
µPD17134A
µPD17135A
µPD17136A
µPD17137A

µPD17P136A
µPD17P137A

© 1993

µPD17134A SUBSERIES
4-BIT SINGLE-CHIP MICROCONTROLLER

Document No. U11607EJ3V0UM00 (3rd edition)
Date Published December 1996 N
Printed in Japan

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions

need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input

levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each

unused pin should be connected to VDD or GND with a resistor, if it is considered to have a

possibility of being an output pin. All handling related to the unused pins must be judged device

by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until

the reset signal is received. Reset operation must be executed immediately after power-on for

devices having reset function.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J96. 8

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96.5

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

SIMPLEHOST is a trademark of NEC Corp.

MS-DOS and Windows are trademarks of Microsoft Corp.

PC/AT and PC DOS are trademarks of IBM Corp.

Major Revisions in This Edition

Page Description

Throughout Change of name µPD1713XA to µPD17134A subseries

p. 5 Correction of (2) Program memory write/verify mode in 1.4 PIN CONFIGURATION

p. 18 Change of Figure 3-2 Value of Program Counter after Instruction

Partial correction of 3.2.2 On Execution of Branch Instruction (BR)

p. 19 Partial correction of 3.2.3 On During Execution of Subroutine Call

p. 23 Change of CHAPTER 4 PROGRAM MEMORY (ROM)

p. 31 Partial correction of Figure 5-1 Data Memory Configuration

p. 35 Change of CHAPTER 6 STACK

p. 43 Partial correction of 7.2.2 Address Register Functions

p. 47 Change of 7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS

POINTER (MEMORY POINTER: MP)

p. 58 Partial change of 7.6.2 Functions of General Register Pointer

p. 59 Partial change of 7.7.1 Program Status Word Configuration

p. 61 Change of 7.7.4 Zero Flag (Z) and Compare Flag (CMP)

p. 61 Partial correction of 7.7.5 Carry Flag (CY)

p. 71 Partial correction of 9.2.3 Register File Manipulation Instructions

p. 111 Change of CHAPTER 13 PERIPHERAL HARDWARE

p. 149 Change of CHAPTER 14 INTERRUPT FUNCTIONS

p. 169 Change of CHAPTER 16 STANDBY FUNCTION

p. 179 Change of CHAPTER 17 RESET

p. 190 Partial change of Table 18-2 Differences between Mask ROM Version and One-

Time PROM Version

p. 194 Partial change of 19.3 LIST OF THE INSTRUCTION SET

p. 198 Partial change of 19.5 INSTRUCTIONS

p. 255 Change of CHAPTER 20 ASSEMBLER RESERVED WORDS

p. 257 Partial change of 20.2 RESERVED SYMBOLS

p. 261 Addition of APPENDIX A DEVELOPMENT OF µPD171×× SUBSERIES

p. 263 Addition of APPENDIX B COMPARISON OF FUNCTIONS BETWEEN µPD17135A,

17137A, AND µPD17145 SUBSERIES

p. 267 Addition of APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK

OSCILLATION CIRCUIT

The mark shows major revisions made in this edition.

PREFACE

Target : This manual is intended for user engineers who understand the functions of each product in

the µPD17134A subseries and try to design application systems using the µPD17134A

subseries.

Purpose : The purpose of this manual is for the user to understand the hardware functions of the

µPD17134A subseries.

Use : The manual assumes that the reader has a general knowledge of electricity, logic circuits,

microcomputers.

• To understand the functions of the µPD17134A subseries in a general way;

→ Read the manual from CONTENTS.

• To look up instruction functions in detail when you know the mnemonic of an

instruction;

→ Use APPENDIX E INSTRUCTION LIST .

• To look up an instruction when you do not know its mnemonic but know outlines of

the function;

→ Refer to 19.3 LIST OF THE INSTRUCTION SET for search for the mnemonic of the

instruction, then see 19.5 INSTRUCTIONS for the functions.

• To learn the electrical specifications of the µPD17134A subseries

→ Refer to the Data Sheet available separately.

• To learn the application examples of the functions of the µPD17134A subseries

→ Refer to the Application Note available separately.

Legend : Data representation weight : High-order and low-order digits are indicated from left to right.

Active low representation : ××× (pin or signal name is overlined)

Memory map address : Top: low-order, bottom: high-order

Note : Explanation of Note in the text

Caution : Caution to which you should pay attention

Remark : Supplementary explanation to the text

Number representation : Binary number ...×××× or ××××B

Decimal number ...××××
Hexadecimal number ...××××H

Related Documents : The following documents are provided for the µPD17134A subseries.

The numbers listed in the table are the document numbers.

 Product name

µPD17134A µPD17135A µPD17136A µPD17137A µPD17P136A µPD17P137A

Document name

Brochure IF-1166 IF-1169 IF-1166 IF-1169 IF-1168 IF-1165

Data sheet U10591E U10592E U10591E U10592E IC-2871 IC-2872

User’s manual IEU-1369

Application note IEA-1297 (Introduction), IEA-1293 (Rice cooker, thermos bottle)

IE-17K (Ver. 1.6) EEU-1467

user’s manual

IE-17K-ET (Ver. 1.6) EEU-1466

user’s manual

SE board EEU-1379

user’s manual

SIMPLEHOSTTM EEU-1336 (Introduction), EEU-1337 (Reference)

user’s manual

AS17K assembler EEU-1287

user’s manual

Device file U10777E

user’s manual

Pin name and symbol name should be read according to the system clock type.

 System clock RC oscillation Ceramic oscillation

µPD17134A µPD17135A

µPD17136A µPD17137A

Pin name, symbol name µPD17P136A µPD17P137A

Pin for system clock oscillation OSC1 XIN

OSC0 XOUT

System clock fCC fX

- i -

TABLE OF CONTENTS

CHAPTER 1 GENERAL DESCRIPTION ... 1

1.1 FUNCTION LIST .. 2

1.2 ORDERING INFORMATION ... 3

1.3 BLOCK DIAGRAM .. 4

1.4 PIN CONFIGURATION (TOP VIEW) .. 5

CHAPTER 2 PIN FUNCTIONS ... 9

2.1 PIN FUNCTIONS ... 9

2.2 PIN INPUT/OUTPUT CIRCUIT ... 11

2.3 PROCESSING OF UNUSED PINS ... 14

2.4 NOTES ON USING RESET PIN AND P1B 0 PIN ... 15

CHAPTER 3 PROGRAM COUNTER (PC) ... 17

3.1 PROGRAM COUNTER CONFIGURATION .. 17

3.2 PROGRAM COUNTER OPERATION ... 17

3.2.1 At Reset ... 18

3.2.2 During Execution of the Branch Instruction (BR) ... 18

3.2.3 During Execution of Subroutine Calls (CALL) .. 19

3.2.4 During Execution of Return Instructions (RET, RETSK, RETI) ... 20

3.2.5 During Table Reference (MOVT) .. 20

3.2.6 During Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT, SKF) 21

3.2.7 When an Interrupt Is Received ... 21

CHAPTER 4 PROGRAM MEMORY (ROM) .. 23

4.1 PROGRAM MEMORY CONFIGURATION ... 23

4.2 PROGRAM MEMORY USAGE ... 24

4.2.1 Flow of the Program .. 24

4.2.2 Table Reference... 27

CHAPTER 5 DATA MEMORY (RAM) .. 31

5.1 DATA MEMORY CONFIGURATION ... 31

5.1.1 System Register (SYSREG) ... 32

5.1.2 Data Buffer (DBF) .. 32

5.1.3 General Register (GR) .. 33

5.1.4 Port Registers .. 33

5.1.5 General Data Memory ... 34

5.1.6 Unmounted Data Memory ... 34

- ii -

CHAPTER 6 STACK .. 35

6.1 STACK CONFIGURATION .. 35

6.2 FUNCTIONS OF THE STACK .. 35

6.3 ADDRESS STACK REGISTERS (ASRs) ... 36

6.4 INTERRUPT STACK REGISTERS (INTSKs) .. 36

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTERS .. 37

6.6 STACK OPERATION ... 38

6.6.1 On Execution of Instructions CALL, RET, RETSK ... 38

6.6.2 Table Reference (MOVT DBF, @AR Instruction) ... 38

6.6.3 Operation on Execution of Interrupt Receipt and RETI Instruction... 39

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS ... 39

CHAPTER 7 SYSTEM REGISTER (SYSREG) .. 41

7.1 SYSTEM REGISTER CONFIGURATION ... 41

7.2 ADDRESS REGISTER (AR) ... 43

7.2.1 Address Register Configuration .. 43

7.2.2 Address Register Functions .. 43

7.3 WINDOW REGISTER (WR) .. 45

7.3.1 Window Register Configuration .. 45

7.3.2 Window Register Functions .. 45

7.4 BANK REGISTER (BANK) ... 46

7.4.1 Bank Register Configuration ... 46

7.4.2 Functions of Bank Register ... 46

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER

(MEMORY POINTER: MP) .. 47

7.5.1 Index Register (IX) .. 47

7.5.2 Data Memory Row Address Pointer (Memory Pointer: MP) .. 47

7.5.3 IXE = 0 and MPE = 0 (No Data Memory Modification) ... 49

7.5.4 IXE = 0 and MPE = 1 (Diagonal Indirect Data Transfer) ... 51

7.5.5 IXE = 1 and MPE = 0 (Index Modification) ... 53

7.6 GENERAL REGISTER POINTER (RP) .. 57

7.6.1 General Register Pointer Configuration ... 57

7.6.2 Functions of the General Register Pointer ... 58

7.7 PROGRAM STATUS WORD (PSWORD) ... 59

7.7.1 Program Status Word Configuration ... 59

7.7.2 Functions of the Program Status Word .. 60

7.7.3 Index Enable Flag (IXE) .. 61

7.7.4 Zero Flag (Z) and Compare Flag (CMP) .. 61

7.7.5 Carry Flag (CY) ... 61

7.7.6 Binary-Coded Decimal Flag (BCD) ... 62

7.7.7 Notes Concerning Use of Arithmetic Operations ... 62

7.8 NOTES CONCERNING USE OF THE SYSTEM REGISTER ... 63

7.8.1 Reserved Words for the System Register .. 63

7.8.2 Handling of System Register Addresses Fixed at 0 .. 65

- iii -

CHAPTER 8 GENERAL REGISTER (GR) ... 67

8.1 GENERAL REGISTER CONFIGURATION .. 67

8.2 FUNCTIONS OF THE GENERAL REGISTER ... 67

CHAPTER 9 REGISTER FILE (RF) .. 69

9.1 REGISTER FILE CONFIGURATION .. 69

9.1.1 Configuration of the Register File ... 69

9.1.2 Relationship between the Register File and Data Memory ... 69

9.2 FUNCTIONS OF THE REGISTER FILE ... 70

9.2.1 Functions of the Register File ... 70

9.2.2 Functions of Control Register ... 70

9.2.3 Register File Manipulation Instructions .. 71

9.3 CONTROL REGISTER .. 72

9.4 NOTES CONCERNING USE OF THE REGISTER FILE ... 73

9.4.1 Notes Concerning Operation of the Control Register (Read-Only and Unused Registers) ... 73

9.4.2 Register File Symbol Definitions and Reserved Words ... 73

CHAPTER 10 DATA BUFFER (DBF) ... 77

10.1 DATA BUFFER CONFIGURATION .. 77

10.2 FUNCTIONS OF THE DATA BUFFER ... 78

10.2.1 Data Buffer and Peripheral Hardware .. 79

10.2.2 Data Transfer with Peripheral Hardware .. 80

10.2.3 Table Reference... 81

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU) ... 83

11.1 ALU BLOCK CONFIGURATION .. 83

11.2 FUNCTIONS OF THE ALU BLOCK ... 83

11.2.1 Functions of the ALU ... 83

11.2.2 Functions of Temporary Registers A and B .. 88

11.2.3 Functions of the Status Flip-flop ... 88

11.2.4 Operations in 4-Bit Binary ... 89

11.2.5 Operations in BCD... 89

11.2.6 Operations in the ALU Block ... 90

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD) 91

11.3.1 Addition and Subtraction When CMP = 0 and BCD = 0 .. 91

11.3.2 Addition and Subtraction When CMP = 1 and BCD = 0 .. 91

11.3.3 Addition and Subtraction When CMP = 0 and BCD = 1 .. 92

11.3.4 Addition and Subtraction When CMP = 1 and BCD = 1 .. 92

11.3.5 Notes Concerning Use of Arithmetic Operations ... 92

11.4 LOGICAL OPERATIONS .. 93

11.5 BIT JUDGEMENTS ... 94

11.5.1 TRUE (1) Bit Judgement ... 94

11.5.2 FALSE (0) Bit Judgement ... 95

- iv -

11.6 COMPARISON JUDGEMENTS .. 96

11.6.1 “Equal to” Judgement .. 96

11.6.2 “Not Equal to” Judgement ... 97

11.6.3 “Greater Than or Equal to” Judgement .. 97

11.6.4 “Less Than” Judgement .. 98

11.7 ROTATIONS ... 99

11.7.1 Rotation to the Right ... 99

11.7.2 Rotation to the Left .. 100

CHAPTER 12 PORTS ... 101

12.1 PORT 0A (P0A 0, P0A1, P0A2, P0A3) .. 101

12.2 PORT 0B (P0B 0, P0B1, P0B2, P0B3) .. 102

12.3 PORT 0C (P0C0/ADC0, P0C1/ADC1, P0C2/ADC2, P0C3/ADC3) .. 103

12.4 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TM0OUT) .. 104

12.5 PORT 1A (P1A 0, P1A1, P1A2, P1A3) .. 105

12.6 PORT 1B (P1B 0) .. 105

12.7 PORT CONTROL REGISTER ... 106

12.7.1 Input/Output Switching by Group I/O.. 106

12.7.2 Input/Output Switching by Bit I/O ... 107

12.7.3 Specifying Pull-Up Resistor Incorporation Using Software ... 109

CHAPTER 13 PERIPHERAL HARDWARE ... 111

13.1 8-BIT TIMERS/COUNTERS (TM0 and TM1) ..111

13.1.1 8-Bit Timers/Counters Configuration ... 111

13.1.2 Operation of 8-Bit Timers/Counters .. 115

13.1.3 Selecting Count Pulse ... 115

13.1.4 Setting Count Value to Modulo Register .. 116

13.1.5 Reading Value of Count Register ... 117

13.1.6 Setting of Interval Time ... 118

13.1.7 Error of Interval Time ... 119

13.1.8 Timer 0 Output ... 121

13.2 BASIC INTERVAL TIMER (BTM) ... 122

13.2.1 Basic Interval Timer Configuration .. 122

13.2.2 Registers Controlling Basic Interval Timer ... 123

13.2.3 Operation of Basic Interval Timer ... 124

13.2.4 Watchdog Timer Function ... 125

13.3 A/D CONVERTER ... 128

13.3.1 A/D Converter Configuration ... 128

13.3.2 Functions of A/D Converter ... 129

13.3.3 Setting Values in the 8-bit Data Register (ADCR) ... 132

13.3.4 Reading Values from the 8-bit Data Register (ADCR) .. 133

13.3.5 A/D Converter Operation ... 134

13.4 SERIAL INTERFACE (SIO) .. 141

13.4.1 Functions of the Serial Interface ... 141

13.4.2 3-wire Serial Interface Operation Modes .. 143

13.4.3 Setting Values in the Shift Register .. 147

13.4.4 Reading Values from the Shift Register ... 148

- v -

CHAPTER 14 INTERRUPT FUNCTIONS .. 149

14.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES .. 150

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT 151

14.3 INTERRUPT SEQUENCE ... 158

14.3.1 Receiving an Interrupt ... 158

14.3.2 Return from the Interrupt Routine ... 159

14.3.3 Interrupt Accepting Timing .. 160

14.4 MULTI-INTERRUPT ... 163

14.5 PROGRAM EXAMPLE OF INTERRUPT ... 164

CHAPTER 15 AC ZERO CROSS DETECTION .. 167

CHAPTER 16 STANDBY FUNCTION .. 169

16.1 OVERVIEW OF THE STANDBY FUNCTION ... 169

16.2 HALT MODE .. 170

16.2.1 Setting HALT Mode ... 170

16.2.2 Start Address after HALT Mode Is Released ... 170

16.2.3 HALT Mode Setting Conditions ... 172

16.3 STOP MODE .. 174

16.3.1 Setting of STOP Mode .. 174

16.3.2 Start Address after STOP Mode Is Released .. 174

16.3.3 STOP Mode Setting Conditions .. 176

CHAPTER 17 RESET ... 179

17.1 RESET FUNCTION.. 180

17.2 RESETTING ... 181

17.3 POWER-ON/POWER-DOWN RESET FUNCTION .. 182

17.3.1 Conditions Required to Enable the Power-On Reset Function ... 182

17.3.2 Power-On Reset Function and Operation .. 183

17.3.3 Condition Required for Use of the Power-Down Reset Function .. 185

17.3.4 Power-Down Reset Function and Operation .. 185

CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING .. 189

18.1 DIFFERENCES BETWEEN MASK ROM VERSION AND ONE-TIME PROM MODEL 189

18.2 OPERATION MODE WHEN PROGRAM MEMORY IS WRITTEN/VERIFIED 190

18.3 WRITING PROCEDURE OF PROGRAM MEMORY ... 191

18.4 READING PROCEDURE OF PROGRAM MEMORY .. 192

CHAPTER 19 INSTRUCTION SET .. 193

19.1 OVERVIEW OF THE INSTRUCTION SET ... 193

19.2 LEGEND ... 194

19.3 LIST OF THE INSTRUCTION SET ... 195

19.4 ASSEMBLER (AS17K) EMBEDDED MACRO INSTRUCTIONS .. 197

- vi -

19.5 INSTRUCTIONS .. 198

19.5.1 Addition Instructions .. 198

19.5.2 Subtraction Instructions ... 209

19.5.3 Logical Operation Instructions .. 216

19.5.4 Judgment Instructions ... 221

19.5.5 Comparison Instructions.. 223

19.5.6 Rotation Instructions .. 226

19.5.7 Transfer Instructions .. 227

19.5.8 Branch Instructions .. 243

19.5.9 Subroutine Instructions.. 246

19.5.10 Interrupt Instructions .. 251

19.5.11 Other Instructions .. 253

CHAPTER 20 ASSEMBLER RESERVED WORDS .. 255

20.1 MASK OPTION DIRECTIVE ... 255

20.1.1 Specifying Mask Option .. 255

20.2 RESERVED SYMBOLS ... 257

APPENDIX A DEVELOPMENT OF µPD171×× SUBSERIES ... 261

APPENDIX B COMPARISON OF FUNCTIONS BETWEEN µPD17135A, 17137A, AND
 µPD17145 SUBSERIES .. 263

APPENDIX C DEVELOPMENT TOOLS .. 265

APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT 267

APPENDIX E INSTRUCTION LIST .. 269

E.1 INSTRUCTION LIST (by function) .. 269

E.2 IINSTRUCTION LIST (alphabetical order) ... 270

APPENDIX F ORDERING MASK ROM ... 271

- vii -

LIST OF FIGURES (1/3)

Figure No. Title Page

3-1 Program Counter .. 17

3-2 Value of the Program Counter after Instruction Execution .. 18

3-3 Value in the Program Counter after Reset ... 18

3-4 Value in the Program Counter during Execution of a BR addr Instruction ... 18

3-5 Value in the Program Counter during Execution of an Indirect Branch Instruction 19

3-6 Value in the Program Counter during Execution of a CALL addr .. 19

3-7 Value in the Program Counter during Execution of an Indirect Subroutine Call 20

3-8 Value in the Program Counter during Execution of a Return Instruction .. 20

4-1 Program Memory Map for the µPD17134A Subseries ... 23

4-2 CALL addr Instruction .. 26

4-3 Table Reference (MOVT DBF, @AR) .. 27

5-1 Data Memory Configuration... 31

5-2 System Register Configuration.. 32

5-3 Data Buffer Configuration .. 32

5-4 General Register (GR) Configuration.. 33

5-5 Port Register Configuration ... 33

6-1 Stack Configuration.. 35

7-1 Allocation of System Register in Data Memory .. 41

7-2 System Register Configuration.. 42

7-3 Address Register Configuration .. 43

7-4 Address Register Used as a Peripheral Circuit .. 44

7-5 Window Register Configuration ... 45

7-6 Example of Window Register Operation ... 45

7-7 Bank Register Configuration ... 46

7-8 Index Register Configuration ... 47

7-9 Modification of Data Memory Address by Index Register and Memory Pointer 48

7-10 Operation Example When IXE = 0 and MPE = 0 ... 50

7-11 Operation Example When IXE = 0 and MPE = 1 ... 52

7-12 Operation Example When IXE = 1 and MPE = 0 ... 54

7-13 Operation Example When IXE = 1 and MPE = 0 ... 55

7-14 Operation Example When IXE = 1 and MPE = 0 (Array Processing) ... 56

7-15 General Register Pointer Configuration .. 57

7-16 General Register Configuration ... 58

7-17 Program Status Word Configuration ... 59

7-18 Outline of Functions of the Program Status Word ... 60

8-1 General Register Configuration ... 68

- viii -

9-1 Register File Configuration .. 69

9-2 Relationship Between the Register File and Data Memory ... 70

9-3 Accessing the Register File Using the PEEK and POKE Instructions .. 72

9-4 Control Register Configuration .. 75

10-1 Allocation of the Data Buffer ... 77

10-2 Data Buffer Configuration .. 77

10-3 Relationship Between the Data Buffer and Peripheral Hardware ... 78

11-1 ALU Configuration .. 84

12-1 Input/Output Switching by Group I/O .. 106

12-2 Port Control Register of Bit I/O ... 107

12-3 Specifying Pull-Up Resistor Incorporation Using Software .. 109

13-1 Configuration of the 8-Bit Timer Counters .. 112

13-2 Timer 0 Mode Register .. 113

13-3 Timer 1 Mode Register .. 114

13-4 Setting Count Value to Modulo Register ... 116

13-5 Reading Count Value of Count Register ... 117

13-6 Error When Count Register Is Cleared to 0 During Counting ... 119

13-7 Error When Counting Is Started from Count Stop Status .. 120

13-8 Timer 0 Output Setting Register .. 121

13-9 Basic Interval Timer Configuration .. 122

13-10 BTM Mode Register ... 123

13-11 Watchdog Timer Mode Register .. 124

13-12 Timing Chart of Watchdog Timer (with WDTRES Flag Used) ... 126

13-13 Block Diagram of the A/D Converter ... 128

13-14 A/D Converter Control Register .. 130

13-15 Setting a Value in the 8-Bit Data Register (ADCR) .. 132

13-16 Reading Values from the 8-bit Data Register (ADCR) ... 133

13-17 Relationship between the Analog Input Voltage and Digital Conversion Result 134

13-18 Using the Successive Mode for the A/D Converter .. 136

13-19 A/D Conversion Timing in the Continuous Mode ... 137

13-20 Using the Single Mode for the A/D Converter .. 139

13-21 Single Mode Operation (Comparison) Timing .. 140

13-22 Block Diagram of the Serial Interface ... 142

13-23 Timing of 8-Bit Transmission and Reception Mode (Simultaneous Transmission and Reception) .. 143

13-24 Timing of the Clock Synchronization 8-Bit Reception Mode (SO Pin Output High Impedance) 144

13-25 Serial Interface Control Register ... 145

13-26 Setting a Value in the Shift Register ... 147

13-27 Reading a Value from the Shift Register .. 148

LIST OF FIGURES (2/3)

Figure No. Title Page

- ix -

14-1 Interrupt Control Register .. 152

14-2 Interrupt Processing Procedure .. 158

14-3 Return from Interrupt Processing .. 159

14-4 Interrupt Accepting Timing (When INTE = 1, IP××× = 1) ... 160

14-5 Example of Multi-interrupt ... 163

15-1 Block Diagram for the AC Zero Cross Detector ... 167

15-2 Zero Cross Detection Signal ... 168

16-1 Releasing HALT Mode ... 171

16-2 Releasing STOP Mode .. 175

17-1 Reset Block Configuration ... 181

17-2 Reset Operation ... 181

17-3 Example of the Power-On Reset Operation ... 184

17-4 Example of the Power-Down Reset Operation ... 186

17-5 Example of Reset Operation during the Period from Power-Down Reset to Power Recovery 187

18-1 Procedure of Program Memory Writing .. 191

18-2 Procedure of Program Memory Reading .. 192

D-1 External Circuit of System Clock Oscillation Circuit ... 267

D-2 Example of Incorrect Oscillation Circuits .. 268

LIST OF FIGURES (3/3)

Figure No. Title Page

- x -

LIST OF TABLES (1/2)

Table No. Title Page

2-1 Processing of Unused Pins ... 14

4-1 Program Memory Configuration .. 23

4-2 Vector Address for the µPD17134A Subseries .. 24

6-1 Operation of Stack Pointer .. 37

6-2 Operation of the Instructions CALL, RET, and RETSK .. 38

6-3 Stack Operation during Table Reference .. 38

6-4 Operation during Interrupt Receipt and RETI Instruction .. 39

6-5 Stack Operation during the PUSH and POP Instructions .. 39

7-1 Specifying the Bank in Data Memory .. 46

7-2 Instructions Subject to Address Modification .. 48

7-3 Zero Flag (Z) and Compare Flag (CMP) .. 61

10-1 Peripheral Hardware .. 79

11-1 List of ALU Instructions .. 86

11-2 Results of Arithmetic Operations Performed in 4-Bit Binary and BCD.. 89

11-3 Types of Arithmetic Operations ... 91

11-4 Logical Operations ... 93

11-5 Table of True Values for Logical Operations .. 93

11-6 Bit Judgement Instructions .. 94

11-7 Comparison Judgement Instructions... 96

12-1 Writing into and Reading from the Port Register (0.70H) .. 101

12-2 Writing into and Reading from the Port Register (0.71H) .. 102

12-3 Switching the Port and A/D Converter .. 103

12-4 Register File Contents and Pin Functions .. 104

12-5 Contents Read from the Port Register (0.73H) .. 105

12-6 Writing into and Reading from the Port Register (1.70H) .. 105

13-1 Data Conversion Time for the A/D Converter ... 138

13-2 Serial Clock List ... 141

13-3 Operating Mode of the Serial Interface... 143

14-1 Interrupt Source Types .. 150

14-2 Interrupt Request Flag and Interrupt Enable Flag.. 151

16-1 Status in Standby Mode .. 169

16-2 HALT Mode Release Condition ... 170

16-3 Start Address after HALT Mode Is Released.. 170

16-4 STOP Mode Release Condition .. 174

16-5 Start Address after STOP Mode Is Released ... 174

- xi -

LIST OF TABLES (2/2)

Table No. Title Page

17-1 Hardware Status at Reset ... 180

18-1 Pins Used for Writing/Verifying Program Memory .. 189

18-2 Differences Between Mask ROM Version and One-Time PROM Version .. 190

18-3 Setting Operation Modes ... 190

20-1 Mask Option Definition Directive ... 256

- xii -

[MEMO]

CHAPTER 1 GENERAL DESCRIPTION

The µPD17134A subseries is a 4-bit single-chip microcontroller employing the 17K architecture and containing an

8-bit A/D converter (4 channels), a timer (3 channels), an AC zero cross detector, a power-on reset circuit, and a serial

interface.

The µPD17P136A and 17P137A are the one-time PROM version of the µPD17136A and 17137A, respectively,

and are suitable for program evaluation at system development and for small-scale production.

The following are features of the µPD17134A subseries.

• 17K architecture: general-purpose register mode, instruction length: fixed to 16 bits

• Instruction execution time: 2 µs (fX = 8 MHz, ceramic oscillation)

8 µs (fCC = 2 MHz, RC oscillation)

• Program memory: µPD17134A : 2K bytes (1024 × 16 bits)

µPD17135A : 2K bytes (1024 × 16 bits)

µPD17136A : 4K bytes (2048 × 16 bits)

µPD17137A : 4K bytes (2048 × 16 bits)

µPD17P136A : 4K bytes (2048 × 16 bits, one-time PROM)

µPD17P137A : 4K bytes (2048 × 16 bits, one-time PROM)

• Data memory (RAM): 112 × 4 bits

• A/D converter: 4 channels (8-bit resolution, successive approximation type)

• Timer: 3 channels (8-bit timer/counter × 2 channels, basic interval timerNote)

• Serial interface: 1 channel (clocked 3-wire mode)

• Supply voltage: VDD = 4.5 to 5.5 V (fX = 400 kHz to 8 MHz)

VDD = 2.7 to 5.5 V (fX = 400 kHz to 4 MHz)

VDD = 2.7 to 5.5 V (fCC = 400 kHz to 2 MHz) for µPD17134A and 17136A

Note An internal reset signal can be generated by using the basic interval timer (watchdog timer function).

These features of the µPD17134A subseries are suitable for use as a controller or a slave device in the following

application fields;

• Electronic thermos bottle

• Rice cooker

• Audio equipment

• Battery charger

• Printer

• Plain Paper Copier

1

1

CHAPTER 1 GENERAL DESCRIPTION

2

1.1 FUNCTION LIST

 Item µPD17134A µPD17135A µPD17136A µPD17137A µPD17P136A µPD17P137A

ROM configuration Mask ROM One-time PROM

ROM capacity 2KB (1024 ✕ 16 bits) 4KB (2048 ✕ 16 bits)

RAM capacity 112 ✕ 4 bits

Stack Address stack × 5, interrupt stack × 3

Number of I/O port • I/O : 20

22 • Input only : 1

• Sensor inputNote : 1

A/D converter 8-bit resolution × 4 channels (shared with port pin), absolute precision ± 1.5 LSB or less

Timer
3 channels

• 8-bit timer counter : 2 channels (16-bit timer 1 channel applicable)

• 7-bit basic interval timer : 1 channel (watchdog timer applicable)

Serial interface 1 channel (3 wires)

AC zero cross detection Provided (can be used in application circuit at VDD = 5 V ± 10%)

function

Interrupt • Nesting by hardware (up to 3 levels)

Rising edge detection

• External interrupts (INT) : 1 Falling edge detection Selectable

Both rising and falling edges detection

• Timer 0 (TM0)

• Internal interrupts : 1
• Timer 1 (TM1)

• Basic interval timer (BTM)

• Serial interface (SIO)

System clock RC Ceramic RC Ceramic RC Ceramic

oscillation oscillation oscillation oscillation oscillation oscillation

Instruction 8 µs 2 µs 8 µs 2 µs 8 µs 2 µs

execution time at fX = 2 MHz at fX = 8 MHz at fX = 2 MHz at fX = 8 MHz at fX = 2 MHz at fX = 8 MHz

Standby HALT, STOP

Power-on/ Available (effective only for application circuit with VDD = 5 V ± 10 %, 400 kHz to 4 MHz)

power-down reset

Supply voltage VDD = 2.7 to 5.5 V (5 V ±10 % when using A/D converter)

Package 28-pin plastic shrink DIP, 28-pin plastic SOP

Note The INT pin can be used as an input pin (sense input) when the external interrupt function is not used. The

sense input function is to read the status of the pin by using the INT flag of a control register, instead of a port

register.

Caution The PROM model is highly compatible with the mask ROM model in terms of functions but its internal

ROM circuit and electrical characteristics are partially different from those of the mask ROM model.

To replace the PROM model with the mask ROM model, thoroughly evaluate the application by using

a sample of the mask ROM model.

CHAPTER 1 GENERAL DESCRIPTION

3

1.2 ORDERING INFORMATION

Part number Package Internal ROM

µPD17134ACT-××× 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17135ACT-××× 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17136ACT-××× 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17137ACT-××× 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17P136ACT 28-pin plastic shrink DIP (400 mil) One-time PROM

µPD17P137ACT 28-pin plastic shrink DIP (400 mil) One-time PROM

µPD17134AGT-××× 28-pin plastic SOP (375 mil) Mask ROM

µPD17135AGT-××× 28-pin plastic SOP (375 mil) Mask ROM

µPD17136AGT-××× 28-pin plastic SOP (375 mil) Mask ROM

µPD17137AGT-××× 28-pin plastic SOP (375 mil) Mask ROM

µPD17P136AGT 28-pin plastic SOP (375 mil) One-time PROM

µPD17P137AGT 28-pin plastic SOP (375 mil) One-time PROM

Remark ×××: ROM code number

CHAPTER 1 GENERAL DESCRIPTION

4

1.3 BLOCK DIAGRAM

Remarks 1. The terms CMOS and N-ch in square brackets indicate the output form of the port.

CMOS : CMOS push-pull output

N-ch : N-channel open-drain output (Each pin can contain pull-up resistor bit-wise as specified

using a mask option.)

2. The devices in parentheses are effective only in the case of program memory write/verify mode of

the µPD17P136A and µPD17P137A.

Notes 1. The ROM (or PROM) capacity of each product is as follows:

1024 × 16 bits : µPD17134A, 17135A

2048 × 16 bits : µPD17136A, 17137A, 17P136A, 17P137A

2. The stack capacity of each product is as follows:

5 × 10 bits : µPD17134A, 17135A

5 × 11 bits : µPD17136A, 17137A

POWER-ON/
POWER-DOWN
RESET

VDD

P0A0

P0A1

P0A2

P0A3

ALU

ROM/
One-Time

PROM

Program counter

StackNote2

P0A
(CMOS)

Clock
divider

System clock
generator

XIN

XOUT

fX/2N CPU CLOCK CLK STOP

P0B0

P0B1

P0B2

P0B3

P0C0/ADC0

P0C1/ADC1

P0C2/ADC2

P0C3/ADC3

P0D0/SCK
P0D1/SO
P0D2/SI

P0D3/TM0OUT

P1A0

P1A1

P1A2

P1A3

P1B0

RESET

RAM
112 × 4 bits

RF

SYSTEM REG.

P0B
(CMOS)

P0C
(CMOS)

A/D
Con-
verter

P0D
(N-ch)

Serial
Inter-
face

Instruction
decoder

P1A
(N-ch)

P1B

Timer 0

Timer 1

IRQTM0

IRQTM1

IRQBTM

Basic interval timer

Interrupt
controller

IRQTM0
IRQTM1
IRQBTM
IRQSIO

AC
ZEROCROSS
detector

INT

TM0

IRQSIO

GND

fX/2N

fX/2N

fX/2N

(VPP)

(CLK)Note2

Note1

CHAPTER 1 GENERAL DESCRIPTION

5

1.4 PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode

28-pin plastic shrink DIP (400 mil)

µPD17134ACT-×××, µPD17135ACT-×××, µPD17136ACT-×××, µPD17137ACT-×××
µPD17P136ACT-×××, µPD17P137ACT-×××

28-pin plastic SOP (375 mil)

µPD17134AGT-×××, µPD17135AGT-×××, µPD17136AGT-×××, µPD17137AGT-×××
µPD17P136AGT-×××, µPD17P137AGT-×××

ADC0 to ADC3 : Analog input for the A/D

converter

GND : Ground

INT : External interrupt input

OSC0, OSC1 : System clock oscillation

P0A0 to P0A3 : Port 0A

P0B0 to P0B3 : Port 0B

P0C0 to P0C3 : Port 0C

P0D0 to P0D3 : Port 0D

P1A0 to P1A3 : Port 1A

P1B0 : Port 1B

RESET : Reset input

SCK : Serial clock input/output

SI : Serial data input

SO : Serial data output

TM0OUT : Timer 0 carry output

VADC : Analog power supply

VDD : Power supply

XIN, XOUT : System clock oscillation

VADC 1

INT

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

P0C3/ADC3

P0C2/ADC2

P0C1/ADC1

P0C0/ADC0

P0B3

P0B2

P0B1

P0B0

P0A3

P0A2

P0A1

P0A0

GND

RESET

P1A0

P1A1

P1A2

P1A3

P1B0

XIN (OSC1)

P0D0/SCK

XOUT (OSC0)

P0D1/SO

P0D2/SI

P0D3/TM0OUT

VDD

CHAPTER 1 GENERAL DESCRIPTION

6

(2) Program memory write/verify mode

28-pin plastic shrink DIP (400 mil)

µPD17P136ACT, 17P137ACT

28-pin plastic SOP (375 mil)

µPD17P136AGT, 17P137AGT

Caution () represents processing of the pins which are not used in program memory write/verify

mode.

L : Connect to GND via pull-down resistor one by one.

RESET : Set the same electric potential as V DD in program memory write/verify mode.

RESET pin is also used for system reset input before setting program memory

write/verify mode. Therefore, RESET pin should be set to the same electric

potential as V DD 10 µs or later than that of V DD pin (For details, refer to CHAPTER

18 ONE-TIME PROM WRITING/VERIFYING).

Open : Do not connect anything.

VDD : Connect to V DD directly.

(VDD) 1

(L)

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

MD3

MD2

MD1

MD0

D7

D6

D5

D4

D3

D2

D1

D0

GND

RESET

VPP

CLK

VDD

(L)

(Open)

CHAPTER 1 GENERAL DESCRIPTION

7

CLK : Clock input for address updating

D0-D7 : Data input/output

GND : Ground

MD0-MD3 : Operation mode select

RESET : Reset input

VDD : Power supply

VPP : Program voltage application

[MEMO]

8

Pin No. Pin name Function Output At reset

1 VADC Supplies power and reference voltage for the A/D converter — —

2 P0C3/ADC3/MD3 Note1 Constitute port 0C, serve as analog input pins of A/D CMOS Input

| | converter, or select operating mode when program memory push-pull (P0C)

5 P0C0/ADC0/MD0 Note1 is written or verified.

• P0C3 to P0C0

• 4-bit input/output port

• Input/output setting in 1-bit unit

• ADC3 to ADC0

• Analog input for the A/D converter

• MD3 to MD0

• Available for the µPD17P136A and µPD17P137A only

• Selects operating mode at program memory writing/

verification

6 P0B3/D7 Note1 Used as port 0B, or data input/output pins in program CMOS Input

| | memory write/verify mode. push-pull (P0B)

9 P0B0/D4 Note1 • P0B3 to P0B0

• 4-bit input/output port

• Input/output setting in 4-bit unit

• Software-selectable pull-up resistor

• D7 to D4

• Available for the µPD17P136A and µPD17P137A only

• 8-bit data input/output at program memory writing/

verification

10 P0A3/D3 Note1 Used as port 0A, or data input/output pin in program memory CMOS Input

| | write/verify mode. push-pull (P0A)

13 P0A0/D0 Note1 • P0A3 to P0A0

• 4-bit input/output port

• Input/output setting in 4-bit unit

• Software-selectable pull-up resistor

• D3 to D0

• Available for the µPD17P136A and µPD17P137A only

• 8-bit data input/output at program memory writing/

verification

14 GND Ground — —

15 INT External interrupt request input or sensor signal input — Input

16 RESET System reset input pin — Input

A pull-up resistor can be internally connected by mask

option Note2

Notes 1. The MD0-MD3 and D0-D7 pins are valid with the µPD17P136A and 17P137A only.

2. The µPD17P136A and 17P137A do not have a pull-up resistor connected by mask option.

CHAPTER 2 PIN FUNCTIONS

2.1 PIN FUNCTIONS

9

CHAPTER 2 PIN FUNCTIONS

10

Pin No. Pin name Function Output At reset

17 P1B0/VPP Note1 Used as port 1B, or programming voltage supply pin in Input Input

program memory write/verify mode.

