions. BREAK Instructions do not
cause an internal break because the CW400x automatically breaks on
the instruction. However, if the EBE Bit of the DCS Register is set, an
external break occurs. The external break does not update any status
bits in the DCS Register.

8.7.2
DBX Module
Operation

The DBX Building Block for the MiniRISC CW400x uses the FlexLink
Interface, which gives the programmer access to the registers and allows
the hardware to be debugged in real-time using breakpoints. It also
allows the use of the scan chain to load the state of the processor.

Figure 8.10 shows the DBX internal functional blocks. Subsections fol-
lowing the figure describe each block in detail.
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Figure 8.10
DBX Internal Block
Diagram

8.7.2.1 IBreak Module

The IBreak and DBreak Modules check for breakpoint exceptions. The
IBreak Module asserts IBREAKP if the content of the BPC Register
(BPC[31:2]) matches the content of ADDRP[31:2]. The DBX compares
only the bits of the BPC Register to ADDRP[31:0] in which the corre-
sponding bits are set in the BPCM Register. Bits of the BCPM Register
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that are cleared to zero are not compared. The IBreak module does not
compare Bits [1:0] of the BPC Register to the address, because instruc-
tion fetches are always on word boundaries.

8.7.2.2 DBreak Module

The DBreak Module works in the same manner as the IBreak Module,
but uses the BDA Register and the BDAM Register and compares all 32
bits of the data address.

When the BDebugX Module asserts DREGWEN, the CW400x writes the
data contained in CRSP[31:0] to a selected register in one of the mod-
ules. Table 8.3 shows how the registers are selected.

Table 8.3
Register Selection

8.7.2.3 TBreak Module

The TBreak Module detects trace breakpoints. It contains a 30-bit regis-
ter and an incrementor. The incremented value of the register is com-
pared against the current Ifetch (ADDRP[31:2] when CIP_DN is HIGH).
The register is always loaded with the new Ifetch address. The TBreak
Module asserts TBREAKP for one cycle when the instruction stream
branches.

8.7.2.4 Breaki Module

If the DE Bit is set, the Breaki Module also monitors the instruction
stream for Break Instructions. The Break Instructions do not cause an
internal break, because the CW400x automatically breaks on the instruc-
tion. However, if the EBE Bit of the DCS Register is set, an external
break occurs. The external break does not update any status bits in the
DCS Register.

DREGADDRP[1:0] Register Selected

0 BDCM

1 BDAM

2 BPC

3 BDA
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8.7.2.5 BDebugX Module

The BDebugX Module contains all of the control logic for DBX. The
AXSELP[2:0] signals select the appropriate register for the MFD
Instruction. DREGADDRP[1:0] select the appropriate register for writing
during MTD Instructions.

The BDebugX module asserts DREGWEN at the end of the Execute
Stage of an MTD Instruction (during a run cycle), when CKILLXP is
deasserted. This action prevents the registers from being altered if the
MTD Instruction is killed. The BDebugX Module ignores CKILLXP when
it is updating its status registers, if break event detection is enabled,
because the BDebugX Module is unable to determine whether it caused
the CKILLXP assertion by asserting DBREAK_BBEP or if some other
instruction caused CKILLXP to be asserted.

The DBX detects a break according to the enables in the DCS Register
and the transaction signals, CIP_DN, CMEM_FETCHP, and CSTOREP.
The breaks are reflected in the DCS Register and in the DBREAK_BBEP
and DBREAKP signals. DBREAK_BBEP is enabled by default on reset.
DBREAKP is disabled by default at reset.

The break signals should be connected to the bus error input of the
CW400x. Then, if an instruction break is signalled, it is valid by the end
of the Instruction Fetch (IF) Stage. A bus error causes an IBus Error, and
the EPC Register points to the offending instruction. All instructions up
to this offending one are completed. If a data breakpoint occurs, a bus
error is indicated during the X2 Stage, which causes a DBus Error
Exception, and the EPC Register again points to the offending instruc-
tion. The break signals are pulsed (asserted for only one cycle). The Sta-
tus Bits are sticky (they hold their value until another breakpoint occurs
so that their value is correct for the current breakpoint).

Note also that breaks are signalled according to the order in which the
CW400x accesses data. An instruction breakpoint may be signalled
before a data breakpoint if the offending instruction occurs after the data
access. This is because the CW400x pipeline requires that the instruc-
tion access happen first.

The DBX does not support break event detection in the branch delay
slots. If a break is set in the branch delay slot, the DBX switches the
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clock to SCANCLK even though the instruction that caused the break is
killed.

Normally, the TOPCLK clock output is selected to be the SYSCLK input.
The BDebugX subblock switches TOPCLK to SCANCLK if the DBreak
module asserts DEBREAKP, or if SCANP_RUNN is LOW. Then, if
DBREAKP is asserted, the processor switches to SCANCLK on a break.
The system can control SCANP_RUNN and SCANCLK to control the
scanning of the chain.

8.7.3
Clock
Synchronization

The SCANCLK, SCANP_RUNN, and BRESETN signals pass through
flip-flops to synchronize them to SYSCLK. SYSCLK is always free-
running.
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