Am27LV020

Advanced Micro **Devices**

262.144 x 8-Bit CMOS Low Voltage, One Time **Programmable Memory**

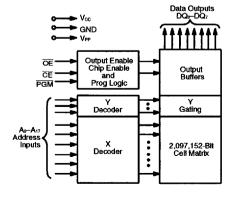
DISTINCTIVE CHARACTERISTICS

- 3.3 V \pm 0.3 V V_{CC} read operation
- High performance at 3.3 V_{CC}
 - 200 ns maximum access time
- Low power consumption
 - 90 µW maximum standby power
 - 25 uA maximum standby current
 - 54 mW maximum power at 5 MHz
 - 15 mA maximum current at 5 MHz
 - No data retention power
- Industry standard packaging
 - 32-pin PLCC
 - 32-pin Thin Small Outline Package
 - 32-pin Plastic DIP

- Program voltage 12.75 ± .25 V
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Flashrite[™] programming
 - 10 us typical byte-program
 - Less than 3 seconds typical chip program
- Advanced CMOS memory technology
 - Low cost single transistor memory cell

GENERAL DESCRIPTION

The Am27LV020 device is a low voltage, low power. CMOS 256K x 8 One Time Programmable (OTP) nonvolatile memory.


Maximum power consumption in standby mode is 90 µW. If the device is constantly accessed at 5 MHz, then maximum power consumption increases to 54 mW. These power ratings are significantly lower than typical EPROM devices. Since power consumption is proportional to voltage squared, 3.3 V devices typically consume at least 57% less power than 5.0 V devices.

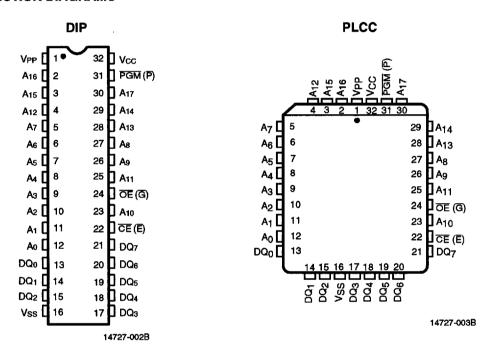
The Am27LV020 typically draws 10 mA of current enabling 200 ns read operations. Typical power consumption under these conditions equals 33 mW. This "high performance", low voltage device is ideal for BIOS storage in portable computing applications and control code storage in portable digital cellular phone applications. Low voltage CMOS designs require less operating power and hence dramatically increases the usable operating life of battery powered systems.

The Am27LV020 is packaged in a 32-pin PLCC, Plastic DIP and Thin Small Outline Package (TSOP) versions. It is designed to be programmed in standard EPROM programmers.

The highest degree of latch-up protection is achieved with AMD's proprietary non-epi process. Latch-up protection is provided for stresses up to 100 milliamps on address and data pins from -1 V to Vcc+1 V.

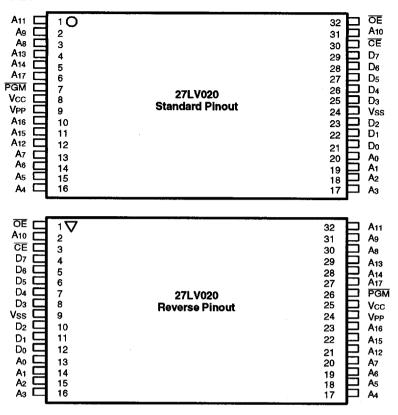
BLOCK DIAGRAM

11507-001B

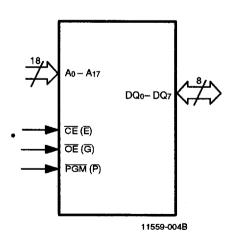

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Rev. A Amendment /0 Publication #: 16357 Issue Date: July 1992

