MEMORY

Un-Buffered

1 M $\times 64$ BIT
 HYPER PAGE MODE DRAM SO-DIMM

MB8501E064AA-60/-70/-60L/-70L

144 pin, 1 M $\times 64$ BIT Hyper Page Mode SO-DIMM, 3.3 V, 1-bank, 1 KR

DESCRIPTION

The Fujitsu MB8501E064AA is a fully decoded, CMOS Dynamic Random Access Memory (DRAM) module consisting of four MB81V18165A devices. The MB8501E064AA is optimized for those applications requiring small size package, low power consumption, enhanced performance. The operation and electrical characteristics of the MB8501E064AA are the same as the MB81V18165A which features hyper page mode (EDO) operation. For ease of memory expansion, the MB8501E064AA is offered in an 144-pin Small Outline Dual In-line Memory Module package (SO-DIMM).

PRODUCT LINE \& FEATURES

Parameter		MB8501E064AA			
		-60	-60L	-70	-70L
RAS Access Time		60 ns max.		70 ns max.	
Random Cycle Time		104 ns min.		124 ns min.	
Address Access Time		30 ns max.		35 ns max.	
$\overline{\text { CAS Access Time }}$		15 ns max.		17 ns max.	
Hyper Page Mode Cycle Time		25 ns min.		30 ns min.	
Power Dissipation (max.)	Operating Mode	2592 mW		2448 mW	
	Standby Mode	28.8 mW	14.4 mW	28.8 mW	14.4 mW

- Conformed to 144-pin SO-DIMM JEDEC standard
- Organization: $1,048,576$ words $\times 64$ bits
- Module Size: 1.00 " (height) $\times 2.66^{\prime \prime}$
(length) $\times 0.15$ " (thick)
- Memory: MB81V18165A
($1 \mathrm{M} \times 16,1 \mathrm{~K}$ ref., 3.3 V), 4 pcs
-3.3 V $\pm 0.3 \mathrm{~V}$ Supply Voltage
- 1,024 Refresh Cycles/16.4 ms
- Hyper Page Operation (EDO)
- Serial Presence Detect (Serial EEPROM)
- RAS Only Refresh/CAS-before-RAS Refresh
- Package and Ordering Information: 144-pin SO-DIMM, order as MB8501E064AA-××DG (DG = Gold Pad)

PACKAGE

Plastic SO-DIMM Package

(MDS-144P-P01)

Package and Ordering Information

- 144-pin SO-DIMM, order as MB8501E064AA-××DG (DG = Gold Pad)

Fig. 1 - BLOCK DIAGRAM

MB8501E064AA-60/-70/-60L/-70L

PIN ASSIGNMENTS

Pin No.	MB8501E064AA						
1	Vss	37	DQ8	73	OE	109	A9
2	Vss	38	DQ40	74	N.C.	110	N.C.
3	DQ0	39	DQ9	75	Vss	111	N.C.
4	DQ32	40	DQ41	76	Vss	112	N.C.
5	DQ1	41	DQ10	77	N.C.	113	Vcc
6	DQ_{3}	42	DQ42	78	N.C.	114	Vcc
7	DQ2	43	DQ11	79	N.C.	115	$\overline{\mathrm{CAS}}{ }_{2}$
8	DQ_{34}	44	DQ43	80	N.C.	116	$\overline{\mathrm{CAS}} 6$
9	DQ3	45	Vcc	81	Vcc	117	CAS_{3}
10	DQ35	46	Vcc	82	Vcc	118	$\overline{\mathrm{CAS}}_{7}$
11	Vcc	47	DQ12	83	DQ16	119	Vss
12	Vcc	48	DQ44	84	DQ48	120	Vss
13	DQ4	49	DQ_{13}	85	DQ17	121	DQ_{24}
14	DQ_{36}	50	DQ45	86	DQ49	122	DQ56
15	DQ5	51	DQ14	87	DQ18	123	DQ25
16	DQ37	52	DQ46	88	DQ50	124	DQ57
17	DQ6	53	DQ15	89	DQ19	125	DQ26
18	DQ_{38}	54	DQ47	90	DQ51	126	DQ58
19	DQ7	55	Vss	91	Vss	127	DQ27
20	DQ39	56	Vss	92	Vss	128	DQ59
21	Vss	57	N.C.	93	DQ20	129	Vcc
22	Vss	58	N.C.	94	DQ52	130	Vcc
23	CAS0	59	N.C.	95	DQ21	131	DQ28
24	$\overline{\mathrm{CAS}}_{4}$	60	N.C.	96	DQ53	132	DQ60
25	$\overline{\mathrm{CAS}}{ }_{1}$	61	N.C.	97	DQ22	133	DQ29
26	$\overline{\mathrm{CAS}} 5$	62	N.C.	98	DQ54	134	DQ61
27	Vcc	63	Vcc	99	DQ23	135	DQ30
28	Vcc	64	Vcc	100	DQ55	136	DQ62
29	A_{0}	65	N.C.	101	Vcc	137	DQ31
30	A_{3}	66	N.C.	102	Vcc	138	DQ63
31	A_{1}	67	WE	103	A_{6}	139	Vss
32	A_{4}	68	N.C.	104	A_{7}	140	Vss
33	A_{2}	69	$\overline{\mathrm{RAS}} 0$	105	A_{8}	141	SDA
34	A_{5}	70	N.C.	106	N.C.	142	SCL
35	Vss	71	N.C.	107	Vss	143	Vcc
36	Vss	72	N.C.	108	Vss	144	Vcc