• P1B0

• 1-bit input port

• A pull-up resistor can be internally connected by mask

option Note2

• VPP

• Available for the µPD17P136A and µPD17P137A only

• Applies programming voltage (+12.5 V) at program

memory writing/verification

18 P1A3 Port 1A N-ch open Input

| | • 4-bit input/output port drain

21 P1A0 • Input/output setting in 4-bit unit

• A pull-up resistor can be internally connected by mask

option Note2

22 P0D3/TM0OUT Used as port 0D, or timer 0 carry output, serial data input, N-ch open Input

serial data output, and serial clock input/output pins drain

A pull-up resistor can be internally connected by mask

option Note2

• P0D3 to P0D0

• 4-bit input/output port

• Input/output setting in 1 bit unit

• TM0OUT

• Timer 0 carry output

23 P0D2/SI • SI

• Serial data input

24 P0D1/SO • SO

• Serial data output

25 P0D0/SCK • SCK

• Serial clock input/output

26 XOUT In the case of the µPD17135A/17137A/17P137A — —

27 XIN/CLK Note3 • XIN, XOUT

• Connected to a resonator for system clock oscillation

• The ceramic resonator is connected.

• CLK

• Available for the µPD17P137A only

• Clock input pin for address updating at program

memory writing/verification

26 OSC0 In the case of the µPD17134A/17136A/17P136A

27 OSC1/CLK Note3 • OSC0, OSC1

• Connected to a resonator for system clock oscillation

• Resistor is connected between OSC0 and OSC1.

• CLK

• Available for the µPD17P136A only

• Clock input pin for address updating at program

memory writing/verification

28 VDD Power supply — —

In the program memory write/verify mode of the

µPD17P136A/17P137A, +6 V is applied.

Notes 1. The VPP pin is valid only with the µPD17P136A and 17P137A.

2. The µPD17P136A and 17P137A do not have a pull-up resistor connected by mask option.

3. The CLK pin is valid only with the µPD17P136A and 17P137A.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 2 PIN FUNCTIONS

11

2.2 PIN INPUT/OUTPUT CIRCUIT

Below are simplified diagrams of the input/output circuits for each pin.

(1) P0A0-P0A3, P0B0-P0B3

(2) P0C0/ADC0 - P0C3/ADC3

Data

VDD

P-ch

N-chOutput

disable

Output

latch

Selector

VDD

Pull-up

flag

Input buffer

P-ch

Data

VDD

P-ch

N-chOutput

disable

Output

latch

Selector

Input buffer

A/D

converter

Input

disable

CHAPTER 2 PIN FUNCTIONS

12

(3) P0D0-P0D3, P1A0-P1A3

Note The µPD17P136A and 17P137A do not have a pull-up resistor as mask option.

(4) P1B0

Note The µPD17P136A and 17P137A do not have a pull-up resistor as mask option.

Data

N-chOutput

disable

Output

latch

Selector

Input buffer

VDD

Mask optionNote

Input buffer

VDD

Mask optionNote

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 2 PIN FUNCTIONS

13

(5) INT

(6) RESET

Note The µPD17P136A and 17P137A do not have a pull-up resistor as mask option.

Input buffer

Input buffer

VDD

Mask optionNote

CHAPTER 2 PIN FUNCTIONS

14

2.3 PROCESSING OF UNUSED PINS

The unused pins should be handled as follows:

Table 2-1. Processing of Unused Pins

Pin Name Recommended Processing

Internal External

Port Input mode P0A, P0B Connect pull-up resistor by software Open

P0C — Connect each pin to VDD or GND via

resistorNote 1

P0D, P1A Pull-up resistor not connected by mask Directly connect to GND

option

Pull-up resistor connected by mask Open

option

P1B0Note2 Pull-up resistor not connected by mask Directly connect to GND

option

Output mode P0A, P0B, P0C — Open

(CMOS port)

P0D, P1A Outputs low level without pull-up

(N-ch open- resistor connected by mask option

drain ports) Outputs high level without pull-up

resistor connected by mask option

External interrupt (INT) Pull-up resistor not connected by mask Directly connect to VDD or GND

option

Pull-up resistor connected by mask Open

option

RESETNote3 Pull-up resistor not connected by mask Directly connect to VDD

 when only internal power-ON/power- option

 down reset function is used Pull-up resistor connected by mask

option

VADC — Directly connect to VDD

Notes 1. When connecting an external pull-up resistor (to VDD via resistor) or pull-down resistor (to GND via

resistor), make sure that the driving voltage and current consumption of the port are not exceeded. When

connecting a pull-up or pull-down resistor with a high resistance to a port pin, make sure that noise is not

superimposed on the pin. Generally, the resistance of the pull-up or pull-down resistor is about several

kΩ, though it varies depending on the application circuit.

2. Because the P1B0 pin is multiplexed with a test mode setting function, do not connect a pull-up resistor

to this pin using the mask option. Directly connect it to GND.

3. In an application circuit where high reliability is required, be sure to input the RESET signal from an external

source. Because the RESET pin is multiplexed with a mode setting function, directly connect it to VDD

if not use.

Caution It is recommended that the I/O mode, pull-up of resistors by software, and output levels of pins be

fixed by repeatedly setting in each loop of the program.

Remark The µPD17P136A and 17P137A do not have a pull-up resistor as mask option.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 2 PIN FUNCTIONS

15

2.4 NOTES ON USING RESET PIN AND P1B 0 PIN

The RESET and P1B0 pins have a function for setting a test mode in which the internal operations of the µPD17134A

subseries are tested (for IC test), in addition to the functions described in 2.1 PIN FUNCTIONS.

When a voltage exceeding VDD is applied to either of these pins, the test mode is set. This means that, even during

the normal operation, the test mode is set if a noise exceeding VDD is applied. As a result, the operation may not be

performed normally.

This is especially true if the wiring length of the RESET or P1B0 pin is too long in which case a noise may be

superimposed on the wiring.

Therefore, perform wiring so that noise may not be superimposed, by keeping the wiring length as short as possible.

If noise is inevitable, take noise preventive measures by using an external component as illustrated below.

• Connect a diode with low V F between

VDD and RESET/P1B 0

• Connect a capacitor between

VDD and RESET/P1B 0

RESET, P1B0

VDD

VDD
Diode with
low VF

RESET, P1B0

VDD

VDD

[MEMO]

16

CHAPTER 3 PROGRAM COUNTER (PC)

The program counter is used to specify an address in program memory.

3.1 PROGRAM COUNTER CONFIGURATION

Figure 3-1 shows the configuration of the program counter.

The program counters of the µPD17134A and µPD17135A are 10-bit binary counters.

The program counters of the µPD17136A, µPD17137A, µPD17P136A, and µPD17P137A are 11-bit binary

counters.

This program counter is incremented whenever an instruction is executed.

Figure 3-1. Program Counter

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2 PROGRAM COUNTER OPERATION

Normally, the program counter is automatically incremented each time a command is executed. The memory

address at which the next instruction to be executed is stored is assigned to the program counter under the following

conditions: At reset; when a branch, subroutine call, return, or table reference instruction is executed; or when an

interrupt is received.

3.2.1 to 3.2.7 explain program counter operation during execution of each instruction.

PC

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

PC10

17

CHAPTER 3 PROGRAM COUNTER (PC)

18

Figure 3-2. Value of the Program Counter after Instruction Execution

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2.1 At Reset

By setting the RESET pin to low, the program counter is set to 0000H.

Figure 3-3. Value in the Program Counter after Reset

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2.2 During Execution of the Branch Instruction (BR)

There are two ways to specify branching using the branch instruction. One is to specify the branch address in the

operand using the direct branch instruction (BR addr). The other is branch to the address specified by the address

register using the indirect branch instruction (BR @AR).

The address specified by a BR addr instruction is placed in the program counter.

Figure 3-4. Value in the Program Counter during Execution of a BR addr Instruction

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

0 0 0 0 0 0 0 0 0 0At reset

BR addr

CALL addr

BR @AR

CALL @AR

(MOVT DBF, @AR)

RET

RETSK

RETI

During interrupt

Value in the address register (AR)

Value set by the addr

Value in the address stack register location pointed to by the stack pointer

(return address)

Vector address for the interrupt

Program counter valueProgram counter

 bit
Instruction PC10

0

0

MSB LSB

0 0 0 0 0 0 0 0 0

All bits are set to 0

0

PC10 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Value specified in the direct branch instruction

PC9

CHAPTER 3 PROGRAM COUNTER (PC)

19

An indirect branch instruction causes the address in the address counter to be placed in the program counter.

Figure 3-5. Value in the Program Counter during Execution of a BR @AR Instruction

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2.3 During Execution of Subroutine Calls (CALL)

There are two ways to specify branching using subroutine calls. One is to specify the branch address in the operand

using the direct subroutine call (CALL addr). The other is branch to the address specified by the address register

using the indirect subroutine call (CALL @AR).

A CALL addr causes the value in the program counter to be saved in the stack and then the address specified in

the operand to be placed in the program counter. CALL addr can specify 000H-03FFH in the µPD17134A and 17135A,

and 0000H-07FFH in the µPD17136A, 17137A, 17P136A, and 17P137A.

Figure 3-6. Value in the Program Counter during Execution of a CALL addr

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

A CALL @AR causes the value in the program counter to be saved in the stack and then the value in the address

register to be placed in the program counter.

PC10 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR10 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

PC9

AR9

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Address specified in the addr

PC10

CHAPTER 3 PROGRAM COUNTER (PC)

20

Figure 3-7. Value in the Program Counter during Execution of an Indirect Subroutine Call

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2.4 During Execution of Return Instructions (RET, RETSK, RETI)

During execution of a return instruction (RET, RETSK, RETI), the program counter is restored to the value saved

in the address stack register.

Figure 3-8. Value in the Program Counter during Execution of a Return Instruction

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

3.2.5 During Table Reference (MOVT)

During execution of table reference (MOVT DBF, @AR), the value in the program counter is saved in the stack,

the address register is set by the program counter, then the contents stored at that program memory location is read

into the data buffer (DBF). After that, the program counter is restored to the value saved in the address stack register.

One level of the address stack is temporarily used during execution of table reference. Be careful of the stack level.

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

PC10

AR10

(n = 0 to 4)
Address stack register n

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

(n = 0 to 4)
Address stack register n

PC10

CHAPTER 3 PROGRAM COUNTER (PC)

21

3.2.6 During Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT, SKF)

When skip conditions are met and a skip instruction (SKE, SKGE, SKLT, SKNE, SKT, SKF) is executed, the

instruction immediately following the skip instruction is treated as a no operation instruction (NOP). Therefore, whether

skip conditions are met or not, the number of instructions executed and instruction execution time remain the same.

3.2.7 When an Interrupt Is Received

When an interrupt is received, the value in the program counter is saved in the address stack. Next, the vector

address for the interrupt received is placed in the program counter.

[MEMO]

22

23

CHAPTER 4 PROGRAM MEMORY (ROM)

The program organization of the µPD17134A subseries is shown in Table 4-1.

Table 4-1. Program Memory Configuration

Product name Program memory capacity Program memory address

µPD17134A 2K bytes (1024 × 16 bits) 0000H-03FFH

µPD17135A

µPD17136A

µPD17137A 4K bytes (2048 × 16 bits) 0000H-07FFH

µPD17P136A

µPD17P137A

Program memory stores the program and the constant data table. The first area of the program memory is assigned

to reset start and interrupt vector addresses.

The program memory address is specified by the program counter.

4.1 PROGRAM MEMORY CONFIGURATION

Figure 4-1 shows the program memory map. Branch instructions, subroutine calls, and table references can specify

any address in program memory.

Figure 4-1. Program Memory Map for the µPD17134A Subseries

0000H

0001H

0002H

0003H

03FFH

Address

Reset start address

Serial interface interrupt vector

Basic interval timer interrupt vector

Timer 1 interrupt vector

Subroutine entry
address for the CALL
addr instruction

Branch address for
the BR addr instruction

Branch address for
the BR @AR instruction

Subroutine entry
address for the CALL
@AR instruction

Table reference address
for the MOVT DBF, @AR
instruction

0004H

0005H External (INT) interrupt vector

Timer 0 interrupt vector

16 bits

(PD17134A/17135A)m

(PD17136A/17137A/17P136A/17P137A)m

07FFH

CHAPTER 4 PROGRAM MEMORY (ROM)

24

4.2 PROGRAM MEMORY USAGE

Program memory has the following two main functions:

(1) Storage of the program

(2) Storage of constant data

The program is made up of the instructions which operate the CPU (Central Processing Unit). The CPU executes

sequential processing according to the instructions stored in the program. In other words, the CPU reads each

instruction in the order stored by the program in program memory and executes it.

Since all instructions are 16-bit long words, each instruction is stored in a single address in program memory.

Constant data, such as display patterns, are set beforehand. The MOVT is used for reading constant data in

program memory to transfer data from program memory to the data buffer (DBF) in data memory. Reading the constant

data in program memory is called table reference.

Program memory is read-only (ROM: Read Only Memory) and therefore cannot be changed by any instructions.

4.2.1 Flow of the Program

The program is usually stored in program memory starting from address 0000H and executed sequentially one

address at a time. However, if for some reason a different kind of program is to be executed, it will be necessary to

change the flow of the program. In this case, the branch instruction (BR instruction) is used.

If the same program code is going to appear in a number of places, reproducing the code each time it needs to

be used will decrease the efficiency of the program. In this case, the program should be stored in only one place in

memory. Then, by using the CALL instruction, call the same program. Such a program is called a subroutine. As

opposed to a subroutine, code used during normal operation is called the main routine.

For cases completely unrelated to the flow of the program (in which a section of code is to be executed when a

certain condition arises), the interrupt function is used. Whenever a condition arises that is unrelated to the flow of

the program, the interrupt function can be used to branch the program to a prechosen memory location (called a vector

address).

Items (1) to (5) explain branching of the program using the interrupt function and instructions.

(1) Vector address

Table 4-2 shows the address to which the program is branched (vector address) when a reset or interrupt

occurs.

Table 4-2. Vector Address for the µPD17134A Subseries

Vector address Cause of the interrupt

0000H Reset

0001H Serial interface interrupt

0002H Basic interval timer interrupt

0003H Timer 1 interrupt

0004H Timer 0 interrupt

0005H External (INT) interrupt

CHAPTER 4 PROGRAM MEMORY (ROM)

25

(2) Direct branch

A direct branch (BR addr) instruction branches a value of operand (addr) as an address. (In the case of the

µPD17134A and µPD17135A, the most significant bit must be 0. If an address is specified outside of this range,

an error will occur in the assembler.) A BR addr instruction can be used to branch to any address in program

memory.

(3) Indirect branch

When executing an indirect branch (BR @AR), the program branches to the address specified by the value

stored in the address register (AR). A BR @AR can be used to branch to any address in program memory.

Also see 7.2 ADDRESS REGISTER (AR) .

(4) Subroutine

To branch execution to a subroutine, the subroutine call (CALL) instruction is used.

The CALL instruction can be used in two ways: as a direct subroutine call instruction (CALL addr) that causes

execution to branch using the value of the operand (addr) as an address, and as an indirect subroutine call

instruction (CALL @AR) that causes execution to branch using the contents of an address register as an

address.

To return from a subroutine, the RET or RETSK instruction is used. By executing the RET or RETSK instruction,

execution is returned to the program memory address next to the one at which the CALL instruction was

executed.

When the RETSK instruction is used, the first instruction after execution has returned from the subroutine is

executed as a NOP instruction.

CHAPTER 4 PROGRAM MEMORY (ROM)

26

<1> Direct subroutine call

When using a direct subroutine call (CALL addr), the 11-bit instruction operand is used to specify a

program memory address of the branched subroutine. (In the case of the µPD17134A and µPD17135A,

the most significant bit must be 0. If an address is specified outside of this range, an error will occur

in the assembler.)

Example

Figure 4-2. CALL addr Instruction

Note The program memory of the µPD17134A and µPD17135A is address 0000H to 03FFH.

<2> Indirect subroutine call

When using an indirect subroutine call (CALL @AR), the value in the address register (AR) should be

an address of the called subroutine. This instruction can be used to branch any address in program

memory.

Also see 7.2 ADDRESS REGISTER (AR) .

Address

0000H

Program memory

07FFHNote

CALL SUB1

RET

SUB1;

CHAPTER 4 PROGRAM MEMORY (ROM)

27

4.2.2 Table Reference

Table reference is used to reference constant data in program memory.

The table reference instruction (MOVT DBF, @AR) is used to store the contents of the program memory address

specified by the address register in the data buffer.

Since each location in program memory contains 16 bits of information, the MOVT instruction causes

16 bits of data to be stored in the data buffer. The address register can be used to table reference any location

in program memory.

Caution Note that one level of the address stack is temporarily used when performing table reference.

Be sure not to exceed the stack level that can be used. Also see 7.2 ADDRESS REGISTER (AR)

and CHAPTER 10 DATA BUFFER (DBF).

Remark Two instruction cycles are required to execute the table reference instruction, but this is an exception.

Figure 4-3. Table Reference (MOVT DBF, @AR)

Note This bit is fixed to 0 in the case of the µPD17134A and µPD17135A.

b15 b4b5b6b7b8b9b14 b13 b12 b11 b10

Constant data

Program memory

AR3 AR2 AR1 AR0

Address register

0 0 0 0 0

16-bit data read

Table address specification

b0b1b2b3

DBF3

Data buffer

DBF2 DBF1 DBF0

Note

b0b1b2b3 b0b1b2b3 b0b1b2b3

b0b1b2b3b0b1b2b3b0b1b2b3b0b1b2b3

b0b1b2b3

CHAPTER 4 PROGRAM MEMORY (ROM)

28

(1) Constant data table

Example 1 shows an example of code used to reference a constant data table.

Example 1. Program to read data in a constant data table.

OFFSET MEM 0.00H ; Area to store the offset address.

ROMREF:

BANK0

; Stores the start address of the constant data

; table in the AR register.

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

MOV RPH, #0 ; Sets the register pointer to row address 7.

MOV RPL, #7 SHL 1 ;

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Reads the constant data.

TABLE:

DW 0001H ; When OFFSET = 0H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H ; When OFFSET = 0FH

END

CHAPTER 4 PROGRAM MEMORY (ROM)

29

(2) Branch address table

Example 2 shows an example of code used to reference a branch address table.

Example 2. Program to branch to the address of the branch address table.

OFFSET MEM 0.00H ; Area to store the offset address.

ROMREF:

BANK0 ; Stores the start address of the constant data

; table in the AR register.

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

MOV RPH, #0 ; Sets the register pointer to row address 7.

MOV RPL, #7 SHL 1

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

MOVT DBF, @AR ; Reads the branch address

PUT AR, DBF ; AR ← Branch address

BR @AR

TABLE:

DW 0001H ; When OFFSET = 0H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H ; When OFFSET = 9H

END

30

[MEMO]

CHAPTER 5 DATA MEMORY (RAM)

Data memory stores data such as operation and control data. Data can be read from or written to data memory

with an instruction during normal operation.

5.1 DATA MEMORY CONFIGURATION

Figure 5-1 shows the configuration of data memory.

Data memory is divided into two areas called banks: BANK0 and BANK1.

An address is allocated to the data memory for each bank. An address consists of 4 bits of memory called “a nibble”.

The address of data memory consists of 7 bits. The high-order 3 bits are called “the row address”, and the low-

order 4 bits are called “the column address”. For example, when the address of data memory is 1AH (0011010B),

the row address is 1H (001B), and the column address is AH (1010B).

5.1.1 to 5.1.6 describe functions of data memory other than its use as address space.

Figure 5-1. Data Memory Configuration

Caution No hardware is assigned to addresses 00H through 6FH in BANK1. Do not use this area. If the

contents of this area are read, the value is undefined. An instruction to write data to this area

is invalid.

31

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

DBF3 DBF2 DBF1 DBF0

P0A
(4 bits)

P0B
(4 bits)

P0C
(4 bits)

P0D
(4 bits)

BANK0

System register

Example

Address 1AH

of BANK0

T
he

 s
am

e
sy

st
em

 r
eg

is
te

r
is

al
lo

ca
te

d
in

 e
ac

h
ba

nk
.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7
P1A

(4 bits)

BANK1

System register
P1B

(4 bits)
Fixed
to 0

Fixed
to 0

Unmounted

R
ow

 a
dd

re
ss

Column address

CHAPTER 5 DATA MEMORY (RAM)

32

5.1.1 System Register (SYSREG)

The system register (SYSREG) consists of the 12 nibbles allocated at addresses 74H to 7FH in data memory. The

system register (SYSREG) is allocated independently of the banks. This means that each bank has the same system

register at addresses 74H to 7FH.

Figure 5-2 shows the configuration of the system register.

For details, refer to CHAPTER 7 SYSTEM REGISTER (SYSREG).

Figure 5-2. System Register Configuration

5.1.2 Data Buffer (DBF)

The data buffer consists of four nibbles allocated at addresses 0CH to 0FH in BANK0 of data memory.

Figure 5-3 shows the configuration of the data buffer.

Figure 5-3. Data Buffer Configuration

Data buffer (DBF)

Address

Symbol

0CH

DBF3

0DH

DBF2

0EH

DBF1

0FH

DBF0

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FHAddress

Window

register

(WR)

Bank

register

(BANK)

Address register

(AR)

General

register

pointer

(RP)

Program

status

word

(PSWORD)

Data memory
row address
pointer (MP)

Index register (IX)

Name

System register (SYSREG)

(Symbol)

CHAPTER 5 DATA MEMORY (RAM)

33

5.1.3 General Register (GR)

The general register consists of 16 nibbles specified by an arbitrary row address in an arbitrary bank in data memory.

This arbitrary row address in an arbitrary bank is specified by the register pointer (RP) in the system register

(SYSREG).

Figure 5-4 shows the configuration of the general register (GR).

Figure 5-4. General Register (GR) Configuration

5.1.4 Port Registers

A port register consists of eight nibbles allocated at addresses 70H to 73H in each bank of the data memory.

As shown in Figure 5-5, the high-order 3 bits of address 71H of BANK1 and all of addresses 72H and 73H of BANK1

are always set to 0.

Figure 5-5 shows the configuration of the port registers.

Figure 5-5. Port Register Configuration

Port register

Address 70H

P0A

71H

P0B

72H

P0C

73H

P0D

S
ym

bo
l

BANK0

P1A P1B

BANK1

P

0

A

3

P

0

A

2

P

0

A

1

P

0

A

0

P

0

B

3

P

0

B

2

P

0

B

1

P

0

B

0

P

0

C

3

P

0

C

2

P

0

C

1

P

0

C

0

P

0

D

3

P

0

D

2

P

0

D

1

P

0

D

0

P

1

A

3

P

1

A

2

P

1

A

1

P

1

A

0

P

1

B

0

Fixed to “0” Fixed to “0” Fixed to “0”

SYSREGPort register

0
1
2
3
4
5
6
7

SYSREGPort register

0
1
2
3
4
5
6
7

Unmounted

R
ow

 a
dd

re
ss

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address BANK0

BANK1

General register

The same register is allocated
for each bank.

Area specifiable as general register

Pointed to by general register
pointer (RP) in system register.
Note that row addresses 0 to 6
of BANK1 are unmounted mem-
ory locations. The register
pointer (RP) should therefore
not specify a row address in this
area.

CHAPTER 5 DATA MEMORY (RAM)

34

5.1.5 General Data Memory

General data memory is all the data memory not used by the port and system registers (SYSREG). In other words,

general data memory consists of 112 nibbles in BANK0.

5.1.6 Unmounted Data Memory

There is no hardware mounted at addresses 00H to 6FH of BANK1. Any attempt to read this area will yield undefined

value. Writing data to this area is invalid and should therefore not be attempted.

CHAPTER 6 STACK

The stack is a register used to save information such as the program return address and the contents of the system

register during execution of subroutine calls or interrupts.

6.1 STACK CONFIGURATION

Figure 6-1 shows the stack configuration.

The stack consists of the following parts: one 3-bit binary counter stack pointer, five 10-bit (µPD17134A, 17135A)/

11-bit (µPD17136A, 17137A, 17P136A, 17P137A) address stack registers, and three 6-bit interrupt stack registers.

Figure 6-1. Stack Configuration

Address stack register

Interrupt stack register

Address stack register 0

Address stack register 1

Address stack register 2

Address stack register 3

Address stack register 4

b9 b0b8 b7 b6 b5 b4 b3 b2 b1

Stack pointer

(SP)

b2 b1 b0

SPb2 SPb1 SPb0

BANKSK0 BCDSK0 CMPSK0 CYSK0 IXESK0ZSK0

0H

0H

1H

2H

3H

4H

1H

2H

BANKSK1 BCDSK1 CMPSK1 CYSK1 IXESK1ZSK1

BANKSK2 BCDSK2 CMPSK2 CYSK2 IXESK2ZSK2

b10

SP is initialized to
5H at reset

Remark The shaded part is effective only in the case of µPD17136A/17137A/17P136A/17P137A.

6.2 FUNCTIONS OF THE STACK

The stack is used to save the return address during execution of subroutine calls and table reference instructions.

When an interrupt occurs, the program return address, bank register (BANK), and the program status word (PSWORD)

are automatically saved in the stack.

35

CHAPTER 6 STACK

36

6.3 ADDRESS STACK REGISTERS (ASRs)

Five 11-bit address stack registers (ASRs) are provided as shown in Figure 6-1. The functions of these registers

are as follows:

• Store a return address when the CALL addr or CALL @AR instruction is executed, when the first instruction

cycle of the “MOVT DBF, @AR” instruction is executed, or when an interrupt is accepted.

• Store the contents of an address register (AR) when the PUSH AR instruction is executed. The ASR to which

the data is to be stored is specified by decrementing the value of the stack pointer (SP) by one when the

instruction is executed.

• Restore the contents of the ASR (return address) specified by the stack pointer to the program counter and

increment the value of the stack pointer by one when the RET or RETSK instruction is executed, when the second

instruction cycle of the “MOVT DBF, @AR” instruction is executed, or when the RETI instruction is executed.

• Transfer the value of the ASR specified by the stack pointer to an address register and decrement the value

of the stack pointer by one when the POP AR instruction is executed.

Caution If the stack pointer underflows as a result of executing the CALL addr or CALL @AR instruction

or servicing an interrupt, it is assumed that a hang-up occurs. Consequently, the internal reset

signal is generated, the hardware is initialized, and the program is started from address 0000H.

Remark The size of the ASR differs depending on the model. The µPD17134A and 17135A have five 10-bit

ASRs, while the µPD17136A, 17137A, 17P136A, and 17P137A have five 11-bit ASRs.

6.4 INTERRUPT STACK REGISTERS (INTSKs)

Three 5-bit interrupt stack registers (INTSKs) are provided as shown in Figure 6-1. The functions of these registers

are as follows:

• Five flags (BCD, CMP, CY, Z, and IXE) in the program status word (PSWORD) in the system register (SYSREG)

to be explained shortly are saved to the INTSK when an interrupt occurs. After the flags have been saved, all

the bits of the BANK and PSWORD are cleared to 0.

• The contents of INTSK are restored to the PSWORD when the RETI instruction is executed.

• INTSK saves data each time an interrupt has been accepted.

Caution If interrupts are accepted exceeding 3 levels, the first data is lost.

CHAPTER 6 STACK

37

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTERS

The stack pointer is a 3-bit binary counter that specifies the addresses of the five address stack registers as shown

in Figure 6-1, and is assigned to address 01H of the register file. The value of the stack pointer is initialized to 5H

at reset.

• The value of SP is decremented by one when the CALL addr or CALL @AR instruction is executed, when the

first instruction cycle of the “MOVT DBF, @AR” instruction is executed, or when an interrupt is accepted.

• The value of SP is incremented by one when the RET or RETSK instruction is executed, when the second

instruction cycle of the “MOVT DBF, @AR” instruction is executed, when the POP AR instruction is executed,

or when the RETI instruction is executed.

When an interrupt is accepted, the counter of the interrupt stack registers is also decremented by one in addition

to the SP. The value of the counter of the interrupt stack registers is incremented by one only when the RETI instruction

is executed.

Table 6-1. Operation of Stack Pointer

Instruction Value of stack pointer (SP) Counter of interrupt stack registers

CALL addr

CALL @AR
–1

MOVT, DBF @AR (1st instruction cycle)

PUSH AR
Not affected

RET

RETSK
+1

MOVT DBF, @AR (2nd instruction cycle)

POP AR

Accepting interrupt –1 –1

RETI +1 +1

Remark Two instruction cycles are required to execute the “MOVT DBF, @AR” instruction, but this is an

exception.

Because the stack pointer (SP) is a 3-bit binary counter, it can take a value 0H to 7H. If the value of the stack pointer

is 6 or more, however, an internal reset signal is generated (to prevent a hang-up). This is because only five address

stack registers are available.

Because the stack pointer is located on the register file, its value can be directly read by manipulating the register

file with the POKE instruction. The value of the stack pointer is also changed at this time, but the values of the address

stack registers are not affected. Of course, the stack pointer can also be read by using the PEEK instruction.

The value of the stack pointer is 5H at reset.

CHAPTER 6 STACK

38

6.6 STACK OPERATION

Stack operation during execution of each instruction is explained in 6.6.1 to 6.6.3.

6.6.1 On Execution of Instructions CALL, RET, RETSK

Table 6-2 shows operation of the stack pointer (SP), address stack register, and the program counter (PC) during

execution of CALL, RET, and RETSK.

Table 6-2. Operation of the Instructions CALL, RET, and RETSK

Instruction Operation

CALL addr (1) Stack pointer (SP) is decremented.

CALL @AR (2) Program counter (PC) is saved in the address stack register pointed to by the stack pointer

(SP).

(3) Value specified by the instruction operand (addr or @AR) is transferred to the program

counter.

RET (1) Value in the address stack register pointed to by the stack pointer (SP) is restored to the

RETSK program counter (PC).

(2) Stack pointer (SP) is incremented.

When the RETSK instruction is executed, the first instruction after data restoration becomes a NOP instruction.

6.6.2 Table Reference (MOVT DBF, @AR Instruction)

Table 6-3 shows the operation during table reference.

Table 6-3. Stack Operation during Table Reference

Instruction Instruction cycle Operation

MOVT DBF, @AR First (1) Stack pointer (SP) is decremented.

(2) Program counter (PC) is saved in the address stack register pointed to by

the stack pointer (SP).

(3) Value in the address register (AR) is transferred to the program counter (PC).

Second (4) Contents of the program memory (ROM) pointed to by the program counter

(PC) is transferred to the data buffer (DBF).

(5) Value in the address stack register pointed to by the stack pointer (SP) is

restored to the program counter (PC).

(6) Stack pointer (SP) is incremented.

Caution When the “MOVT DBF, @AR” instruction is executed, one level of the address stack is temporarily

used. Exercise care not to exceed the usable stack level.

Remark Two instruction cycles are required to execute the “MOVT DBF, @AR” instruction. This is an exception.

CHAPTER 6 STACK

39

6.6.3 Operation on Execution of Interrupt Receipt and RETI Instruction

Table 6-4 shows stack operation during interrupt receipt and RETI instruction.

Table 6-4. Operation during Interrupt Receipt and RETI Instruction

Instruction Operation

Receipt of interrupt (1) Stack pointer (SP) is decremented.

(2) Value in the program counter (PC) is saved in the address stack register pointed to by the stack

pointer (SP).

(3) Values in the PSWORD flags (BCD, CMP, CY, Z, IXE) are saved in the interrupt stack.

(4) Vector address is transferred to the program counter (PC)

RETI (1) Values in the interrupt stack register are restored to the PSWORD (BCD, CMP, CY, Z, IXE).

(2) Value in the address stack register pointed to by the stack pointer (SP) is restored to the program

counter (PC).

(3) Stack pointer (SP) is incremented.

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS

During execution of operations such as subroutine calls and returns, the stack pointer (SP) simply functions as

a 3-bit counter which is incremented and decremented by one. When the value in the stack pointer is 0H and a CALL

or MOVT instruction is executed or an interrupt is received, the stack pointer is decremented to 7H. The µPD17134A

subseries treat this condition as a fault and generates an internal reset signal.

In order to avoid this condition, when the address stack register is being used frequently, the PUSH and POP

instructions are used to save the address stack register.

Table 6-5 shows stack operation during the PUSH and POP instructions.

Table 6-5. Stack Operation during the PUSH and POP Instructions

Instruction Operation

 PUSH (1) Stack pointer (SP) is decremented.

(2) Value in the address register (AR) is transferred to the address stack register pointed to by the

stack pointer (SP).

 POP (1) Value in the address stack register pointed to by the stack pointer (SP) is transferred to the

address register (AR).

(2) Stack pointer (SP) is incremented.

[MEMO]

40

CHAPTER 7 SYSTEM REGISTER (SYSREG)

The system register (SYSREG), located in data memory, is used for direct control of the CPU.

7.1 SYSTEM REGISTER CONFIGURATION

Figure 7-1 shows the allocation address of the system register in data memory. As shown in Figure 7-1, the system

register is allocated in addresses 74H to 7FH of data memory, independently of the banks. This means that each

bank has the same system register at addresses 74H to 7FH.

Since the system register is allocated in data memory, it can be manipulated using any of the data memory

manipulating instructions. Therefore, it is also possible to put the system register in the general register.

Figure 7-1. Allocation of System Register in Data Memory

Figure 7-2 shows the configuration of the system register. As shown in Figure 7-2, the system register consists

of the following seven registers.

• Address register (AR)

• Window register (WR)

• Bank register (BANK)

• Index register (IX)

• Data memory row address pointer (MP)

• General register pointer (RP)

• Program status word (PSWORD)

System register

BANK1 Unmounted

Port register

Port register

Data memory
BANK0

0

R
ow

 a
dd

re
ss

1 2 3 4 5 6 7 8 9 A B C D E F

Column address

0

1

2

3

4

5

6

7

0 1 2 3
4 5 6 7 8 9 A B C D E F

41

CHAPTER 7 SYSTEM REGISTER (SYSREG)

42

Figure 7-2. System Register Configuration

Note This bit is fixed to 0 in the case of the µPD17134A and µPD17135A.

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

IXH IXM

MPH MPL
AR3 AR2 AR1 AR0 WR BANKSymbol

Address

Window

register

(WR)

Bank

register

(BANK)

Address register

(AR)

General

register

pointer

(RP)

Program

status

word

(PSWORD)

IXL RPH RPL PSW

Data memory
row address
pointer (MP)

Index register (IX)

Name

Bit

M
P
E

B
C
D

C
M
P

C
Y Z

I
X
E

0 0 0 0 0 0 0 0 0 0 0 0 0 0Data

b3 b2 b1 b0

(IX)

(RP)(BANK) (MP)(AR)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Undefined 0
Initial value
when
reset

0

Note

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

CHAPTER 7 SYSTEM REGISTER (SYSREG)

43

7.2 ADDRESS REGISTER (AR)

7.2.1 Address Register Configuration

Figure 7-3 shows the configuration of the address register.

As shown in Figure 7-3, the address register consists of the 16 bits in address 74H to 77H (AR3 to AR0) of the

system register. However, since the high-order 5 or 6 bits are always set to 0, the address register is actually 11 or

10 bits. When the system is reset, all 16 bits of the address register are reset to 0.

Figure 7-3. Address Register Configuration

Note This bit is fixed to 0 in the case of the µPD17134A and µPD17135A.

7.2.2 Address Register Functions

The address register is used to specify an address in program memory when executing an indirect branch

instruction (BR @AR), indirect subroutine call (CALL @AR) or table reference (MOVT DBF, @AR). The address

register can also be put on and taken off the stack by using the stack manipulation instructions (PUSH AR, POP AR).

Items (1) to (4) explain address register operation during execution of each instruction.

The address register can be incremented by using the dedicated increment instruction (INC AR).

(1) Table reference (MOVT DBF, @AR)

When the “MOVT DBF, @AR” instruction is executed, the data in program memory (16-bit data) located

at the address specified by the value in the address register is read into the data buffer (addresses

0CH to 0FH of BANK0).

(2) Stack manipulation instructions (PUSH AR, POP AR)

When the PUSH AR instruction is executed, the stack pointer (SP) is first decremented and then the address

register is stored in the address stack pointed to by the stack pointer.

When the POP AR instruction is executed, the contents of the address stack pointed to by the stack pointer

is transferred to the address register and then the stack pointer is incremented.

Also see CHAPTER 6 STACK .

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

0 000

00 0 0 0

AR1 AR0AR2AR3

76H 77H75H74HAddress

Name Address register (AR)

Symbol

Bit

Data

Initial value when
reset

(AR)

Note

CHAPTER 7 SYSTEM REGISTER (SYSREG)

44

(3) Indirect branch instruction (BR @AR)

When the BR @AR instruction is executed, the program branches to the address in program memory specified

by the value in the address register.

(4) Indirect subroutine call (CALL @AR)

When the CALL @AR instruction is executed, the subroutine located at the address in program memory

specified by the value in the address register is called.

(5) Address register used as a peripheral hardware register

The address register can be manipulated 4 bits at a time by using data memory manipulation instructions. The

address register can also be used as a peripheral hardware register for transferring 16-bit data to the data

buffer. In other words, by using the PUT AR, DBF and GET DBF AR instructions, the address register can

be used to transfer 16-bit data to the data buffer.

Note that the data buffer is allocated in addresses 0CH to 0FH of BANK0 in data memory.

Figure 7-4. Address Register Used as a Peripheral Circuit

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

DBF3 DBF2 DBF1DBF0

AR3 AR2 AR1 AR0 System register

(BANK0) Column address

R
ow

 a
dd

re
ss

Data buffer

Address register

16-bit data transfer available

CHAPTER 7 SYSTEM REGISTER (SYSREG)

45

7.3 WINDOW REGISTER (WR)

7.3.1 Window Register Configuration

Figure 7-5 shows the configuration of the window register.

As shown in Figure 7-5, the window register (WR) consists of four bits allocated at address 78H of the system

register. The contents of the window register is undefined after reset. However, when RESET is used to release the

system from HALT or STOP mode, the previous state is maintained.

Figure 7-5. Window Register Configuration

7.3.2 Window Register Functions

The window register is used to transfer data to and from the register file (RF).

Data is transferred to and from the register file using the dedicated instructions “PEEK WR, rf” and “POKE rf, WR”.

(1) PEEK WR, rf

As shown in Figure 7-6, the “PEEK WR, rf” instruction is used to transfer the contents of the register file

specified by rf to the window register.

(2) POKE rf, WR

As shown in Figure 7-6, the “POKE rf, WR” instruction is used to transfer the contents of the window register

to the file specified by rf.

Figure 7-6. Example of Window Register Operation

b3 b2 b1 b0Bit

Symbol

Name

Address

Data

Initial value when reset

78H

Window register

WR

Undefined

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7
System register

Column address

R
ow

 a
dd

re
ss

POKE instruction

PEEK instruction

WR

Control register

Register file

Data memory

CHAPTER 7 SYSTEM REGISTER (SYSREG)

46

b3 b2 b1 b0

0

0 0 0

BANK

79HAddress

Name

Symbol

Bit

Data

Initial value when
reset

Bank register

(BANK)

7.4 BANK REGISTER (BANK)

7.4.1 Bank Register Configuration

Figure 7-7 shows the configuration of the bank register.

The bank register consists of four bits at address 79H (BANK) of the system register. However, since the three

high-order bits are always set to 0, only the least significant bit is actually used.

All bits are set to 0 at reset.

Figure 7-7. Bank Register Configuration

7.4.2 Functions of Bank Register

The bank register is used to switch between the banks in data memory. Table 7-1 shows how the banks in data

memory are specified by the value in the bank register.

