Bipolar Memory Products

DESCRIPTION

The 82HS189 is a programmable read only memory containing D-type, masterslave data registers. The 82HS189 contains 1024 words of 8 bits each. The unprogrammed state is with all outputs at a High level and can be selectively programmed to a Low level by following the Signetics Generic II programming method. The output structure is 3-State for ease in connection to bus-organized systems. The combination of on-chip registers and 3-State outputs will substantially reduce cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.

All outputs will go into the third state or Hi-Z condition if the Asynchronous Chip Enable (G) is held High. The outputs are enabled when (GS) is brought Low before the rising edge of the clock and (\overline{G}) is held Low. The (GS) flip-flop is designed to power-up in the third state or

OF 64

WORD

DECODER

1 OF 16

BIT

DECODER

BLOCK DIAGRAM

A1

A₂

A3

A4

A-,

As

82HS189 82HS189A **8K-Bit TTL Bipolar PROM**

Product Specification

Hi-Z condition with the application of V_{CC}.

The 82HS189 also features an initialize function, INIT. The initialize function provides the user with an extra word of programmable memory which is accessed with single-pin control by applying a Low on INIT. The initialize function is synchronous and is loaded into the Output Register on the next rising edge of the clock. The unprogrammed state of **INIT** is all ones.

Data is read from the PROM by first applying an address to inputs A0 to A9. During the setup time the output of the array is loaded into the master flip-flop of the data register. During the rising edge (Low-to-High transition) of the clock, the data is transferred to the slave of the flip-flop and will appear on the output if the output is enabled. Following the rising edge clock transition, the Addresses and Synchronous Chip Enable can be removed and the output data will remain stable.

64 WORD × 128-BIT PROGRAMMABLE FUSE ARRAY

1:16 MULTIPLEXER

INITIALIZE WORD

FEATURES

- On-chip edge-triggered registers
- Asynchronous and Synchronous Enables for word expansion
- Programmable register with synchronous initialize function
- 24-pin 300mil-wide package
- Read cycle "Address setup plus clock to output delay"
 - N82HS189: 55ns max
 - N82HS189A: 45ns max
- Unprogrammed outputs are High level
- Outputs: 3-State

PIN CONFIGURATIONS

8-BIT EDGE-TRIGGERED REGISTER axľ āš 0. 0. 07 04 ٥, ٥. 435

November 11, 1986

٥,

^{853-0602 86487}

8K-Bit TTL Bipolar PROM (1024 imes 8)

82HS189/82HS189A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE				
24-pin Plastic DIP 300mil-wide	N82HS189 N • N82HS189A N				
28-pin Plastic Leaded Chip Carrier 450mil-square	N82HS189 A • N82HS189A A				

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT V _{DC}	
V _{CC}	Supply voltage	+ 7		
VIN	Input voltage	+ 5.5	V _{DC}	
Vo	Output voltage Off-State	+ 5.5	V _{DC}	
T _A	Operating temperature range	0 to +75	°C	
T _{STG}	Storage temperature range	-65 to +150	°C	

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, 4.75V \leq V_{CC} \leq 5.25V

00000	DADAMETED			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT	
Input voltage ²			k	I		I	
VIL	Low	· · · · ·			0.8		
VIH	High		2.0			v V	
V _{IC}	Clamp	$I_{IN} = -18 mA$		-0.8	-1.2	ν	
Output voltage	• ²			· .	L	1	
		$\overline{G}, \overline{GS} = Low$	1				
VOL	Low	I _{OUT} = 16mA			0.5	v	
V _{OH}	High	$I_{OUT} = -2mA$	2.4			v V	
Input current ¹							
հե	Low	V _{IN} = 0.45V			-250	μA	
Iн	High	$V_{IN} = 5.25V$			40	μA	
Output current	£ ¹						
loz	Hi-Z State	$\overline{G} = High, V_{OUT} = 5.25V$			40	μA	
		$\overline{G} = High, V_{OUT} = 0.5V$			-40		
los	Short circuit ³	G, GS = Low, V _{OUT} = 0V High stored	- 15		-70	mA	
Supply current	1 ⁷					1	
lcc		$V_{\rm CC} = 5.25V$		125	175	mA	
Capacitance							
		\overline{G} = High, V_{CC} = 5.0V					
CIN	Input	$V_{iN} = 2.0V$		5		pF	
COUT	Output	$V_{OUT} \approx 2.0V$		8		pF	

Notes on following page.

November 11, 1986

436

8K-Bit TTL Bipolar PROM (1024 imes 8)

82HS189/82HS189A

SYMBOL	PARAMETER ⁴	то	FROM	N82HS189		N82HS189A				
				Min	Тур ⁵	Max	Min	Тур	Max	UNIT
t _{CSA} t _{CHA}	Setup Hold	CLK	Address	35 0			30 0			ns
toc	Delay	Output	CLK		10	20	0		15	ns
twc	Width	H&L	CLK	20	10		15			ns
t _{CSGS} t _{CHGS}	Setup Hold	CLK	GS	15 5			10 5			ns
t _{CSIN} t _{CHIN}	Setup Hold	CLK	INIT	25 0	8		20 0			ns
tog	Delay	Output	G		11	25			20	ns
tozc ⁶	Delay	Output	CLK		16	25			20	ns
tozg ⁶	Delay	Output	G		14	25			20	ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^\circ C \le T_A \le +75^\circ C$, $4.75V \le V_{CC} \le 5.25V$

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

437

8K-Bit TTL Bipolar PROM (1024 imes 8)

82HS189/82HS189A

VOLTAGE WAVEFORMS

November 11, 1986

438