MB8501E064AA-60/-70/-60L/-70L

PIN DESCRIPTIONS

Symbol	Function	Input/Output	Pin Count
A_{0} to A_{9}	Address Input	Input	10
$\overline{\mathrm{RAS}}_{0}$	Row Address Strobe	Input	1
$\overline{\mathrm{CAS}}_{0}$ to $\overline{\mathrm{CAS}}_{7}$	Column Address Strobe	Input	8
$\overline{\mathrm{WE}}$	Write Enable	Input	1
$\overline{\mathrm{OE}}$	Output Enable	Input	1
DQ_{0} to DQ_{63}	Data-input/Data-output	Input/Output	64
SCL	Serial PD Clock	Input	1
SDA	Serial PD I/O	Input/Output	1
$\mathrm{~V}_{\text {cc }}$	Power Supply	-	18
$\mathrm{Vss}^{\text {N.C. }}$	Ground	-	18
	No Connection	-	21

MB8501E064AA-60/-70/-60L/-70L

SERIAL PRESENCE DETECT (SPD) TABLE

Byte	Function Described			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Number of Bytes Used by Module Manufacturer		12 Bytes	0	0	0	0	1	1	0	0
1	Total SPD Memory Size		256 Bytes	0	0	0	0	1	0	0	0
2	Memory Type		EDO	0	0	0	0	0	0	1	0
3	Number of Row Addresses		10 Addresses	0	0	0	0	1	0	1	0
4	Number of Column Addresses		10 Addresses	0	0	0	0	1	0	1	0
5	Number of Banks		1 Bank	0	0	0	0	0	0	0	1
6	Module Data Width (1)		64 Bits	0	1	0	0	0	0	0	0
7	Module Data Width (2)		+0 Bits	0	0	0	0	0	0	0	0
8	Module Interface Levels		LVTTL	0	0	0	0	0	0	0	1
9	RAS Access Time (trac)		60 ns	0	0	1	1	1	1	0	0
			70 ns	0	1	0	0	0	1	1	0
10	CAS Access Time (tcac)		15 ns	0	0	0	0	1	1	1	1
			17 ns	0	0	0	1	0	0	0	1
11	Module Configuration Type (Parity or ECC or None)		None	0	0	0	0	0	0	0	0
12	Refresh Rate/Type	Normal, Self Refresh		1	0	0	0	0	0	0	0
		Low Power, Self Refresh		1	0	0	0	0	1	0	1
13 to 31	Reserved for Future Offerings		-	-	-	-	-	-	-	-	-
32 to 63	Superset Information		-	-	-	-	-	-	-	-	-
64 to 127	Manufacturer's Information		-	-	-	-	-	-	-	-	-
128 to 255	Unused Storage Locations		-	-	-	-	-	-	-	-	-

Note: Any write operation must NOT be executed into the addresses of Byte 0 to Byte 127. Some or all data stored into Byte 0 to Byte 127 may be broken.

ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +4.6	V
Input Voltage	Vin	-0.5 to +4.6	V
Output Voltage	Vout	-0.5 to +4.6	V
Short Circuit Output Current	lout	-50 to +50	mA
Power Dissipation	PD	4	W
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(Referenced to Vss)

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	V_{cc}	3.0	3.3	3.6	V
Ground	V ss	-	0	0	V
Input High Voltage, All Inputs	V_{H}	2.0	-	$\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$	V
Input Low Voltage, All Inputs*	V_{IL}	-0.3	-	0.8	V
Ambient Temperature	T_{A}	0	-	+70	${ }^{\circ} \mathrm{C}$

Note: * Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=+3.3 \mathrm{~V}\right)$						
Parameter		Symbol	Value		Unit	
		Min.	Max.			
Input Capacitance	A0 to A_{9}		Cin1	-	28	pF
	RAS ${ }_{0}$	Cin2	-	23	pF	
	$\overline{\mathrm{CAS}}_{0}$ to $\overline{\mathrm{CAS}}_{7}$	Сімз	-	12	pF	
	$\overline{W E}$	Cin4	-	24	pF	
	$\overline{\mathrm{OE}}$	CIns	-	24	pF	
	SCL	Cing	-	8	pF	
Input/Output Capacitance	DQ 0 to DQ_{63}	Coq	-	13	pF	
	SDA	Csda	-	8	pF	

DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Parameter Notes		Test Condition	Symbol	Min.	Max.		Unit	
		-60/-70			-60L/-70L			
Output High Voltage *1	*1		Іон $=-2.0 \mathrm{~mA}$	Vor	2.4	-		V
Output Low Voltage *1	*1	$\mathrm{loL}=+2.0 \mathrm{~mA}$	Vol	-	0.4		V	
Input Leakage Current	$\overline{\text { CAS }}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{in}} \leq \mathrm{V}_{\mathrm{cc}}, \\ & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V} \text {, all other pins } \\ & \text { not under test }=0 \mathrm{~V} \end{aligned}$	$1(L)$	-10	10		$\mu \mathrm{A}$	
	Others			-30	30			
Output Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{cc}},$ $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 3.6 \mathrm{~V}$, Data out disabled	l (L)	-10	10		$\mu \mathrm{A}$	
Operating Current (Average Power Supply Current)	$\begin{aligned} & \text { MB8501E064AA } \\ & -60 /-60 \mathrm{~L} \end{aligned}$	$\overline{\mathrm{RAS}} \& \overline{\mathrm{CAS}}$ cycling, $\mathrm{t}_{\mathrm{RC}}=\mathrm{min}$.	Iccı	-	720		mA	
	MB8501E064AA -70/-70L			-	680			
Standby Current (Power Supply Current)	TTL Level	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}$	Icc2	-	8	4	mA	
	CMOS Level	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		-	4	0.6		
Refresh Current \#1 (Average Power Supply Current)	$\begin{aligned} & \text { MB8501E064AA } \\ & -60 /-60 \mathrm{~L} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{RAS}=\mathrm{cycling}, \\ & \mathrm{t}_{\mathrm{RC}}=\text { min. } . \end{aligned}$	Icca	-	720		mA	
	$\begin{array}{\|l\|l\|} \hline \text { MB8501E064AA } \\ -70 /-70 L \end{array}$			-	680			
Hyper Page Mode *2 Current	$\begin{aligned} & \text { MB8501E064AA } \\ & -60 /-60 \mathrm{~L} \end{aligned}$	$\begin{aligned} & \overline{\overline{R A S}}=V_{\mathrm{L}}, \\ & \overline{\mathrm{CAS}}=\text { cycling }, \\ & \mathrm{t}+\mathrm{PC}=\text { min. } . \end{aligned}$	Icc4	-	440		mA	
	$\begin{aligned} & \text { MB8501E064AA } \\ & -70 /-70 \mathrm{~L} \end{aligned}$			-	400			
Refresh Current \#2 (Average Power Supply Current)	$\begin{aligned} & \text { MB8501E064AA } \\ & -60 /-60 \mathrm{~L} \end{aligned}$	$\overline{\text { RAS }}=$ cycling, CAS-before-RAS, $\mathrm{t}_{\mathrm{RC}}=\mathrm{min}$.	Icc5	-	680		mA	
	MB8501E064AA -70/-70L			-	640			
Battery Backup Current (Average Power Supply Current)	MB8501E064AA \|-60/-70	$\overline{\mathrm{RAS}}=$ cycling, CAS-before-RAS, $\mathrm{t}_{\text {RAS }}=\min$. to 300 ns $\mathrm{V}_{\mathrm{H}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V}, \operatorname{trc}=16 \mu \mathrm{~s}$	Icc6	-	8	-	mA	
	MB8501E064AA \|-60L/-70L	$\overline{\mathrm{RAS}}=$ cycling, CAS-before-RAS, $\mathrm{t}_{\text {RAS }}=\min$. to 300 ns $\mathrm{V}_{\mathrm{H}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V}, \mathrm{tRC}=128 \mu \mathrm{~s}$		-	-	1.2	mA	
Refresh Current \#3 (Average Power Supply Current)		Self Refresh;	Icc9	-	4	1	mA	