Table 7-1. Specifying the Bank in Data Memory

Bank register Bank in data

b3 b2 b1 b0 memory

0 0 0 0 BANK0

0 0 0 1 BANK1

Data memory is effectively divided into two banks by the bank register. When a data memory manipulation

instruction is executed, the data memory in the bank specified by the bank register is manipulated.

Therefore, if the current bank is BANK0, in order to manipulate data memory in BANK1 (port registers), the bank

register must be used to switch the current bank to BANK1.

The system register can be manipulated regardless of the state of the bank register.

For example, whether the instruction MOV 78H, #0 is executed for BANK0 or BANK1, the effect is the same; 0

is written to address 78H of the system register.

In addition, BANK becomes 0 after saved to the interrupt stack register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

47

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MEMORY POINTER: MP)

7.5.1 Index Register (IX)

IX is used for address modification of the data memory. The difference between IX and MP is that IX modifies an

address specified by a bank and operand m.

IX is allocated to a total of 12 bits of system register addresses 7AH (IXH), 7BH (IXM), and 7CH (IXL), as shown

in Figure 7-8. Actually, however, only 11 bits, the low-order 3 bits of IXH, IXM, and IXL, function as IX. An index register

enable flag (IXE) which enables address modification by IX is assigned to the least significant bit of PSW.

When IXE = 1, the address of the data memory specified by operand m is not m, but the result of ORing between

m and IXM through IXL. The bank specified at this time is also indicated by ORing BANK and IXH.

Remark IXH of the µPD17134A subseries is fixed to “0”, and the bank is not modified even when IXE = 1 (to prevent

a bank other than 0 from being used).

7.5.2 Data Memory Row Address Pointer (Memory Pointer: MP)

MP is used for address modification of the data memory. The difference between IX and MP is that MP modifies

the row address of an address indirectly specified by bank and operand @r.

MPH and IXH and MPL and IXM are assigned to the same address (addresses 7AH and 7BH of the system register)

as shown in Figure 7-8. Actually, however, the low-order 3 bits of MPH and MPL, or a total of 7 bits, function as MP.

A memory pointer enable flag (MPE) which enables address modification by MP is assigned to the most significant

bit of MPH.

When MPE = 1, the bank and row address of the data memory indirectly specified by operand @r are not BANK

and mR, but the address specified by MP (the column address is specified by the contents of r independently of MPE).

At this time, the low-order 3 bits of MPH and the most significant bit of MPL indicate BANK, and the low-order 3 bits

of MPL indicate a row address.

Remark The low-order 3 bits of MPH and most significant bit of MPL of the µPD17134A subseries are fixed to

“0”, and bank 0 is always specified even when MPE = 1 (to prevent a bank other than 0 from being used).

Figure 7-8. Index Register Configuration

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7AH 7BH 7CH 7FHAddress

Initial value when reset 0

b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1b3

Index register (IX)

Memory pointer (MP)

IXH

MPH

IXM

MPL

IXL

Bit

Name

Symbolic name

Flag name

Data

0 0 0

(MP)

(IX)

M
P
E

I
X
E

b0

PSW

0

Low-order 4
bits of program
status word
(PSWORD)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

48

Figure 7-9. Modification of Data Memory Address by Index Register and Memory Pointer

Data memory address specified by m Indirect transfer address specified by @r

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

IXE MPE

0 0

0 1

1 0

1 1

BANK BANK mR (r)

MPL (r)

(r)

mRBANK

IXH IXM

Setting prohibited

Row addressBank Column address

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

Row addressBank Column address

Logical OR

MPH

m

BANK

IXH IXM

Logical OR

m

IXL

BANK m

BANK : Bank register

IX : Index register

IXE : Index enable flag

IXH : Bits 10 through 8 of index register

IXM : Bits 7 through 4 of index register

IXL : Bits 3 through 0 of index register

m : Data memory indicated by mR and mC

mR : Data memory row address

mC : Data memory column address

MP : Memory pointer

MPE : Memory pointer enable flag

MPH : High-order 3 bits of memory pointer

MPL : Low-order 4 bits of memory pointer

r : General register column address

RP : General register pointer

(×) : Contents addressed by ×
×: Direct address such as r

Table 7-2. Instructions Subject to Address Modification

Arithmetic ADD
r, m

operation ADDC

SUB
m, #n4

SUBC

Logical AND

operation OR r, m

XOR

m, #n4

Judgment SKT
m, #n

SKF

Compare SKE

SKGE
m, #n4

SKLT

SKNE

Transfer LD r, m

ST m, r

MOV m, #n4

@r, m

m, @r

– – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – –

CHAPTER 7 SYSTEM REGISTER (SYSREG)

49

7.5.3 IXE = 0 and MPE = 0 (No Data Memory Modification)

As shown in Table 7-9, data memory addresses are not affected by the index register and the data memory row

address pointer.

(1) Data memory manipulation instructions

Example 1. Execution of “ADD r, m” when general register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

ADD R003, M061 ; Addition in memories (0.03H) ← (0.03H) + (0.61H)

As shown in Figure 7-10, when the above instructions are executed, the data in general register

address R003 and data memory address M061 are added together and the result is stored in

general register address R003.

(2) Indirect transfer of data in the general register (horizontal indirect transfer)

Example 2. Execution of “MOV @r, m” when general register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV R005, #8 ; R005 ← 8 (Setting of column address of @r)

MOV @R005, M034 ; Indirect transfer of data in the register (0.38H) ← (0.34H)

As shown in Figure 7-10, when the above instructions are executed, the data stored in data

memory address M034 is transferred to data memory location 38H.

The “MOV @r, m” instruction transfers the contents of the data memory specified by m to a data

memory address with the row address same as m and column address specified by @r.

In the above example, therefore, data at M034 is transferred to 38H whose row address is the

same as that of M034 (= 3) and column address is specified by the contents of R005 (= 8).

CHAPTER 7 SYSTEM REGISTER (SYSREG)

50

Example 3. Execution of “MOV m, @r” when general register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV R00B, #0EH ; R00B ← 0EH (Setting column address of @r)

MOV M034, @R00B ; Indirect transfer of data in the register (0.34H) ← (0.3EH)

As shown in Figure 7-10, when the above instructions are executed, the contents of data

memory stored at address 3EH is transferred to data memory location M034.

The “MOV m, @r” instruction transfers the contents of the data memory of the address which

the column address is specified by @r to a data memory address specified by m.

In the above example, therefore, data at 3EH is transferred to M034 whose row address is the

same as that of M034 (= 3) and column address is specified by the contents of R00B (= 0EH).

Figure 7-10. Operation Example When IXE = 0 and MPE = 0

Addresses in Example 1 Addresses in Example 2

ADD R003, M061 MOV @R005, M034

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

8 E

Column address specified
as transfer destination

Column address specified
as transfer source

Example 2. MOV @R005, M034

Example 3. MOV M034, @R00B

Example 1. ADD R003, M061

General
register

0000

Bank
Row

address

Column

address

110 0001

0000 0011000

0000

Bank
Row

address

Column

address

011 0100

0000 0101000

0000 1000011

Data memory address M

General register address R

Indirect transfer address @R

Data memory address M

General register address R

Contents
of R

Same as M

CHAPTER 7 SYSTEM REGISTER (SYSREG)

51

7.5.4 IXE = 0 and MPE = 1 (Diagonal Indirect Data Transfer)

As shown in Figure 7-9, the indirect data transfer bank and row address specified by @r become the data memory

row address pointer value only when general register indirect data transfer instructions (MOV @r, m and MOV m, @r)

are used.

Example 1. Execution of “MOV @r, m” when the general register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6 (Setting row address of @r)

MOV MPH, #1000B ; MPE ← 1, bank ← 0

MOV R005, #8 ; R005 ← 8 (Setting column address of @r)

MOV @R005, M034 ; Indirect transfer of data in the register (0.68H) ← (0.34H)

As shown in Figure 7-11, when the above instructions are executed, the contents of data memory

address M034 is transferred to data memory location 68H.

When the MOV @r, m instruction is executed when MPE = 1, the contents of the data memory

address specified by m is transferred to the column address pointed to by the row address @r being

pointed to by the memory pointer.

In this case, the indirect address specified by @r becomes the value used for the bank and row

address data memory pointer (above example uses row address 6). The column address is the value

in the general register address specified by r (above example uses column address 8).

Therefore the address in the above example is 68H.

This example is different from Example 2 in 7.5.3 when MPE = 0 for the following reasons: In this

example, the data memory row address pointer is used to point to the indirect address bank and

row address specified by @r. (In Example 2 in 7.5.3, the indirect address bank and row address

are the same as m.)

By setting MPE = 1, diagonal indirect data transfer can be performed using the general register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

52

2. Execution of “MOV m, @r” when general register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6 (Setting row address of @r)

MOV MPH, #1000B ; MPE ← 1, bank ← 0

MOV R00B, #0EH ; R00B ← 0EH (Setting column address of @r)

MOV M034, @R00B ; Indirect transfer of data in the register (0.34H) ← (0.6EH)

As shown in Figure 7-11, when the above instructions are executed, the data stored in address 6EH

is transferred to data memory location M034.

Figure 7-11. Operation Example When IXE = 0 and MPE = 1

Addresses in Example 1 Addresses in Example 2

MOV @R005, M034 MOV M034, @R00B

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

8 E

Column address specified
as transfer destination

Column address specified
as transfer source

Example 1. MOV @R005, M034

General
register

Memory
pointer
= 00110B

Example 2. MOV M034, @R00B

0000

Bank
Row

address

Column

address

011 0100

0000 1011000

0000 1110110

0000

Bank
Row

address

Column

address

011 0100

0000 0101000

0000 1000110

Data memory address M

General register address R

Indirect transfer address @R

Contents
of RContents of MP Contents of MP Contents

of R

Data memory address M

General register address R

Indirect transfer address @R

CHAPTER 7 SYSTEM REGISTER (SYSREG)

53

7.5.5 IXE = 1 and MPE = 0 (Index Modification)

As shown in Figure 7-9, when a data memory manipulation instruction is executed, any bank or address in data

memory specified by m can be modified using the index register.

When indirect data transfer using the general register (MOV @r, m or MOV m, @r) is executed, the indirect transfer

bank and address specified by @r can be modified using the index register.

Address modification is done by performing an OR operation on the data memory address and the index register.

The data memory manipulation instruction being executed manipulates data in the memory location pointed to by the

result of the operation (called the real address).

An example is shown below.

Example 1. Execution of “ADD r, m” when the general register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

MOV IXL, #0010B ; IX ← 00000010010B

MOV IXM, #0001B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD R003, M061 ; (0.03H) ← (0.03H) + (0.73H)

As shown in Figure 7-12, when the instructions of example 1 are executed, the value in data memory

address 73H (real address) and the value in general register address R003 (address 03H) are added

together and the result is stored in general register address R003.

When the ADD r, m instruction is executed, the data memory address specified by m (address 61H

in above example) is index modified.

Modification is done by performing an OR operation on data memory location M061 (address 61H,

binary 00001100001B) and the index register (00000010010B in the above example). The result

of the operation (00001110011B) is used as a real address (address 73H) by the instruction being

executed.

As compared to when IXE = 0 (Examples in 7.5.3), in this example the data memory address being

directly specified by m is modified by performing an OR operation on m and the index register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

54

Figure 7-12. Operation Example When IXE = 1 and MPE = 0

Addresses in Example 1

ADD R003, M061

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

General
registerR003

Index modification

Example 1. ADD R003, M061

M061

00001100001B
00000010010B
00001110011B

OR)
Real address

M061
IX

:
:

0000

Bank
Row

address

Column

address

110 0001

0000 0011000

0000 0001110

BANK

0000

0000 0011

 m

001

IXM

111

0010

IXLIXH

Data memory address M

General register address R

Index modification M061

IX

Real address
(OR operation) Instruction is executed using this address.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

55

Example 2. Indirect data transfer using the general register (Execution of “MOV @r, m”)

R005 MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; Column address ← 5 (OR of 4 and 1)

MOV IXM, #0000B ; Row address ← 3 (OR of 3 and 0)

MOV IXH, #0000B ; MPE ← 0, bank ← 0 (OR of 0 and 0)

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV R005, #8 ; R005 ← 8 (Setting column address of @r)

MOV @R005, M034 ; Indirect data transfer using the register

; (0.38H) ← (0.35H)

As shown in Figure 7-13, when the above instructions are executed, the contents of data memory

address 35H is transferred to data memory location 38H.

When the MOV @r, m instruction is executed when IXE = 1, the data memory address specified

by m (direct address) is modified using the contents of the index register. The bank and row address

of the indirect address specified by @r are also modified using the index register.

The bank, row address, and column address specified by m (direct address) are all modified, and

the bank and row address specified by @r (indirect address) are modified.

Therefore, in the above example the direct address is 35H and the indirect address is 38H.

This example is different from Example 3 in 7.5.3 when IXE = 0 for the following reasons: In this

example, the bank, row address and column address of the direct address specified by m are

modified using the index register. The general register is transferred to the address specified by

the column address of the modified data memory address and the same row address. (In Example

3 in 7.5.3, the direct address is not modified.)

Figure 7-13. Operation Example When IXE = 1 and MPE = 0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

General
registerR005

Example 2.
MOV @R005, M034

00000110100B
00000000001B
00000110101B

8

Column address specified
as transfer destination

M034

Direct
addressIndex modification Indirect address

OR)
Real address

M034
IX

:
:

CHAPTER 7 SYSTEM REGISTER (SYSREG)

56

Example 3. Clearing data memory of 00H-0FH to 0

M000 MEM 0.00H

MOV IXL, #0 ; IX ← 0

MOV IXM, #0 ;

MOV IXH, #0 ; MPE ← 0

LOOP:

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV M000, #0 ; Set data memory specified by IX to 0

INC IX ; IX ← IX + 1

AND PSW, #1110B ; IXE ← 0, Remains address 7FH even if modified

; by IX because IXE is address 7FH.

SKE IXM, #7 ; Row address 7 ?

BR LOOP ; If not 7 then LOOP (row address is not cleared)

4. Processing an array

As shown in Figure 7-14, when an operation

A(N) ← A(N) + 4 (0 ≤ N ≤ 15)

is executed to element A (N) of a one-dimensional array with each element 8 bits long, the following

instructions are executed.

M000 MEM 0.00H

M001 MEM 0.01H

MOV IXH, #0

MOV IXM, #N SHR 3 ; Sets offset of row address

MOV IXL, #N SHL 1 AND 0FH ; Sets offset of column address

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD M000, #4

ADDC M001, #0 ; A(N) ← A(N) + 4

In the above example, the value of N shifted 1 bit to the left (i.e., the value of N multiplied by 2) is

set to the index register because one element is 8 bits long.

Figure 7-14. Operation Example When IXE = 1 and MPE = 0 (Array Processing)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

A (0)

A (8)

A (1)

A (9)

A (2)

A (10)

A (3)

A (11)

A (4)

A (12)

A (5)

A (13)

A (6)

A (14)

A (7)

A (15)

b3 b2 b1 b0 b7 b6 b5 b4

A (0)

00H 01H

CHAPTER 7 SYSTEM REGISTER (SYSREG)

57

7.6 GENERAL REGISTER POINTER (RP)

7.6.1 General Register Pointer Configuration

Figure 7-15 shows the configuration of the general register pointer.

Figure 7-15. General Register Pointer Configuration

As shown in Figure 7-15, the general register pointer consists of seven bits; four bits in system register address

7DH (RPH) and the high-order 3 bits of system register address 7EH (RPL). However, since the high-order 3 bits

of address 7DH are always set to 0, the register effectively consists of four bits; the least significant bit of address

7DH and the high-order 3 bits of address 7EH.

All register bits are cleared to 0 at reset.

b3 b2 b1 b0b3 b2 b1 b0

00

0 0 0

RPLRPH

7EH7DHAddress

Name

Symbol

Bit

Data

Initial value when
reset

(RP)

General register
pointer (RP)

B

C

D

Flag

CHAPTER 7 SYSTEM REGISTER (SYSREG)

58

7.6.2 Functions of the General Register Pointer

The general register pointer is used to specify the location of the general register in data memory. For the general

register, see CHAPTER 8 GENERAL REGISTER (GR) .

The general register consists of 16 nibbles in any single row of data memory. As shown in Figure 7-16, the general

register pointer is used to indicate which row address is being used as the general register.

Since the general register pointer effectively consists of four bits, the data memory row addresses in which the

general register can be placed are address 0H to 7H of BANK0 and BANK1. In other words, any row in data memory

can be specified as the general register.

With the general register allocated in data memory, data can be transferred to and from, and arithmetic operations

can be performed on the general register and data memory.

Note that row addressed 0H to 6H of BANK1 are unmounted memory locations and should therefore not be specified

as locations for the general register.

For example, when instructions such as

ADD r,m and LD r,m

are executed, instruction operand r can specify an address in the general register and m specifies an address in data

memory. In this way, operations like addition and data transfer can be performed on and between data memory and

the general register.

Figure 7-16. General Register Configuration

b3 b2 b1 b0 b3 b2 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

F
ix

ed
 to

 0

F
ix

ed
 to

 0

F
ix

ed
 to

 0

RPH RPL

General register pointer
 (RP)

This area
should not
be used.

A
llo

ca
te

d
to

 th
e

fla
g

B
C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RPSystem register

General register (16 nibbles)

System register

Unmounted

Port register

Both banks
have the
same system
register.

Example
General register
with RP =
0000010B

Area in which
general register
can be specified

0 1 2 3 4 5 6 7 8 9 A B C D E F

BANK1

BANK0 Column address

CHAPTER 7 SYSTEM REGISTER (SYSREG)

59

7.7 PROGRAM STATUS WORD (PSWORD)

7.7.1 Program Status Word Configuration

Figure 7-17 shows the configuration of the program status word.

Figure 7-17. Program Status Word Configuration

As shown in Figure 7-17, the program status word consists of five bits; the least significant bit of system register

address 7EH (RPL) and all four bits of system register address 7FH (PSW).

The program status word is divided into the following 1-bit flags: Binary coded decimal flag (BCD), compare flag

(CMP), carry flag (CY), zero flag (Z), and the index enable flag (IXE).

All register bits are cleared to 0 at reset and after the contents of the interrupt stack register have been saved.

b3 b2 b1 b0b3 b2 b1 b0

00

PSWRPL

7FH7EHAddress

Name

Symbol

Bit

Initial value when
reset

Program status

word (PSWORD)

I

X

E

Data

(RP)

B

C

D

C

M

P

C

Y

Z

CHAPTER 7 SYSTEM REGISTER (SYSREG)

60

7.7.2 Functions of the Program Status Word

The flags of the program status word are used for setting conditions for arithmetic operations and data transfer

instructions and for reflecting the status of operation results. Figure 7-18 shows an outline of the functions of the

program status word.

Figure 7-18. Outline of Functions of the Program Status Word

b3 b2 b1 b0b3 b2 b1 b0

PSWRPL

7FH7EHAddress

Symbol

Bit

I

X

E

Flag
B

C

D

C

M

P

C

Y

Z

Used to specify that index modification be performed on the data

memory address used when a data memory manipulation instruction

is executed.

0: Index modification disabled.

1: Index modification enabled.

Flag Function

IXE

Z

CY

CMP

BCD

Set when the result of an arithmetic operation is 0.

0: Indicates that the result of the arithmetic operation is a value other

 than 0.

1: Indicates that the result of the arithmetic operation is 0.

Set when there is a carry in the result of an addition operation or

a borrow in the result of a subtraction operation.

0: Indicates there was no carry or borrow.

1: Indicates there was a carry or borrow.

Used to specify that the result of an arithmetic operation not be

stored in data memory or the general register but just be reflected

in the CY and Z flags.

0: Results of arithmetic operations are stored.

1: Results of arithmetic operations are not stored.

Used to specify how arithmetic operations are performed.

0: Arithmetic operations are performed in 4-bit binary.

1: Arithmetic operations are performed in BCD.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

61

7.7.3 Index Enable Flag (IXE)

The IXE flag is used to specify index modification on the data memory address when a data memory manipulation

instruction is executed.

When the IXE flag is set to 1, an OR operation is performed on the data memory address and the index register

(IX), and executes an instruction to the data memory with the result of the OR operation as the real address.

For a more detailed explanation, see 7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER

(MEMORY POINTER: MP).

7.7.4 Zero Flag (Z) and Compare Flag (CMP)

The Z flag indicates that the result of an arithmetic operation is 0. The CMP flag is used to specify that the result

of an arithmetic operation not be stored in data memory or the general register.

Table 7-3 shows how the CMP flag affects the setting and resetting of the Z flag.

Table 7-3. Zero Flag (Z) and Compare Flag (CMP)

Conditions When CMP flag When CMP flag is 1

When the result of an arithmetic operation is a value 0 Z ← 1 Z flag remains unchanged

When the result of an arithmetic operation is other than 0 Z ← 0 Z ← 0

The Z flag and the CMP flag are used for comparing values in the general register and data memory. The Z flag

is only affected by arithmetic operations. The CMP flag is only affected by bit evaluation.

Example of comparing 12-bit data

; Are 12-bit data stored in M001, M002, and M003 equal to 456H?

CMP456:

SET2 CMP, Z

SUB M001, #4 ; Data stored to M001, M002, and M003 are not lost

SUB M002, #5

SUB M003, #6

; CLR1 CMP ; CMP is automatically cleared by bit judgement instruction

SKT1 Z

BR DIFFER ; ≠ 456 H

BR AGREE ; = 456 H

7.7.5 Carry Flag (CY)

The CY flag shows that there is a carry in the result of an addition operation or a borrow in the result of a subtraction

operation.

The CY flag is set (CY = 1) when there is a carry or borrow in the result and reset (CY = 0) when there is no carry

or borrow in the result.

When the RORC r instruction (contents in the general register specified to by r is shifted right one bit) is executed,

the following occurs: the value in the CY flag just before execution of the instruction is shifted to the most significant

bit of the general register and the least significant bit is shifted to the CY flag.

The CY flag is also useful for when the user wants to skip the next instruction when there is a carry or borrow in

the result of an operation.

The CY flag is only affected by arithmetic operations and rotations and not affected by the CMP flag.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

62

7.7.6 Binary-Coded Decimal Flag (BCD)

The BCD flag is used for BCD operations.

When the BCD flag is set (BCD = 1), all arithmetic operations will be performed in BCD. When the BCD flag is

reset (BCD = 0), arithmetic operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit judgement, comparison judgement or rotations.

7.7.7 Notes Concerning Use of Arithmetic Operations

When performing arithmetic operations (addition and subtraction) on the program status word (PSWORD), the

following point should be kept in mind.

When an arithmetic operation is performed on the program status word, the result is stored in the program status

word.

Below is an example.

Example MOV PSW, #0001B

ADD PSW, #1111B

When the above instructions are executed, a carry is generated which should cause bit 2 (CY flag) of

PSW to be set. However, the result of the operation (0000B) is stored in PSW, meaning that CY does

not get set.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

63

7.8 NOTES CONCERNING USE OF THE SYSTEM REGISTER

7.8.1 Reserved Words for the System Register

Because the system register is allocated in data memory, it can be used in any of the data memory manipulation

instructions. As shown in Example 1 (using a 17K Series Assembler AS17K), because a data memory address can

not be directly coded in an instruction operand, it needs to be defined as a symbol beforehand.

The system register is data memory, but has specialized functions which make it different from general-purpose

data memory. Therefore, the system register is used by defining it beforehand with symbols (used as reserved words)

in the assembler (AS17K).

Reserved words for the system register are allocated in address 74H to 7FH. They are defined by the symbols

(AR3, AR2, ..., PSW) shown in Figure 7-2.

As shown in Example 2, if these reserved words are used, it is not necessary to define symbols.

For information concerning reserved words, see CHAPTER 20 ASSEMBLER RESERVED WORDS .

Example 1. MOV 34H, #0101B ; Using a data memory address like 34H or 76H will cause an

MOV 76H, #1010B ; error in the assembler.

M037 MEM 0.37H ; Addresses in general data memory need to be defined as

MOV M037, #0101B ; symbols using the MEM directive.

2. MOV AR1, #1010B ; By using the reserved word AR1 (address 6H), there is no need

; to define the address as a symbol.

; Reserved word AR1 is defined in a device file with the directive

; “AR1 MEM 0.76H”.

Assembler AS17K has the below flag symbol manipulation instructions defined internally as macros.

SETn : Set a flag to 1

CLRn : Reset a flag to 0

SKTn : Skip when all flags are 1

SKFn : Skip when all flags are 0

NOTn : Invert a flag

INITFLG : Initialize a flag

By using these embedded macro instructions, data memory can be handled as flags as shown below in Example

3.

The functions of the program status word and the memory pointer enable flag are defined in bit units (flag units)

and each bit has a reserved word defined for it. These reserved words are MPE, BCD, CMP, CY, Z and IXE.

If these flag reserved words are used, the embedded macro instructions can be used as shown in Example

4.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

64

Example 3. F0003 FLG 0.00.3 ; Flag symbol definition

SET1 F0003 ; Embedded macro

Expanded macro

OR .MF.F0003 SHR 4, #.DF.F0003 AND 0FH

; Set bit 3 of address 00H of BANK0

4. SET1 BCD ; Embedded macro

Expanded macro

OR .MF.BCD SHR 4, #.DF.BCD AND 0FH

; Set the BCD flag

; BCD is defined as “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Identical address flag

Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND 0FH)

CLR2 Z, BCD ; Different address flag

Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)

AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 0FH)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

65

7.8.2 Handling of System Register Addresses Fixed at 0

In dealing with system register area fixed at 0 (see Figure 7-2), there are a few points for which caution should

be taken with regard to device, emulator and assembler operation.

Items (1), (2) and (3) explain these points.

(1) Concerning device operation

Trying to write data to an address fixed at 0 will not change the value (0) at that address. Any attempt to read

an address fixed at 0 will result in the value 0 being read.

(2) When using a 17K series in-circuit emulator (IE-17K or IE-17K-ET)

An error will be generated if a write instruction attempts to write 1 to an address fixed at 0.

Below is an example of the type of instructions that will cause the in-circuit emulator to generate an error.

Example 1. MOV BANK, #0100B ; Attempts to write 1 to bit 3 (an address fixed at 0).

2. MOV IXL, #1111B ;

MOV IXM, #1111B ;

MOV IXH, #0001B ; Attempts to write 1 to bit 0 (an address fixed at 0).

ADD IXL, #1 ;

ADDC IXM, #0 ;

ADDC IXH, #0 ; Attempts to write 1 to bit 0 (an address fixed at 0) as a result of

operation.

However, when all valid bits are set to 1 as shown in Example 2, executing the instructions INC AR or INC

IX will not cause an error to be generated by the in-circuit emulator. This is because when all valid bits of the

address register and index register are set to 1, executing the INC instruction causes all bits to be set to 0.

The only time the in-circuit emulator will not generate an error when an attempt is made to write the value 1

to an address fixed at 0 is when the address being written to is in the address register.

(3) When using a 17K series assembler (AS17K)

No error is output when an attempt is made to write 1 to an address fixed at 0. The instruction shown in

Example 1

MOV BANK, #0100B

will not cause an assembler error. However, when the instruction is executed in the in-circuit emulator, an

error is generated.

The following is the reason why an error is not generated in the assembler: the assembler does not know what

data memory address is the object of the data memory manipulation instruction being executed.

The assembler generates an error only when the value n in the embedded macro BANKn is a value greater

than 2:

This is because the assembler judges that embedded macros other than BANK0 and 1 cannot be used in the

µPD17134A subseries.

[MEMO]

66

CHAPTER 8 GENERAL REGISTER (GR)

The general register (GR) is allocated in data memory. It can therefore be used directly for arithmetic operations

and transferring data.

8.1 GENERAL REGISTER CONFIGURATION

Figure 8-1 shows the configuration of the general register.

As shown in Figure 8-1, 16 nibbles in a single row address in data memory (16 × 4 bits) are used as the general

register.

The register pointer (RP) in the system register is used to indicate which row address is to be used as the general

register. Since the general register pointer effectively has four valid bits, the data memory row addresses in which

the general register can be allocated are addresses 0H to 7H of BANK0 and BANK1. However, note that row addresses

0H to 6H of BANK1 are unmounted area and should therefore not be specified as locations for the general register.

8.2 FUNCTIONS OF THE GENERAL REGISTER

The general register can be used in transferring data to and from data memory and in performing arithmetic

operations with data memory within an instruction. In effect, since the general register is data memory, this just means

that operations such as arithmetic operations and data transfer can be performed on and between locations in data

memory. In addition, because the general register is allocated in data memory, it can be controlled in the same manner

as other areas in data memory through the use of data memory manipulation instructions.

67

CHAPTER 8 GENERAL REGISTER (GR)

68

Figure 8-1. General Register Configuration

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Address

Name

Symbol

Bits

Data

Reset

0 0 0

0 0 0 0 0 0 0

b3 b2 b1 b0 b3 b2 b1 b0

B
C
D

RPH RPL

7DH 7EH

General register pointer
(RP)

General Register (16 nibbles)

System register RP

System register

Column address

Both banks have
the same system
register.

General register
when RP = 00010BThe general register pointer

(RP) can be used to specify
any row address in address
locations 0H to 7H of BANK0
and BANK1. However, note
that row addresses 0H to 6H
of BANK1 are unmounted
memory locations and should
therefore not be specified.

R
ow

 a
dd

re
ss

0 1 2 3 4 5 6 7 8 9 A B C D E F
BANK0

BANK1

Unmounted

(Row addresses 0H to 6H of BANK1
are unmounted memory locations.
RP should therefore not specify a
row address in this area).

CHAPTER 9 REGISTER FILE (RF)

The register file is a register used mainly for specifying conditions for peripheral hardware.

9.1 REGISTER FILE CONFIGURATION

9.1.1 Configuration of the Register File

Figure 9-1 shows the configuration of the register file.

As shown in Figure 9-1, the register file is a register consisting of 128 nibbles (128 words × 4 bits).

In the same way as with data memory, the register file is divided into addresses in 4-bit units. It has a total of 128

nibbles specified in row addresses from 0H to 7H and column addresses from 0H to 0FH.

Address 00H to 3FH define an area called the control register.

9.1.2 Relationship between the Register File and Data Memory

Figure 9-2 shows the relationship between the register file and data memory.

As shown in Figure 9-2, the register file overlaps with data memory in addresses 40H to 7FH.

This means that the same memory exists in register file addresses 40H to 7FH and in data memory bank addresses

40H to 7FH.

Assuming that the current bank is BANK0, register file addresses 40H to 7FH are equivalent to addresses 40H

to 7FH of BANK0 in data memory. When the current bank is BANK1, register file addresses 40H to 7FH are equivalent

to address 40H to 7FH of BANK1 in data memory.

Figure 9-1. Register File Configuration

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

Register file

Control register

69

CHAPTER 9 REGISTER FILE (RF)

70

9.2 FUNCTIONS OF THE REGISTER FILE

9.2.1 Functions of the Register File

The register file is mainly used as a control register for specifying conditions for peripheral hardware.

This control register is allocated within the register file at addresses 00H to 3FH.

The rest of the register file (40H to 7FH) overlaps with data memory. As shown in 9.2.3, because of this overlap,

this area of the register file is the same as normal memory with one exception: The register file manipulation

instructions PEEK and POKE can be used with this area of memory but not with normal data memory.

9.2.2 Functions of Control Register

The peripheral hardware whose conditions can be controlled by control registers is listed below.

For details concerning peripheral hardware and the control register, see the section for the peripheral hardware

concerned.

• Stack pointer (SP) • Basic interval timer (BTM)

• Power-down reset • Ports

• 8-bit timer counter (TM0, TM1) • Interrupt functions

• AC zero cross detector (ZCROSS) • Serial interface (SIO)

• A/D converter

Figure 9-2. Relationship Between the Register File and Data Memory

Register file

Column address

R
ow

 a
dd

re
ss

0

1

2

3

Control register

System register

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Port register

BANK1

Unmounted

Data memory

BANK0

Port register

CHAPTER 9 REGISTER FILE (RF)

71

9.2.3 Register File Manipulation Instructions

Reading and writing data from and to the register file is done using the window register (WR: address 78H) located

in the system register.

Reading and writing of data is performed using the following dedicated instructions:

PEEK WR, rf: Read the data in the address specified by rf and put it into WR.

POKE rf, WR: Write the data in WR into the address specified by rf.

Below is an example using the PEEK and POKE instructions.

Example RF02 MEM0.82H ; Symbol definition

RF1F MEM0.9FH ; Register file addresses 00H to 3FH must be defined with

RF53 MEM0.53H ; symbols as BANK0 addresses 80H to BFH.

RF6D MEM0.6DH ; See 9.4 NOTES CONCERNING USE OF THE REGISTER FILE

RF70 MEM1.70H ; for details.

RF71 MEM1.71H ;

BANK0

1 PEEK WR, RF02 ;

2 POKE RF1F, WR ;

3 PEEK WR, RF53 ;

4 POKE RF6D, WR ;

BANK1 ;

5 PEEK WR, RF02 ;

6 POKE RF1F, WR ;

7 PEEK WR, RF70 ;

8 POKE RF72, WR ;

Figure 9-3 shows an example of register file operation.

As shown in Figure 9-3, reading and writing of data to and from the control register (addresses 00H to 3FH) is

performed using the “PEEK WR, rf” and “POKE rf, WR” instructions. Data within the control register specified using

rf can be read from and written to the control register, only by using these instructions with the window register.

The fact that the register file overlaps with data memory in addresses 40H to 7FH has the following effect: When

a “PEEK WR, rf” or “POKE rf, WR” instruction is executed, the effect is the same as if they were being executed on

the data memory address (in the current bank) specified by rf.

Addresses 40H to 7FH of the register file can be operated by normal memory manipulation instructions.

CHAPTER 9 REGISTER FILE (RF)

72

Figure 9-3. Accessing the Register File Using the PEEK and POKE Instructions

9.3 CONTROL REGISTER

Figure 9-4 shows the configuration of the control register.

As shown in Figure 9-4, the control register consists of 64 nibbles (64 ✕ 4 bits) allocated in register file addresses

00H to 3FH.

However, only 26 nibbles are actually used. The remaining 38 nibbles are allocated for registers which have not

yet been implemented. Data should not be read from or written to this area.

There are two types of registers, both of which occupy one nibble of memory. One type is read/write

(R/W), and the other is read-only (R).

Note that within the read/write (R/W) flags, there exists a flag that will always be read as 0.

The following read/write (R/W) flags are those flags which will always be read as 0:

WR

0 1 2 3 4 5 6 7 8 9 A B C D E F
0

1

2

3

4

5

6

7

0

3

1

2

3

4

5

6

7

BANK0

3 PEEK WR, RF53

8 POKE RF72, WR
7 PEEK WR, RF70

4 POKE RF6D, WR

BANK1
Unmounted

System register

1

POKE RF1F, WR
Control register

Register file for BANK0

Register file for BANK1

R
ow

 a
dd

re
ss

Column address

Data memory

5

2 6

PEEK WR, RF02

CHAPTER 9 REGISTER FILE (RF)

73

• WDTRES (RF: 03H, bit 3)

• WDTEN (RF: 03H, bit 0)

• TM0RES (RF: 11H, bit 2)

• TM1RES (RF: 12H, bit 2)

• BTMRES (RE: 13H, bit 2)

• ADCSTRT (RF: 20H, bit 0)

Within the four bits of data in a nibble, there are bits which are fixed at 0 and will therefore always be read as 0.

These bits remain fixed at 0 even when an attempt is made to write to them.

Attempting to read data in the unused register address area (38 nibbles) will yield unpredictable values. In addition,

attempting to write to this area has no effect.

9.4 NOTES CONCERNING USE OF THE REGISTER FILE

9.4.1 Notes Concerning Operation of the Control Register (Read-Only and Unused Registers)

It is necessary to take note of the following notes concerning device operation and use of the 17K Series assembler

(AS17K) and in-circuit emulator (IE-17K or IE-17K-ET) with regard to the read-only (R) and unused registers in the

control register (register file addresses 00H to 3FH).

(1) Device operation

Writing to a read-only register has no effect.

Attempting to read data from an address in the unused data area will yield an undefined value. Attempting

to write to an address in the unused data area has no effect.

(2) During use of the assembler (AS17K)

An error will be generated if an attempt is made to write to a read-only register.

An error will also be generated if an attempt is made to read from or write to an address in the unused data

area.

(3) During use of the in-circuit emulator (IE-17K or IE-17K-ET) (operation during patch processing and

similar operations)

Attempting to write to a read-only register has no effect. No error is generated.

Attempting to read data from an address in the unused data area will yield an undefined value. Attempting

to write to an address in the unused data area has no effect. No errors are generated.

9.4.2 Register File Symbol Definitions and Reserved Words

Attempting to use a numerical value in a 17K Series assembler (AS17K) to specify a register file address in the

rf operand of the “PEEK WR, rf” or “POKE rf, WR” instructions will cause an error to be generated.

Therefore, as shown in Example 1, register file addresses need to be defined beforehand as symbols.

Example 1. Case which causes an error to be generated

PEEK WR, 02H ;

POKE 21H, WR ;

Case in which no error is generated

RF71 MEM0.71H ; Symbol definition

PEEK WR, RF71 ;

CHAPTER 9 REGISTER FILE (RF)

74

Caution should especially be taken with regard to the following point:

• When using a symbol to define the control register as an address in data memory, it needs to be defined

as addresses 80H to BFH of BANK0.

Since the control register is manipulated using the window register, any attempt to manipulate the control register

other than by using the “PEEK” and “POKE” instructions needs to cause an error in the assembler.

However, note that any address in the area of the register file overlapping with data memory (addresses 40H to

7FH) can be defined as a symbol in the same manner as with normal data memory.

An example is given below.

Example 2. RF71 MEM 1.71H ; Register file overlapping with data memory

RF02 MEM 0.82H ; Control register

BANK0

PEEK WR, RF71 ; RF71 becomes address 71H in BANK0.

PEEK WR, RF02 ; RF02 becomes address 02H in the control register.

BANK1

PEEK WR, RF71 ; RF71 becomes address 71H in BANK1.

PEEK WR, RF02 ; RF02 becomes address 02H in the control register.

The assembler (AS17K) has the below flag symbol manipulation instructions defined internally as macros.

SETn : Set a flag to 1

CLRn : Reset a flag to 0

SKTn : Skip when all flags are 1

SKFn : Skip when all flags are 0

NOTn : Invert a flag

INITFLG : Initialize a flag

By using these embedded macro instructions, the contents of the register file can be manipulated in 1-bit unit.

Due to the fact that most of control register consists of 1-bit flags, the assembler (AS17K) has reserved words for

use with these flags.

However, note that there is no reserved word for the stack pointer for its use as a flag. The only reserved word

used for the stack pointer is the reserved word “SP”, for its use as data memory. For this reason, none of the above

flag manipulation instructions can be used with the stack pointer.

CHAPTER 9 REGISTER FILE (RF)

75

Figure 9-4. Control Register Configuration (1/2)

Remark The address in parentheses apply when the AS17K assembler is used.

The names of all the flags in the control registers are assembler reserved words saved in the device

file. Using these reserved words is useful in programming. (See CHAPTER 20 ASSEMBLER

RESERVED WORDS.)