PRODUCT SELECTOR GUIDE

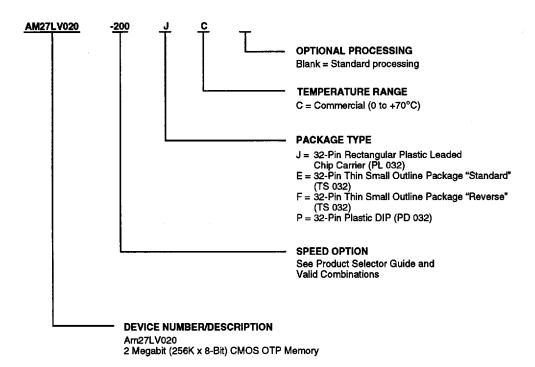

Family Part No.		Am27LV020	
Ordering Part No:			
±0.3 V Vcc Tolerance	-200	-250	-300
Max Access Time (ns)	200	250	300
CE (E) Access (ns)	200	250	300
OE (G) Access (ns)	75	100	100

CONNECTION DIAGRAMS


Note: Pin 1 is marked for orientation.

TSOP PACKAGES

27LV020 256K x 8 OTP in 32 Lead TSOP


LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of these elements:

Valid Combinations						
Am27LV020-200						
Am27LV020-250	JC, EC, FC, PC					
Am27LV020-300						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

PIN DESCRIPTION

 V_{PP}

Power supply for programming.

Vcc

Power supply for device operation. (Read: $V_{CC} = 3.3 V \pm 0.3 V$, Program: $V_{CC} = 5.0 V \pm 10\%$)

Vss

Ground

NC

No Connect-corresponding pin is not connected internally to the die.

 $A_0 - A_{17}$

Address Inputs for memory locations.

DQ₀-DQ₇

Data Inputs during memory program cycles. Internal latches hold data during program cycles. Data Outputs during memory read cycles.

CE (E)

The Chip Enable active low input activates the chip's control logic and input buffers. Chip Enable high will deselect the device and operates the chip in stand-by mode.

OE (G)

The Output Enable active low input gates the outputs of the device through the data buffers during memory read cycles.

PGM (P)

The Program Enable active low input controls the program function of the memory array.

BASIC PRINCIPLES

The Am27LV020 supports programming operations using a fixed 12.75 \pm 0.25 V power supply.

Read Only Memory

Without high V_{PP} voltage, the Am27LV020 functions as a read only memory and operates like a standard EPROM. The control inputs still manage traditional read, standby, output disable, and Auto select modes.

Programming

These devices are programmable on standard PROM programmer equipment.

Please contact Advanced Micro Devices for PROM programmer information.

FUNCTIONAL DESCRIPTION

Description Of User Modes

Table 1. Am27LV020 User Bus Operations

Operation Read		CE (E)			V _{PP} (Note 1)	Ao	As	VO
		VIL	VIL	Х	VPPL	Αo	A ₉	Dour
	Standby	ViH	Х	Х	VPPL	Х	Х	HIGH Z
	Output Disable	ViL	ViH	ViH	VPPL	Х	X	HIGH Z
Read-Only	Auto-select Manufacturer Code	VIL	VıL	V _{IH}	VPPL	VIL	V _{ID} (Note 2)	CODE (01H)
	Auto-select Device Code	VIL	VIL	ViH	VPPL	ViH	V _{ID} (Note 2)	CODE (2CH)

Legend:

X = Don't care, where Don't Care is either V_{IL} or V_{IH} levels, $V_{PPL} = V_{PP} < V_{CC} + 2V$, See DC Characteristics for voltage levels of V_{PPH} , $0V < An < V_{CC} + 2V$, (normal CMOS input levels, where n = 0 or 9).

Notes:

- VPPL may be grounded, connected with a resistor to ground, or ≤ VCC +2.0 V. VPPH is the programming voltage specified
 for the device. Refer to the DC characteristics. When VPP = VPPL, memory contents can be read but not written.
- 2. $11.5 \le \text{ViD} \le 13.0 \text{ V}, \text{VCC} = 5.0 \text{ V} \pm 10\%$

READ ONLY MODE

 $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$

Read

The Am27LV020 functions as a read only memory. The Am27LV020 has two control functions. Both must be satisfied in order to output data. CEcontrols power to the device. This pin should be used for specific device selection. OE controls the device outputs and should be used to gate data to the output pins if a device is selected.