Notes: *1. Referenced to Vss.
*2. Icc depends on the output load conditions and cycle rate. The specific values are obtained with the output open.
Icc depends on the number of address change as $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathbb{I}}$ and $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathbb{H}}$ and $\mathrm{V}_{\mathbb{L}}>-0.3 \mathrm{~V}$.
$\mathrm{I}_{c c 1}, \mathrm{I}_{\mathrm{cc} 3}, \mathrm{I}_{\mathrm{cc} 4}$ and $\mathrm{I}_{\mathrm{cc5}}$ are specified at one time of address change during $\overline{R A S}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$. Iccc^{2} are specified during $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}>-0.3 \mathrm{~V}$. ICc6 is measured on condition that all address signals are fixed steady state.

MB8501E064AA-60/-70/-60L/-70L

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 1, 2, 3

No.	Parameter Note	Symbol	MB8501E064AA-60/-60L		MB8501E064AA-70/-70L		Unit
			Min.	Max.	Min.	Max.	
1	Time between Refresh	tref	-	16.4	-	16.4	ms
			-	128	-	128	ms
2	Random Read/Write Cycle Time	trc	104	-	124	-	ns
3	Read-Modify-Write Cycle Time	trwc	138	-	162	-	ns
4	Access Time from $\overline{\text { RAS }}$ *4, 7	trac	-	60	-	70	ns
5	Access Time from $\overline{\text { CAS }}$ *5, 7	tcac	-	15	-	17	ns
6	Column Address Access Time *6, 7	$t_{\text {AA }}$	-	30	-	35	ns
7	Output Hold Time	toh	3	-	3	-	ns
8	Output Hold Time from CAS	tонс	5	-	5	-	ns
9	Output Buffer Turn On Delay Time	ton	0	-	0	-	ns
10	Output Buffer Turn Off Delay Time *8	toff	-	15	-	17	ns
11	Output Buffer Turn Off Delay Time from RAS $\quad * 8$	tofr	-	15	-	17	ns
12	Output Buffer Turn Off Delay Time from WE	twez	-	15	-	17	ns
13	Transition Time	t ${ }^{\text {t }}$	1	50	1	50	ns
14	$\overline{\text { RAS Precharge Time }}$	trP	40	-	50	-	ns
15	$\overline{\text { RAS Pulse Width }}$	tras	60	100000	70	100000	ns
16	$\overline{\text { RAS }}$ Hold Time	trsh	15	-	17	-	ns
17	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time	tcre	5	-	5	-	ns
18	$\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ Delay Time $\quad * 9,10$	trci	14	45	14	53	ns
19	$\overline{\text { CAS Pulse Width }}$	tcas	10	-	13	-	ns
20	$\overline{\text { CAS Hold Time }}$	tcsh	40	-	50	-	ns
21		tcpn	10	-	10	-	ns
22	Row Address Set Up Time	task	0	-	0	-	ns
23	Row Address Hold Time	trah	10	-	10	-	ns
24	Column Address Set Up Time	tasc	0	-	0	-	ns
25	Column Address Hold Time	tcah	10	-	10	-	ns
26	Column Address Hold Time from RAS	$t_{\text {AR }}$	24	-	24	-	ns
27	RAS to Column Address Delay Time	trad	12	30	12	35	ns
28		tral	30	-	35	-	ns

(Continued)