0 1 2 3 4 5 6 7

Column address

Row
address Item

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

R/W R/W R/W

R/W R/W R/WR/W

R/W R/WR/W R

P
D
R
E
S
E
N

0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

T
M
0
E
N

T
M
0
R
E
S

T
M
0
C
K
0

T
M
1
E
N

T
M
1
R
E
S

T
M
1
C
K
0

B
T
M
I
S
E
L

B
T
M
R
E
S

B
T
M
C
K
1

B
T
M
C
K
0

T
M
1
C
K
1

T
M
0
C
K
1

A
D
C
S
T
R
T

0 0 0

A
D
C
S
O
F
T

A
D
C
C
M
P

0

A
D
C
E
N
D

A
D
C
C
H
3

A
D
C
C
H
2

A
D
C
C
H
1

A
D
C
C
H
0

S
P

S
I
O
T
S

S
I
O
H
I
Z

S
I
O
C
K
1

S
I
O
C
K
0

0 0 0

W
D
T
R
E
S

W
D
T
E
N

0
(8)

1
(9)

2
(A)

3
(B)

CHAPTER 9 REGISTER FILE (RF)

76

Figure 9-4. Control Register Configuration (2/2)

Note The value of the INT flag changes every moment according to the status of the INT pin.

8 9 A B C D E F

R/W R/W R/WR/W

P
0
C
0
I
D
I

0 0 0 0 0 0 0 0 0 0 0 0

P
0
C
B
I
O
0

Z
C
R
O
S
S

R/WR/W

0 0 0 0 0 0 0 0 0 0 0 1

I
R
Q
S
I
O

R/WR/W

S
I
O
E
N

0 0 0 0 0 0 0 0 0 0 0 Note

P
0
B
G
P
U

R/W R/WR/WR/W

P
0
D
B
I
O
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

I
P
S
I
O

R

T
M
0
O
S
E
L

P
0
A
G
P
U

I
N
T

0 0 0 0

I
E
G
M
D
0

I
E
G
M
D
1

000

P
0
C
1
I
D
I

P
0
C
B
I
O
1

P
0
C
2
I
D
I

P
0
C
B
I
O
2

P
0
C
3
I
D
I

P
0
C
B
I
O
3

0 0

I
P
B
T
M

I
P
T
M
1

I
P
T
M
0

I
P

R/W R/WR/W

00

0

P
0
D
B
I
O
1

P
0
D
B
I
O
2

P
0
D
B
I
O
3

P
0
A
G
I
O

P
0
B
G
I
O

P
1
A
G
I
O

0

00

I
R
Q
B
T
M

000

I
R
Q
T
M
1

000

0 0 0 0

I
R
Q
T
M
0

000

0 0 0 0

I
R
Q

000

0000 00 0

CHAPTER 10 DATA BUFFER (DBF)

The data buffer consists of four nibbles allocated in addresses 0CH to 0FH in BANK0.

The data buffer acts as a data storage area for the CPU peripheral circuit (address register, serial interface, timer

0, timer1, basic internal timer, and A/D converter) through use of the GET and PUT instructions. It also acts as data

storage used for receiving and transferring data. By using the MOVT, DBF, and @AR instructions, fixed data in

program memory can be read into the data buffer.

10.1 DATA BUFFER CONFIGURATION

Figure 10-1 shows the allocation of the data buffer in data memory.

As shown in Figure 10-1, the data buffer is allocated in address locations 0CH to 0FH in BANK0 and consists of

a total of 16 bits (4 × 4 bits).

Figure 10-1. Allocation of the Data Buffer

Figure 10-2 shows the configuration of the data buffer. As shown in Figure 10-2, the data buffer is made up of

16 bits with its LSB in bit 0 of address 0FH and its MSB in bit 3 of address 0CH.

Figure 10-2. Data Buffer Configuration

Because the data buffer is allocated in data memory, it can be used in any of the data memory manipulation

instructions.

0 1 2 3 4 5 6 7 8 9 A B C

Data buffer
(DBF)

E F

0

1

2

3

4

5

6

7

Column address

Data memory

System register (SYSREG)

R
ow

 a
dd

re
ss

D

BANK0

b3 b2 b1 b0b3 b2 b1 b0

0DH0CHAddress

Data

Data buffer

b3 b2 b1 b0b3 b2 b1 b0

0FH0EH

b11 b10 b9 b8b15 b14 b13 b12 b3 b2 b1 b0b7 b6 b5 b4

Data memory

BANK0 Bit

Bit

Symbol

Data

M
S
B

L
S
B

^

^

^

^

DBF3 DBF2 DBF1 DBF0

77

CHAPTER 10 DATA BUFFER (DBF)

78

10.2 FUNCTIONS OF THE DATA BUFFER

The data buffer has two separate functions.

The data buffer is used for data transfer with peripheral hardware. The data buffer is also used for reading constant

data (table reference) in program memory. Figure 10-3 shows the relationship between the data buffer and peripheral

hardware.

Figure 10-3. Relationship Between the Data Buffer and Peripheral Hardware

Data buffer
(DBF)

Internal bus

Constant data

Program memory (ROM)

Peripheral
address

01H

02H

03H

04H

Peripheral hardware

Shift register (SIOSFR)

Timer 0 modulo register
(TM0M)

Timer 1 modulo register
(TM1M)

Address register (AR)40H

A/D converter data register
(ADCR)

45H Timer 0/timer 1 count
register (TM0TM1C)

CHAPTER 10 DATA BUFFER (DBF)

79

10.2.1 Data Buffer and Peripheral Hardware

Table 10-1 shows data transfer with peripheral hardware using the data buffer.

Each unit of peripheral hardware has an individual address (called its peripheral address). By using this peripheral

address and the dedicated instructions GET and PUT, data can be transferred between each unit of peripheral

hardware and the data buffer.

GET DBF, p: Read the data in the peripheral hardware address specified by p into the data buffer (DBF).

PUT p, DBF: Write the data in the data buffer to the peripheral hardware address specified by p.

There are three types of peripheral hardware units: read/write (PUT/GET), write-only (PUT) and read-only (GET).

The following describes what happens when a GET instruction is used with write-only hardware (PUT only) and

when a PUT instruction is used with read-only hardware (GET only).

• Reading (GET) from write-only (PUT only) peripheral hardware will yield an undefined value.

• Writing (PUT) to read-only (GET only) peripheral hardware has no effect (same as a NOP instruction).

Table 10-1. Peripheral Hardware

(1) Peripheral hardware with input/output in 8-bit units

Peripheral Name Peripheral hardware Direction of data Actual

address PUT GET bit length

01H SIOSFR Serial interface 8 bits

02H TM0M Timer 0 × 8 bits

03H TM1M Timer 1 × 8 bits

04H ADCR A/D converter 8 bits

(2) Peripheral hardware with input/output in 16-bit units

Peripheral Name Peripheral hardware Direction of data Actual

address PUT GET bit length

40H AR Address register 10/11 bitsNote

45H TM0TM1C Timer 0/timer 1 count register × 16 bits

Note 10 bits for the µPD17134A and 17135A, and 11 bits for the µPD17136A and 17137A.

CHAPTER 10 DATA BUFFER (DBF)

80

10.2.2 Data Transfer with Peripheral Hardware

Data can be transferred between the data buffer and peripheral hardware in 8- or 16-bit units. Instruction execution

time for a single PUT or GET instruction is the same regardless of whether 8 or 16 bits are being transferred.

Example 1. PUT instruction (when the actual bits in peripheral hardware are the 8 bits from 0 to 7)

When only 8 bits of data are being written from the data buffer, the high-order 8 bits (DBF3, DBF2)

are “don’t care” (any value can be written).

2. GET instruction (when the actual bits in peripheral hardware are the 8 bits from 0 to 7)

When 8 bits of data are being read into the data buffer, the values in the high-order 8 bits (DBF3,

DBF2) remain unchanged.

b3 b2 b1 b0b6 b5 b4b7

DBF3 DBF2 DBF1 DBF0
Don’t care Don’t care

b0b7

Actual bits
Data in peripheral

hardware

PUT

Data buffer

b0b7

DBF3 DBF2 DBF1 DBF0
Retained Retained

b0b7

Actual bits
Data in peripheral

hardware

GET

Data buffer

CHAPTER 10 DATA BUFFER (DBF)

81

10.2.3 Table Reference

By using the MOVT instruction, constant data in program memory (ROM) can be read into the data buffer.

The MOVT instruction is explained below.

MOVT DBF, @AR: The contents of the program memory being specified by the address register (AR) is read into

the data buffer (DBF).

DBF3 DBF2 DBF1 DBF0

16 bits

MOVT DBF, @AR

Data buffer

b15

Program memory (ROM)

b0

[MEMO]

82

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

The ALU is used for performing arithmetic operations, logical operations, bit judgements, comparison judgements,

and rotations on 4-bit data.

11.1 ALU BLOCK CONFIGURATION

Figure 11-1 shows the configuration of the ALU block.

As shown in Figure 11-1, the ALU block consists of the main 4-bit data processor, temporary registers A and B

which are peripheral circuit of the ALU, the status flip-flop for controlling the status of the ALU, and the decimal

correction circuit for use during arithmetic operations in BCD.

As shown in Figure 11-1, the status flip-flop consists of the following flags: Zero flag FF, carry flag FF, compare

flag FF, and the BCD flag FF.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD: addresses

7EH, 7FH) in the system register. The flags in the program status word are the following: Zero flag (Z), carry flag

(CY), compare flag (CMP), and the BCD flag (BCD).

11.2 FUNCTIONS OF THE ALU BLOCK

Arithmetic operations, logical operations, bit judgements, comparison judgements, and rotations are performed

using the instructions in the ALU block. Table 11-1 lists each arithmetic/logical instruction, judgement instruction, and

rotation instruction.

By using the instructions listed in Table 11-1, 4-bit arithmetic/logical operations, judgements and rotations can be

performed in a single instruction. Arithmetic operations in decimal can also be performed in a single instruction.

11.2.1 Functions of the ALU

The arithmetic operations consist of addition and subtraction. Arithmetic operations can be performed on the

contents of the general register and data memory or on immediate data and the contents of data memory. Operations

in binary are performed on 4 bits of data and operations in decimal are performed on one place (BCD operation).

Logical operations include ANDing, ORing, and XORing. Their operands can be general register contents and data

memory contents, or data memory contents and immediate data.

Bit judgement is used to determine whether bits in 4-bit data in data memory are 0 or 1.

Comparison judgement is used to compare contents of data memory with immediate data. It is used to determine

whether one value is equal to or greater than the other, less than the other, or if both values are equal or not equal.

Rotation is used to shift 4-bit data in the general register one bit in the direction of its least significant bit (rotation

to the right).

83

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

84

Figure 11-1. ALU Configuration

Data bus

Temporary
register A

Temporary
register B

Status
flip-flop

ALU
• Arithmetic operations
• Logical operations
• Bit judgement
• Comparison
 judgement
• Rotations

Decimal
correction circuit

7EH

b0

BCD

b3 b2 b1 b0

CMP CY Z IXE

7FH

Program status word

(PSWORD)

Address

Name

Bit

Flag

Status flip-flop

BCD

flag

FF

CMP

flag

FF

CY

flag

FF

Z

flag

FF

Function outline

Indicates when the result of an arithmetic

operation is 0.

Stores the borrow or carry from an

arithmetic operation.

Used to indicate whether to store the result

of an arithmetic operation.

Used to indicate whether to perform

decimal correction for arithmetic operations.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

85

[MEMO]

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

86

Table 11-1. List of ALU Instructions (1/2)

ALU function Instruction Operation Explanation

Arithmetic Addition ADD r, m (r) ← (r) + (m) Adds contents of general register and data memory.

operations Result is stored in general register.

ADD m, #n4 (m) ← (m) + n4 Adds immediate data to contents of data memory.

Result is stored in data memory.

ADDC r, m (r) ← (r) + (m) + CY Adds contents of general register, data memory and carry

flag. Result is stored in general register.

ADDC m, (m) ← (m) + n4 + CY Adds immediate data, contents of data memory and carry

#n4 flag. Result is stored in data memory.

Subtraction SUB r, m (r) ← (r) – (m) Subtracts contents of data memory from contents of general

register. Result is stored in general register.

SUB m, #n4 (m) ← (m) – n4 Subtracts immediate data from data memory.

Result is stored in data memory.

SUBC r, m (r) ← (r) – (m) – CY Subtracts contents of data memory and carry flag from

contents of general register. Result is stored in general

register.

SUBC m, (m) ← (m) – n4 – CY Subtracts immediate data and carry flag from data memory.

#n4 Result is stored in data memory.

Logical Logical OR r, m (r) ← (r) v (m) OR operation is performed on contents of general register

operations OR and data memory. Result is stored in general register.

OR m, #n4 (m) ← (m) v n4 OR operation is performed on immediate data and contents

of data memory. Result is stored in data memory.

Logical AND r, m (r) ← (r) (m) AND operation is performed on contents of general register

AND and data memory. Result is stored in general register.

AND m, #n4 (m) ← (m) n4 AND operation is performed on immediate data and contents

of data memory. Result is stored in data memory.

Logical XOR r, m (r) ← (r) v (m) XOR operation is performed on contents of general register

XOR and data memory. Result is stored in general register.

XOR m, #n4 (m) ← (m) v n4 XOR operation is performed on immediate data and contents

of data memory. Result is stored in data memory.

Bit True SKT m, #n CMP ← 0, if (m) n=n, Skips next instruction if all bits in data memory specified by

Judgement then skip n are TRUE (1). Result is not stored.

False SKF m, #n CMP ← 0, if (m) n=0, Skips next instruction if all bits in data memory specified by

then skip n are FALSE (0). Result is not stored.

Comparison Equal SKE m, #n4 (m) – n4, skip if zero Skips next instruction if immediate data equals contents of

judgement data memory. Result is not stored.

Not equal SKNE m, (m) – n4, skip if not Skips next instruction if immediate data is not equal to

#n4 zero contents of data memory. Result is not stored.

≥ SKGE m, (m) – n4, skip if not Skips next instruction if contents of data memory is greater

#n4 borrow than or equal to immediate data. Result is not stored.

< SKLT m, (m) – n4, skip if Skips next instruction if contents of data memory is less

#n4 borrow than immediate data. Result is not stored.

Rotation Rotate to RORC r Rotate contents of the general register along with the CY

the right flag to the right. Result is stored in general register.

v

v

CY→(r)b3→(r)b2→(r)b1→(r)b0

v

v

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

87

Table 11-1. List of ALU Instructions (2/2)

ALU Function Difference in operation because of program status word (PSWORD)

Arithmetic

operation

Logical

operation

Bit judgement

Comparison

Rotation

Dont’care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Dont’care Reset Not affected Don’t care Don’t care Executed

(retained) (retained) (retained)

Dont’care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Dont’care Don’t care Not affected Value of b0 of Don’t care Executed

(retained) (retained) general register (retained)

Value of Value of Operation CY flag Z flag Modification

BCD flag CMP flag when IXE = 1

0 0 Binary operation. Set if operation result is 0000B; Executed

Result is stored. otherwise, reset

0 1 Binary operation. Retains status if operation result

Result is not stored. is 0000B; otherwise, reset

1 0 BCD operation. Set if operation result is 0000B;

Result is stored. otherwise, reset

1 1 BCD operation. Retains status if operation result

Result is not stored. is 0000B; otherwise, reset

Set when

carry or

borrow

occurs;

otherwise,

reset

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

–
– – –

–
– –

–
–

–
–

–
–

–
–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–
–

–
–

–
–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

–
–

– –
–

–

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

88

11.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are needed for processing of 4-bit data at a time. These registers are used for

temporary storage of the first and second data operands of an instruction.

11.2.3 Functions of the Status Flip-flop

The status flip-flop is used for controlling operation of the ALU and for storing data which has been processed. Each

flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD) located in the system

register. This means that when a flag in the system register is manipulated it is the same as manipulating a flag in

the status flip-flop. Each flag in the program status word is described below.

(1) Z flag

This flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0). However, depending

on the status of the CMP flag, the conditions which cause this flag to be set (1) can be changed.

(i) When CMP = 0

Z flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0).

(ii) When CMP = 1

The previous state is maintained when the result of an arithmetic operation is 0000B, otherwise it is reset

(0). Only affected by arithmetic operations.

(2) CY flag

This flag is set (1) when a carry or borrow is generated as a result of an arithmetic operation, otherwise it is reset

(0).

When an arithmetic operation is being performed using a carry or borrow, the operation is performed using the

CY flag as the least significant bit.

When a rotation (RORC instruction) is performed, the contents of the CY flag becomes the most significant bit

(b3) of the general register and the least significant bit of the general register is stored in the CY flag.

Only affected by arithmetic operations and rotations.

(3) CMP flag

When the CMP flag is set (1), the result of an arithmetic operation is not stored in either the general register or

data memory.

When the bit evaluation instruction is performed, the CMP flag is reset (0).

The CMP flag does not affect comparison judgements, logical operations, or rotations.

(4) BCD flag

When the BCD flag is set (1), decimal correction is performed for all arithmetic operations. When the flag is reset

(0), 4-bit binary operation is performed.

The BCD flag does not affect logical operations, bit judgements, comparison judgements, or rotations.

These flags can also be set through direct manipulation of the values in the program status word. At this time,

the corresponding flag in the status flip-flop is also manipulated.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

89

Addition in
BCD

Operation
result

Operation
result

Operation
result Operation

result

Operation
Subtraction in
4-bit binary

Subtraction in
BCD

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1110

1111

1100

1101

1110

1111

1100

1101

1010

1011

1100

1101

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

–16

–15

–14

–13

–12

–11

–10

–9

–8

–7

–6

–5

–4

–3

–2

–1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1100

1101

1110

1111

1100

1101

1110

1111

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

CY CY CY CY

Addition in 4-
bit binary

Operation
result

11.2.4 Operations in 4-Bit Binary

When the BCD flag is set to 0, arithmetic operations are performed in 4-bit binary.

11.2.5 Operations in BCD

When the BCD flag is set to 1, decimal correction is performed for arithmetic operations performed in 4-bit binary.

Table 11-2 shows the differences in the results of operations performed in 4-bit binary and in BCD. When the result

of an addition after decimal correction is equal to or greater than 20, or the result of a subtraction after decimal

correction is outside of the range –10 to +9, a value of 1010B (0AH) or higher is stored as the result (shaded area

in Table 11-2).

Table 11-2. Results of Arithmetic Operations Performed in 4-Bit Binary and BCD

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

90

11.2.6 Operations in the ALU Block

When arithmetic operations, logical operations, bit judgements, comparison judgements or rotations in a program

are executed, the first data operand is stored in temporary register A and the second data operand is stored in

temporary register B.

The first data operand is 4-bit data used to specify the contents of an address in the general register or data memory.

The second data operand is 4-bit data used to either specify the contents of an address in data memory or to be used

as an immediate value. For example, in the instruction

ADD r, m

Second operand

First operand

the first operand, r, is used to specify the contents of an address in the general register. The second operand, m,

is used to specify the contents of an address in data memory. In the instruction

ADD m, #n4

the first operand, m, is used to specify an address in data memory. The second operand, #n4, is immediate data.

In the rotation instruction

RORC r

only the first operand, r (used to specify the contents of an address in the general register) is used.

Next, using the data stored in temporary registers A and B, the ALU executes the operation specified by the

instruction (arithmetic operation, logical operation, bit judgement, comparison judgement, or rotation). When the

instruction being executed is an arithmetic operation, logical operation, or rotation, the data processed by the ALU

is stored in the location specified by the first operand (general register address or data memory address) and the

operation terminates. When the instruction being executed is a bit judgement or comparison judgement, the result

processed by the ALU is used to determine whether or not to skip the next instruction (whether to treat next instruction

as a NOP instruction) and the operation terminates.

Caution should be taken with regard to the following points:

(1) Arithmetic operations are affected by the CMP and BCD flags in the program status word.

(2) Logical operations are not affected by the CMP or BCD flag in the program status word. Logical operations

do not affect the Z or CY flags.

(3) Bit judgement causes the CMP flag in the program status word to be reset.

(4) When an arithmetic operation, logical operation, bit judgement, comparison judgement, or rotation is being

executed and the IXE flag in the program status word is set (1), address modification is performed using the

index register.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

91

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD)

As shown in Table 11-3, arithmetic operations consist of addition, subtraction, addition with carry, and subtraction

with borrow. These instructions are ADD, ADDC, SUB, and SUBC.

The ADD, ADDC, SUB, and SUBC instructions are further divided into addition and subtraction of the general

register and data memory and addition and subtraction of data memory and immediate data. When the operands

r and m are used, addition or subtraction is performed using the general register and data memory. When the operands

m and #n4 are used, addition or subtraction is performed using data memory and immediate data.

Arithmetic operations are affected by the status flip-flop and the program status word (PSWORD) in the system

register. The BCD flag in the program status word is used to specify whether arithmetic operations are to be performed

in 4-bit binary or in BCD. The CMP flag is used to specify whether or not the results of arithmetic operations are to

be stored.

11.3.1 to 11.3.4 explain the relationship between each command and the program status word.

Table 11-3. Types of Arithmetic Operations

11.3.1 Addition and Subtraction When CMP = 0 and BCD = 0

Addition and subtraction are performed in 4-bit binary and the result is stored in the general register or data memory.

When the result of the operation is greater than 1111B (carry generated) or less than 0000B (borrow generated),

the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the Z flag is set (1) regardless of whether there is carry or borrow;

otherwise it is reset (0).

11.3.2 Addition and Subtraction When CMP = 1 and BCD = 0

Addition and subtraction are performed in 4-bit binary.

However, because the CMP flag is set (1), the result of the operation is not stored in either the general register

or data memory.

When there is a carry or borrow in the result of the operation, the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the previous state of the Z flag is retained; otherwise it is reset (0).

General register and data memory ADD r, m

Data memory and immediate data ADD m, #n4

General register and data memory ADDC r, m

Data memory and immediate data ADDC m, #n4

General register and data memory SUB r, m

Data memory and immediate data SUB m, #n4

General register and data memory SUBC r, m

Data memory and immediate data SUBC m, #n4

Without carry ADD

With carry ADDC

Without borrow SUB

With borrow SUBC

Addition

Subtraction

Arithmetic

operation

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

92

11.3.3 Addition and Subtraction When CMP = 0 and BCD = 1

BCD operations are performed.

The result of the operation is stored in the general register or data memory. When the result of the operation is

greater than 1001B (9D) or less than 0000B (0D), the carry flag is set (1), otherwise it is reset (0).

When the result of the operation is 0000B (0D), the Z flag is set (1), otherwise it is reset (0).

Operations in BCD are performed by first computing the result in binary and then by using the decimal correction

circuit to convert the result to decimal. For information concerning the binary to decimal conversion, see Table

11-2.

In order for operations in BCD to be performed properly, note the following:

(1) Result of an addition must be in the range 0D to 19D.

(2) Result of a subtraction must be in the range 0D to 9D, or in the range –10D to –1D.

The following shows which value is considered the CY flag in the range 0D to 19D (shown in 4-bit binary):

0, 0000B to 1, 0011B

CY CY

The following shows which value is considered the CY flag in the range –10D to –1D (shown in 4-bit binary):

1, 0110B to 1, 1111B

CY CY

When operations in BCD are performed outside of the limits of (1) and (2) stated above, the CY flag is set (1) and

the result of operation is output as a value greater than or equal to 1010B (0AH).

11.3.4 Addition and Subtraction When CMP = 1 and BCD = 1

BCD operations are performed.

The result is not stored in either the general register or data memory.

In other words, the operations specified by CMP = 1 and BCD = 1 are both performed at the same time.

Example MOV RPL, #0001B ; Sets the BCD flag (BCD = 1).

MOV PSW, #1010B ; Sets the CMP and Z flag (CMP = 1, Z = 1) and resets the CY flag

; (CY = 0).

SUB M1, #0001B ; (1)

SUBC M2, #0010B ; (2)

SUBC M3, #0011B ; (3)

By executing the instructions in steps numbered (1), (2), and (3), the 12 bits in memory locations M1,

M2, and M3 and the immediate data (321) can be compared in decimal.

11.3.5 Notes Concerning Use of Arithmetic Operations

When performing arithmetic operations with the program status word (PSWORD), caution should be taken with

regard to the result of the operation being stored in the program status word.

Normally, the CY and Z flags in the program status word are set (1) or reset (0) according to the result of the

arithmetic operation being executed. However, when an arithmetic operation is performed on the program status word

itself, the result is stored in the program status word. This means that there is no way to determine if there is a carry

or borrow in the result of the operation nor if the result of the operation is zero.

However, when the CMP flag is set (1), results of arithmetic operations are not stored. Therefore, even in the above

case, the CY and Z flags will be properly set (1) or reset (0) according to the result of the operation.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

93

11.4 LOGICAL OPERATIONS

As shown in Table 11-4, logical operations consist of logical OR, logical AND, and logical XOR. Accordingly, the

logical operation instructions are OR, AND, and XOR.

The OR, AND, and XOR instructions can be performed on either the general register and data memory, or on data

memory and immediate data. The operands of these instructions are specified in the same way as for arithmetic

operations (“r, m” or “m, #n4”).

Logical operations are not affected by the BCD or CMP flags in the program status word (PSWORD). Logical

operations do not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when

the index enable flag (IXE) is set (1), index modification is performed using the index register.

Table 11-4. Logical Operations

Table 11-5. Table of True Values for Logical Operations

Logical AND

C = A AND B

A

0

0

1

1

Logical OR

C = A OR B

Logical XOR

C = A XOR B

A

0

0

1

1

B

0

1

0

1

C

0

0

0

1

B

0

1

0

1

C

0

1

1

1

A

0

0

1

1

B

0

1

0

1

C

0

1

1

0

General register and data memory OR r, m

Data memory and immediate data OR m, #n4

General register and data memory AND r, m

Data memory and immediate data AND m, #n4

General register and data memory XOR r, m

Data memory and immediate data XOR m, #n4

Logical

operation

Logical OR

Logical AND

Logical XOR

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

94

11.5 BIT JUDGEMENTS

As shown in Table 11-6, there are both TRUE (1) and FALSE (0) bit judgement instructions.

The TRUE (1) and FALSE (0) bit judgements use SKT and SKF instruction, respectively

The SKT and SKF instructions can only be used with data memory.

Bit judgements are not affected by the BCD flag in the program status word (PSWORD) and bit judgements do

not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when an SKT or SKF

instruction is executed, the CMP flag is reset (0). When the index enable flag (IXE) is set (1), index modification is

performed using the index register. For information concerning index modification using the index register, see

CHAPTER 7 SYSTEM REGISTER (SYSREG).

11.5.1 and 11.5.2 explain TRUE (1) and FALSE (0) bit judgements.

Table 11-6. Bit Judgement Instructions

11.5.1 TRUE (1) Bit Judgement

The TRUE (1) bit judgement instruction (SKT m, #n) is used to determine whether or not the bits specified by n

in the 4 bits of data memory m are TRUE (1). When all bits specified by n are TRUE (1), this instruction causes the

next instruction to be skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; (1)

BR A

BR B

SKT M1, #1101B ; (2)

BR C

BR D

In this example, bits 3, 1, and 0 of data memory M1 are judged in step number (1). Because all the

bits are TRUE (1), the program branches to B. In step number (2), bits 3, 2, and 0 of data memory

M1 are judged. Since bit 2 of data memory M1 is FALSE (0), the program branches to C.

TRUE (1) bit judgement

SKT m, #n

FALSE (0) bit judgement

SKF m, #n

Bit judgement

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

95

11.5.2 FALSE (0) Bit Judgement

The FALSE (0) bit judgement instruction (SKF m, #n) is used to determine whether or not the bits specified by n

in the 4 bits of data memory m are FALSE (0). When all bits specified by n are FALSE (0), this instruction causes

the next instruction to be skipped.

Example MOV M1, #1001B ;

SKF M1, #0110B ; (1)

BR A ;

BR B ;

SKF M1, #1110B ; (2)

BR C ;

BR D ;

In this example, bits 2 and 1 of data memory M1 are judged in step number (1). Because both bits

are FALSE (0), the program branches to B. In step number (2), bits 3, 2, and 1 of data memory M1

are judged. Since bit 3 of data memory M1 is TRUE (1), the program branches to C.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

96

11.6 COMPARISON JUDGEMENTS

As shown in Table 11-7, there are comparison judgement instructions for determining if one value is “equal to”,

“not equal to”, “greater than or equal to”, or “less than” another.

The SKE instruction is used to determine if two values are equal. The SKNE instruction is used to determine two

values are not equal. The SKGE instruction is used to determine if one value is greater than or equal to another and

the SKLT instruction is used to determine if one value is less than another.

The SKE, SKNE, SKGE, and SKLT instructions perform comparisons between a value in data memory and

immediate data. In order to compare values in the general register and data memory, a subtraction instruction is

performed according to the values in the CMP and Z flags in the program status word (PSWORD). For more

information concerning comparison of the general register and data memory, see 11.3 ARITHMETIC OPERATIONS .

Comparison judgements are not affected by the BCD or CMP flags in the program status word (PSWORD) and

comparison judgements do not cause either the CY or Z flags in the program status word (PSWORD) to be set.

11.6.1 to 11.6.4 explain the “equal to”, “not equal to”, “greater than or equal to”, and “less than” comparison

evaluations.

Table 11-7. Comparison Judgement Instructions

11.6.1 “Equal to” Judgement

The "equal to" judgement instruction (SKE m, #n4) is used to determine if immediate data and the contents of a

location in data memory are equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data memory

are equal.

Example MOV M1, #1010B

SKE M1, #1010B ; (1)

BR A

BR B

;

SKE M1, #1000B ; (2)

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1010B in step number

(1) are equal, the program branches to B. In step number (2), because the contents of data memory

M1 and immediate data 1000B are not equal, the program branches to C.

Equal to

SKE m, #n4

Not equal to

SKNE m, #n4

Greater than or equal to

SKGE m, #n4

Less than

SKLT m, #n4

Comparison

judgement

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

97

11.6.2 “Not Equal to” Judgement

The “not equal to” judgement instruction (SKNE m, #n4) is used to determine if immediate data and the contents

of a location in data memory are not equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data memory

are not equal.

Example MOV M1, #1010B

SKNE M1, #1000B ; (1)

BR A

BR B

;

SKNE M1, #1010B ; (2)

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1000B in step number

(1) are not equal, the program branches to B. In step number (2), because the contents of data memory

M1 and immediate data 1010B are equal, the program branches to C.

11.6.3 “Greater Than or Equal to” Judgement

The “greater than or equal to” judgement instruction (SKGE m, #n4) is used to determine if the contents of a location

in data memory is a value greater than or equal to the value of the immediate data operand. If the value in data memory

is greater than or equal to that of the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKGE M1, #0111B ; (1)

BR A

BR B

;

SKGE M1, #1000B ; (2)

BR C

BR D

;

SKGE M1, #1001B ; (3)

BR E

BR F

In this example, the program will first branch to B since the value in data memory is larger than that

of the immediate data. Next it will branch to D since the value in data memory is equal to that of the

immediate data. Last it will branch to E since the value in data memory is less than that of the immediate

data.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

98

11.6.4 “Less Than” Judgement

The “less than” judement instruction (SKLT m, #n4) is used to determine if the contents of a location in data memory

is a value less than that of the immediate data operand. If the value in data memory is less than that of the immediate

data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKLT M1, #1001B ; (1)

BR A

BR B

;

SKLT M1, #1000B ; (2)

BR C

BR D

;

SKLT M1, #0111B ; (3)

BR E

BR F

In this example, the program will first branch to B since the value in data memory is less than that of

the immediate data. Next it will branch to C since the value in data memory is equal to that of the

immediate data. Last it will branch to E since the value in data memory is greater than that of the

immediate data.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

99

11.7 ROTATIONS

There are rotation instructions for rotation to the right and for rotation to the left.

The RORC instruction is used for rotation to the right.

The RORC instruction can only be used with the general register.

Rotation using the RORC instruction is not affected by the BCD or CMP flags in the program status word (PSWORD)

and does not affect the Z flag in the program status word (PSWORD).

Rotation to the left is performed by using the addition instruction ADDC.

11.7.1 and 11.7.2 explain rotation.

11.7.1 Rotation to the Right

The instruction used for rotation to the right (RORC r) rotates the contents of the general register in the direction

of its least significant bit.

When this instruction is executed, the contents of the CY flag becomes the most significant bit of the general register

(bit 3) and the least significant bit of the general register is placed in the CY flag.

Example 1. MOV PSW, #0100B ; Sets CY flag to 1.

MOV R1, #1001B

RORC R1

When these instructions are executed, the following operation is performed.

Basically, when rotation to the right is performed, the following operation is executed:

CY flag → b3, b3 → b2, b2 → b1, b1 → b0, b∞ → CY flag.

2. MOV PSW, #0000B ; Resets CY flag to 0.

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

RORC R1

RORC R2

RORC R3

The program code above rotates the 13 bits in R1, R2, and R3 to the right.

1 1 1 0 0

CY flag b3 b2 b1 b0

CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

100

11.7.2 Rotation to the Left

Rotation to the left is performed by using the addition instruction, “ADDC r, m”.

Example MOV PSW, #0000B ; Resets CY flag to 0.

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

SKF CY

OR R3, #0001B

The program code above rotates the 13 bits in R1, R2, and R3 to the left.

CHAPTER 12 PORTS

12.1 PORT 0A (P0A 0, P0A1, P0A2, P0A3)

Port 0A is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/output is specified by P0AGIO (bit 0 at address 2CH) in the

register file.

When P0AGIO is 0, all pins of port 0A are used as input port. If a read instruction is executed for the port register,

pin statuses are read.

When P0AGIO is 1, all pins of port 0A are used as output port and the contents written in the output latch are output

to pins. If a read instruction is executed when pins are output ports, the contents of the output latch, rather than pin

statuses, are fetched.

Port 0A contains a software-controlled pull-up resistor. P0AGPU (bit 0 at address 0CH) of the register file is used

to determine whether port 0A contains the pull-up resistor. When P0AGPU is 1, all 4-bit pins are pulled up. If P0AGPU

is 0, the pull-up resistor is not contained.

At reset, P0AGIO and P0AGPU are set to 0 and all P0A pins become input ports without a pull-up resistor. The

contents of the port output latch are 0.

Table 12-1. Writing into and Reading from the Port Register (0.70H)

BANK0 70H

Read

P0A pin status

P0A latch contents

Write

Possible

Write to the P0A latch

Input

Output

Pin input/outputP0AGIO

RF: 2CH, bit 0

0

1

101

CHAPTER 12 PORTS

102

12.2 PORT 0B (P0B 0, P0B1, P0B2, P0B3)

Port 0B is a 4-bit input/output port with an output latch. It is mapped into address 71H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/ output is specified by P0BGIO (bit 1 at address 2CH) in the

register file.

When P0BGIO is 0, all pins of port 0B are used as input ports. If a read instruction is executed for the port register,

pin statuses are read.

When P0BGIO is 1, all pins of port 0B are used as output ports. The contents written in the output latch are output

to pins. If a read instruction is executed when pins are used as output ports, the contents of the output latch, rather

than pin statuses, are fetched.

Port 0B contains a software-controlled pull-up resistor. P0BGPU (bit 1 at address 0CH) is used to determine

whether or not port 0B contains a pull-up resistor. When P0BGPU is 1, all 4-bit pins are pulled up. When P0BGPU

is 0, a pull-up resistor is not contained.

At reset, P0BGIO and P0BGPU are 0 and all P0B pins are input ports without a pull-up resistor. The value of the

port 0B output latch is 0.

Table 12-2. Writing into and Reading from the Port Register (0.71H)

BANK0 71H

Read

P0B pin status

P0B latch contents

Input

Output

Pin input/outputP0BGIO

RF: 2CH, bit 1

0

1

Write

Possible

Write to the P0B latch

CHAPTER 12 PORTS

103

12.3 PORT 0C (P0C0/ADC0, P0C1/ADC1, P0C2/ADC2, P0C3/ADC3)

Port 0C is a 4-bit input/output port with an output latch. It is mapped into address 72H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified in 1-bit unit. Input/output can be specified by P0CBIO0 to P0CBIO3 (address 1CH)

in the register file.

If P0CBIOn is 0 (n = 0 to 3), the P0Cn pins are used as input port. If a data read instruction is executed for the

port register, the pin statuses are read. If P0CBIOn is 1 (n = 0 to 3), the P0Cn pins are used as output port and the

contents written in the output latch are output to pins. If a read instruction is executed when pins are used as output

ports, the contents of the latch, rather than pin statuses, are fetched.

At reset, P0CBIO0 to P0CBIO3 are 0 and all P0C pins are input ports. The contents of the port output latch are

0.

Port 0C can also be used as an analog input to the A/D converter. P0C0IDI to P0C3IDI (1BH address) in the register

file are used to switch the port and analog input pin.

If P0CnIDI is 0 (n = 0 to 3), the P0Cn/ADCn pin functions as a port. If P0CnIDI is 1 (n = 0 to 3), the P0Cn/ADCn

pin functions as the analog input pin of the A/D converter.

ADCCH0 and ADCCH1 (bits 1 and 0 at address 22H) in the register file are used to select the input pin for A/D

conversion.

To use P0C pins as A/D converter input pins, set P0CBIOn = 0 so that they are set as input ports. (See 13.3

A/D CONVERTER.)

At reset, P0CBIO0 to P0CBIO3, P0C0IDI to P0C3IDI, ADCCH0, and ADCCH1 are set to 0 and the P0C pins are

used as input ports.

Table 12-3. Switching the Port and A/D Converter

Notes 1. Normal setting when the pins are used as A/D converter analog input pins.

2. Functions as an output port. At this time, the analog input voltage changes affected by the port output.

When using this pin as an analog input pin, be sure to set P0CBIOn to 0.

(n = 0 to 3)

BANK0 72HP0CnIDI

RF: 1BH

Pin status

P0C latch contents

P0C latch contents

P0C latch contents

Input port

Port output

A/D converter analog

inputNote1

Output port and A/D

converter analog inputNote2

0

1

0

1

0

1

P0CBIOn

RF: 1CH
Function

Possible

P0C latch

Possible

P0C latch

Possible

P0C latch

Possible

P0C latch

Write Read

CHAPTER 12 PORTS

104

12.4 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TM0OUT)

Port 0D is a 4-bit input/output port with an output latch. It is mapped into address 73H of BANK0 in data memory.

The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain a pull-up

resistor in 1-bit unit.

Input or output can be specified in 1-bit unit. Input/output is specified with P0DBIO0 to P0DBIO3 (address 2BH)

in the register file.

If P0DBIOn is 0 (n = 0 to 3), the P0Dn pins are used as input port. Pin statuses are read if a data read instruction

is executed for the port register. If P0DBIOn is 1, the P0Dn pins are used as output port and the value written in the

output latch are output to pins. If a data read instruction is executed when pins are used as output ports, the output

latch value, rather than pin statuses, is fetched.

At reset, P0DBIOn is set to 0 and all P0D pins become input ports. The contents of the port output latch become

0. The output latch contents remain unchanged even if P0DBIOn changes from 1 to 0.

Port 0D can also be used for serial interface input/output or timer 0 output. SIOEN (0BH bit 0) in the register file

is used to switch ports (P0D0 to P0D2) to serial interface input/output (SCK, SO, SI) and vice versa. TM0OSEL (bit

3 at address 0BH) in the register file is used to switch a port (P0D3) to timer 0 output (TM0OUT) and vice versa. If

TM0OSEL = 1 is selected, 1 is output at timer 0 reset. This output is inverted every time a timer 0 count value matches

the modulo register contents.