Address access time t_{ACC} is equal to the delay from stable addresses to valid output data. The chip enable access time t_{CE} is the delay from stable addresses and stable \overline{CE} to valid data at the output pins. The output enable access time is the delay from the falling edge of \overline{OE} to valid data at the output pins (assuming the addresses have been stable at least $t_{ACC} - t_{OE}$).

Standby Mode

The Am27LV020 has one standby mode. The CMOS standby mode ($\overline{\text{CE}}$ input held at $V_{\text{CC}} \pm 0.5V$), consumes less than 25 μ A of current. When in the standby mode the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

If the device is deselected during programming, or program verification, the device will draw active current until the operation is terminated.

Output Disable

Output from the device is disabled when \overline{OE} is at a logic high level. When disabled, output pins are in a high impedance state.

Auto Select

The Am27LV020 can be programmed in a standard PROM programmer.

The Auto select mode allows the reading out of a binary code from the device that will identify its manufacturer and type. This mode is intended for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm.

Programming In A PROM Programmer

To activate this mode, the programming equipment must force $V_{\rm ID}$ (11.5V to 13.0V) on address $A_{\rm 9}$. Two identifier bytes may then be sequenced from the device outputs by toggling address $A_{\rm 0}$ from $V_{\rm IL}$ to $V_{\rm IH}$. All other address lines must be held at $V_{\rm IL}$, and $V_{\rm PP}$ must be less than or equal to $V_{\rm CC} + 2.0V$ while using this Auto select mode. Byte 0 ($A_{\rm 0} = V_{\rm IL}$) represents the manufacturer code and byte 1 ($A_{\rm 0} = V_{\rm IH}$) the device identifier code. For the Am27LV020 these two bytes are given in the table below. All identifiers for manufacturer and device codes will exhibit odd parity with the MSB (DQ7) defined as the parity bit.

Table 2. Am27LV020 Auto Select Code

Туре	Ao	Code (HEX)	DQ ₇	DQ ₆	DQ ₅	DQ4	DQ ₃	DQ ₂	DQ ₁	DQ₀
Manufacturer Code	VIL	01	0	0	0	0	0	0	0	1
Device Code	ViH	2C	0	0	1	0	1	1	0	0

ABSOLUTE MAXIMUM RATINGS

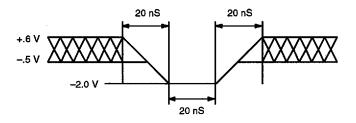
Storage Temperature Plastic Packages65°C to +125°C
Ambient Temperature with Power Applied55°C to + 125°C
Voltage with Respect To Ground. All pins
except A ₉ and V _{PP} (Note 1)2.0 V to +7.0 V
Vcc (Note 1)
A ₉ (Note 2)
V _{PP} (Note 2)
Output Short Circuit Current (Note 3) 200 mA
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins is V_{CC} + 0.5 V. During voltage transitions, outputs may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- During programming operations only. Minimum DC input voltage on Ae and VPP pins is -0.5V. During voltage transitions, Ae and VPP may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on Ae and VPP is +13.5 V which may overshoot to 14.0 V for periods up to 20 ns.
- No more than one output shorted at a time. Duration of the short circuit should not be greater than one second.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent darnage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

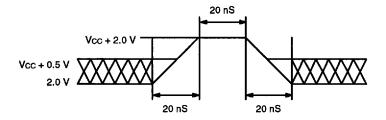
OPERATING RANGES

Commercial (C) Devices	
Case Temperature (Tc)	0°C to +70°C
V _{CC} Supply Voltages	
Voc for Am27I V020	130 V to 136 V

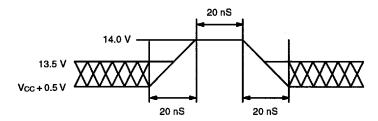

Vcc for Am27LV020 +3.0 V to +3.6 V

V_{PP} Supply Voltages
Program and Verify +12.5 V to +13 V

Operating ranges define those limits between which the functionality of the device is guaranteed.