MB8501E064AA-60/-70/-60L/-70L

No.	Parameter Notes	Symbol	MB8501E064AA-60/-60L		MB8501E064AA-70/-70L		Unit
			Min.	Max.	Min.	Max.	
29	Column Address to $\overline{\text { CAS }}$ Lead Time	tcal	23	-	28	-	ns
30	Read Command Set Up Time	trcs	0	-	0	-	ns
31	Read Command Hold Time *12 Referenced to RAS	trre	0	-	0	-	ns
32	Read Command Hold Time *12 Referenced to CAS	trach	0	-	0	-	ns
33	Write Command Set Up Time *13, 18	twcs	0	-	0	-	ns
34	Write Command Hold Time	twch	10	-	10	-	ns
35	Write Command Hold Time from $\overline{\text { RAS }}$	twCR	24	-	24	-	ns
36	WE Pulse Width	twp	10	-	10	-	ns
37	Write Command to RAS Lead Time	trwL	15	-	17	-	ns
38	Write Command to CAS Lead Time	tcw	10	-	13	-	ns
39	DIN Set Up Time	tos	0	-	0	-	ns
40	DIN Hold Time	toh	10	-	10	-	ns
41	Data Hold Time from RAS	tohr	24	-	24	-	ns
42	RAS to WE Delay Time *18	trwd	77	-	89	-	ns
43	CAS to WE Delay Time *18	tcwo	32	-	36	-	ns
44	Column Address to WE Delay ${ }^{*} 18$ Time	tawd	47	-	54	-	ns
45	$\overline{\text { RAS }}$ Precharge Time to $\overline{\mathrm{CAS}}$ Active Time (Refresh Cycles)	trpc	5	-	5	-	ns
46	$\overline{\mathrm{CAS}}$ Set Up Time (C-B-R Refresh)	tcse	0	-	0	-	ns
47	$\overline{\text { CAS }}$ Hold Time (C-B-R Refresh)	tchr	10	-	12	-	ns
48	Access Time from $\overline{\mathrm{OE}} \quad{ }^{* 7}$	toea	-	15	-	17	ns
49	$\frac{\text { Output Buffer Turn Off Delay from *8 }}{\mathrm{OE}}$	toez	-	15	-	17	ns
50	$\overline{\mathrm{OE}}$ to $\overline{\mathrm{RAS}}$ Lead Time for Valid Data	toel	10	-	10	-	ns
51	$\overline{\text { OE }}$ to $\overline{\mathrm{CAS}}$ Lead Time	tcol	5	-	5	-	ns
52	OE Hold Time Referenced to WE *14	toen	5	-	5	-	ns
53	OE to Data in Delay Time	toed	15	-	17	-	ns
54	RAS to Data in Delay Time	trid	15	-	17	-	ns
55	CAS to Data in Delay Time	tcod	15	-	17	-	ns
56	DIN to CAS Delay Time ${ }^{* 15}$	tozc	0	-	0	-	ns
57	DIN to OE Delay Time ${ }^{*} 15$	tozo	0	-	0	-	ns

(Continued)

MB8501E064AA-60/-70/-60L/-70L

(Continued)

No.	Parameter Notes	Symbol	MB8501E064AA-60/-60L		MB8501E064AA-70/-70L		Unit
			Min.	Max.	Min.	Max.	
58	$\overline{\text { OE Precharge Time }}$	toep	8	-	8	-	ns
59	$\overline{\mathrm{OE}}$ Hold Time Referenced to $\overline{\mathrm{CAS}}$	toech	10	-	10	-	ns
60	$\overline{\text { WE Precharge Time }}$	twpz	8	-	8	-	ns
61	$\overline{\text { WE to Data in Delay Time }}$	twed	15	-	17	-	ns
62	Hyper Page Mode $\overline{\mathrm{RAS}}$ Pulse Width	trasp	-	100000	-	100000	ns
63	Hyper Page Mode Read/Write Cycle Time	thpo	25	-	30	-	ns
64	Hyper Page Mode Read-ModifyWrite Cycle Time	thprwc	69	-	79	-	ns
65	Access Time from $\overline{\text { CAS }}$ Precharge$\quad * 7,16$	tcpa	-	35	-	40	ns
66	Hyper Page Mode $\overline{\text { CAS }}$ Precharge Time	tcp	10	-	10	-	ns
67	Hyper Page Mode $\overline{\text { RAS }}$ Hold Time from CAS Precharge	trhcp	35	-	40	-	ns
68	Hyper Page Mode CAS Precharge to WE Delay Time $\quad{ }^{* 18}$	tcpwd	52	-	59	-	ns
69	$\overline{\text { RAS Pulse Width (Self Refresh) } \quad * 19}$	trass	100	-	100	-	ns
70	RAS Precharge Time (Self Refresh) $\quad{ }^{* 19}$	trps	104	-	124	-	ns
71	$\overline{\text { CAS }}$ Hold Time (Self Refresh) $\quad * 19$	tchs	-50	-	-50	-	ns