Table 12-4. Register File Contents and Pin Functions

P0D0/SCK P0D1/SO P0D2/SI P0D3/TM0OUT

Input port

Output port

SO

SO

SI

SI

Input port

Output port

Input port

Output port

TM0OUT

SCK

SCK

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Register file value Pin function

TM0OSEL

RF: 0BH

Bit 3

SIOEN

RF: 0BH

Bit 0

P0DBIOn

RF: 2BH

Bit n

(n = 0 to 3)

CHAPTER 12 PORTS

105

Port mode

Input port

Output port

SI

SO

TM0OUT

SCK

Contents read from the port register (0.73H)

Pin status

Output latch contents

Output latch contents

Pin status

Pin status

Not defined

Output latch contents

An internal clock is selected as a shift clock.

An external clock is selected as a shift clock.

BANK1 70H
Pin input/output

(n = 0 to 3)

P1AGIOn

RF: 2CH, bit 2

0

1

Input

Output

Write

Possible

Write to the P1A latch

Read

P1A pin status

P1A latch contents

Table 12-5. Contents Read from the Port Register (0.73H)

Caution Using the serial interface causes the output latch for the P0D 1/SO pin to be affected by the

contents of the SIOSFR (shift register). So, reset the output latch before using the pin as output

port.

12.5 PORT 1A (P1A0, P1A1, P1A2, P1A3)

Port 1A is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANK1 in data memory.

The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain a pull-up

resistor in 1-bit unit.

Input or output can be specified in 4-bit units. Input/output is specified by P1AGIO (bit 2 at address 2CH) in the

register file.

When P1AGIO is 0, each pin of port 1A is used as input port. If a read instruction is executed for the port register,

pin statuses are read. When P1AGIO is 1, each pin of port 1A is used as output port and the contents written in the

output latch are output to pins. If a read instruction is executed when pins are output ports, the contents of the output

latch, rather than pin statuses, are fetched.

At reset, P1AGIO is set to 0 and all P1A pins become input ports. The contents of the port output latch are

0.

Table 12-6. Writing into and Reading from the Port Register (1.70H)

12.6 PORT 1B (P1B 0)

Port 1B is a 1-bit input-dedicated port. It is mapped into address 71H of BANK1 in data memory. The mask option

can be used to specify that pull-up resistors be contained in P1B0 pins.

Port 1B is the input-dedicated port. At reading, only the least significant bit is valid and a value is read into it. At

writing, no value changes. Value 0 is always read into the high-order 3 bits of the port register.

CHAPTER 12 PORTS

106

12.7 PORT CONTROL REGISTER

12.7.1 Input/Output Switching by Group I/O

Ports which switch input/output in 4-bit unit are called group I/O. Port 0A, port 0B, and port 1A are used as group

I/O. The register shown in the figure below is used for input/output switching.

Figure 12-1. Input/Output Switching by Group I/O

Bit 3 Bit 2 Bit 1 Bit 0

0 P1AGIO P0BGIO P0AGIO

R/W

0 0 0 0

0

P0AGIO Function

Sets port 0A to input mode.

1 Sets port 0A to output mode.

Read/write

Initial value when reset

0

P0BGIO Function

Sets port 0B to input mode.

1 Sets port 0B to output mode.

0

P1AGIO Function

Sets port 1A to input mode.

1 Sets port 1A to output mode.

RF: 2CH

Read = R, write = W

CHAPTER 12 PORTS

107

12.7.2 Input/Output Switching by Bit I/O

Ports which switch input/output in 1-bit unit are called bit I/O. Port 0C and port 0D are used as bit I/O. The register

shown in the figure below is used for input/output switching.

Figure 12-2. Port Control Register of Bit I/O (1/2)

Bit 3 Bit 2 Bit 1 Bit 0

P0CBIO3 P0CBIO2 P0CBIO1 P0CBIO0

R/W

0 0 0 0

0

P0CBIO0 Function

Sets P0C0 to input mode.

1 Sets P0C0 to output mode.

Read/write

Initial value when reset

0

P0CBIO1 Function

Sets P0C1 to input mode.

1 Sets P0C1 to output mode.

0

P0CBIO2 Function

Sets P0C2 to input mode.

1 Sets P0C2 to output mode

0

P0CBIO3 Function

Sets P0C3 to input mode.

1 Sets P0C3 to output mode.

RF: 1CH

Read = R, write = W

CHAPTER 12 PORTS

108

Figure 12-2. Port Control Register of Bit I/O (2/2)

Bit 3 Bit 2 Bit 1 Bit 0

P0DBIO3 P0DBIO2 P0DBIO1 P0DBIO0

R/W

0 0 0 0

0

P0DBIO0 Function

Sets P0D0 to input mode.

1 Sets P0D0 to output mode.

Read/write

Initial value when reset

0

P0DBIO1 Function

Sets P0D1 to input mode.

1 Sets P0D1 to output mode.

0

P0DBIO2 Function

Sets P0D2 to input mode.

1 Sets P0D2 to output mode.

0

P0DBIO3 Function

Sets P0D3 to input mode.

1 Sets P0D3 to output mode.

RF: 2BH

Read = R, write = W

CHAPTER 12 PORTS

109

12.7.3 Specifying Pull-Up Resistor Incorporation Using Software

Pull-up resistor incorporation can be specified in 4-bit units using P0AGPU and P0BGPU (address 0CH) in the

register file.

Figure 12-3. Specifying Pull-Up Resistor Incorporation Using Software

Bit 3 Bit 2 Bit 1 Bit 0

P0BGPU P0AGPU

R/W

0 0 0 0

0

P0AGPU Function

Does not contain pull-up

resistor in port 0A.

1

Read/write

Initial value when reset

0

P0BGPU Function

1

RF: 0CH

Read = R, write = W

0 0

Does not contain pull-up

resistor in port 0B.

Contains pull-up resistor in

port 0A.

Contains pull-up resistor in

port 0B.

[MEMO]

110

CHAPTER 13 PERIPHERAL HARDWARE

13.1 8-BIT TIMERS/COUNTERS (TM0 AND TM1)

The µPD17134A subseries has two channels of 8-bit timers/counters: timer 0 (TM0) and timer 1 (TM1).

These two timers can be used in combination as a 16-bit timer by using the count up signal of timer 0 as the count

pulse for timer 1.

These timers are controlled by manipulating the hardware with the PUT/GET instruction and registers in the register

file with the PEEK/POKE instruction.

13.1.1 8-Bit Timers/Counters Configuration

Figure 13-1 shows the configuration of the 8-bit timers/counters. An 8-bit timer/counter consists of an 8-bit count

register, 8-bit modulo register, a comparator that compares the value of the count register and the value of the modulo

register, and a selector that selects a count pulse.

Cautions 1. The modulo register is a write-only register.

2. The count register is a read-only register.

111

CHAPTER 13 PERIPHERAL HARDWARE

112

Figure 13-1. Configuration of the 8-Bit Timer Counters

Data buffer
(DBF)

Internal bus

TM0EN TM0RES TM0CK1 TM0CK0INT TM0OSEL P0DBIO3ZCROSS

2

AC zero cross
detection circuit
control register
(RF : 1DH)

Interrupt
control
register
(RF : 0FH)

Timer 0 mode
register
(RF : 11H)

Serial inter-
face control
register
(RF : 0BH)

Bit I/O port
control
register
(RF : 2BH)

Timer 0 modulo
register (8)
(TM0M)

Latch

D Q

CLK
R

Reset

Selec-
tor

fX/256
fX/64
fX/16

INT

Internal reset

To basic
interval timer

AC zero cross
detection circuit

Clear

IRQTM0
clear signal

Timer 0 count up signal
(To timer 1 and basic
interval timer)

IRQTM0
set signal

P0D3/
TM0OUT

Reset

Match

TM0OUT
F/F

P0DB3

output latch

Data buffer
(DBF)

Internal bus

Timer 1 mode register
(RF : 12H)

TM1EN TM1RES TM1CK1 TM1CK0

2

D

CLK

Q

R

Latch

Reset
Clear

Timer 1
count register (8)

(TM1C)

Timer 1
modulo register (8)

(TM1M)

Timer 1
comparator (8)

Match

fX/512
fX/1024
fX/256

Timer 0 count up

Selector

IRQTM1 set signal

IRQTM1 clear signal
Internal reset

Timer 0
comparator (8)

Timer 0 count
register (8)
(TM0C)

CHAPTER 13 PERIPHERAL HARDWARE

113

Figure 13-2. Timer 0 Mode Register

RF : 11H

Read/write

Initial value when reset

Bit 3

TM0EN

0

Bit 2

TM0RES

0

Bit 1

TM0CK1

0

Bit 0

TM0CK0

0

R/W
Read = R, Write = W

TM0CK1

0

0

1

1

TM0CK0

0

1

0

1

Selects count pulse of timer 0

fX/256

fX/64

fX/16

External clock from INT pin

TM0RES

0

 Resets timer 0

Does not affect timer 0

Resets timer 0 count register and

IRQTM0
1

TM0EN

0

1

 Starts timer 0

Stops counting by timer 0

Starts counting by timer 0

Remark TM0RES is automatically cleared to 0 after it
has been set to 1.
This bit is always 0 when it is read.

Remark TM0EN can be used as a status flag that
detects the counting status of timer 0
(1: counting in progress, 0: counting is stopped).

CHAPTER 13 PERIPHERAL HARDWARE

114

Figure 13-3. Timer 1 Mode Register

RF : 12H

Read/write

Initial value when reset

Bit 3

TM1EN

1

R/W

Bit 2

TM1RES

0

Bit 1

TM1CK1

0

Bit 0

TM1CK0

0

TM1CK1

0

0

1

1

TM1CK0

0

1

0

1

Selects count pulse of timer 1

fX/512

fX/1024

fX/256

Count up signal from timer 0

TM1RES

0

 Resets timer 1

Does not affect timer 1

Resets timer 1 count register and IRQTM

1
1

TM1EN

0

1

 Starts timer 1

Stops counting by timer 1

Starts counting by timer 1

Remark

Remark

TM1EN can be used as a status flag that
detects the counting status of timer 0
(1: counting in progress, 0: counting is stopped).

TM1RES is automatically cleared to 0 after it
has been set to 1. This bit is always 0 when
it is read.

CHAPTER 13 PERIPHERAL HARDWARE

115

13.1.2 Operation of 8-Bit Timers/Counters

(1) Count register

The count register of timers 0 and 1 is an 8-bit up counter whose initial value is 00H, and is incremented each

time a count pulse has been input.

The count register is initialized to 00H in the following cases.

(1) When this product is reset (refer to CHAPTER 17 RESET).

(2) When the contents of the 8-bit modulo register and the value of the count register coincide, and the

comparator generates a coincidence signal.

(3) In the case of timer 0, when “1” is written to TM0RES of the register file.

In the case of timer 1, when “1” is written to TM1RES of the register file.

(2) Modulo register

The modulo register of timers 0 and 1 determines the count value of the count register and its initial value is

set to FFH.

A value is set to the modulo register by using the PUT instruction via DBF (data buffer).

(3) Comparator

The comparator of timers 0 and 1 outputs a coincidence signal when the value of the count register and the

value of the modulo register coincide. If the value of the modulo register is the initial value FFH, for example,

the comparator outputs the coincidence signal when the count register counts 256.

The coincidence signal output from the comparator clears the contents of the count register to 0, and

automatically sets interrupt request flags (IRQTM0 and IRQTM1) to “1”. If the EI instruction (that enables

accepting interrupts) is executed, and if the interrupt enable flags (IPTM0 and IPTM1) are set at this time,

interrupts are accepted. When an interrupt has been accepted, the interrupt request flag (IRQTM0 or IRQTM1)

is cleared to “0”, and program execution branches to a specified interrupt routine.

13.1.3 Selecting Count Pulse

The count pulse for timer 0 is selected by TM0CK0 and TM0CK1.

As the count pulse, a pulse resulting from dividing the system clock (fX) by 256, 64, or 16, or an external count pulse

input from the INT pin can be selected.

At reset, fX/256 is selected as a count pulse because TM0CK0 = 0 and TM0CK1 = 0.

The count pulse for timer 1 is selected by TM1CK0 and TM1CK1.

As the count pulse, a pulse resulting from dividing fX by 1024, 512, or 256, or the count up signal from timer 0 can

be selected.

Timer 1 is also used to generate oscillation stabilization time on power application or at reset. Therefore, the initial

values are TM1CK0 = 0 and TM1CK1 = 0, and fX/512 is selected as the count pulse.

Because TM1EN = 1 as the initial condition, the µPD17134A subseries starts program execution from address

0000H after it has been reset at fX = 8 MHz and after about 16.4 ms (about 65.5 ms at 2 MHz) (refer to CHAPTER

17 RESET).

CHAPTER 13 PERIPHERAL HARDWARE

116

13.1.4 Setting Count Value to Modulo Register

A value is set to the modulo register by using the PUT instruction via DBF (data buffer). The peripheral address

of the modulo register of timer 0 is assigned to 02H, and that of timer 1 is assigned to 03H.

To transfer a value by using the PUT instruction, the data of the low-order 8 bits of DBF (DBF1 and DBF0) are

transferred to the modulo register. Figure 13-4 shows an example of the modulo register of timer 0.

Figure 13-4. Setting Count Value to Modulo Register

Example of setting count value 64H to modulo register of timer 0

CONTDATL DAT 4H ; Assigns CONTDATL to 4H by using symbol definition instruction

CONTDATH DAT 6H ; Assigns CONTDATH to 6H by using symbol definition instruction

MOV DBF0, #CONTDATL ;

MOV DBF1, #CONTDATH ;

PUT TM0M, DBF ; Transfers data by using reserved word “TM0M”

b7

8-bit data

PUT TM0M, DBF

TM0M (peripheral address 02H)

b6 b5 b4 b3 b2 b1 b0

0 1 1 0 0 1 0 0

DBF3 DBF2 DBF1 DBF0

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

Don’t care Don’t care 0 1 1 0 0 1 0 0

Data buffer

Caution The range of the value to that can be set to the modulo register is 01H to FFH. If 00H is set, the

normal count operation is not performed.

The modulo register is a write-only register. Therefore, the set value of the modulo register cannot be read. Even

if the “PUT TM0M, DBF” or “PUT TM1M, DBF” instruction is executed while the 8-bit timer/counter is operating, the

count is operating is not stopped.

CHAPTER 13 PERIPHERAL HARDWARE

117

13.1.5 Reading Value of Count Register

The values of the count registers of timers 0 and 1 are read simultaneously by using the GET instruction via DBF

(data buffer).

The values of the count registers of timers 0 and 1 are assigned to peripheral address 45H. The high-order 8 bits

of this address are assigned to the count value of timer 1, and the low-order 8 bits are assigned to the count value

of timer 0.

The values of the count registers can be read to DBF by using the GET instruction. While the GET instruction is

being executed, the count registers stop counting and hold the current count value. If a count pulse is input to the

timer while the timer is operating and the GET instruction is being executed, the count value is held, the value of the

count register is incremented by one after the GET instruction has been executed, and the timer continues counting.

Therefore, the timer does not count erroneously even if the GET instruction is executed while the timer is operating,

unless two or more count pulses are input to the timer in one instruction cycle.

Figure 13-5. Reading Count Value of Count Register

Example of using GET DBF, TM0TM1C; reserved word DBF and TM0TM1C

when count value of timer 0 is F0H and count value of timer 1 is A4H

Data buffer

DBF3 DBF2 DBF1 DBF0

1 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0

16-bit data

GET DBF, TM0TM1C

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0

TM0TM1C (peripheral address)

Timer 0 count valueTimer 1 count value

CHAPTER 13 PERIPHERAL HARDWARE

118

13.1.6 Setting of Interval Time

The time interval at which the comparator outputs the coincidence signal is determined by the value set to the

modulo register. The set value N of the modulo register is calculated from interval time T [sec] as follows:

T =
N + 1

= (N + 1) × TCP
fCP

N = T × fCP – 1 or N =
T

– 1

(where, N = 1 to 255)

TCP

fCP : Frequency of count pulse [Hz]

TCP : Cycle of count pulse [sec] (1/fCP = resolution)

• Example of calculating count value from interval time and program

• Example of setting 7 ms to timer 1 as interval time (system clock: f X = 8 MHz)

Suppose one wanted to set the interval timer to 7 ms. It is impossible to set an interval time of exactly 7 ms

from an 8-MHz system clock. To set an interval time closest to 7 ms, therefore, calculate the count value

by selecting a count pulse (fX/256, resolution: 32 µs) at which the resolution is maximum.

Example of calculation T = 7 ms, Resolution = 32 µs

N =
T

– 1
(Resolution)

=
7 × 10–3

– 1
32 × 10–6

= 217.75 = 218 (= DAH)

The value of the modulo register at which the interval time is closest to 7 ms is DAH, and the interval time

at that time is 7.008 ms.

Program example

MOV DBF0, #0AH ; Stores DAH to DBF by using reserved words “DBF0” and “DBF1”

MOV DBF1, #0DH ; Storage

PUT TMM, DBF ; Transfers contents of DBF by using reserved word “TMM”

INITFLG TM1EN, TM1RES, TM1CK1, NOT TM1CK0

; Sets TM1EN and TM1RES, sets count pulse of timer 1 to “fX/256”, and starts

; counting, by using embedded macroinstruction “INITFLG”

.
 .

CHAPTER 13 PERIPHERAL HARDWARE

119

13.1.7 Error of Interval Time

The interval time may include an error of up to –1.5 count, especially if the value set value of the modulo register

is low.

(1) Error when count register is cleared to 0 during counting (maximum error: –1 count)

The count register of the 8-bit timer/counter is cleared to 0 when the TMnRES flag is set to 1. However, the

divider circuit that generates a count pulse from the system clock is not reset.

Therefore, an error of 1 cycle of the count pulse may be generated at the first count if the TMnRES flag is set

to 1 and the count value is cleared to 0 during counting. An example of counting where 2 is set to the modulo

register is shown below.

Figure 13-6. Error When Count Register Is Cleared to 0 During Counting

In this example, the coincidence signal must be output each time the count value has reached 3. However,

the coincidence signal is output when the count value reaches 2 for the first time after the count has been

cleared.

The above error also occurs when TMnRES ← 1 at the same time as TMnEN = 1 ← 0.

1 2 0 1 2Count register

Count pulse

Output of coincidence signal

Count cleared (TMnRES ← 0)

2 to 3 counts

CHAPTER 13 PERIPHERAL HARDWARE

120

(b) If counting is started when count pulse is low (error: –1 to –1.5 count)

In this example, the coincidence signal must be output each time the count value has reached 2. However,

the first coincidence signal is output when the count value is 1.5 at maximum or 0.5 at minimum (error: –0.5

to –1.5 count).

The above error also occurs during oscillation stabilization wait time because the timer is also used to generate

the oscillation stabilization wait time.

0 1 0 1Count register

Count pulse

Coincidence signal output

Count starts (TMnEN = 1 ← 0)

2 counts

Coincidence signal output

1 to 1.5 count

(2) Error when counting is started from count stop status (maximum error: –1.5 count)

The count register of the 8-bit timer is cleared to 0 by setting the TMnRES flag to 1. However, the divider circuit

that generates a count pulse from the system clock is not reset.

If the TMnEN flag is set to 1 and counting is started from the count stop status, the timing of the first counting

differs as follows depending on whether the count pulse starts with a low level or a high level.

If count pulse starts with high level: First count at the next rising

If count pulse starts with low level: First count on starting of counting

Therefore, an error of –0.5 to 1.5 count occurs until the coincidence signal is output for the first time after

counting has been started. An example of counting where the modulo register is set to 1 is shown below.

Figure 13-7. Error When Counting Is Started from Count Stop Status

(a) If counting is started when count pulse is high (error: –0.5 to –1 count)

0 10 0Count register

Count pulse

Coincidence signal output

Count starts (TMnEN = 1 ← 0)

2 counts

Coincidence signal output

0.5 to 1 count

1

CHAPTER 13 PERIPHERAL HARDWARE

121

13.1.8 Timer 0 Output

The POD3/TM0OUT pin functions as timer 0 output pin by setting the TM0OSEL flag to “1”. At this time, the value

of P0DBIO3 is irrelevant.

Timer 0 has an internal flip-flop for outputting a coincidence signal. The output of this flip-flop is inverted each time

the comparator has output the coincidence signal. If the TM0OSEL flag is set to “1”, the content of this flip-flop is

output to the P0D3/TM0OUT pin.

The P0D3/TM0OUT pin is an N-ch open-drain output pin and can be connected to a pull-up resistor by mask option.

If the pull-up resistor is not connected, the P0D3/TM0OUT pin goes into a high-impedance state as the initial status.

The internal timer 0 output flip-flop starts operating as soon as TM0EN has been set to 1. To make sure that timer

0 output always starts from the initial status, set TM0RES to 1 and reset the flip-flop before starting counting.

Figure 13-8. Timer 0 Output Setting Register

Bit 3

TM0OSEL

0

Bit 2

0

0

Bit 1

0

0

Bit 0

SIOEN

0

Read/write

Initial value when reset

R/W
Read = R, write = W

RF : 0BH

 Function

P0D0/SCK, P0D1/SO, and P0D2/SI pins

function as port pins.

P0D0/SCK, P0D1/SO, and P0D2/SI pins

function as serial interface pins.

SIOEN

0

1

 Function

P0D3/TM0OUT pin functions as port pin.

P0D3/TM0OUT pin outputs coincidence

signal of timer 0.

TM0OSEL

0

1

Caution This bit is not directly related to output
setting of timer 0.

CHAPTER 13 PERIPHERAL HARDWARE

122

13.2 BASIC INTERVAL TIMER (BTM)

The µPD17134A subseries has a 7-bit basic interval timer.

This basic interval timer has the following functions.

(1) Generates reference time.

(2) Selects and counts wait time when standby mode is released.

(3) Serves as watchdog timer that detects program hang-up.

13.2.1 Basic Interval Timer Configuration

Figure 13-9 shows the configuration of the basic interval timer.

Figure 13-9. Basic Interval Timer Configuration

Remark (1) through (4) in the figure corresponding to the signals in the timing chart in Figure 13-12.

BTM mode
register (RF: 13H)

Watchdog timer
mode register
(RF: 03H)

BTMISEL BTMRES BTMCK1 BTMCK0 WDTRES 0 0 WDTEN

2

Reset

Selector

fX/8192

fX/4096
Timer 0 count up

INT pin (ACZCROSS)

Basic interval timer
(7-bit divider circuit)

Reset

Selector
IRQBTM
set signal

Watchdog
reset signal

R

S

(3)

(2)

Outputs 1 while counting 0 to 7
during count of 0 to 256

fBTM

27

fBTM

26

fBTM

Q1-bit
divider
circuit

1-shot pulse
generation

circuit

Internal bus

(4)
(1)

CHAPTER 13 PERIPHERAL HARDWARE

123

13.2.2 Registers Controlling Basic Interval Timer

The basic interval timer is controlled by the BTM mode register and watchdog timer mode register.

Figures 13-10 and 13-11 show the configuration of the respective registers.

Figure 13-10. BTM Mode Register

Bit 3

BTMISEL

0

Bit 2

BTMRES

0

Bit 1

BTMCK1

0

Bit 0

BTMCK0

0

Read/write

Initial value when reset

R/W

Selects count pulse of BTM

fX/8192

(execution time of 512 instructions)

fX/4096

(execution time of 256 instructions)

Count up of timer 0

INT pin

(information on INT pin that

has gone through AC zero

cross detection circuit when

ZCROSS = 1)

BTMCK1

0

0

1

1

BTMCK0

0

1

0

1

 Resets BTM

Does not affect basic interval timer (BTM).

Resets binary counter of basic interval

timer (BTM).

BTMRES

0

1

 Selects interval time

Sets count pulse divided by 128 as interval

time.

Sets count pulse divided by 32 as interval

time.

BTMISEL

0

1

Remark

Read = R, write = W

RF : 13H

BTMRES is automatically cleared to 0 after it
has been set to 1.
This bit is always “0” when it is read.

CHAPTER 13 PERIPHERAL HARDWARE

124

Figure 13-11. Watchdog Timer Mode Register

13.2.3 Operation of Basic Interval Timer

The basic interval timer is a 7-bit binary counter that always counts up by using a count pulse specified by the BTM

mode register. Counting operation cannot be stopped.

The interval time of the basic interval timer can be changed by using the BTMISEL bit of the BTM mode register.

When BTMISEL = 0, the interval time is the count pulse divided by 128 (128/fBTM); when BTMISEL = 1, the interval

time is the count pulse divided by 32 (32/fBTM).

The contents of the counter are not cleared to 0 even if the interval time is changed.

Bit 3

WDTRES

0

Bit 2

0

0

Bit 1

0

0

Bit 0

WDTEN

0

Read/write

Initial value at reset

R/W
Read = R, write = W

RF : 03H

WDTEN

0

1

Does not affect watchdog timer.

Sets flip-flop that holds overflow carry of

BTM used by watchdog timer.

WDTRES

0

1

 Enables watchdog timer function

Watchdog timer stops.

Watchdog timer starts operating.

Resets watchdog timer

Remarks 1. WDTEN cannot be cleared to 0 by program.
2. WDTEN is automatically cleared to 0 after it

 has been set to 1. This bit is always 0 when
 it is read.

Remark WDTRES is automatically cleared to 0 after it
 has been set to 1. This bit is always 0 when
 it is read.

CHAPTER 13 PERIPHERAL HARDWARE

125

13.2.4 Watchdog Timer Function

The basic interval timer can also be used as a watchdog timer to detect a program hang-up.

(1) Function of watchdog timer

The watchdog timer is a counter that generates a reset signal at fixed intervals. By inhibiting the generation

of this reset signal each time through program, the system can be reset (and started from address 0000H)

if it has overrun due to an external noise (i.e., if the watchdog timer is not reset within the time set by program).

This function can prevent the system from overrunning even if the program is caused to jump to an unexpected

routine by an external noise and enter an infinite loop, because a reset signal is generated at fixed intervals.

(2) Operation of the watchdog timer

When “1” is set to WDTEN, the 1-bit divider is enabled to operate, and consequently, the basic interval timer

operates as an 8-bit watchdog timer.

Once the watchdog timer has been started, it cannot be stopped until the device is reset and WDTEN is cleared

to 0.

Generation of the reset signal by the watchdog timer can be inhibited in the following two ways:

(i) Repeat setting WDTRES in program.

(ii) Repeat setting BTMRES in program.

In the case of (i), WDTRES must be set while the count value of the watchdog timer is between 8 and 191

(immediately before it reaches 192). Therefore, “SET1 WDTRES” must be executed at least once at a timing

shorter than the cycle in which the count value of the watchdog timer reaches 184.

In the case of (ii), BTMRES must be set until the count value of the basic interval timer (BTM) reaches 128.

Therefore, “SET BTMRES” must be executed at least once at a timing shorter than the cycle in which the count

value of BTM reaches 128. In this case, however, interrupt processing cannot be performed by BTM.

Caution BTM is not reset even if WDTEN is set. Therefore, be sure to set BTMRES and reset BTM

before setting WDTEN first.

Example

SET1 BTMRES

SET2 WDTEN, WDTRES

...

...

CHAPTER 13 PERIPHERAL HARDWARE

126

F
ig

ur
e

13
-1

2.

T
im

in
g

C
ha

rt
 o

f
W

at
ch

do
g

T
im

er
 (

w
ith

 W
D

T
R

E
S

 F
la

g
U

se
d)

W
D

T
E

N

8

R
es

et
 s

ig
na

l i
s

no
t g

en
er

at
ed

C
ou

nt
 v

al
ue

 o
f

w
at

ch
do

g
tim

er

W
D

T
R

E
S

1-
sh

ot
 p

ul
se

 g
en

er
at

or

ci

rc
ui

t o
ut

pu
t (

1)

(4
)

f B
T

M
/2

7 (
2)

(fl
 IR

Q
B

T
M

 s
et

)

f B
T

M
/2

8 (
3)

W
at

ch
do

g
re

se
t s

ig
na

l

(a
ct

iv
e

hi
gh

)

W
D

T
R

E
S

ac
ce

pt
in

g
pe

rio
d

W
D

T
R

E
S

ac
ce

pt
in

g
pe

rio
d

W
D

T
R

E
S

ac
ce

pt
in

g
pe

rio
d

12
8

19
2

25
5

0

8

12
8

19
2

25
5 8

12
8

19
2

64

12
8

19
2

25
5

CHAPTER 13 PERIPHERAL HARDWARE

127

(3) Program example of watchdog timer

Program Example

Notes 1. Interrupt processing by BTM cannot be performed in the method to reset counter before BTM overflows.

2. Although the method of resetting the watchdog timer by using the BTM interrupt processing is easier

to program than the other two methods, its program hang-up detection rate is lower than that of the

other two.

Start

Initialize

Main Processing

ORG
BR

ORG
BR

INITJOB:
INITFLG
SET1
SET2
SET1
CLR1
EI

MAIN:
CALL
CALL

END

.........................
..........

..........

JOB1:
CLR1 IPBTM

SET1 BTMRES

..........
..........

SET1 BTMRES

SET1 BTMRES..........

SET IPBTM
RET

JOB2:
CLR2 IPBTM

SET1 WDTRES

SET IPBTM
RET

SET1 WDTRES

INTBTMJOB:
SET1 WDTRES
EI
RETI

Reset BTM before its
count value reaches
to 128Note 1.

Reset watchdog timer
before its count value
reaches to 184.

Reset watchdog timer by
using interrupt processing
of BTMNote 2.

; BTM interrupt enable

..........

0H
INITJOB

2H
INTBTMJOB

NOT BTMISEL, BTMRES, NOT BTMCK1, BTMCK0
BTMRES
WDTRES, WDTEN; Watchdog timer start
IPBTM
IRQBTM

JOB1
JOB2

CHAPTER 13 PERIPHERAL HARDWARE

128

13.3 A/D CONVERTER

µPD17134A subseries contains an 8-bit resolution A/D converter with 4-channel analog input (P0C0/ADC0 - P0C3/

ADC3).

The A/D converter uses the successive approximation method. The following two operation modes are available:

(1) Successive mode: 8-bit A/D conversion occurs starting at high-order bits.

(2) Single mode: Comparison occurs with an arbitrary voltage value set in the 8-bit data register.

13.3.1 A/D Converter Configuration

Figure 13-13 shows the A/D converter configuration.

Figure 13-13. Block Diagram of the A/D Converter

Cautions 1. The 8-bit data register (ADCR) is cleared to 00H when the STOP instruction has been

executed.

2. If the HALT instruction is executed during A/D conversion, a current keeps flowing between

VADC and GND.

ADCSOFT ADCCMP ADCENDADCSTRT0 00 ADCCH10 ADCCH0
RF : 20H RF : 21H

Internal bus

0 0
RF : 22H

Remark n = 0 to 3

Read signal

P0CnIDI
P0CBIOn

P0Cn/ADCn

VADC

Selector

Output
latch

Selector

4

3R/2 R R R/2

Tap decoder

Comparator

D/A converter

8-bit data register
(ADCR)

8

Control circuit

8

A/D end signal
STOP instruction signal

Analog power of
A/D converter

CHAPTER 13 PERIPHERAL HARDWARE

129

13.3.2 Functions of A/D Converter

(1) ADC0 – ADC3

These pins are used to input 4-channel analog voltage to the A/D converter. The A/D converter contains a

sample hold circuit. Analog input voltage is internally retained during A/D conversion.

(2) VADC

This pin is used to input the power supply and the reference voltage for the A/D converter.

A signal input to ADC0 to ADC3 is converted to a digital signal based on voltage applied across VADC and GND.

To reduce the current consumption of the microcontroller, the A/D converter has a function for automatically

stopping the current which flows into the VADC pin when the converter is not operating. Current flows into the

VADC pin in the following cases.

<1> Successive mode (ADCSOFT=0)

From when the ADCSTRT flag is set (1) until the ADCEND flag is set (1).

<2> Single mode (ADCSOFT=1)

From when the ADCSTRT flag is set (1) or from when a value of the 8-bit data register is written until

the result of comparison by the comparator is written in the ADCCMP flag.

Caution If the HALT Instruction is executed while the A/D conversion is in progress, the A/D

converter stops conversion. Note that, in this case, the HALT mode is set with current

flowing to the V ADC pin. When the HALT mode has been released, the A/D conversion

is resumed. At this time, however, the value of ADCR is undefined, and the correct

conversion result cannot be obtained.

Remark A/D conversion is stopped if the STOP instruction is executed while the conversion is in

progress. In this case, the A/D converter is initialized, and the current to the VADC pin is also

cut. The A/D converter remains stopped even if the STOP mode has been released.

(3) 8-bit data register (ADCR)

In the successive mode, this 8-bit data register stores A/D conversion results for successive approximation.

It is read by the GET instruction. In the single mode, the data in this register is converted to analog voltage

by the internal D/A converter and the comparator compares this voltage with an analog signal input from the

ADCn pin. A value can be written in this register by using the PUT instruction.

(4) Comparator

The comparator compares an analog input voltage from a pin with voltage output from the D/A converter. Value

1 is output if analog input voltage from the pin is high. Value 0 is output if this voltage is low. The comparison

result is stored in the 8-bit data register (ADCR) in the successive mode. It is stored in the ADCCMP flag in

the single mode.

(5) A/D converter control register

Figure 13-14 shows the A/D converter control register.

CHAPTER 13 PERIPHERAL HARDWARE

130

Figure 13-14. A/D Converter Control Register (1/2)

Remarks 1. In the single mode, the flag content is

valid for the third and subsequent in-

structions after ADCSTRT is set (1) or

data is set in ADCR until ADCSTRT or

ADCR is set again.

2. In the successive mode, a value changes

according to an A/D conversion value.

However, the bit for this value cannot be

identified.

3. ADCCMP is automatically cleared to 0

when “PUT ADCR, DBF” instruction is

executed.

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0 0

0

ADCEND End of A/D conversion

Read/write

Initial value when reset

0

ADCCMP Compare result (valid only in the single mode)

1

0

ADCSOFT A/D operation mode selection flag

Successive mode

1 Single mode

RF: 21H

Read = R, write = W

ADCSOFT 0 ADCCMP ADCEND

1

R

Initial status or during A/D conversion.

Indicates the end of A/D conversion in

successive mode.

Cleared to 0 by setting (1) or resetting

ADCSTRT.

Analog input voltage is lower than output

voltage of the internal D/A converter.

Analog input voltage is higher than output

voltage of the internal D/A converter.

CHAPTER 13 PERIPHERAL HARDWARE

131

Figure 13-14. A/D Converter Control Register (2/2)

Note With the µPD17134A subseries, ADCR is reset

to 0 if the ADCSTRT flag is set, regardless of

the A/D conversion mode. In the single mode,

start conversion by writing a value to ADCR.

0

0

ADCSTRT Start of A/D operation

1

RF: 20 H

Read = R, write = W

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

ADCSTRT

0 0 0

Initial status or during A/D conversion.

Cleared to 0 automatically after A/D

conversion (successive or single

modeNote) starts.

0

ADCCH1 Analog input channel selection

ADC0 is selected.

0 ADC1 is selected.

RF: 22H

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

ADCCH3 ADCCH2

Read/write

Initial value when reset

ADCCH0

0 0 0

ADCCH1

0

1

ADCCH0

1

1

0

1

ADC2 is selected.

ADC3 is selected.

Fixed to 0. (Dummy flag)

CHAPTER 13 PERIPHERAL HARDWARE

132

13.3.3 Setting Values in the 8-bit Data Register (ADCR)

A value is set in the 8-bit data register via the data buffer (DBF) using the PUT instruction in the same way as for

comparison voltage setting in the single mode.

The peripheral address for the 8-bit data register (ADCR) of the A/D converter is assigned to 04H. If a value is

sent to ADCR by the PUT instruction, only the low-order 8 bits (DBF1, DBF0) of DBF are valid. DBF3 and DBF2 values

do not affect ADCR.

Figure 13-15. Setting a Value in the 8-Bit Data Register (ADCR)

Example of setting 6CH in ADCR

CONTDATL DAT 0CH ; CONTDATL is assigned to 0CH by using a symbol definition instruction.

CONTDATH DAT 06H ; CONTDATH is assigned to 06H by using a symbol definition instruction.

MOV DBF0, #CONTDATL;

MOV DBF1, #CONTDATH;

PUT ADCR, DBF ; Data is transferred using reserved words ADCR and DBF.

DBF3 DBF2 DBF1 DBF0

0 1 1 0 1 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Don’t care Don’t care

0 1 1 0 1 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

PUT ADCR, DBF

Data buffer

8-bit data

ADCR (Peripheral address 04H)

CHAPTER 13 PERIPHERAL HARDWARE

133

13.3.4 Reading Values from the 8-bit Data Register (ADCR)

A value is read from the 8-bit data register (ADCR) via the data buffer (DBF) using the GET instruction.

The 8-bit data register (ADCR) of the A/D converter has peripheral address 04H and only its low-order 8 bits (DBF1,

DBF0) are valid. Execution of the GET instruction does not affect the high-order 8 bits of DBF.

Figure 13-16. Reading Values from the 8-bit Data Register (ADCR)

The result from 8-bit A/D conversion is E2H.

GET DBF, ADCR ; Example of using reserved words DBF and ADCR

DBF3 DBF2 DBF1 DBF0

1 1 1 0 0 0 1 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Retained Retained

1 1 1 0 0 0 1 0

b7 b6 b5 b4 b3 b2 b1 b0

GET DBF, ADCR

 Data buffer

8-bit data

ADCR (Peripheral address 04H)

CHAPTER 13 PERIPHERAL HARDWARE

134

13.3.5 A/D Converter Operation

The A/D converter operates in two modes: successive mode and single mode. The mode can be switched by setting

the ADCSOFT flag.

ADCSOFT Operation mode of A/D converter

0 Successive mode (A/D conversion)

1 Single mode (Compare operation)

Figure 13-17. Relationship between the Analog Input Voltage and Digital Conversion Result

FFH

FEH

FDH

N

03H

02H

01H

1
256

2
256

N
256

254
256

255
256

256
256

00H
0

(× VDD)

D
ig

ita
l c

on
ve

rs
io

n
re

su
lt

Analog input voltage (V)

Ideal conversion result

CHAPTER 13 PERIPHERAL HARDWARE

135

(1) Successive mode

(a) Outline of successive mode

In the successive mode, the A/D converter performs conversion in 8-bit units by means of successive

approximation, and the result of the conversion is automatically stored to an 8-bit data register (ADCR).

An analog input voltage and the voltage output by the internal D/A converter are compared by the internal

comparator, and data for conversion is sequentially obtained from 8 bits of data, starting from the most

significant bit. A time of 25 instructions is required to complete converting the 8 bits of data. The

completion of the 8-bit A/D conversion is indicated by setting of the ADCEND flag to 1.

(b) Operation in successive mode

When ADCSOFT = 0, the A/D converter is set in the successive mode.

By setting P0CnIDI to 1 before starting A/D conversion, use of a pin used as an analog input pin of the

A/D converter as a port pin is prohibited. This is to prevent an increase in the through current of the input

buffer of the port if the voltage of the pin specified as an analog input pin reaches the intermediate level.

After that, an analog input signal is selected by ADCCH1 and ADCCH0. A/D conversion is started by

setting the ADCSTRT flag to 1. The ADCSTRT flag is cleared to 0 immediately after A/D conversion has

been started.