MAXIMUM OVERSHOOT Maximum Negative Input Overshoot


11561-009B

Maximum Positive Input Overshoot

11561-010A

Maximum V_{PP} Overshoot

11561-011A

59E D

DC CHARACTERISTICS-CMOS COMPATIBLE

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Vcc Max., Vin = Vcc or Vss		+ 1.0	μА
lro	Output Leakage Current	Vcc = Vcc Max., Vout = Vcc or Vss		+ 1.0	μΑ
lccs	Vcc Standby Current	Vcc = Vcc Max. CE = Vcc ± 0.3 V		25	μΑ
lcc1	Vcc Active Read Current	$V_{CC} = V_{CC} Max., \overline{CE} = V_{IL}, \overline{OE} = V_{IH}$ $I_{OUT} = 0 mA, at 5 MHz$		15	mA
lcc2	Vcc Programming Current	CE = V _{IL} Programming in Progress		30	mA
IPPS	VPP Standby Current	VPP = VPPL		+ 1.0	μА
VıL	Input Low Voltage		-0.5	0.6	٧
Vıн	Input High Voltage		2.0	Vcc + 0.5	٧
Vol	Output Low Voltage	IoL = 1 mA Vcc = Vcc Min.		0.3	V
Vон	Output High Voltage	I _{OH} = −100 μA, Vcc = Vcc Min.	Vcc -0.3		٧
VID	A ₉ Auto Select Voltage	A9 = V _{ID}	11.5	13.0	٧
lıD	A ₉ Auto Select Current	A ₉ = V _{ID} Max. Vcc = Vcc Max.		35	μА
VPPL	V _{PP} during Read-Only Operations		0.0	V _{CC} + 2.0	٧
VPPH	V _{PP} during Read/Write Operations		12.5	13.0	٧

Notes:

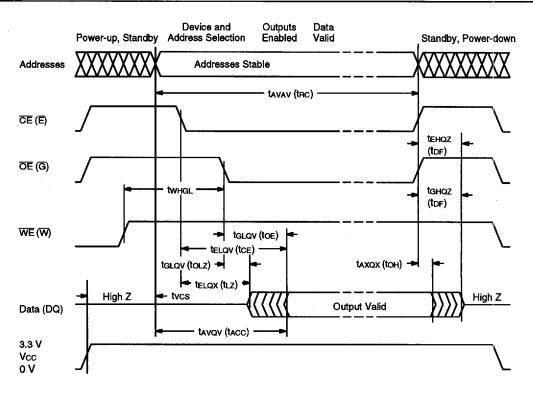
- 1. Caution: the Am27LV020 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
- 2. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 3. Maximum active power usage is the sum of Icc and IPP.

PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	V _{IN} = 0	8	10	рF
Соит	Output Capacitance	Vout = 0	8	12	pF
C _{IN2}	VPP Input Capacitance	V _{PP} = 0	8	12	pF

Notes:

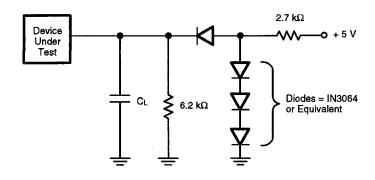
- 1. Sampled, not 100% tested.
- 2. Test conditions TA = 25°C, f = 1.0 MHz.


SWITCHING CHARACTERISTICS over operating range unless otherwise specified AC CHARACTERISTICS—Read Only Operation (Note 1)