Notes: *1. An initial pause ($\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\boldsymbol{H}}$) of $200 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ only cycles before proper device operation is achieved. If an internal refresh counter is used, a minimum of eight $\overline{\mathrm{CAS}}$-before-RAS initialization cycles are required instead of eight RAS cycles.
*2. AC characteristics assume $\mathrm{t} \boldsymbol{\mathrm { t }}=5 \mathrm{~ns}$.
*3. $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\text {IL }}$ (max) are reference levels for measureing the timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{H}}(\mathrm{min})$ and V_{IL} (max).
 recommended value shown in this table, trac will be increased by the amount that trci and/or trad exceeds the value shown.
*5. If $t_{\text {RCD }} \geq t_{\text {tco }}(\max), t_{\text {tad }} \geq t_{\text {tad }}$ (max), and $t_{A S c} \geq t_{A A}-t_{c a c}-t_{t}$, access time is tcac.
*6. If $t_{\text {rad }} \geq t_{\text {tad }}$ (max) and $t_{A s c} \leq t_{A A}-t_{c a c}-t_{t}$, access time is $t_{A A}$.
*7. Measured with a load equivalent to two TTL loads and 100 pF .
*8. toff, toez, tofr and twez are specified that output buffer change to high-impedance state.
*9. Operation within the $t_{R C D}(\max)$ limit ensures that trac (max) can be met. trCD (max) is specified as a reference point only; if trcD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tcac or tas.
*10. $t_{\text {tgod }}(\min)=t_{\text {rah }}(\min)+2 t t+t_{\text {Asc }}(\mathrm{min})$.
*11. Operation within the trad (max) limit ensures that trac (max) can be met. trad (max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled exclusively by tcac or taA.
*12. Either trRh or trch must be satisfied for a read cycle.
*13. twcs is specified as a reference point only. If twos \geq twcs (min) the data output pin will remain High-Z state through entire cycle.
*14. Assumes that twcs < twcs (min).
*15. Either tozc or tozo must be satisfied.
*16. tcPA is access time from the selection of a new column address (caused by changing $\overline{\mathrm{CAS}}$ from " L " to " H "). Therefore, if tcp become long, tcpa also become longer than tcpa (max).
*17. Assumes that $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh.
*18. twcs, tcwd, trwd, tawd, and tcpwd are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twos \geq twcs (min), the cycle is an early write cycle and Dout pin will maintain high-impedance state thoughout the entire cycle. If tcwo \geq tcwo (min), trwd \geq trwd (min), tawd \geq tawd $(\mathrm{min}$), and tcpwo \geq tcpwo (min), the cycle is a read-modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be executed by satisfying trwl, tcwl, tral and tcal specifications.
*19. Assumes that self refresh.
*Source: See MB81V18165A Data Sheet for details on the electricals.

SERIAL PRESENCE DETECT (SPD) FUNCTION

1. PIN DESCRIPTIONS

SCL (Serial Clock)

SCL input is used to clock all data input/output of SPD.

SDA (Serial Data)

SDA is a common pin used for all data input/output of SPD. The SDA pull-up resistor is required due to the open-drain output.

SAo, SA ${ }_{1}$, SA $_{2}$ (Address)

Address inputs are used to set the least significant three bits of the eight bits slave address. The address inputs must be fixed to select a particular module and the fixed address of each module must be different each other. For this module, any address inputs are not required because all addresses ($\mathrm{SA}_{0}, \mathrm{SA}_{1}, \mathrm{SA}_{2}$) are driven to Vss on the module.

2. SPD OPERATIONS

CLOCK and DATA CONVENTION

Data states on the SDA can change only during SCL=Low. SDA state changes during SCL = High are indicated start and stop conditions. Refer to Fig. 2 below.

START CONDITION

All commands are preceded by a start condition, which is a transition of SDA state from High to Low when SCL = High. SPD will not respond to any command until this condition has been met.