While A/D conversion is in progress, the internal hardware performs successive approximation, starting

from the most significant bit of the 8 bits of data. The conversion result is stored to an 8-bit data register

on a bit-by-bit basis. Converting 1 bit of data requires a time of three instructions. If a resolution of 8 bits

is not required, therefore, the time required can be calculated from the number of instructions executed,

and the data being converted can be extracted before the ADCEND flag is set.

The completion of the A/D conversion is indicated by setting of the ADCEND flag which takes place as

soon as data has been stored to the least significant bit of the 8-bit data register.

CHAPTER 13 PERIPHERAL HARDWARE

136

Figure 13-18. Using the Successive Mode for the A/D Converter

Set the successive mode (ADCSOFT = 0)

Set the port input disable flag of the pin used for

analog input

(Set P0CnIDI to 1. n = 0 to 3)

Select the analog input channel

(Set ADCCH1 or ADCCH0)

Start A/D conversion

(Set ADCSTRT to 1)

Wait for the completion of A/D conversion

(Wait for ADCEND to be set)

Read the A/D conversion results

(Execute GET for the 8-bit data register)

CHAPTER 13 PERIPHERAL HARDWARE

137

(c) Successive mode A/D conversion timing

Figure 13-16 shows the A/D conversion timing in the successive mode.

Figure 13-19. A/D Conversion Timing in the Continuous Mode

Caution Sampling is executed eight times while A/D conversion is performed once. Therefore, if the

analog input voltage changes substantially during A/D conversion, conversion is not performed

accurately. To obtain the accurate conversion result, it is necessary to keep changes in the

analog input voltage as small as possible during A/D conversion.

One sampling time = 14/f x (1.75 µs, 8 MHzNote)

Sampling repeat cycle = 48/f x (6 µs, 8 MHzNote)

Note The guaranteed oscillation range of the µPD17134A, 17136A, and 17P136A is 400 kHz to 2.4 MHz.

Number of instruction to be executed (Instruction cycle)

POKE 1 2 3 4 5 6 7 8 9 24 GET

Read ADCR

Sampling Sampling Sampling

Set ADCSTRT

Previous
data

Initial value
80H

Most significant
bit determined

High-order 2 bits
are determined

ADCSTRT

ADCEND

8-bit data
register

All eight bits
are vaild.

CHAPTER 13 PERIPHERAL HARDWARE

138

Table 13-1. Data Conversion Time for the A/D Converter

Note Includes GET instruction to read data from ADCR.

(2) Single Mode

(a) Overview of single mode

In the single mode, data in the 8-bit data register (ADCR) is compared with voltage subjected to D/A

conversion and with an analog input signal from a pin.

The comparison result appears in the ADCCMP flag.

(b) Explanation of single mode operation

If ADCSOFT is 1, the A/D converter function enters the single mode.

Before single mode operation starts, port input is disabled for the pin to be used for analog input by setting

P0CnIDI to 1. (This is done for the same reason as in the successive mode.)

To start single mode operation, execute a write instruction (PUT ADCR, DBF) for the 8-bit data register

(ADCR) when ADCSOFT is 1.

The comparison result in single mode appears in ADCCMP at the execution of the third instruction after

a PUT instruction is executed to write to the 8-bit data register (ADCR). At this time, the ADCEND flag

becomes undefined.

Bits for which A/D conversion is

completed (valid bits when ADCR is read)

Most significant bit

High-order 2 bits

High-order 3 bits

High-order 4 bits

High-order 5 bits

High-order 6 bits

High-order 7 bits

All 8 bits

Number of instructions

executed after

ADCSTRT is set to 1Note

4 instructions

7 instructions

10 instructions

13 instructions

16 instructions

19 instructions

22 instructions

25 instructions

CHAPTER 13 PERIPHERAL HARDWARE

139

Figure 13-20. Using the Single Mode for the A/D Converter

Set single mode
(ADCSOFT = 1)

Disable port input for pin to
be used for analog input
(Set P0CnIDI to 1)

Select analog input channel
(Set ADCCH0 or ADCCH1)

Comparison data
in ADCR?

Read ADCCMP flag when third
instruction is executed and read
comparison result

Execute write instruction for
8-bit data register
(PUT ADCR, DBF)

Read the contents of ADCR
into DBF
(GET DBF, ADCR)

Set comparison data in DBF

NO

YES

CHAPTER 13 PERIPHERAL HARDWARE

140

(c) Single mode operation (comparison) timing

Figure 13-21. Single Mode Operation (Comparison) Timing

In the single mode, comparison is started when compare data is set to ADCR (by executing the PUT

instruction), and the result of conversion can be read by using the PEEK instruction after execution of the

third instruction.

The ADCCMP flag is cleared to 0 when an instruction that writes ADCR is executed.

Caution Before setting a value to ADCR, be sure to set ADCSOFT to 1. A value cannot be set to

ADCR while ADCSOFT is 0 (the “PUT ADCR, DBF” instruction is invalidated).

One sampling time = 14/f X (1.75 µs, f X = 8 MHz)

PUT 1 2 PEEK PUT 1

Set comparison
data in ADCR.

Previous data

Number of instruction executed (instruction cycle)

ADCCMP

ADCEND

2 PEEK

Set comparison
data in ADCR.

Comparison result Comparison result

Undefined

Sampling Sampling

Read ADCCMP. Read ADCCMP.

CHAPTER 13 PERIPHERAL HARDWARE

141

13.4 SERIAL INTERFACE (SIO)

The serial interface consists of an shift register (SIOSFR, 8 bits), serial mode register, and serial clock counter.

It is used for serial data input/output.

13.4.1 Functions of the Serial Interface

This serial interface provides three signal lines: serial clock input pin (SCK), serial data output pin (SO), and serial

data input pin (SI). It allows 8 bits to be sent or received in synchronization with clocks. It can be connected to

peripheral input/output devices using any method with a mode compatible to that used by the µPD7500 series or 75X

series.

(1) Serial clock

Three types of internal clocks and one type of external clock are able to be selected. If an internal clock is

selected as a shift clock, it is automatically output to the P0D0/SCK pin.

Table 13-2. Serial Clock List

SIOCK1 SIOCK0 Serial clock to be selected

0 0 External clock from SCK pin

0 1 fX/16

1 0 fX/128

1 1 fX/1024

fX: System Clock oscillation frequency

(2) Transfer operation

Each pin of port 0D (P0D0/SCK, P0D1/SO, and P0D2/SI) functions as a serial interface pin when SIOEN is set

to 1. If SIOTS is set to 1 at this time, the operation is started in synchronization with the falling of the external

or internal clock. If SIOTS is set, IRQSIO is automatically cleared.

Transfer is started from the most significant bit of the shift register in synchronization with the falling of the

serial clock, and the information on the SI pin is stored to the shift register, starting from the least significant

bit, in synchronization with the rising of the serial clock.

When transfer of 8-bit data has been completed, SIOTS is automatically cleared, and IRQSIO is set.

Remark When executing serial transfer, transfer is started only from the most significant bit of the shift

register. It cannot be started from the least significant bit. The status of the SI pin is loaded to the

shift register in synchronization with the rising of the serial clock.

CHAPTER 13 PERIPHERAL HARDWARE

142

Figure 13-22. Block Diagram of the Serial Interface

Note The output latch of the shift register is shared with P0D1. If an output instruction is executed to P0D1,

therefore, the status of the output latch of the shift register is accordingly changed.

Shift register (SIOSFR)

fS
Y

S
/1

02
4

f S
Y

S
/1

28

f S
Y

S
/1

6

P0D2/SI

P0D1/SO

P0D0/SCK

SIOEN

P0DBIO0

P0DBIO1

Q
S

R

Output
latch

SIOTS SIOHIZ SIOCK1 SIOCK0

Single
shot

Clear

Serial clock counter

IRQSIO
clear signal

IRQSIO
set signal

S
el

ec
to

r

P0D0

output
latch

Selector

S
er

ia
l s

ta
rt

Note

Clear

Carry

MSBLSB

CHAPTER 13 PERIPHERAL HARDWARE

143

13.4.2 3-wire Serial Interface Operation Modes

Two modes can be used for the serial interface. If the serial interface function is selected, the P0D2/SI pin always

takes in data in synchronization with the serial clock.

• 8-bit transmission reception mode (simultaneous transmission and reception)

• 8-bit reception mode (SO pin: in the high-impedance state)

Table 13-3. Operating Mode of the Serial Interface

SIOEN SIOHIZ P0D2/SI pin P0D1/SO pin Operating mode of the serial interface

1 0 SI SO 8-bit transmission/reception mode

1 1 SI P0D1 (input) 8-bit reception mode

0 × P0D2 (I/O) P0D1 (I/O) General-purpose port mode

×: Don’t care

(1) Clock synchronization 8-bit transmission and reception mode (simultaneous transmission and

reception)

Serial data input/output is controlled by a serial clock. The MSB of the shift register is output from the SO line

at a falling edge of the serial clock (SCK pin signal). The contents of the shift register is shifted one bit at a

rising edge and at the same time, data on the SI line is loaded into the LSB of the shift register.

Every time the serial clock counter (3-bit counter) counts eight serial clocks, the interrupt request flag

(IRQSIO←1) is set to 1.

Figure 13-23. Timing of 8-Bit Transmission and Reception Mode

(Simultaneous Transmission and Reception)

Remark DI: Serial data input

DO: Serial data output

1 2 3 4 5 6 7 8SCK pin

SI pin

SO pin

IRQSIO

Transmission
completion

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

Transmission starts in synchronization with the SCK pin falling edge.

An instruction which writes 1 into SIOTS is executed.
(Transmission start indication)

CHAPTER 13 PERIPHERAL HARDWARE

144

(2) Clock synchronization 8-bit transmission and reception mode (SO pin output high impedance)

The P0D1/SO pin goes into a high-impedance state when SIOHIZ = 1. If supply of the serial clock is started

by writing “1” to SIOTS at this time, only the reception function of the serial interface is enabled.

Because the P0D1/SO pin goes into a high-impedance state, it can be used as an input port pin (P0D1).

Figure 13-24. Timing of the Clock Synchronization 8-Bit Reception Mode

Remark DI: Serial data input

(3) Operation stop mode

If the value in SIOTS (RF: address 02H, bit 3) is 0, the serial interface enters operation stop mode. In this

mode, no serial transfer occurs.

In this mode, the shift register does not perform shifting and can be used as an ordinary 8-bit register.

Transmission starts in synchronization with an SCK pin falling edge.

An instruction which writes 1 into SIOTS is executed.
(Transmission start indication)

1 2 3 4 5 6 7 8SCK pin

SI pin

SO pin

IRQSIO

Transmission
completion

Hi-Z

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

CHAPTER 13 PERIPHERAL HARDWARE

145

Figure 13-25. Serial Interface Control Register (1/2)

Remark SIOTS is automatically cleared to 0 when

serial transmission is completed.

0

SIOCK1 Selection of the serial clock

External clock (SCK pin)

0 fX/16

0

SIOHIZ

Serial data output (SO pin)

1 Input port output high impedance (P0D1 pin)

0

SIOTS

Forced termination of the shift register (Disables

intermediate restart).

1

Start of serial transfer operation

• At internal clock selection

Starts operation specifying the internal division

signal of the system clock as a serial clock.

• At external clock selection

Starts operation in synchronization with an SCK

pin falling edge.

RF: 02H

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/WRead/write

Initial value when reset

SIOCK0

0 0 0

SIOCK1SIOHIZSIOTS

1 fX/128

1 fX/1024

SIOCK0

0

1

0

1

Function selection of the P0D1/SO pin

Start and stop of serial transmission (at writing)

CHAPTER 13 PERIPHERAL HARDWARE

146

Figure 13-25. Serial Interface Control Register (2/2)

Caution This is not related to the serial interface

directly.

0

SIOEN SIO operation enable

The pins P0D0/SCK, P0D1/SO, P0D2/SI

function as ports.

1
The pins P0D0/SCK, P0D1/SO, P0D2/SI

function as the serial interface.

RF: 0BH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

TM0OSEL 0 0

Read/write

Initial value when reset

SIOEN

0 0 0

TM0OSEL Selecting function of the P0D3/TM0OUT pin

The P0D3/TM0OUT pin is used as a port.

The P0D3/TM0OUT pin is used for timer 0 output.

0

1

Remark See also CHAPTER 12.

CHAPTER 13 PERIPHERAL HARDWARE

147

13.4.3 Setting Values in the Shift Register

Values are set in the shift register via the data buffer (DBF) using the PUT instruction.

The peripheral address of the shift register is 01H. When sending a value to the shift register using the PUT

instruction, only the low-order 8 bits (DBF1, DBF0) of DBF are valid. The DBF3 and DBF2 values do not affect the

shift register.

Figure 13-26. Setting a Value in the Shift Register

Example of setting value 64H in the shift register

SIODATL DAT 4H ; SIODATL is assigned to 4H using symbol definition.

SIODATH DAT 6H ; SIODATH is assigned to 6H using symbol definition.

MOV DBF0, #SIODATL ;

MOV DBF1, #SIODATH ;

PUT SIOSFR, DBF ; Value is transmitted using reserved word SIOSFR.

DBF3 DBF2 DBF1 DBF0

0 1 1 0 0 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Don’t care Don’t care

0 1 1 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

PUT SIOSFR, DBF

Data buffer

8-bit data

SIOSFR (Peripheral address 01H)

CHAPTER 13 PERIPHERAL HARDWARE

148

13.4.4 Reading Values from the Shift Register

A value is read from the shift register via the data buffer (DBF) using the GET instruction. The shift register has

peripheral address 01H and only the low-order 8 bits (DBF1, DBF0) are valid. Executing the GET instruction does

not affect the high-order 8 bits of DBF.

Figure 13-27. Reading a Value from the Shift Register

GET DBF, SIOSFR; Example of using reserved words DBF and SIOSFR

DBF3 DBF2 DBF1 DBF0

0 1 1 0 0 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Retained Retained

0 1 1 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

GET DBF, SIOSFR

Data buffer

8-bit data

SIOSFR (Peripheral address 01H)

CHAPTER 14 INTERRUPT FUNCTIONS

The µPD17134A subseries has four internal interrupt functions and one external interrupt function. It can be used

in various applications.

The interrupt control circuit of the µPD17134A subseries has the features listed below. This circuit enables very

high-speed interrupt processing.

(a) Used to determine whether an interrupt can be accepted with the interrupt mask enable flag (INTE) and

interrupt enable flag (IP×××).

(b) The interrupt request flag (IRQ×××) can be tested or cleared. (Interrupt generation can be checked by

software.)

(c) Multiple interrupts are possible (up to three levels).

(d) Standby mode (STOP, HALT) can be released by an interrupt request. (Release source can be selected by

the interrupt enable flag.)

Caution In interrupt processing, the bank register and the BCD, CMP, CY, Z, and IXE flags are saved in

the stack automatically by the hardware for up to three levels of multiple interrupts. The DBF

and WR are not saved by the hardware when peripheral hardware such as the timers or A/D

converter is accessed in interrupt processing. It is recommended that the DBF and WR be saved

in RAM by the software at the beginning of interrupt processing. Saved data can be loaded back

into the DBF and WR immediately before the end of interrupt processing.

149

CHAPTER 14 INTERRUPT FUNCTIONS

150

14.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES

For every interrupt in the µPD17134A subseries, when the interrupt is accepted, a branch occurs to the vector

address associated with the interrupt source. This method is called the vectored interrupt method. Table 14-1 lists

the interrupt source types and vector addresses.

If two or more interrupts occur simultaneously, or if two or more pending interrupts are enabled at the same time,

processing is performed according to the priorities shown in Table 14-1.

Table 14-1. Interrupt Source Types

Internal/

external

External

Internal

Internal

Internal

Internal

Vector

address

0005H

0004H

0003H

0002H

0001H

IP flag

IP

RF: 2FH,

bit 0

IPTM0

RF: 2FH,

bit 1

IPTM1

RF: 2FH,

bit 2

IPBTM

RF: 2FH,

bit 3

IPSIO

RF: 2EH,

bit 0

IEG flag

IEGMD0,1

RF: 1FH

–

–

–

–

Remarks

Rising edge or falling edge

can be selected.

Interrupt source

INT pin (RF: 0FH, bit 0)

Timer 0

Timer 1

Basic interval timer

Serial interface

1

2

3

4

5

Priority IRQ flag

IRQ

RF: 3FH,

bit 0

IRQTM0

RF: 3EH,

bit 0

IRQTM1

RF: 3DH,

bit 0

IRQBTM

RF: 3CH,

bit 0

IRQSIO

RF: 3BH,

bit 0

CHAPTER 14 INTERRUPT FUNCTIONS

151

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT

The flags of the interrupt control circuit are explained below.

(1) Interrupt Request Flag and the Interrupt Enable Flag

The interrupt request flag (IRQ×××) is set to 1 when an interrupt request occurs. When interrupt processing

is executed, the flag is automatically cleared to 0.

An interrupt enable flag (IP×××) is provided for each interrupt request flag. If the flag is 1, an interrupt is enabled.

If it is 0, the interrupt is disabled.

(2) EI/DI instruction

The EI/DI instruction is used to determine whether an accepted interrupt is to be executed.

If the EI instruction is executed, the interrupt enable flag (INTE) for enabling interrupt reception is set. If the

interrupt is accepted, INTE is cleared to 0. Since the INTE flag is not registered in the register file, flag status

cannot be checked by instructions.

The DI instruction clears the INTE flag to 0 and disables all interrupts.

At reset the INTE flag is cleared to 0 and all interrupts are disabled.

Table 14-2. Interrupt Request Flag and Interrupt Enable Flag

Interrupt

request flag

IRQ

IRQTM0

IRQTM1

IRQBTM

IRQSIO

Signal for setting the interrupt request flag

Set by edge detection of an INT pin input signal. A

detection edge is selected by IEGMD0 or IEGMD1.

Set by a match signal from timer 0.

Set by a match signal from timer 1.

Set by an overflow (reference time interval signal)

from the basic interval timer.

Set by a serial data transmission end signal from

the serial interface.

Interrupt

enable flag

IP

IPTM0

IPTM1

IPBTM

IPSIO

CHAPTER 14 INTERRUPT FUNCTIONS

152

Figure 14-1. Interrupt Control Register (1/6)

Note Values are not latched and so change momentarily

according to pin logic. Once the IRQ flag is set,

however, it remains set until an interrupt is accepted.

The POKE instruction to address 0FH is invalid.

0

INT Status of the INT pin

Sets logical status to 0 during PEEK instruction

execution.

1
Sets logical status to 1 during PEEK instruction

execution.

RF: 0FH

Read = R, write = W

Note

Bit 3 Bit 2 Bit 1 Bit 0

R

0 0 0

Read/write

Initial value when reset

INT

0 0 0

0

IEGMD1

Interrupt at the rising edge

RF: 1FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 IEGMD1

Read/write

Initial value when reset 0 0 0

IEGMD0

0 Interrupt at the falling edge

1
Interrupt at both edges

1

0

IEGMD0

1

0

1

Selection of the interrupt

detection edge of the INT pin

CHAPTER 14 INTERRUPT FUNCTIONS

153

Figure 14-1. Interrupt Control Register (2/6)

Remark If TM0RES is set to 1, IRQTM0 is cleared to 0.

0

IRQ

No interrupt request has been issued from the INT

pin or an INT pin interrupt is being processed.

1
An interrupt request from the INT pin occurs or

an INT pin interrupt is being held.

0

IRQ

An interrupt request from the INT pin is forcibly

released.

1
An interrupt request from the INT pin is forced to

occur.

RF: 3FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQ

0 0 0

INT pin interrupt request

INT pin interrupt request

0

IRQTM0

No interrupt request has been issued from

timer 0 or a timer 0 interrupt is being processed.

1

The contents of the timer 0 count register

matches that of the timer 0 modulo register and

an interrupt request occurs. Or a timer 0 interrupt

request is being held.

0
An interrupt request from timer 0 is forcibly

released.

1
An interrupt request from timer 0 is forced to

occur.

RF: 3EH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQTM0

0 0 0

IRQTM0

TM0 interrupt request

TM0 interrupt request

When read

When write

When read

When write

CHAPTER 14 INTERRUPT FUNCTIONS

154

Figure 14-1. Interrupt Control Register (3/6)

Remark If TM1RES is set to 1, IRQTM1 is cleared to 0.

IRQTM1 is cleared to 0 also immediately after

the execution of the STOP instruction.

Remark If BTMRES is set to 1, IRQBTM is cleared to 0.

0

IRQTM1

No interrupt request has been issued from timer

1 or a timer 1 interrupt is being processed.

1

The contents of the timer 1 count register

matches that of the timer 1 modulo register

and an interrupt request occurs. Or a timer 1

interrupt request is being held.

0
An interrupt request from timer 1 is forcibly

released.

1
An interrupt request from timer 1 is forced to

occur.

RF: 3DH

Read = R, write = W

1

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQTM1

0 0 0

IRQTM1

TM1 interrupt request

TM1 interrupt request

0

IRQBTM

No interrupt request has been issued from the

basic interval timer or a basic interval timer

interrupt is being processed.

1

The basic interval timer overflows and an

interrupt request occurs. Or a basic interval

timer interrupt request is being held.

0

IRQBTM

An interrupt request from the basic interval timer

is forcibly released.

1
An interrupt request from the basic interval timer

is forced to occur.

RF: 3CH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQBTM

0 0 0

BTM interrupt request

BTM interrupt request

When read

When write

When read

When write

CHAPTER 14 INTERRUPT FUNCTIONS

155

Figure 14-1. Interrupt Control Register (4/6)

Serial interface transmission is completed and

an interrupt request occurs. Or, a serial

interface

0

IRQSIO SIO interrupt request

1

0

SIO interrupt request

An interrupt request from the serial interface is

forcibly released.

1
An interrupt request from the serial interface is

forced to occur.

RF: 3BH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQSIO

0 0 0

IRQSIO

No interrupt request has been issued from the

serial interface or a serial interface interrupt is

being processed.

When read

When write

CHAPTER 14 INTERRUPT FUNCTIONS

156

Figure 14-1. Interrupt Control Register (5/6)

Enables an interrupt from the INT pin.

Executes the EI instruction. If the IRQ flag is set

to 1, executes interrupt processing.

0

IP INT pin interrupt enable

1

RF: 2FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

IPBTM IPTM1 IPTM0

Read/write

Initial value when reset

IP

0 0 0

Disables an interrupt from the INT pin.

Holds an interrupt even if the IRQ flag is set to 1.

Enables an interrupt from timer 0.

Executes the EI instruction. If the IRQTM0 flag is

set to 1, executes interrupt processing.

0

IPTM0 TM0 interrupt enable

1

Disables an interrupt from timer 0.

Holds an interrupt even if the IRQTM0 flag is set

to 1.

Enables an interrupt from timer 1.

Executes the EI instruction. If the IRQTM1 flag is

set to 1, executes interrupt processing.

0

IPTM1 TM1 interrupt enable

1

Disables an interrupt from timer 1.

Holds an interrupt even if the IRQTM1 flag is set

to 1.

Enables an interrupt from the basic interval timer.

Executes the EI instruction. If the IRQBTM flag is

set to 1, executes interrupt processing.

0

IPBTM BTM interrupt enable

1

Disables an interrupt from the basic interval timer.

Holds an interrupt even if the IRQBTM flag is set

to 1.

CHAPTER 14 INTERRUPT FUNCTIONS

157

Figure 14-1. Interrupt Control Register (6/6)

RF: 2EH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IPSIO

0 0 0

Enables an interrupt from the serial interface.

Executes the EI instruction. If the IRQSIO flag is

set to 1, executes interrupt processing.

0

IPSIO SIO interrupt enable

1

Disables an interrupt from the serial interface.

Holds an interrupt even if the IRQSIO flag is set

to 1.

CHAPTER 14 INTERRUPT FUNCTIONS

158

14.3 INTERRUPT SEQUENCE

14.3.1 Receiving an Interrupt

When an interrupt is accepted, interrupt processing starts after the instruction cycle of the instruction being

executed is completed. The program flow is transferred to a vector address. However, if an interrupt occurs during

MOVT or EI instruction, or if an instruction that satisfies the skip condition is executed, the interrupt processing is

started two instruction cycles later.

When interrupt processing starts, one level of the address stack register is consumed to store the program return

address, and one level of the interrupt stack register is consumed to save BANK and PSWORD in the system register.

If two or more interrupts occur or are enabled, interrupt processing is executed in descending order of priority. A

lower-priority interrupt is held until a higher-priority interrupt is processed.

See priorities shown in Table 14-1.

Figure 14-2. Interrupt Processing Procedure

NO

NO

YES Hold interrupt until IP××× is set

Hold interrupt until EI instruction
is executed

Interrupt request generation

Set IRQ×××

IP××× set?

EI instruction executed?
(INTE = 1?)

Clear INTE flag and IRQ××× associated with

accepted interrupt to 0

Decrement stack pointer by 1 (SP _ 1)

Save contents of program counter in stack

pointed to by stack pointer

Load vector address into program counter

Save PSWORD content in interrupt stack

YES

CHAPTER 14 INTERRUPT FUNCTIONS

159

14.3.2 Return from the Interrupt Routine

Execute the RETI instruction to return from the interrupt processing routine. During the RETI instruction cycle,

processing in the figure below occurs.

Figure 14-3. Return from Interrupt Processing

Caution The INTE flag is not set for the RETI instruction.

Interrupt processing is completed. To handle a pending interrupt successively, execute the EI

instruction immediately before the RETI instruction and set the INTE flag to 1.

To execute the RETI instruction following the EI instruction, no interrupt is accepted between EI

instruction execution and RETI instruction execution. This is because the EI instruction sets the

INTE flag to 1 after the execution of the subsequent instruction is completed.

Example

Load contents of stack pointed to by stack

pointer into program counter

Execute RETI instruction

Load contents of interrupt-dedicated stack

into PSWORD

Increment stack pointer value by one

Timer 0 interrupt generation

 Timer 1 interrupt generation (held)

EI instruction execution

Timer 0 interrupt generation (held) RETI

Timer 1 interrupt processing

EI
RETI

Timer 0 interrupt processing

Single interrupt

CHAPTER 14 INTERRUPT FUNCTIONS

160

14.3.3 Interrupt Accepting Timing

Figure 14-4 shows a timing chart that illustrates how interrupts are accepted.

The µPD17134A subseries xecutes one instruction in 16 clocks or in 1 instruction cycle. One instruction cycle

consists of four states, M0 to M3, with each state made up of 4 clocks.

An interrupt occurs asynchronously in respect to the program operation. The program recognizes the occurrence

of the interrupt at the leading edge of state M2.

Figure 14-4. Interrupt Accepting Timing (When INTE = 1, IP ××× = 1) (1/3)

(1) If interrupt occurs before M2 of instruction other than MOVT and EI

(2) If skip condition of skip instruction is satisfied in (1)

(3) If interrupt occurs after M2 of instruction other than MOVT and EI

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Skip instruction

Occurrence of interrupt is recognized.

Treated as NOP INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector address

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Instruction other than MOVT and EI

Occurrence of interrupt is recognized.

INT cycle Instruction of vector address

Machine cycle

Instruction

IRQ×××

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Instruction other than MOVT and EI

Occurrence of interrupt is recognized.

Instruction other than MOVT and EI INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector address

CHAPTER 14 INTERRUPT FUNCTIONS

161

Figure 14-4. Interrupt Accepting Timing (When INTE = 1, IP ××× = 1) (2/3)

(4) If interrupt occurs before M2 of MOVT instruction

(5) If interrupt occurs before M2’ of MOVT instruction

(6) If interrupt occurs before M2 of EI instruction

(7) If interrupt occurs after M2 of EI instruction

M0 M1 M2 M3 M0' M1' M2' M3' M0 M1 M2 M3 M0 M1

MOVT instruction

Occurrence of interrupt is recognized.

INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector address

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

EI instruction

Occurrence of interrupt is recognized.

INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector addressInstruction other than MOVT and EI

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

EI instruction

Occurrence of interrupt is recognized.

INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector addressInstruction other than MOVT and EI

M0 M1 M2 M3 M0' M1' M2' M3' M0 M1 M2 M3 M0 M1

MOVT instruction

Occurrence of interrupt is recognized.

INT cycle

Machine cycle

Instruction

IRQ···

Instruction of vector address

CHAPTER 14 INTERRUPT FUNCTIONS

162

Figure 14-4. Interrupt Accepting Timing (When INTE = 1, IP ××× = 1) (3/3)

(8) If interrupt occurs during skip of skip instruction (treated as NOP)

Remarks 1. The INT cycle is for preparation of an interrupt. In this cycle, the contents of PC and PSWORD are

saved, and IRQ××× is cleared.

2. The MOVT instruction exceptionally requires 2 instruction cycles.

3. The EI instruction is designed so that multiplexed interrupt does not occur when program execution

returns from interrupt processing.

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Skip instruction

Occurrence of interrupt is recognized.

Treated as NOP INT cycle

Machine cycle

Instruction

IRQ×××

Instruction of vector address

CHAPTER 14 INTERRUPT FUNCTIONS

163

14.4 MULTI-INTERRUPT

Multi-interrupt is a method that executes interrupt processing of other interrupt source B and C during the interrupt

processing for an interrupt source A as shown in Figure 14-5.

Nesting level at this time is also called interrupt level.

Pay attention to the following points when using multi-interrupt.

(1) Priority of interrupt source

(2) Limit of interrupt levels by interrupt stack (maximum 3 levels for the µPD17134A subseries)

Figure 14-5. Example of Multi-interrupt

Main processing Interrupt processing A

Interrupt processing B

Interrupt processing C

EI

Achievement of
interrupt A

EI (enables multi-interrupt)

Achievement of
interrupt B

Interrupt disabled

Enables interrupt in
interrupt processing A

Interrupt disabled

RETI

Interrupt enabled

Achievement of
interrupt C

RETI

Interrupt enabled

Enables interrupt in
interrupt processing A Interrupt disabled

RETI

EI

EI

EI

CHAPTER 14 INTERRUPT FUNCTIONS

164

As shown in Figure 14-5, INTE flag is cleared automatically and becomes interrupt disable state when interrupt

has been achieved. Therefore, when executing multi-interrupt processing, execute EI instruction during interrupt

processing.

Caution Maximum number of interrupt levels is 3. When achieving interrupt, interrupt stack register and

address stack register are consumed by one level. Address stack register is consumed by MOVT

instruction and PUSH instruction other than CALL instruction. Pay attention to the nesting level

of address stack.

14.5 PROGRAM EXAMPLE OF INTERRUPT

• Program example of countermeasure for noise reduction of external interrupt (INT pin)

This example assumes the case of assigning INT pin for key input, etc.

When taking into the microcomputer data in kind of switch such as key input processing, it takes some time for

the level of input voltage to be stabilized after pushing the key or switch. Accordingly, the countermeasures

for removing the noise generated by key, etc. should be executed by software.

In the following program, after generating external interrupt, the signal from INT pin becomes effective after

confirming that there is no change in the level of INT pin two times in every 100 µs.

Example

WAITCNT MEM 0.00H ; Counter of wait processing

CHKRAM MEM 0.01H

KEYON FLG 0.01H.3 ; If key turns ON (even just once), KEYON = 1

CHK100U FLG 0.01H.0 ; CHK100U = 1 only when passing 100 µs during WAIT loop

ORG 0H

BR JOB_INIT

ORG 5H

BR INT_JOB

JOB_INIT:

MOV WAITCNT, #0 ; Clears RAM and the flag on RAM

MOV CHKRAM, #0 ;

INITFLG NOT IEGMD1, IEGMD0

; Rising edge is effective for the interrupt from INT pin

CLR1 IRQ

SET1 IP

EI

MAIN:

CALL 55JOB

CALL 55JOB

BR MAIN

.....

.....

.....

CHAPTER 14 INTERRUPT FUNCTIONS

165

INT_JOB:

NOP ; Loop which executes waiting for 100 µs at 8 MHz

NOP ; 2 µs (1 instruction) × 5 instructions × 10 times

; (count value at WAIT)

ADD WAITCNT, #01 ;

SKE WAITCNT, #0A ;

BR INT_JOB ;

SKF1 INT ; Check the level of INT pin

BR KEY_NO ; If INT pin is high level, interrupt is invalid, and returns

; to main processing

SKF1 CHK100U ; First wait? (CHK100U = 0?)

BR WAIT_END ; If it is the first time, wait again after setting CHK100U.

; In the case of the second time, finish wait processing

SET1 CHK100U ;

BR INT_JOB

WAIT_END:

SET1 KEY_ON ; Judges that there is key input

KEY_NO:

CLR1 CHK100U ; CHK100U ← 0

EI

RETI

[MEMO]

166

CHAPTER 15 AC ZERO CROSS DETECTION

The INT pin is the interrupt signal input pin and timer count clock input pin. It also used as an AC zero cross detector

input pin. This pin can be selected by writing 1 in ZCROSS (RF: 1DH bit 0).

Figure 15-1. Block Diagram for the AC Zero Cross Detector

Caution When the AC zero cross detection circuit is used, the current consumption slightly increases (to

15 µA TYP.) even in the standby mode. To prevent an increase in the current consumption, clear

ZCROSS to 0, and fix the input voltage of the INT pin to the high or low level.

The zero cross detector consists of a high gain amplifier which uses the self-bias method. It biases the input to

the switching point and causes digital displacement in response to slight displacement of INT pin input. It detects

changes of an AC signal from minus to plus and vice versa. This signal is input through the external coupling capacitor.

The signal changes 0 to 1 and vice versa at each displacement point.

ZCROSS0 0
RF : 1DH

Internal bus

0

External coupling
capacitor

AC zero cross detector Zero cross detection signal
(To INT, TM0, BTM)

AC
INT

167

CHAPTER 15 AC ZERO CROSS DETECTION

168

Figure 15-2. Zero Cross Detection Signal

Note The range of the input voltage when the INT pin is used as the input pin of the AC zero cross circuit is 1.0

VP-P to 3.0 VP-P.

Because the AC zero cross circuit does not have a function to reject noise, input a signal from which noise

has been eliminated in advance to this circuit.

A pulse generated in the zero cross detector can be used as a timer 0 count clock and basic interval timer count

clock in the same way as when the pulse does not go through the zero cross detector. The pulse is sent to the interrupt

control circuit. Interrupt processing starts if an INT pin interrupt is enabled. To accept an interrupt, set IEGMD0 (RF:

1FH bit 0) and IEGMD1 (RF: 1FH bit 1) to select a signal rising edge, falling edge, or both rising and falling edges.

VP-P
Note

0 V
AC input waveform

 (A)

Zero cross detection
signal

 (B)

CHAPTER 16 STANDBY FUNCTION

16.1 OVERVIEW OF THE STANDBY FUNCTION

The µPD17134A subseries has a standby function to reduce the current consumption. The standby function can

be used in two modes which can be selected as the application requires: STOP and HALT modes.

In the STOP mode, the system clock is stopped. Therefore, the current consumption of the CPU in this mode is

only the leakage current. This mode is effective for holding the contents of the data memory without the CPU operating.

In the HALT mode, oscillation of the system clock continues, but the CPU is stopped because supply of the clock

to the CPU is stopped. The current consumption in this mode is greater than in the STOP mode. However, operation

can be resumed immediately after the HALT mode has been released because the system clock is oscillating. In both

the STOP and HALT Modes, the contents of the data memory and registers, and the status of the output latch of the

output port immediately before the standby mode is set are retained (except STOP 0000B). Therefore, set the port

status to reduce the overall current consumption of the system before setting a standby mode.

Table 16-1. Status in Standby Mode

STOP mode HALT mode

Setting instruction STOP instruction HALT instruction

System clock oscillation circuit Oscillation stops Oscillation continues

Operating CPU • Operation stops

status RAM • Retains previous status

Port • Retains previous statusNote

TM0 • Can operate only when INT input is • Can operate

selected as count pulse

• Stops if system clock is selected (count

value is retained)

TM1 • Operation stops • Can operate

(count value is reset to “0”)

(count up is also disabled)

BTM • Operation stops • Can operate

(count value is retained)

SIO • Can operate only when external clock is • Can operate

selected as serial clockNote

A/D • Operation stopsNote (ADCR ← 00H) • Can operate

INT • Can operate • Can operate

Note When STOP 0000B is executed, these pins are set in the input port mode including when the multiplexed

function of the pin is used.

Cautions 1. Be sure to place a NOP instruction immediately before the STOP or HALT instruction.

2. The standby mode is not set if both the interrupt request flag and interrupt enable flag are

set and the interrupt is specified as the condition to release the standby mode.

169

CHAPTER 16 STANDBY FUNCTION

170

16.2 HALT MODE

16.2.1 Setting HALT Mode

The HALT mode is set when the HALT instruction is executed.

Operand b3b2b1b0 of the HALT instruction specifies the condition under which the HALT mode is released.

Table 16-2. HALT Mode Release Condition

Format: HALT b3b2b1b0

Bit HALT mode release conditionNote 1

b3 Enables release by IRQ×××× when 1Notes 2, 4

b2 Fixed to “0”

b1 Enables forced release by IRQTM1 when 1Notes 3, 4

b2 Fixed to “0”

Notes 1. HALT 0000B enables only reset (RESET input, power-ON/power-down reset).

2. IP××× must be 1.

3. The HALT mode is released regardless of the status of IPTM1.

4. Even if the HALT instruction is executed while IRQ××× = 1, the HALT instruction is ignored (treated

as a NOP instruction), and the HALT mode is not set.

16.2.2 Start Address after HALT Mode Is Released

The address from which program execution is started after the HALT mode has been released differs depending

on the release condition and interrupt enable condition.

Table 16-3. Start Address after HALT Mode Is Released

Release condition Start address after HALT mode is released

ResetNote 1 Address 0

IRQ×××Note 2 Address next to HALT instruction in DI status

Interrupt vector in EI status (if two or more IRQ××× are set, interrupt vector with highest priority)

Notes 1. RESET input and power-ON/power-down reset are valid.

2. IP××× must be 1 except when the HALT mode is forcibly released by IRQTM1.

CHAPTER 16 STANDBY FUNCTION

171

Figure 16-1. Releasing HALT Mode

(a) By RESET input

(b) By IRQ ××× (in DI status)

(c) By IRQ ××× (in EI status)

HALT instruction executed TM1 counts up

Operation mode HALT Mode System reset status WAIT Operation mode
(starts from address 0)

WAIT: Wait time until TM1 counts 256 clocks divided by 512
 256 × 512/fCC + α (approx. 65 ms + α, fCC = 2 MHz)
 α: Oscillation growth time (differs depending on resonator)

RESET

Operation mode HALT mode Operation mode

IRQ×××

HALT instruction executed

HALT instruction executed

Operation mode HALT mode Operation mode

IRQ×××

Interrupt processing accepted

CHAPTER 16 STANDBY FUNCTION

172

16.2.3 HALT Mode Setting Conditions

(1) Forced releasing by IRQTM1

Setting conditions

Release by external clock • Timer 0 and timer 1 are used as 16-bit timer (TM0CK1 = 1, TM0CK0 = 1, TM1CK1 = 1,

TM1CK0 = 1)

• Timer 0 and timer 1 are enabled to operate (TM0EN = 1, TM1EN = 1)

• Interrupt flag of timer 1 is cleared (IRQTM1 = 0)

Release by internal clock • Timer 1 is enabled to operate

• Interrupt request flag of timer 1 is cleared (IRQTM1 = 0)

(2) Release by interrupt request flag (IRQ ×××)

• Peripheral hardware used to release HALT mode is enabled to operate in advance.