Parameter Symbols			Am27LV020					
JEDEC	Standard	Parameter Description	Parameter Description		-250	-300	Unit	
tavav	tavav t _{RC} Read Cycle Time		Min. Max.	200	250	300	ns	
t ELQV	tce	Chip Enable Access Time	Min. Max.	200	250	300	ns	
tavqv	tacc	Address Access Time	Min. Max.	200	250	300	ns	
tglav	toE	Output Enable Access Time	Min. Max.	75	100	100	ns	
telox	tız	Chip Enable to Output in Low Z	Min. Max.	0	0	0	ns	
teHQZ	tor	Chip Disable to Output in High Z	Min. Max.	35	35	35	ns	
tGLQX	toLz	Output Enable to Output in Low Z	Min. Max.	0	0	0	ns	
tgноz	t DF	Output Disable to Output in High Z	Min. Max.	35	35	35	ns	
taxqx	tон	Output Hold from first of Address, CE, or OE Change	Min. Max.	0	0	0	ns	
tvcs		Vcc Set-up Time to Valid Read	Min. Max.	50	50	50	μs	

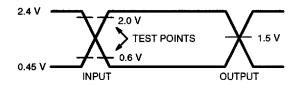
Notes:

- 1. Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: ≤ 10 ns, Input Pulse levels: 0.45 to 2.4 V, Timing Measurement Reference Level - Inputs: 0.6 V and 2 V Outputs: 1.5 V
- 2. tycs is guaranteed by design not tested.



11561-013C

AC Waveforms for Read Operations


SWITCHING TEST CIRCUIT

11561-012A

C_L = 100 pF including jig capacitance

SWITCHING TEST WAVEFORMS

All Devices

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are \leq 10 ns.

16357A-002B

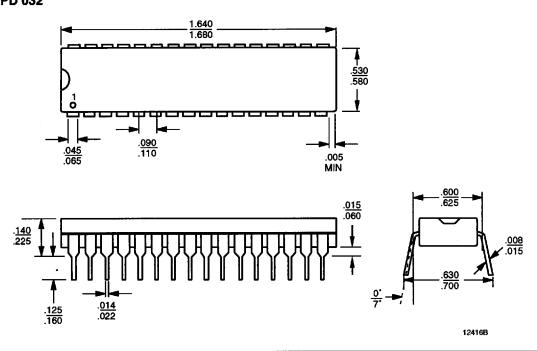
AMD

PRELIMINARY

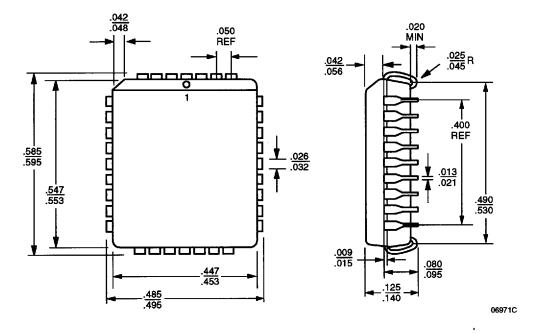
ERASE AND PROGRAMMING PERFORMANCE

	Limits		Limits				
Parameter	Min.	Тур.	Max.	Unit	Comments		
Chip Programming Time		4 (Note 1)	48	s	Excludes system-level overhead		

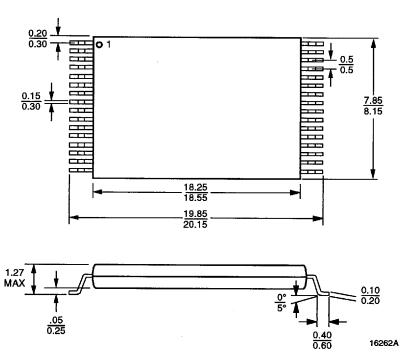
Note:


LATCHUP CHARACTERISTICS

	Min.	Max.
Input Voltage with respect to V_{SS} on all pins except I/O pins (Including A_{θ} and V_{PP})	-1.0 V	13.5 V
Input Voltage with respect to Vss on all pins I/O pins	-1.0 V	Vcc + 1.0 V
Current	-100 mA	+100 mA
Includes all pins except $V_{\rm CC}$. Test conditions: $V_{\rm CC}$ = 5.0 V, one pin at a	time.	


^{1. 25°}C, 12.75 V VPP.

PHYSICAL DIMENSIONS* PD 032


PL 032

*For reference only. All dimensions are measured in inches, unless otherwise noted. BSC is an ANSI standard for Basic Space Centering.

AMD 🗔

PHYSICAL DIMENSIONS TS 032