STOP CONDITION

All read or write operation must be terminated by a stop condition, which is a transition of SDA state from Low to High when SCL = High. The stop condition is also used to make the SPD into the state of standby power mode after a read sequence.

Fig. 2 - START AND STOP CONDITIONS

SCL

SDA

START = High to Low transition of SDA state when SCL is High
STOP = Low to High transition of SDA state when SCL is High

MB8501E064AA-60/-70/-60L/-70L

ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfer. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle the receiver will put the SDA line to Low in order to acknowledge that it received the eight bits of data.
The SPD will respond with an acknowledge when it received the start condition followed by slave address issued by master.
In the read operation, the SPD will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is issued by master, the SPD will continue to transmit data. If anacknowledge is not detected, the SPD will terminated further data transmissions. The master must then issue a stop condition to return the SPD to the standby power
In the write operation, upon receipt of eight bits of data the SPD will respond with an acknowledge, and await the next eight bits of data, again responding with an acknowledge until the stop condition is issued by master.

SLAVE ADDRESS ADDRESSING

Following a start condition, the master must output the eight bits slave address. The most significant four bits of the slave address are device type identifier. For the SPD this is fixed as 1010[B]. Refer to the Fig. 3 below.
The next three significant bits are used to select a particular device. A system could have up to eight SPD devices-namely up to eight modules- on the bus. The eight addresses for eight SPD devices are defined by the state of the $\mathrm{SA}_{0}, \mathrm{SA}_{1}$ and SA_{2} inputs. For this module, the three bits are fixed as $000[\mathrm{~B}]$ because all addresses are driven to Vss on the module. Therefore, no address inputs are required.
The last bit of the slave address defines the operation to be performed. When $\mathrm{R} / \overline{\mathrm{W}}$ bit is " 1 ", a read operation is selected, when R/W bit is " 0 ", a write operation is selected.
Following the start condition, the SPD monitors the SDA line comparing the slave address being transmitted with its slave address (device type and state of SA_{0}, SA_{1}, and SA_{2} inputs). Upon a correct compare the SPD outputs an acknowledge on the SDA line. Depending on the state of the R/W bit, the SPD will execute a read or write operation.

Fig. 3 - SLAVE ADDRESS
DEVICE TYPE
IDENTIFIER

1	0	1	0	SA_{2}	SA_{1}	SA	R / \bar{W}

MB8501E064AA-60/-70/-60L/-70L

3. READ OPERATIONS

CURRENT ADDRESS READ

Internally the SPD contains an address counter that maintains the address of the last data accessed, incremented by one. Therefore, if the last access (either a read or write operation) was to address(n), the next read operation would access data from address ($n+1$). Upon receipt of the slave address with the R/W bit = " 1 ", the SPD issues an acknowledge and transmits the eight bits of data during the next eight clock cycles. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 4 for the sequence of address, acknowledge and data transfer.

RANDOM READ

Random Read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/W bit = "1", the master must first perform a "dummy" write operation on the SPD. The master issues the start condition, and the slave address followed by the word address. After the word address acknowledge, the master immediately reissues the start condition and the slave address with the R/ W bit = "1". This will be followed by an acknowledge from the SPD and then by the eight bits of data. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 5 for the sequence of address, acknowledge and data transfer.

MB8501E064AA-60/-70/-60L/-70L

SEQUENTIAL READ

Sequential Read can be initiated as either a current address read or random read. The first data are transmitted as with the other read mode, however, the master now responds with an acknowledge, indicating it requires additional data. The SPD continues to output data for each acknowledge received. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 6 for the sequence of address, acknowledge and data transfer.
The data output is sequential, with the data from address (n) followed by the data from address $(n+1)$. The address counter for read operations increments all address bits, allowing the entire memory contents to be serially read during one operation. At the end of the address space (address 255), the counter "rolls over" to address 0 and the SPD continues to output data for each acknowledge received.

4. DC CHARACTERISTICS

Parameter	Note	Test Condition	Symbol	Min.	Max.	Unit
Input Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	S!ı	-10	10	$\mu \mathrm{A}$
Output Leakage Current		$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUt }} \leq \mathrm{V}_{\text {cc }}$	Sıo	-10	10	$\mu \mathrm{A}$
Output Low Voltage	*1	$\mathrm{loL}=3.0 \mathrm{~mA}$	Svol	-	0.4	V

Note: *1. Referenced to Vss.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 2810770
Fax: (65) 2810220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