Timer 0 Operation enabled (TM0EN = 1)

Timer 1 Operation enabled (TM1EN = 1)

Timer 0 + timer 1 Timer 1 selects count up signal from timer 0 as count pulse (TM1CK1 = 1, TM1CK0 = 1).

Timer 0 and timer 1 are enabled to operate (TM0EN = 1, TM1EN = 1)

Basic interval timer Always enabled to operate

Serial interface Serial interface circuit is enabled to operate (SIOTS = 1, SIOEN = 1)

INT pin Edge selected

• Clear the interrupt request flag (IRQ×××) of the peripheral hardware used to release the HALT mode to 0.

• Set the interrupt enable flag (IP×××) of the peripheral hardware used to release the HALT mode to 1.

Caution Be sure to include a NOP instruction immediately before the HALT instruction.

By doing so, a time of one instruction is created between the IRQ ××× manipulation instruction

and HALT instruction. Consequently, clearing IRQ ××× is correctly reflected on the HALT

instruction in the case, for example, of the CLR1 IRQ ××× instruction (refer to Example 1

below). Unless a NOP instruction is described immediately before the HALT instruction, the

CLR1 IRQ××× instruction is not correctly reflected on the HALT instruction, and the HALT

mode is not set (Example 2).

CHAPTER 16 STANDBY FUNCTION

173

Example 1. Correct program

(Setting of IRQ×××)

CLR1 IRQ×××
NOP ; Describe NOP instruction immediately before HALT instruction.

; (Clearing of IRQ××× is correctly reflected on HALT instruction.)

HALT 1000B ; Correctly execute HALT instruction (HALT mode is set).

2. Incorrect program

(Setting of IRQ×××)

CLR1 IRQ××× ; Clearing of IRQ××× is not reflected on HALT instruction.

; (It is reflected on instruction next to HALT instruction.)

HALT 1000B ; HALT instruction is ignored (HALT mode is not set).

.....

.....

.....

.....

..........

..........

CHAPTER 16 STANDBY FUNCTION

174

16.3 STOP MODE

16.3.1 Setting of STOP Mode

The STOP mode is set by executing the STOP instruction.

The operand b3b2b1b0 of the STOP instruction specifies the condition under which the STOP mode is to be released.

Table 16-4. STOP Mode Release Condition

Format: STOP b3b2b1b0

Bit STOP mode release conditionNote 1

b3 Enables release of STOP mode by IRQ××× when 1Note 2

b2 Fixed to “0”

b1 Fixed to “0”

b0 Fixed to “0”

Notes 1. STOP 0000B enables only reset (RESET input or power-ON/power-down reset). The internal circuitry

of the microcontroller is initialized to the status immediately after reset when STOP 0000B is executed.

2. IP××× must be 1. The STOP mode cannot be released by IRQTM1.

Even if the STOP instruction is executed when IRQ××× = 1, the STOP instruction is ignored (treated

as NOP), and the STOP mode is not set.

16.3.2 Start Address After STOP Mode Is Released

The address from which program execution is started after the STOP mode has been released differs depending

on the release condition and interrupt enable condition.

Table 16-5. Start Address after STOP Mode Is Released

Release condition Start address after STOP mode is released

ResetNote 1 Address 0

IRQ×××Note 2 Address next to that of STOP instruction in DI status

Interrupt vector in EI status

(If two or more IRQ××× are set, interrupt vector with highest priority)

Notes 1. Only RESET input and power-ON/power-down reset are valid.

2. IP××× must be 1. The STOP mode cannot be released by IRQTM1.

CHAPTER 16 STANDBY FUNCTION

175

Figure 16-2. Releasing STOP Mode

(a) Releasing STOP mode by RESET input

(b) Releasing STOP mode by IRQ ××× (in DI status)

(c) Releasing STOP mode by IRQ ××× (in EI status)

STOP instruction executed TM1 counts up

Operation mode STOP mode System reset status WAIT Operation mode
(starts from address 0)

WAIT: Wait time until TM1 counts 256 clocks divided by 512
 256 × 512/fCC + α (approx. 65 ms + α, fCC = 2 MHz)
 α: Oscillation growth time (differs depending on resonator)

RESET

STOP instruction executed

Operation mode STOP mode Operation mode

IRQ×××

TM1 counts up

WAIT

WAIT: Wait time until TM1 counts (n + 1) clocks divided by m
 (n + 1) × m/fCC + α (n and m are values immediately before STOP mode is set)
 α: oscillation growth time (differs depending on resonator)

STOP instruction executed

Operation mode STOP mode Operation mode

IRQ×××

TM1 counts up, interrupt processing accepted

WAIT

WAIT: Wait time until TM1 counts (n + 1) clocks divided by m (n + 1) × m/fCC + α
 (n and m are values immediately before STOP mode is set)

α: oscillation growth time (differs depending on resonator)

CHAPTER 16 STANDBY FUNCTION

176

16.3.3 STOP Mode Setting Conditions

When STOP mode is to be released by IRQ ×××

Releasing by IRQ • Selects edge of signal to be input from INT pin (IEGMD1, IEGMD0).

• Sets modulo register value of timer 1 (that creates oscillation stabilization wait time).

• Clears interrupt request flag (IRQ) of INT pin to 0.

• Sets interrupt enable flag (IP) of INT pin to 1.

Releasing by IRQSIO • Selects external clock input from SCK pin as source clock (SIOCK1 = 0, SIOCK0 = 0).

• Enables serial interface to operate (SIOTS = 1).

• Sets modulo register value of timer 1 (that sets oscillation stabilization time).

• Clears interrupt request flag of serial interface (IRQSIO) to 0.

• Sets interrupt enable flag of serial interface (IPSIO) to 1.

Releasing by IRQTM0 • Selects external clock input from INT pin as source clock of timer 0 (TM0CK1 = 1, TM0CK0 = 1).

• Sets modulo register value of timer 0.

• Sets modulo register value and source clock of timer 1 (that creates oscillation stabilization time).

• Enables timer 0 to operate (TM0EN = 1).

• Clears interrupt request flag (IRQTM0) to 0

• Sets interrupt enable flag of timer 0 (IPTM0) to 1.

CHAPTER 16 STANDBY FUNCTION

177

Caution Be sure to include a NOP instruction before the STOP instruction. By doing so, a time of one

instruction is created between the IRQ ××× manipulation instruction and STOP instruction. As

a result, clearing IRQ ×××, for example, is correctly reflected on the STOP instruction when the

IRQ××× instruction is executed (refer to Example 1 below). Unless a NOP instruction is described

immediately before the STOP instruction, the CLR1 IRQ ××× instruction is not reflected on the

STOP instruction, and the STOP mode is not set (Example 2).

Example 1. Correct program

(Setting of IRQ×××)

CLR1

NOP IRQ××× ; Describe NOP instruction immediately before the STOP instruction.

; (Clearing IRQ××× is correctly reflected on the STOP instruction.)

STOP 1000B ; STOP instruction is correctly executed (STOP mode is set).

2. Incorrect program

(Setting of IRQ×××)

CLR1 IRQ××× ; Clearing IRQ××× is not reflected on the STOP instruction.

; (It is reflected on the instruction next to the STOP instruction.)

STOP 1000B ; The STOP instruction is ignored (STOP mode is not set).

.....

.....

..........

.....

.....

..........

[MEMO]

178

CHAPTER 17 RESET

The µPD17134A subseries is reset in the following four ways.

(1) By RESET input

(2) Power-ON/power-down reset that resets the microcontroller on power application or when supply voltage

drops

(3) Watchdog timer that resets the microcontroller in case of a program hang-up

(4) Reset because of overflow/underflow of address stack

The power-ON/power-down reset function is effective when the supply voltage is 4.5 to 5.5 V.

179

CHAPTER 17 RESET

180

17.1 RESET FUNCTION

The reset function is used to initialize the device operation. How the device is initialized differs depending on the

type of reset effected.

Table 17-1. Hardware Status at Reset

Program counter

General-purpose

data memory

System register

Control register

0000H

Input

0

Undefined

Undefined

0

Undefined

0000H

Input

0

Retains previous

status

Undefined

0

Retains previous

status

0000H

Input

Undefined

Undefined

Undefined

0

Undefined

• RESET input

during operation

• Internal power-ON/

power-DOWN

reset during

operation

• RESET input in

standby mode

• Internal power-ON/

power-DOWN

reset in standby

mode

Port

SP = 5H, IRQTM1 = 1, TM1EN = 1, IRQBTM =

0, and INT = status of INT pin at that time.

Others are 0.

Refer to CHAPTER 9 REGISTER FILE (RF) .

Timer 0: 00H,

timer 1: undefined

FFH

Undefined

(40H if watchdog timer

overflows)

Undefined

00H

00H 00H
Timer 0 and timer 1

Count register

FFH FFHModulo register

Counter of basic interval timer

Retains previous

status
Shift register of serial interface (SIOSFR)

Data register of A/D converter (ADCR)

Undefined

00H 00H

SP = 5H, INT = status

of INT pin at that time.

Others retain previous

status.

Undefined Undefined

• Overflow of

watchdog timer

• Overflow and

underflow of stack

I/O mode

Output latch

Other than DBF

DBF

Other than WR

WR

Hardware

Reset method

CHAPTER 17 RESET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

181

Figure 17-1. Reset Block Configuration

17.2 RESETTING

Operation when system reset is caused by the RESET pin is shown in the figure below.

If the RESET pin is set from low to high, system clock oscillation starts and an oscillation stabilization wait occurs

with the timer 1. Program execution starts from address 0000H.

If power-on reset is used, the reset signals shown in Figure 17-2 are internally generated. Operation is the same

as that when reset is caused externally by the RESET pin.

At watchdog timer overflow reset or stack overflow and underflow reset, oscillation stabilization wait time (WAIT)

does not occur. Operation starts from address 0000H after initial statuses are internally set.

Figure 17-2. Reset Operation

Note This is oscillation stabilization wait time. Operating mode is set when timer 1 counts system clocks (fCC)

512 × 256 counts approx. 65 ms at fCC = 2 MHz).

RF : 10H

Internal bus

0 0 0 PDRESEN
Clear

Power-down reset circuit

Power-on reset circuit

Internal reset signal

Mask option

RESET

VDD

Operating mode Reset WAITNote Operating mode

RESET

TM1EN

TM1RES

CHAPTER 17 RESET

182

17.3 POWER-ON/POWER-DOWN RESET FUNCTION

The µPD17134A subseries is provided with two reset functions to prevent malfunctions from occurring in the

microcontroller. They are the power-on reset function and power-down reset function. The power-on reset function

resets the microcontroller when it detects that power was turned on. The power-down reset function resets the

microcontroller when it detects drops in the power voltage.

These functions are implemented by the power monitoring circuit whose operating voltage has a different range

than the logic circuits in the microcontroller and the oscillation circuit (which stops oscillation at reset to put the

microcontroller in a temporary stop state). Conditions required to enable these functions and their operations will be

described next.

Caution When designing an application circuit that calls for high reliability, do not depend on the internal

power-ON/power-DOWN reset function only. Make sure that an external RESET signal is input.

17.3.1 Conditions Required to Enable the Power-On Reset Function

This function is effective when used together with the power-down reset function.

The following conditions are required to validate the power-on reset function:

(1) The power voltage must be within 4.5 to 5.5 V during normal operation, including the standby state.

(2) The frequency of the system clock oscillator must be 400 kHz to 4 MHz. Note

(3) The power-down reset function must be enabled during normal operation, including the standby state.

(4) The power voltage must rise from 0 V to the specified voltage.

(5) The time it takes for the power voltage to rise from 0 to 2.7 V must be shorter than the oscillation stabilization

wait time (system clock fCC = 512 × 256 counts, about 65 ms, at fCC = 2 MHz) counted in timer 1.

Note Applies to the µPD17135A, 17137A, and 17P137A.

When the µPD17134A, 17136A, or 17P136A is used, fCC = 400 kHz to 2 MHz.

Cautions 1. If the above conditions are not satisfied, the power-on reset function will not operate

effectively. In this case, an external reset circuit needs to be added.

2. In the standby state, even if the power-down reset function operates normally, general-

purpose data memory (except DBF) retains data up to V DD = 2.7 V. If, however, data is changed

due to an external error, the data in memory is not guaranteed.

CHAPTER 17 RESET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

183

17.3.2 Power-On Reset Function and Operation

The power-on reset function resets the microcontroller when it detects that power was turned on in the hardware,

regardless of the software state.

The power-on reset circuit operates under a lower voltage than the other internal circuits. It initializes the

microcontroller regardless whether the oscillation circuit is operating. When the reset is terminated, timer 1 counts

the number of oscillation pulses sent from the oscillator until it reaches the specified value. Within this period,

oscillation becomes stable and the power voltage applied to the microcontroller enters the range (VDD = 2.7 to 5.5

V at 400 kHz to 4 MHz) in which the microcontroller is guaranteed to operate.

When this period elapses, the microcontroller enters normal operation mode. Figure 17-3 shows an example of

the power-on reset operation.

Functions of the power-on reset

(1) This circuit always monitors the voltage applied to the VDD pin.

(2) This circuit resets the internal circuit of the microcomputer, regardless of whether the oscillator circuit operates

or not, when the supply voltage rises, until the voltage reaches the power-ON reset clear voltage (VDD = 1.5

V TYP.).Note

(3) This circuit stops oscillation during the reset operation.

(4) When reset is released, timer 1 counts oscillation pulses. The microcontroller waits until oscillation becomes

stable and the power voltage becomes VDD = 2.7 V or higher.

Note The internal circuit of the microcontroller is not reset until the supply voltage reaches the level at which the

internal circuit can operate (i.e., internal reset signal can be accepted).

CHAPTER 17 RESET

184

 Figure 17-3. Example of the Power-On Reset Operation

Notes 1. During the operation-undefined period, not all of the operations specified for the µPD17134A subseries

are guaranteed. The power-on reset operation is guaranteed in this period.

2. The operation-guaranteed period refers to the time in which all the operations specified for the

µPD17134A subseries are guaranteed.

3. An operation stop state refers to the state in which all of the functions of the microcontroller are stopped.

VDD

(V)

5.0

2.7

A

B

0

A : Voltage at which
oscillation starts

B : Voltage at which the
power-on reset operation
terminates

VDD

RESETNote 4

GND

µPD17134A subseries

Time (t)

Oscillating

Timer 1 finishes counting

State of
oscillation

Oscillation start

Oscillation stop

Undefined periodNote 1 Guaranteed periodNote 2

Operation stopNote 3

Power-on reset termination

Operating mode

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-on
reset signal

Operation state
of the micro-

controller Waiting until
oscillation
becomes stable

CHAPTER 17 RESET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

185

17.3.3 Condition Required for Use of the Power-Down Reset Function

The power-down reset function can be enabled or disabled using software. The following condition is required to

use this function:

• The power voltage must be within 4.5 to 5.5 V during normal operation, including the standby state.

• The frequency of the system clock oscillator must be 400 kHz to 4 MHz.

Caution When the microcontroller is used with a power voltage of 2.7 to 4.5 V, add an external reset circuit

instead of using the internal power-down reset circuit. If the internal power-down reset circuit

is used with a power voltage of 2.7 to 4.5 V, reset operation may not terminate.

17.3.4 Power-Down Reset Function and Operation

This function is enabled by setting the power-down reset enable flag (PDRESEN) using software.

When this function detects a power voltage drop, it issues the reset signal to the microcontroller. It then initializes

the microcontroller. Stopping oscillation during reset prevents the power voltage in the microcontroller from fluctuating

out of control. When the specified power voltage recovers and the power-down reset operation is terminated, the

microcontroller waits the time required for stable oscillation using the timer. The microcontroller then enters normal

operation (starts from address 0).

Figure 17-4 shows an example of the power-down operation. Figure 17-5 shows an example of reset operation

during the period from power-down reset to power recovery.

Functions of the power-down reset

(1) This circuit always monitors the voltage applied to the VDD pin.

(2) When this circuit detects a power voltage drop, it issues a reset signal to the other parts of the microcontroller.

It continues to send this reset signal until the power voltage recovers or all the functions in the microcontroller

stop.

(3) This circuit stops oscillation during the reset operation to prevent software crashes.

When the power voltage recovers to the low-voltage detection level (3.5 V TYP., 4.5 V MAX.) before the power-

down reset function stops, the microcontroller waits the time required for stable oscillation using timer 1, then

enters normal operation mode.

(4) When the power voltage recovers from 0 V, the power-on reset function has priority.

(5) After the power-down reset function stops and the power voltage recovers before it reaches 0 V, the

microcontroller waits using timer 1 until oscillation becomes stable and the power voltage (VDD) reaches 2.7

V. The microcontroller then enters normal operation mode.

CHAPTER 17 RESET

186

Figure 17-4. Example of the Power-Down Reset Operation

Note In the operation-undefined period, not all the operations specified for the µPD17134A subseries are

guaranteed. The power-down reset operation, which continues to issue a reset signal until all the functions

in the microcontroller stop, is guaranteed in this period.

Maximum voltage detected by the
power-down reset function: 4.5 V

Typical voltage detected by the
power-down reset function: 3.5 V

Voltage at which the power-down
reset function terminates =
power-on reset voltage (B): C

RESET

GND

VDD

µPD17134A subseries

Time (t)

State of
oscillation

Guaranteed period Undefined periodNote

Operating
mode

Power-down reset

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-down
reset signal

Operation state
of the micro-

controller

Oscillating

Oscillation stop

Power-on
reset signal

Reset state

5.0

3.5

2.7

C

0

4.5

VDD

(V)

CHAPTER 17 RESET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

187

Figure 17-5. Example of Reset Operation during the Period from

Power-Down Reset to Power Recovery

Note In the operation-undefined period, not all the operations specified for the µPD17134A subseries are

guaranteed. The power-down reset operation, which continues to issue the reset signal until all the

functions in the microcontroller stop, is guaranteed in this period.

State of
oscillation

Period in which
the microcon-
troller is guar-
 anteed to

operate

Power-down
reset signal

Power-on
reset signal

Operation state
of the micro-

controller

Oscillating

Operating
mode

Reset state

Power-down reset Waiting until oscillation
becomes stable

Operating mode

Timer 1 finishes counting

Oscillating

5.0

4.5

3.5

2.7

C

0

Maximum voltage detected by the
power-down reset function: 4.5 V

Typical voltage detected by the
power-down reset function: 3.5 V

Voltage at which the power-down
reset function terminates =
power-on reset voltage (B): C

Time (t)

Guaranteed
period Undefined periodNote

(V)

Oscillation stop

VDD

RESET

GND

VDD

µPD17134A subseries

Guaranteed period

[MEMO]

188

CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

The on-chip program memories of the µPD17P136A and 17P137A are is a 2048 × 16-bit one-time PROM.

Pins listed in Table 18-1 are used for one-time PROM writing/verifying. The address is updated by the clock signal

input from the CLK pin.

Caution PIB 0/VPP pin is used as V PP pin in program writing/verifying mode. Therefore, there is a possibility

of overrunning of the microcontroller when higher voltage than V DD + 0.3 V is applied to PIB 0/VPP

pin in normal operation mode. Pay careful attention to pin protection.

Table 18-1. Pins Used for Writing/Verifying Program Memory

Pin Function

VPP Applies program voltage. Apply +12.5 V to this pin.

VDD Power supply pin. Apply +6 V to this pin.

RESET System reset input pin. Used for initializing all states

before setting program memory writing/verifying mode.

CLK Clock input for updating address. Updates program

memory address by inputting four pulses.

MD0-MD3 Select operation mode.

D0-D7 8-bit data I/O pins.

18.1 DIFFERENCES BETWEEN MASK ROM VERSION AND ONE-TIME PROM MODEL

The µPD17P136A and 17P137A are microcontrollers replacing the program memory of the on-chip mask ROM

version µPD17136A and 17137A to one-time PROM. Table 18-2 shows the differences between mask ROM version

and one-time PROM version.

Differences between each product are only its program memory, program size, address register size, and whether

it can specify mask option or not. The CPU function and internal peripheral hardware of each product are the same.

Therefore, the µPD17P136A can be used for evaluating program of the µPD17134A/17136A in system development.

Also, the µPD17P137A can be used for evaluating the µPD17135A/17137A in the same way.

189

CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

190

Table 18-2. Differences Between Mask ROM Version and One-Time PROM Version

Item µPD17134A/17135A µPD17136A/17137A µPD17P136A/17P137A

ROM Mask ROM One-time PROM

1024 × 16 bits 2048 × 16 bits

(0000H to 03FFH) (0000H to 07FFH)

Program counter

Address register 10 bits 11 bits

Address stack register

P0D, P1A, and P1B pins and Mask option Not available

pull-up resistor of RESET pin

VPP pin and operating mode select Not available Provided

pin

Quality grade Standard Standard

Special [(A), (A1)]

Caution The PROM model is highly compatible with the mask ROM model in terms of functions but its

internal ROM circuit and electrical characteristics are partially different from those of the mask

ROM model. To replace the PROM model with the mask ROM model, thoroughly evaluate the

application by using a sample of the mask ROM model.

18.2 OPERATION MODE WHEN PROGRAM MEMORY IS WRITTEN/VERIFIED

The µPD17P136A and 17P137A enter a program memory write/verify mode when they have been reset for a fixed

time (VDD = 5 V, RESET = 0 V) and then +6 V is applied to the VDD pin and +12.5 V to the VPP pin. In this mdoe, the

operation modes shown in the table below can be selected depending on the setting of the MD0 through MD3 pins.

Connect VADC directly to VDD. Connect all the other pins to GND via pull-down resistor.

Table 18-3. Setting Operation Modes

Setting operation mode
Operation mode

VPP VDD MD0 MD1 MD2 MD3

H L H L Program memory address 0 clear

+12.5 V +6 V
L H H H Write mode

L L H H Verify mode

H × H H Program inhibit mode

Remark ×: don’t care (L or H)

CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

191

18.3 WRITING PROCEDURE OF PROGRAM MEMORY

The program memory can be written at high speeds in the following procedure.

(1) Pull down the unused pins to GND. Make the CLK pin low.

(2) Apply 5 V to the VDD pin. Make VPP pin and RESET pin low.

(3) Wait for 10 µs. Then, apply 5 V to RESET pin.

(4) Set the program memory address 0 clear mode using mode selector pins.

(5) Apply 6 V to VDD and RESET, and 12.5 V to VPP.

(6) Set the program inhibit mode.

(7) Write data in mode for 1 ms writing.

(8) Set the program inhibit mode.

(9) Set the verify mode. If the program has been correctly written, proceed to (10). If not, repeat (7) through

(9).

(10) Additional writing of (number of times (×) the program has been written in (7) through (9)) × 1 ms.

(11) Set the program inhibit mode.

(12) Input four pulses to the CLK pin to update the program memory address by one.

(13) Repeat (7) through (12) until the last address is programmed.

(14) Set the program memory address 0 clear mode.

(15) Change the voltage of VDD and VPP pins to 5 V.

(16) Turn off the power.

Figure 18-1 shows the procedures of (2) through (12).

Figure 18-1. Procedure of Program Memory Writing

Address
increment

Additional
writingVerifyWrite

Repeat × times

Reset

VDD+1
VDD

GND
VDD+1

VDD

GND
VPP

VDD

GND

CLK

VDD

RESET

VPP

D0 - D7

MD0

MD1

MD2

MD3

Hi-Z Hi-Z Hi-Z Hi-Z
Input data Input dataOutput data

CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

192

18.4 READING PROCEDURE OF PROGRAM MEMORY

(1) Connect VADC directly to VDD, and all the other pins to GND via pull-down resistor. Make the CLK pin low.

(2) Apply 5 V to the VDD pin. Make VPP pin and RESET pin low.

(3) Wait for 10 µs. Then, apply 5 V to RESET pin.

(4) Set the program memory address 0 clear mode using mode selector pins.

(5) Apply 6 V to VDD and RESET and 12.5 V to VPP.

(6) Set mode selector pins to the program inhibit mode.

(7) Set the verify mode. When clock pulses are input to the CLK pin, data for each address can be sequentially

output with four clocks as one cycle.

(8) Set the program inhibit mode.

(9) Set the program memory address 0 clear mode.

(10) Change the voltage of VDD and VPP pins to 5 V.

(11) Turn off the power.

Figure 18-2 shows the program reading procedure (2) through (9).

Figure 18-2. Procedure of Program Memory Reading

Reset

VDD+1
VDD

GND
VDD+1

VDD

GND
VPP

VDD

GND

CLK

VDD

RESET

VPP

D0 - D7

MD0

MD1

MD2

MD3

Hi-Z Hi-Z
Output dataOutput data

“L”

 CHAPTER 19 INSTRUCTION SET

19.1 OVERVIEW OF THE INSTRUCTION SET

HEX

0

1

2

3

4

5

6

8

9

A

B

C

D

E

F

BIN

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

ADD r, m

SUB r, m

ADDC r, m

SUBC r, m

AND r, m

XOR r, m

OR r, m

INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

EI

DI

RETI

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

LD r, m

SKE m, #n4

MOV @r, m

SKNE m, #n4

BR addr

ADD m, #n4

SUB m, #n4

ADDC m, #n4

SUBC m, #n4

AND m, #n4

XOR m, #n4

OR m, #n4

ST m, r

SKGE m, #n4

MOV m, @r

SKLT m, #n4

CALL addr

MOV m, #n4

SKT m, #n

SKF m, #n

0 1 1 1 7

0 1b14-b11

b15

193

CHAPTER 19 INSTRUCTION SET

194

19.2 LEGEND

AR : Address register

ASR : Address stack register indicated by stack pointer

addr : Program memory address (11 bits)

BANK : Bank register

CMP : Compare register

CY : Carry flag

DBF : Data buffer

h : Halt release condition

INTEF : Interrupt enable flag

INTR : Register saved automatically to interrupt stack

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address indicated by mR and mC

mR : Data memory row address (high-order)

mC : Data memory column address (low-order)

n : Bit position (4 bits)

n4 : Immediate data (4 bits)

PC :Program counter

p : Peripheral address

pH : Peripheral address (high-order 3 bits)

pL : Peripheral address (low-order 4 bits)

r : General register column address

rf : Register file address

rfR : Register file row address (high-order 3 bits)

rfC : Register file column address (low-order 4 bits)

SP :Stack pointer

s : Stop release condition

WR : Window register

(✕) : Contents addressed by ×

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

195

19.3 LIST OF THE INSTRUCTION SET

Machine code
Group Mnemonic Operand Operation

OP code Operand

Add ADD r, m (r) ← (r) + (m) 00000 mR mC r

m, #n4 (m) ← (m) + n4 10000 mR mC n4

ADDC r, m (r) ← (r) + (m) + CY 00010 mR mC r

m, #n4 (m) ← (m) + n4 + CY 10010 mR mC n4

INC AR AR ← AR + 1 00111 000 1001 0000

IX IX ← IX + 1 00111 000 1000 0000

Subtract SUB r, m (r) ← (r) – (m) 00001 mR mC r

m, #n4 (m) ← (m) – n4 10001 mR mC n4

SUBC r, m (r) ← (r) – (m) – CY 00011 mR mC r

m, #n4 (m) ← (m) – n4 – CY 10011 mR mC n4

Logical OR r, m (r) ← (r) V (m) 00110 mR mC r
Operation

m, #n4 (m) ← (m) V n4 10110 mR mC n4

AND r, m (r) ← (r) (m) 00100 mR mC r

m, #n4 (m) ← (m) n4 10100 mR mC n4

XOR r, m (r) ← (r) V (m) 00101 mR mC r

m, #n4 (m) ← (m) V n4 10101 mR mC n4

Judge SKT m, #n CMP ← 0, if (m) n = n, then skip 11110 mR mC n

SKF m, #n CMP ← 0, if (m) n = 0, then skip 11111 mR mC n

Compare SKE m, #n4 (m) –n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) –n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) –n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) –n4, skip if borrow 11011 mR mC n4

Rotate RORC r CY → (r)b3 → (r)b2 → (r)b1 → (r)b0 00111 000 0111 r

Transfer LD r, m (r) ← (m) 01000 mR mC r

ST m, r (m) ← (r) 11000 mR mC r

MOV @r, m if MPE = 1: (MP, (r) ← (m) 01010 mR mC r
if MPE = 0: (BANK, mR, (r)) ← (m)

m, @r if MPE = 1: (m) ← (MP, (r)) 11010 mR mC r
if MPE = 0: (m) ← (BANK, mR, (r))

m, #n4 (m) ← n4 11101 mR mC n4

MOVT DBF, @AR SP ← SP –1, ASR ← PC, PC ← AR, 00111 000 0001 0000
DBF ← (PC), PC ← ASR, SP ← SP +1

v

v

v

v

CHAPTER 19 INSTRUCTION SET

196

Machine code
Group Mnemonic Operand Operation

OP code Operand

Transfer PUSH AR SP ← SP –1, ASR ← AR 00111 000 1101 0000

POP AR AR ← ASR, SP ← SP+1 00111 000 1100 0000

PEEK WR, rf WR ← (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) ← WR 00111 rfR 0010 rfC

GET DBF, p DBF ← (p) 00111 pH 1011 pL

PUT p, DBF (p) ← DBF 00111 pH 1010 pL

Branch BR addr PC ← addr 01100 addr

@AR PC ← AR 00111 000 0100 0000

Sub- CALL addr SP ← SP –1, ASR ← PC, PC ← addr 11100 addr
routine

@AR SP ← SP –1, ASR ← PC, PC ← AR 00111 000 0101 0000

RET PC ← ASR, SP ← SP +1 00111 000 1110 0000

RETSK PC ← ASR, SP ← SP +1 and skip 00111 001 1110 0000

RETI PC ← ASR, INTR ← INTSK, SP ← SP +1 00111 100 1110 0000

Interrupt EI INTEF ← 1 00111 000 1111 0000

DI INTEF ← 0 00111 001 1111 0000

Others STOP s STOP 00111 010 1111 s

HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

197

19.4 ASSEMBLER (AS17K) EMBEDDED MACRO INSTRUCTIONS

Legend

flag n : FLG type symbol

< > : Can be omitted

Mnemonic Operand Operation n

Embedded SKTn flag 1, ...flag n if (flag 1) to (flag n) = all “1” then skip 1 ≤ n ≤ 4
macro

SKFn flag 1, ...flag n if (flag 1) to (flag n) = all “0”, then skip 1 ≤ n ≤ 4

SETn flag 1, ...flag n (flag 1) to (flag n) ← 1 1 ≤ n ≤ 4

CLRn flag 1, ...flag n (flag 1) to (flag n) ← 0 1 ≤ n ≤ 4

NOTn flag 1, ...flag n if (flag n) = “0”, then (flag n) ← 1 1 ≤ n ≤ 4
if (flag n) = “1”, then (flag n) ← 0

INITFLG <NOT> flag 1, if description = NOT flag n, then (flag n) ← 0 1 ≤ n ≤ 4
 ...<<NOT> flag n> if description = flag n, then (flag n) ← 1

BANKn BANK ← n n = 0, 1

CHAPTER 19 INSTRUCTION SET

198

19.5 INSTRUCTIONS

19.5.1 Addition Instructions

(1) ADD r, m Add data memory to general register

<1> OP code

<2> Function

When CMP = 0, (r) ← (r) + (m)

Adds the data memory contents to the general register contents, and stores the result in general register.

When CMP = 1, (r) + (m)

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag, if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary 4 bits or BCD. The BCD flag for the PSWORD specifies what kind of addition

is to be executed.

<3> Example 1

To add the address 0.2FH contents to the address 0.03H contents, when row address 0 (0.00H–0.0FH)

in bank 0 is specified as the general register (RPH = 0, RPL = 0), and to store the result in address 0.03H:

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM003, MEM02F

00000 mR mC r

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

199

Example 2

To add the address 0.2FH contents to the address 0.23H contents, when row address 2 (0.20H–0.2FH)

in bank 0 is specified as the general register (RPH = 0, RPL = 4), and store the result in address 0.23H:

(0.23H) ← (0.23H) + (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0 Note

MOV RPL, #04H ; General register row address 2

ADD MEM023, MEM02F

RP (general register pointer) is assigned in the system register, as shown above.

Therefore, to set bank 0 and row address 2 in a general register, 00H must be stored in RPH and 04H,

in RPL.

In this case, the subsequent arithmetic operation is executed in binary 4-bit operation, because the BCD

flag is reset.

Example 3

To add the address 0.6FH contents to the address 0.03H contents and store the result in address 0.3H.

At this time, data memory address 0.6FH can be specified, by selecting data memory address 2FH, if

IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., IX = 0.40H.

(0.03H) ← (0.03H) + (0.6FH)

Address obtained as result of ORing index register

contents, 0.40H, and data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

RP

RPH RPL

Register

Bit

Data

b3 b2 b1 b0 b3 b2 b1 b0

B

C

D
Bank

Row
Address

0 0 0

Note

CHAPTER 19 INSTRUCTION SET

200

Example 4

To add the address 0.3FH contents to the address 0.03H contents and store the result in address 0.03H.

At this time, data memory address 2.3FH can be specified by specifying data memory address 2FH, if

IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., IX = 0.10H.

(0.03H) ← (0.03H) + (0.3FH)

Address obtained as result of ORing index register

contents, 0.10H, and data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H) Note

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00100111111B (0.3FH)

IX (index register) is assigned in the system register, as shown above,

Therefore, to specify IX = 0.10H, 00H must be stored in IXH. 01H in IXM, and 00H in IXL.

In this case, MP (memory pointer) for general register indirect transfer is invalid, because the MPE flag

(memory pointer enable) is reset.

IX

IXH IXM

Register

Bit

Data

b3 b2 b1 b0 b3 b2 b1 b0

P 0 0

b2 b1 b0b3

IXL

0

M

E

Bank
Row

Address
Column
address

Note

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

201

<4> Caution

The first operand for the ADD r, m instruction is a column address. Therefore, if the instruction is

described as follows, the column address for the general register is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM013, MEM02F

Indicates the general register column address.

The low-order 4 bits (in this case, 03H) are valid

When CMP flag = 1, the addition result is not stored.

When BCD flag = 1, the decimal addition result is stored.

(2) ADD m, #n4 Add immediate data to data memory

<1> OP code

<2> Function

When CMP = 0, (m) ← (m) + n4

Adds immediate data to the data memory contents, and stores the result in data memory.

When CMP = 1, (m) + n4

The result is not stored in the data memory. Carry flag CY and zero flag Z are changed, according to

the result.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary 4 bits or BCD. The BCD flag for the PSWORD specifies which kind of

addition is to be executed.

10000 mR mC n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

202

<3> Example 1

To add 5 to the address 0.2FH contents, and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) + 5

MEM02F MEM 0.2FH

ADD MEM02F, #05H

Example 2

To add 5 to the address 0.6FH contents and store the result in address 0.6FH. At this time, data memory

address 0.6FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0, IXM = 4,

and IXL = 0, i.e., IX = 0.40H.

(0.6FH) ← (0.6FH) + 05H

Address obtained as result of ORing index register contents, 0.40H,

and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3

To add 5 to the address 0.2FH contents and store the result in address 0.2FH. At this time, data memory

address 0.2FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0, IXM = 0,

and IXL = 0, i.e., IX = 0.00H.

(0.2FH) ← (0.2FH) + 05H

Address obtained as result of ORing index register contents, 0.00H,

and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B

MOV IXM, #00H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

<4> Caution

When the CMP flag = 1, the addition result is not stored.

When the BCD flag = 1, the decimal addition result is stored.

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

203

(3) ADDC r, m Add data memory to general register with carry flag

<1> OP code

<2> Function

When CMP = 0, (r) ← (r) + (m) + CY

Adds the data memory contents to the general register contents with carry flag CY, and stores the result

in general register.

When CMP = 1, (r) + (m) + CY

The result is not stored in the register. Carry flag CY and zero flag Z are changed according to the result.

By using this ADDC instruction, one or more nibbles can be easily added.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of addition

is to be executed.

<3> Example 1

To add the 12-bit contents for addresses 0.0DH through 0.0FH to the 12-bit contents for addresses 0.2DH

through 0.2FH, and store the result in the 12-bit contents for address 0.0DH to 0.0FH, when row address

0 (0.00H–0.0FH) of bank 0 is specified as a general register:

(0.0FH) ← (0.0FH) + (0.2FH)

(0.0EH) ← (0.0EH) + (0.2EH) + CY

(0.0DH) ← (0.0DH) + (0.2DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM00F, MEM02F ; Low-order nibble

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D ; High-order nibble

00010 mR mC r

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

204

Example 2

To shift the 12-bit contents for addresses 0.2DH through 0.2FH 1 bit to the left, when row address 2 in

bank 0 (0.20H–0.2FH) is specified as a general register:

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

MOV BANK, #00H ; Data memory bank 0

ADDC MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

Example 3

To add the address 0.0FH contents to the addresses 0.40H through 0.4FH contents, and store the result

in address 0.0FH:

(0.0FH) ← (0.0FH) + (0.40H) + (0.41H) + ... + (0.4FH)

MEM00F MEM 0.0FH

MEM000 MEM 0.00H

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ADD MEM00F, MEM000

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKE IXL, #0

JMP LOOP1

CY
(carry flag)

Bank 0
Address 0DH

Bank 0
Address 0EH

Bank 0
Address 0FH

CY
(carry flag)

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

205

Example 4

To add the 12-bit contents for addresses 0.40H through 0.42H to the 12-bit contents for addresses 0.0DH

through 0.0FH, and store the result in 12-bit contents for addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) + (0.40H)

(0.0EH) ← (0.0EH) + (0.41H) + CY

(0.0FH) ← (0.0FH) + (0.42H) + CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX 00001000000 (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00D, MEM000 ; (0.0DH) ← (0.0DH) + (0.40H) ; Low-order nibble

ADDC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) + (0.41H)

ADDC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) + (0.42H) ; High-order nibble

(4) ADDC m, #n4 Add immediate data to data memory with carry flag

<1> OP code

<2> Function

When CMP = 0, (m) ← (m) + n4 + CY

Adds immediate data to the data memory contents with carry flag (CY), and stores the result in data

memory.

When CMP = 1, (m) + n4 + CY

The result is not stored in the data memory, and carry flag CY and zero flag Z are changed, according

to the result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag, if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary or BCD. The BCD flag for PSWORD specifies which kind of addition is

to be executed.

10010 mR mC n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

206

<3> Example 1

To add 5 to the 12-bit contents for addresses 0.0DH through 0.0FH, and store the result in addresses

0.0DH through 0.0FH;

(0.0FH) ← (0.0FH) + 05H

(0.0EH) ← (0.0EH) + CY

(0.0DH) ← (0.0DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

ADD MEM00F, #05H

ADDC MEM00E, #00H

ADDC MEM00D, #00H

Example 2

To add 5 to the 12-bit contents for addresses 0.4DH through 0.4FH and store the result in addresses

0.4DH through 0.4FH:

(0.4FH) ← (0.4FH) + 05H

(0.4EH) ← (0.4EH) + CY

(0.4DH) ← (0.4DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00F, #5 ; (0.4FH) ← (0.4FH) + 5H

ADDC MEM00E, #0 ; (0.4EH) ← (0.4EH) + CY

ADDC MEM00D, #0 ; (0.4DH) ← (0.4DH) + CY

(5) INC AR Increment address register

<1> OP code

<2> Function

AR ← AR + 1

Increments the address register AR contents.

00111 000 1001 0000

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

207

........

<3> Example 1

To add 1 to the 16-bit contents for AR3 through AR0 (address registers) in the system register and store

the result in AR3 through AR0:

AR0 ← AR0 + 1

AR1 ← AR1 + CY

AR2 ← AR2 + CY

AR3 ← AR3 + CY

INC AR

This program can be rewritten as follows, with addition instructions:

ADD AR0, #01H

ADDC AR1, #00H

ADDC AR2, #00H

ADDC AR3, #00H

Example 2

To transfer table data, 16 bits (1 address) at a time, to DBF (data buffer), using the table reference

instruction (for details, refer to 10.2.3 Table Reference):

; Address Table data

ORG 10H

DW 0F3FFH

DW 0A123H

DW 0FFF1H

DW 0FFF5H

DW 0FF11H

MOV AR3, #0H ; Table data address

MOV AR2, #0H ; 0010H in address register

MOV AR1, #1H ;

MOV AR0, #0H

LOOP:

MOVT DBF, @AR ; Reads table data to DBF

:

:

: ; Table data reference processing

:

INC AR ; Increments address register by 1

BR LOOP

<4> Caution

The numbers of bits, for address registers AR3 through AR0, differ, depending on the microcontroller

model to be used.

• µPD17134A/17135A : 10 bits

• µPD17136A/17137A/17P136A/17P137A : 11 bits

CHAPTER 19 INSTRUCTION SET

208

(6) INC IX Increment index register

<1> OP code

<2> Function

IX ← IX + 1

Increments the index register IX contents.

<3> Example 1

To add 1 to the 12-bit contents for IXH, IXM, and IXL (index registers) in the system register and store

the result in IXH, IXM, and IXL;

IXL ← IXL + 1

IXM ← IXM + CY

IXH ← IXH + CY

INC IX

This program can be rewritten as follows, with addition instructions:

ADD IXL, #01H

ADDC IXM, #00H

ADDC IXH, #00H

Example 2

To clear all the contents for data memory addresses 0.00H through 0.73H, using the index register:

MEM000 MEM0.00H

MOV IXH, #00H ; Sets index register contents in 00H in bank 0

MOV IXM, #00H ;

MOV IXL, #00H

RAM clear:

SET1 IXE ; IXE flag ← 1

MOV MEM000, #00H ; Writes 0 to data memory indicated by index register

CLR1 IXE ; IXE flag ← 0

INC IX

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB IXL, #03H ; Checks whether index register contents

SUBC IXM, #07H ; are 73H in bank 0

SUBC IXH, #00H ;

SKT1 Z ; Loops until contents of index register becomes

BR RAM clear ; 73H of bank 0

00111 000 1000 0000

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

209

19.5.2 Subtraction Instructions

(1) SUB r, m Subtract data memory from general register

<1> OP code

<2> Function

When CMP = 0, (r) ← (r) – (m)

Subtracts the data memory contents from the general register contents, and stores the result in general

register.

When CMP = 1, (r) – (m)

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of

subtraction is to be executed.

<3> Example 1

To subtract the address 0.2FH contents from the address 0.03H contents, store the result in address

0.03H, when row address 0 (0.00H–0.0FH) in bank 0 is specified as a general register (RPH = 0, RPL

= 0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

SUB MEM003, MEM02F

Example 2

To subtract the address 0.2FH contents from the address 0.23H contents, when row address 2 (0.20H–

0.2FH) in bank 0 is specified as the general register (RPH = 0, RPL = 4), and store the result in address

0.23H:

(0.23H) ← (0.23H) – (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

SUB MEM023, MEM02F

00001 mR mC r

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

210

Example 3

To subtract the address 0.6FH contents from the address 0.03H contents and store result in address

0.03H. At this time, data memory address 0.6FH can be specified by selecting data memory address

2FH, if IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., IX = 0.40H.

(0.03H) ← (0.03H) + (0.6FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 4

To subtract the address 0.3FH contents from the address 0.03H contents and store result in address

0.03H. At this time, data memory address 0.3FH can be specified by selecting data memory address

2FH, if IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., IX = 0.10H.

(0.03H) ← (0.03H) + (0.3FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)

MOV IXM, #01H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000111111B (0.3FH)

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

211

<4> Caution

The first operand for the SUB r, m instruction is a general register address. Therefore, if the instruction

is described as follows, the general register address is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

SUB MEM013, MEM02F

Specify general register in 00H–0FH range

(set register pointer row address other than 1).

When the CMP flag = 1, the subtraction result is not stored.

When the BCD flag = 1, the decimal subtraction result is stored.

(2) SUB m, #n4 Subtract immediate data from data memory

<1> OP code

<2> Function

When CMP = 0, (m) ← (m) – n4

Subtracts immediate data from the data memory contents, and stores the result in data memory.

When CMP = 1, (m) – n4

The result is not stored in data memory. Carry flag CY and zero flag Z are changed, according to the

result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of

subtraction is to be executed.

<3> Example 1

To subtract 5 from the address 0.2FH contents, and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) – 5

MEM02F MEM 0.2FH

SUB MEM02F, #05H

10001 mR mC n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

212

Example 2

To subtract 5 from the address 0.6FH contents and store the result in address 0.6FH. At this time, data

memory address 0.6FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0,

IXM = 4, and IXL = 0, i.e., IX = 0.40H.

(0.6FH) ← (0.6FH) – 5

Address obtained as a result of ORing index register contents,

0.40H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3

To subtract 5 from the address 0.2FH contents and store the result in address 0.2FH. At this time, data

memory address 0.2FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0,

IXM = 0, and IXL = 0, i.e., IX = 0.00H.

(0.2FH) ← (0.2FH) – 5

Address obtained as a result of ORing index register contents,

0.00H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK0, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

(3) SUBC r, m Subtract data memory from general register with carry flag

<1> OP code

00011 mR mc r

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

213

<2> Function

When CMP = 0, (r) ← (r) – (m) – CY

Subtracts the data memory contents from the general register contents with carry flag CY. Stores the

result in general register. By using this SUBC instruction, 2 or more words can be easily subtracted.

When CMP = 1, (r) – (m) – CY

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of

subtraction is to be executed.

<3> Example 1

To subtract the 12-bit contents for addresses 0.2DH through 0.2FH from the 12-bit contents for

addresses 0.0DH through 0.0FH and store the result in 12 bits for addresses 0.0DH through 0.0FH, when

row address 0 (0.00H–0.0FH) in bank 0 is specified as a general register:

(0.0FH) ← (0.0FH) – (0.2FH)

(0.0EH) ← (0.0EH) – (0.2EH) – CY

(0.0DH) ← (0.0DH) + (0.2DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

SUB MEM00F, MEM02F ; Low-order nibble

SUBC MEM00E, MEM02E

SUBC MEM00D, MEM02D ; High-order nibble

CHAPTER 19 INSTRUCTION SET

214

Example 2

To subtract the 12-bit contents for addresses 0.40H through 0.42H from the 12-bit contents for addresses

0.0DH through 0.0FH, and store the result in 12 bits for addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) – (0.40H)

(0.0EH) ← (0.0EH) – (0.41H) – CY

(0.0FH) ← (0.0FH) + (0.42H) – CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEMOOD, MEM000 ; (0.0DH) ← (0.0DH) – (0.40H)

SUBC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) – (0.41H)

SUBC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) – (0.42H)

(4) SUBC m, #n4 Subtract immediate data from data memory with carry flag

<1> OP code

<2> Function

When CMP = 0, (m) ← (m) – n4 – CY

Subtracts immediate data from the data memory contents with carry flag CY, and stores the result in

data memory.

When CMP = 1, (m) – n4 – CY

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary or BCD. The BCD flag for PSWORD specifies which kind of subtraction

is to be executed.

10011 mR mc n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

215

<3> Example 1

To subtract 5 from the 12-bit contents for addresses 0.0DH through 0.0FH and store the result in 12 bits

for addresses 0.0DH through 0.0FH:

(0.0FH) ← (0.0FH) – 05H

(0.0EH) ← (0.0EH) – CY

(0.0DH) ← (0.0DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SUB MEM00F, #05H

SUBC MEM00E, #00H

SUBC MEM00D, #00H

Example 2

To subtract 5 from the 12-bit contents for addresses 0.4DH through 0.4FH and store the result in

addresses 0.4DH through 0.4FH:

(0.4FH) ← (0.4FH) – 05H

(0.4EH) ← (0.4EH) – CY

(0.4DH) ← (0.4DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00F, #5 ; (0.4FH) ← (0.4FH) – 5

SUBC MEM00E, #0 ; (0.4EH) ← (0.4EH) – CY

SUBC MEM00D, #0 ; (0.4DH) ← (0.4DH) – CY

CHAPTER 19 INSTRUCTION SET

216

19.5.3 Logical Operation Instructions

(1) OR r, m OR between general register and data memory

<1> OP code

<2> Function

(r) ← (r) v (m)

ORs the general register contents with data memory. Stores the result in general register.

<3> Example 1

To OR the address 0.03H contents (1010B) and the address 0.2FH contents (0111B) and store the result

(1111B) in address 0.03H:

(0.03H) ← (0.03H) v (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0111B

OR MEM003, MEM02F

(2) OR m, #n4 OR between data memory and immediate data

<1> OP code

10110 mR mc n4

10 8 7 4 3 0

1 0 1 0

OR

0 1 1 1

1 1 1 1

Address 03H

Address 2FH

Address 03H

00110 mR mc r

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

217

<2> Function

(m) ← (m) v n4

ORs the data memory contents and immediate data. Stores the result in data memory.

<3> Example 1

To set bit 3 (MSB) for address 0.03H:

(0.03H) ← (0.03H) v 1000B

MEM003 MEM 0.03H

OR MEM003, #1000B

Example 2

To set all the bits for address 0.03H:

MEM003 MEM 0.03H

OR MEM003, #1111B

 or,

MEM003 MEM 0.03H

MOV MEM003, #0FH

(3) AND r, m AND between general register and data memory

<1> OP code

<2> Function

(r) ← (r) (m)

ANDs the general register contents with data memory and stores the result in general register.

v

00100 mR mc r

10 8 7 4 3 0

1 × × × ×: don't care

Address 0.03H

CHAPTER 19 INSTRUCTION SET

218

<3> Example

To AND the address 0.03H (1010B) contents and the address 0.2FH (0110B) contents. To store the

result (0010B) in address 0.03H:

(0.03H) ← (0.03H) (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0110B

AND MEM003, MEM02F

(4) AND m, #n4 AND between data memory and immediate data

<1> OP code

<2> Function

(m) ← (m) n4

ANDs the data memory contents and immediate data. Stores the result in data memory.

<3> Example 1

To reset bit 3 (MSB) for address 0.03H:

(0.03H) ← (0.03H) 0111B

MEM003 MEM 0.03H

AND MEM003, #0111B

V

v

v

1 0 1 0

AND

0 1 1 0

0 0 1 0

Address 03H

Address 2FH

Address 03H

11110 mR mc n

10 8 7 4 3 0

0 × × × ×: don't care

Address 0.03H

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

219

Example 2

To reset all the bits for address 0.03H:

MEM003 MEM 0.03H

AND MEM003, #0000B

 or,

MEM003 MEM 0.03H

MOV MEM003, #00H

(5) XOR r, m Exclusive OR between general register and data memory

<1> OP code

<2> Function

(r) ← (r) v (m)

Exclusive-ORs the general register contents with data memory. Stores the result in general register.

<3> Example 1

To compare the address 0.03H contents and the address 0.0FH contents. If different bits are found, set

and store them in address 0.03H. If all the bits in address 0.03H are reset (i.e., the address 0.03H

contents are the same as those for address 0.0FH), jumps to LBL1; otherwise, jumps to LBL2.

This example is for processing to compare the status of an alternate switch (address 0.03H contents)

with the internal status (address 0.0FH contents) and to branch to another processing, if the switch status

changes.

MEM003 MEM 0.03H

MEM00F MEM 0.0FH

XOR MEM003, MEM00F

SKNE MEM003, #00H

BR LBL1

BR LBL2

00101 mR mc r

10 8 7 4 3 0

1 0 1 0

XOR

0 1 1 0

1 1 0 0

Address 03H

Address 0FH

Address 03H

Bits changed

CHAPTER 19 INSTRUCTION SET

220

Example 2

To clear the address 0.03H contents:

MEM003 MEM 0.03H

XOR MEM003, MEM003

(6) XOR m, #n4 Exclusive OR between data memory and immediate data

<1> OP code

<2> Function

(m) ← (m) v n4

Exclusive-ORs the data memory contents and immediate data. Stores the result in data memory.

<3> Example

To invert bits 1 and 3 in address 0.03H and store the result in address 03H:

MEM003 MEM 0.03H

XOR MEM003, #1010B

0 1 0 1

XOR

0 1 0 1

0 0 0 0

Address 03H

Address 03H

Address 03H

10101 mR mc n4

10 8 7 4 3 0

1 1 0 0

XOR

1 0 1 0

0 1 1 0

Address 03H

Address 03H

Inverted bits

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

221

19.5.4 Judgment Instructions

(1) SKT m, #n Skip next instruction if data memory bits are true

<1> OP code

<2> Function

CMP ← 0, if (m) n = n, then skip

Skips the next one instruction, if the result of ANDing the data memory contents and immediate data

is equal to n. (Executes as NOP instruction)

<3> Example 1

To jump to AAA, if bit 0 in address 03H is 1; if it is 0, jumps to BBB:

SKT 03H, #0001B

BR BBB

BR AAA

Example 2

To skip the next instruction, if both bits 0 and 1 in address 03H are 1.

SKT 03H, #0011B

Example 3

The results of executing the following two instructions are the same:

SKT 13H, #1111B

SKE 13H, #0FH

(2) SKF m, #n Skip next instruction if data memory bits are false

<1> OP code

v

11110 mR mc n

10 8 7 4 3 0

11111 mR mc n

10 8 7 4 3 0

× × 1 1Skip condition 03H ×: don't care

b3 b2 b1 b0

CHAPTER 19 INSTRUCTION SET

222

<2> Function

CMP ← 0, if (m) n = 0, then skip

Skips the next one instruction, if the result of ANDing the data memory contents and immediate data

is 0 (Executes as NOP instruction).

<3> Example 1

To store immediate data 00H to address 0FH in the data memory, if bit 2 in address 13H is 0; if it is 1,

jumps to ABC:

MEM013 MEM 0.13H

MEM00F MEM 0.0FH

SKF MEM013, #0100B

BR ABC

MOV MEM00F, #00H

Example 2

To skip the next instruction, if both bits 3 and 0 in address 29H are 0.

SKF 29H, #1001B

Example 3

The results of executing the following two instructions are the same:

SKF 34H, #1111B

SKE 34H, #00H

v

0 × × 0Skip condition 29H ×: don't care

b3 b2 b1 b0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

223

19.5.5 Comparison Instructions

(1) SKE m, #n4 Skip if data memory equal to immediate data

<1> OP code

<2> Function

(m) –n4, skip if zero

Skips the next one instruction, if the data memory contents are equal to the immediate data value

(Executes as NOP instruction).

<3> Example

To transfer 0FH to address 24H, if the address 24H contents are 0; if not, jumps to OPE1:

MEM024 MEM 0.24H

SKE MEM024, #00H

BR OPE1

MOV MEM024, #0FH

OPE1 :

(2) SKNE m, #n4 Skip if data memory not equal to immediate data

<1> OP code

<2> Function

(m) –n4, skip if not zero

Skips the next one instruction, if the data memory contents are not equal to the immediate data value

(Executes as NOP instruction).

01001 mR mc n4

10 8 7 4 3 0

01011 mR mc n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

224

<3> Example

To jump to XYZ, if the asddress 1FH contents are 1 and the address 1EH contents are 3; otherwise,

jump to ABC.

To compare 8-bit data, this instruction is used in the following combination:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SKNE MEM01F, #01H

SKE MEM01E, #03H

BR ABC

BR XYZ

The above program can be rewritten as follows, using compare and zero flags:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1
SUB MEM01F, #01H

SUBC MEM01E, #03H

SKT1 Z

BR ABC

BR XYZ

(3) SKGE m, #n4 Skip if data memory greater than or equal to immediate data

<1> OP code

<2> Function

(m) –n4, skip if not borrow

Skips the next one instruction, if the data memory contents are greater than or equal to the immediate

data value (Executes as NOP instruction).

0 0 1 1

3

1EH 0 0 0 1

1

1FH

11001 mR mc n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

225

<3> Example

To execute RET, if 8-bit data stored in addresses 1FH (high-order) and 2FH (low-order) is greater than

immediate data ‘17H’; if not, execute RETSK:

MEM01F MEM 0.1FH

MEM02F MEM 0.2FH

SKGE MEM01F, #1

RETSK

SKNE MEM01F, #1

SKLT MEM02F, #8 ; 7 + 1

RET

RETSK

(4) SKLT m, #n4 Skip if data memory less than immediate data

<1> OP code

<2> Function

(m) –n4, skip if borrow

Skips the next one instruction, if the data memory contents are less than the immediate data value

(Executes as NOP instruction).

<3> Example

To store 01H in address 0FH, if the address 10H contents are greater than immediate data ‘6’; if not,

store 02H in address 0FH:

MEM00F MEM 0.0FH

MEM010 MEM 0.10H

MOV MEM00F, #02H

SKLT MEM010, #06H

MOV MEM00F, #01H

11011 mR mc n4

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

226

19.5.6 Rotation Instructions

(1) RORC r Rotate right general register with carry flag

<1> OP code

<2> Function

Rotates the contents of general register indicated by r to right by 1 bit including carry flag.

<3> Example 1

When row address 0 of bank 0 (0.00H – 0.0FH) is specified as general register (RPH = 0, RPL = 0), rotate

the value of address 0.00H (1000B) to right by 1 bit to make it 0100B.

(0.00H) ← (0.00H) ÷ 2

MEM000 MEM 0.00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; CY flag ← 0
RORC MEM000

Example 2

When row address 0 of bank 0 (0.00H – 0.0FH) is specified as general register (RPH = 0, RPL = 0), rotate

the data buffer DBF contents 0FA52H to right by 1 bit to make DBF contents 7D29H.

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; CY flag ← 0

RORC MEM00C

RORC MEM00D

RORC MEM00E

RORC MEM00F

00111 000 0111 r

3 0

CY (r)b3 (r)b2 (r)b1 (r)b0

CY

0

0CH

1 1 1 1

0DH

1 0 1 0

0EH

0 1 0 1

0FH

0 0 1 0

CY

00 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

227

19.5.7 Transfer Instructions

(1) LD r, m Load data memory to general register

<1> OP code

<2> Function

(r) ← (m)

Stores the data memory contents to general register.

<3> Example 1

To store the address 0.2FH contents to address 0.03H:

(0.03H) ← (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

LD MEM003, MEM02F

01000 mR mc r

10 8 7 4 3 0

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

CHAPTER 19 INSTRUCTION SET

228

Example 2

To store the address 0.6FH contents to address 0.03H. At this time, data memory address 0.6FH can

be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., IX

= 0.40H.

IXH ← 00H

IXM ← 04H

IXL ← 00H

IXE flag ← 1

(0.03H) ← (0.6FH)

 Address obtained as result of ORing index register contents, 040H,

 and data memory contents, 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

LD MEM003, MEM02F

(2) ST m, r Store general register to data memory

<1> OP code

<2> Function

(m) ← (r)

Stores the general register contents to data memory.

11000 mR mc r

10 8 7 4 3 0

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

229

...........

<3> Example 1

To store the address 0.03H contents to address 0.2FH:

 (0.2FH) ← (0.03H)

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ST 2FH, 03H ; Transfers general register contents to data memory

Example 2

To store the address 0.00H contents to addresses 0.18H through 0.1FH. The data memory addresses

(18H – 1FH) are specified by the index register.

(0.18H) ← (0.00H)

(0.19H) ← (0.00H)

(0.1FH) ← (0.00H)

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H

MOV IXL, #00H ; Specifies data memory address 0.00H

MEM018 MEM 0.18H

MEM000 MEM 0.00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ST MEM018, MEM000 ; (0.1✕H) ← (0.00H)

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKGE IXL, #08H

BR LOOP1

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

CHAPTER 19 INSTRUCTION SET

230

(3) MOV @r, m Move data memory to destination indirect

<1> OP code

<2> Function

When MPE = 1

((MP), (r)) ← (m)

When MPE = 0

(BANK, mR, (r)) ← (m)

Stores the data memory contents to the data memory addressed by the general register contents. When

MPE = 0, transfer is performed in the same row address in the same bank.

<3> Example 1

To store the address 0.20H contents to address 0.2FH with the MPE flag cleared to 0. The transfer

destination data memory address is at the same row address as the transfer source, and the column

address is specified by the general register contents at address 0.00H.

(0.2FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0

MOV MEM000, #0FH ; Sets column address in general register

MOV @MEM000, MEM020 ; Store

01010 mR mc r

10 8 7 4 3 0

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

231

Example 2

To store the address 0.20H contents to address 0.3FH, with the MPE flag set to 1. The row address

for the transfer destination data memory address is specified by the memory pointer MP contents. The

column address is specified by the general register contents at address 0.00H.

(0.3FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV MEM000, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SET1 MPE ; MPE flag ← 1

MOV @MEM000, MEM020 ; Store

(4) MOV m, @r Move data memory to destination indirect

<1> OP code

11010 mR mc r

10 8 7 4 3 0

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

F

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

F

CHAPTER 19 INSTRUCTION SET

232

<2> Function

When MPE = 1

(m) ← (MP, (r))

When MPE = 0

(m) ← (BANK, mR, (r))

Stores the data memory contents addressed by the general register contents to data memory. When

MPE = 0, transfer is performed in the same row address in the same bank.

<3> Example 1

To store the address 0.2FH contents to address 0.20H, with the MPE flag cleared to 0. The transfer

destination data memory address is at the same row address as the transfer source. The column address

is specified by the general register contents at address 0.00H.

(0.20H) ← (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0

MOV MEM000, #0FH ; Sets column address in general register

MOV MEM020, @MEM000 ; Store

Example 2

To store the address 0.3FH contents to address 0.20H, with the MPE flag set to 1. The row address

for the transfer source data memory address is specified by the memory pointer MP contents. The

column address is specified by the general register contents at address 0.00H.

(0.20H) ← (0.3FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV MEM000, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SET1 MPE ; MPE flag ← 1

MOV MEM020, @MEM000 ; Store

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

F

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

233

(5) MOV m, #n4 Move immediate data to data memory

<1> OP code

<2> Function

(m) ← n4

Stores immediate data to data memory.

<3> Example 1

To store immediate data 0AH to data memory address 0.50H:

(0.5H) ← 0AH

MEM050 MEM 0.50H

MOV MEM050, #0AH

Example 2

To store immediate data 07H to address 0.32H, when data memory address 0.00H is specified with IXH

= 0, IXM = 3, IXL = 2, and IXE flag = 1:

(0.32H) ← 07H

MEM000 MEM 0.00H

MOV IXH, #00H ; IX ← 00000110010B (0.32H)

MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag ← 1

MOV MEM000, #07H

11101 mR mc n4

10 8 7 4 3 0

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

General register

Column addressBank 0

F

CHAPTER 19 INSTRUCTION SET

234

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> OP code

<2> Function

SP ← SP – 1, ASR ← PC, PC ← AR,

DBF ← (PC), PC ← ASR, SP ← SP + 1

Stores the program memory contents, addressed by address register AR, to data buffer DBF.

Since this instruction temporarily uses one stack level, pay attention to nesting for subroutines and

interrupts.

<3> Example

To transfer 16 bits of table data, specified by the values for address registers AR3, AR2, AR1, and AR0

in the system register, to data buffers DBF3, DBF2, DBF1, and DBF0:

; *

; ** Table data

; *

ORG 0010H

DW 0000000000000000B ; (0000H)

DW 1010101111001101B ; (0ABCDH)

; *

; ** Table reference program

; *

MOV AR3, #00H ; AR3 ← 00H Sets 0011H in address register

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV AR0, #01H ; AR0 ← 01H

MOVT DBF, @AR ; Transfers address 0011H data to DBF

In this case, the data are stored in DBF, as follows:

DBF3 = 0AH

DBF2 = 0BH

DBF1 = 0CH

DBF0 = 0DH

..........

00111 000 0001 0000

10 8 7 4 3 0

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

235

(7) PUSH AR Push address register

<1> OP code

<2> Function

SP ← SP – 1,

ASR ← AR

Decrements stack pointer SP and stores the address register AR value to address stack register

specified by stack pointer.

<3> Example 1

To set 003FH in address register and store it in stack:

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #0FH

PUSH AR

00111 000 1101 0000

System register

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

0 0 3 F

CS T A K

0 0 3 F

CHAPTER 19 INSTRUCTION SET

236

Example 2

To set the return address (next address of the data table) for a subroutine in the address register. Returns

execution, if a data table exists after a subroutine:

SUB1:

POP

MOV

MOV

MOV

MOV

PUSH

RET

If POP instruction is executed at
this time, the contents of address
register is “0011H” (the next address
of CALL instruction).

............

CALL

ORG

;*
;** DATA TABLE
;*

DW
DW
DW
DW

1A1FH
002FH
010AH
0555H

..................

DW
ORG

0FFFH
30H

..................

SUB1

10H

............
AR

AR3, #00H

AR2, #00H

AR1, #03H

AR0, #00H

AR

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

237

(8) POP AR Pop address register

<1> OP code

<2> Function

AR ← ASR,

SP ← SP + 1

Pops the contents of address stack register indicated by stack pointer to address register AR and then

increments stack pointer SP.

<3> Example

If the PSW contents are changed, while an interrupt processing routine is being executed, the PSW

contents are transferred to the address register through WR at the beginning of the interrupt processing

and saved to address stack register by the PUSH instruction. Before the execution returns from the

interrupt routine, the address register contents are restored through WR to PSW by the POP instruction.

00111 000 1100 0000

PEEK
POKE
PUSH

....................

EI

Interrupt processing routine

WR, PSW
AR0, WR
AR

...

POP
PEEK
POKE
RET (or RETI)

AR
WR, AR0
PSW, WR

................... ..

Generates
interrupt source

CHAPTER 19 INSTRUCTION SET

238

(9) PEEK WR, rf Peek register file to window register

<1> OP code

<2> Function

WR ← (rf)

Stores the register file contents to window register WR.

<3> Example 1

To store the stack pointer SP contents at address 01H in the register file to the window register:

PEEK WR, SP

00111 rfR 0011

10 8 7 4 3 0

rfC

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

WR System register

0

1

2

3

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column address

Register file

SP

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

239

(10) POKE rf, WR Poke window register to register file

<1> OP code

<2> Function

(rf) ← WR

Stores the window register WR contents to register file.

<3> Example

To store immediate data 0FH to P0DBIO for the register file through the window register:

MOV WR, #0FH

POKE P0DBIO, WR ; Sets all of P0D0, P0D1, P0D2, and P0D3 in output mode

00111 rfR 0010

10 8 7 4 3 0

rfC

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

WR System register

0

1

2

3

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column address

Register file P0DBIO

CHAPTER 19 INSTRUCTION SET

240

<4> Caution

It seems that the same addresses 40H through 7FH of the data memory exist at addresses 40H through

7FH of the register file as for as the program is concerned.

The PEEK and POKE instructions can access addresses 40H through 7FH in each data memory bank,

in addition to the register file. For example, these instructions can be used as follows:

MEM05F MEM 0.5FH

PEEK WR, PSW ; Stores PSW (7FH) contents in system register to WR

POKE MEM05F, WR ; Stores WR contents to address 5FH in data memory

(11) GET DBF, p Get peripheral data to data buffer

<1> OP code

<2> Function

DBF ← (p)

Stores the peripheral register contents to data buffer DBF.

DBF is a 16-bit area of addresses 0H through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

<3> Example

To store the 8-bit contents for shift register SIOSFR in the serial interface to data buffers DBF0 and DBF1:

GET DBF, SIOSFR

00111 pH 1011

10 8 7 4 3 0

pL

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

WR PSW

PEEK WR, PSW

POKE 5FH, WR

Register file

Data memory

System register

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

241

<4> Caution

The data buffer is configured in 16 bits. However, the number of bits accessed differs depending on

the peripheral hardware. For example, if the GET instruction is executed to a peripheral hardware

register with a valid bit length of 8 bits, the contents of the peripheral hardware register are stored to

the low-order 8 bits (DBF1, DBF0) of the data buffer DBF.

(12) PUT p, DBF Put data buffer peripheral

<1> OP code

<2> Function

(p) ← DBF

Stores the data buffer DBF contents to peripheral hardware register.

DBF is a 16-bit area of addresses 0H through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

Data buffer

Actual bits

b7 b0

GET

b7 b0

DBF0DBF1DBF2
Retained

DBF3
Retained

Peripheral
hardware
register

00111 1010 pL

10 8 7 4 3 0

pH

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

DBF1 2

System register

SIOSFR 12H

Peripheral
hardware
register

CHAPTER 19 INSTRUCTION SET

242

<3> Example

To set 0AH and 05H to data buffers DBF1 and DBF0, respectively, and transfer them to a peripheral

register, shift register (SIOSFR) for serial interface:

MOV BANK, #00H ; Data memory bank 0

MOV DBF0, #05H

MOV DBF1, #0AH

PUT SIOSFR, DBF

<4> Caution

The data buffer is configured in 16 bits. However, the number of bits accessed differs depending on

the peripheral hardware. For example, if the GET instruction is executed to a peripheral hardware

register with a valid bit length of 8 bits, the contents of the peripheral hardware register are stored to

the low-order 8 bits (DBF1, DBF0) of the data buffer DBF.

Data buffer

Actual bits

b7 b0

PUT

b7 b0

DBF0DBF1DBF2
Don’t care

DBF3
Don’t care

Peripheral
hardware
register

b6 b5 b4 b3 b2 b1

0

1

2

3

4

5

6

7

0 F1 2 3 4 5 6 7 8 9 A B C D E

R
ow

 a
dd

re
ss

Column addressBank 0

DBFA 5

System register

SIOSFR 0A5H

Peripheral
hardware
register

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

243

19.5.8 Branch Instructions

(1) BR addr Branch to the address

<1> OP code

<2> Function

PC ← addr

Branches to an address specified by addr.

<3> Example

FLY LAB 0FH ; Defines FLY = 0FH

:

:

BR FLY ; Jumps to address 0FH

:

:

BR LOOP1 ; Jumps to LOOP1

:

:

BR $ + 2 ; Jumps to an address 2 addresses lower than current address

:

:

BF $ – 3 ; Jumps to an address 3 addresses higher than current address

:

:

LOOP1:

(2) BR @AR Branch to the address specified by address register

<1> OP code

<2> Function

PC ← AR

Branches to the program address, specified by address register AR.

01100 addr

010

00111 000 0100 0000

CHAPTER 19 INSTRUCTION SET

244

<3> Example 1

To set 003FH in address register AR (AR0 – AR3) and jump to address 003FH by using the BR @AR

instruction:

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #03H ; AR1 ← 03H

MOV AR0, #0FH ; AR0 ← 0FH

BR @AR ; Jumps to address 003FH

Example 2

To change the branch destination according to the data memory address 0.10H contents, as follows:

0.10H contents Branch destination label

00H → AAA

01H → BBB

02H → CCC

03H → DDD

04H → EEE

05H → FFF

06H → GGG

07H → HHH

08H – 0FH → ZZZ

; *

; ** Jump table

; *

ORG 10H

BR AAA

BR BBB

BR CCC

BR DDD

BR EEE

BR FFF

BR GGG

BR HHH

BR ZZZ

:

:

:

MEM010 MEM 0.10H

MOV AR3, #00H ; AR3 ← 00H Sets AR to 001✕H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV RPH, #00H ; General register bank 0

MOV RPL, #02H ; General register row address 1

ST AR0, MEM010 ; AR0 ← 0.10H

SKLT AR0, #08H

MOV AR0, #08H ; Sets 08H in AR0, if AR0 contents are greater

BR @AR ; than 08H

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

245

<4> Caution

The number of bits, for address register AR3, AR2, AR1, and AR0, differs, depending on the

microcontroller model to be used.

• µPD17134A/17135A : 10 bits

• µPD17136A/17137A/17P136A/17P137A : 11 bits

CHAPTER 19 INSTRUCTION SET

246

19.5.9 Subroutine Instructions

(1) CALL addr Call subroutine

<1> OP code

<2> Function

SP ← SP – 1, ASR ← PC,

PC ← addr

Increments and stores the program counter PC value to stack, and branches to a subroutine specified

by addr.

<3> Example 1

Example 2

11100 addr

010

....................

SUB1:

RET

...................

MAIN

CALL SUB1

............

...........

SUB1:

...............

MAIN

CALL SUB1

............

CALL SUB2...........

RET

...........

SUB2:

CALL SUB3...........

RET

..............................

SUB3:

RET

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

247

(2) CALL @AR Call subroutine specified by address register

<1> OP code

<2> Function

SP ← SP – 1,

ASR ← PC,

PC ← AR

Saves the program counter PC value to the stack, and branches the execution to a subroutine that starts

from the address specified by address register AR.

<3> Example 1

To set 0020H in address register AR (AR0–AR3) and call the subroutine at address 0020H with the CALL

@AR instruction:

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #02H ; AR1 ← 02H

MOV AR0, #00H ; AR0 ← 00H

CALL @AR ; Calls subroutine at address 0020H

Example 2

To call the following subroutine by the data memory address 0.10H contents:

Contents of 0.10H Subroutine

00H → SUB1

01H → SUB2

02H → SUB3

03H → SUB4

04H → SUB5

05H → SUB6

06H → SUB7

07H → SUB8

08H–0FH → SUB9

00111 000 0101 0000

CHAPTER 19 INSTRUCTION SET

248

<4> Caution

The number of bits, in address registers AR3, AR2, AR1, and AR0, differs, depending on the

microcontroller model to be used.

• µPD17134A/17135A : 10 bits

• µPD17136A/17137A/17P136A/17P137A : 11 bits

SUB1:

....................................

RET

SUB2:
....................................

RET

SUB3:

....................................

RET

SUB7:

....................................

RET

SUB8:

....................................

RET

SUB9:

....................................

RET

SUB6:
....................................

RET

....................................

SUB4:

....................................

RET

SUB5:

....................................

RET
...........

...........

;*

;**Jump table for subroutine

;*

...........

 MOV

 MOV

 MOV

 MOV

 MOV

 ST

 SKLT

 MOV

 CALL

 AR3,

 AR2,

 AR1,

 RPH,

 RPL,

 AR0,

 AR0,

 AR0,

 @AR

 #00H

 #00H

 #01H

 #00H

 #02H

 10H

 #08H

 #08H

 ; AR3 00H address register 001 · H

 ; AR2 00H

 ; AR1 01H

 ; General register bank 0

 ; General register row address 1

 ; AR0 0.10H

 ; If AR0 is larger than 08H,

 ; set AR0 to 08H

To jump table

Returns here when executing
RET instruction in each subroutine

................

ORG

BR

BR

BR

BR

BR

BR

BR

BR

BR

10H

SUB1

SUB2

SUB3

SUB4

SUB5

SUB6

SUB7

SUB8

SUB9

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

249

(3) RET Return to the main program from subroutine

<1> OP code

<2> Function

PC ← ASR,

SP ← SP + 1,

Instruction to return to the main program from a subroutine.

Restores the return address, saved to the stack by the CALL instruction, to the program counter.

<3> Example

(4) RETSK Return to the main program then skip next instruction

<1> OP code

<2> Function

PC ← ASR, SP ← SP + 1 and skip

Instruction to return to the main program from a subroutine.

Skips the instruction next to the CALL instruction (i.e., treats that instructions as an NOP instruction).

Therefore, restores the return address, saved to the stack by the CALL instruction, to program counter

PC and then increments the program counter.

00111 000 1110 0000

10 8 7 4 3 0

CALL SUB1

....................
....................

SUB1:

RET

..............................

00111 001 1110 0000

CHAPTER 19 INSTRUCTION SET

250

<3> Example

To execute the RET instruction, if the LSB (least significant bit) content for address 25H in the data

memory (RAM) is 0. The execution is returned to the instruction next to the CALL instruction. If the LSB

is 1, execute the RETSK instruction. The execution is returned to the instruction following the one next

to the CALL instruction (in this example, ADD 03H, 16H).

(5) RETI Return to the main program from the interrupt service routine

<1> OP code

<2> Function

PC ← ASR, INTR ← INTSK, SP ← SP + 1

Instruction to return to the main program, from an interrupt service routine.

Restores the return address, saved to the stack by a vector interrupt, to the program counter.

Part of the system register (BANK, PSWORD) is also returned to the status before the occurrence of

the vector interrupt.

CALL

....................
....................

SUB1:

SKF 25H, #0001B

..............................

BR

ADD

SUB1

LOOP

03H, 16H
RETSK

RET

; LSB of 25H is "1"

; LSB of 25H is "0"

00111 100 1110 0000

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

251

19.5.10 Interrupt Instructions

(1) EI Enable Interrupt

<1> OP code

<2> Function

INTEF ← 1

Enables a vectored interrupt.

The interrupt is enabled after the instruction next to the EI instruction has been executed.

<3> Example 1

As shown in the following example, the interrupt is accepted after the instruction next to that, that has

accepted the interrupt, has been completely executed (excluding an instruction that manipulates

program counter). The flow then shifts to the vector address Note1.

00111 000 1111 0000

EI

............

MOV

.......................
................

ADD

ADD

0AH,

0BH,

0CH,

#00H

#01H

#01H

Generating
interrupt request

Generating
interrupt request

DI

EI

............
...........

MOV

SUB

0AH,

0BH,

#01H

#01H

EI

RET

....................

Note 2

Interrupt service

routine (vector address)

CHAPTER 19 INSTRUCTION SET

252

Notes 1. The vector address differs, depending on the interrupt to be accepted. Refer to Table

14-1.

2. The interrupt accepted in this example (an interrupt request is generated after the EI

instruction has been executed and the execution flow shifts to an interrupt service routine)

is the interrupt, whose interrupt enable flag (IP×××) is set. The program flow is not changed,

without the interrupt enable flag set, even if an interrupt request is generated, after the EI

instruction has been executed (therefore, the interrupt is not accepted). However, interrupt

request flag (IRQ×××) is set, and the interrupt is accepted, as soon as the interrupt enable

flag is set.

Example 2

An example of an interrupt, which occurs in response to an interrupt request being accepted counter

PC is being executed:

(2) DI Disable interrupt

<1> OP code

<2> Function

INTEF ← 0

Instruction to disable a vectored interrupt.

<3> Example

Refer to Example 1 in (1) EI.

EI

............
.................

................
ABCGenerating

interrupt request
.............

EI

RET

....................

Interrupt service

routine (vector address)

MOV

ADD

0AH, #00H

0BH, #01H

BR

ABC:

00111 001 1111 0000

CHAPTER 19 INSTRUCTION SET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

253

19.5.11 Other Instructions

(1) STOP s Stop CPU and release by condition s

<1> OP code

<2> Function

Stops the system clock and places the device in the STOP mode.

In the STOP mode, the power consumption for the device is minimized.

The condition, under which the STOP mode is to be released, is specified by operand (s).

For the stop releasing condition (s), refer to 16.3 STOP MODE.

(2) HALT h Halt CPU and release by condition h

<1> OP code

<2> Function

Places the device in the HALT mode.

In the HALT mode, the power consumption for the device is reduced.

The condition, under which the HALT mode is to be released, is specified by operand (h).

For HALT releasing condition (h), refer to 16.2 HALT MODE .

(3) NOP No operation

<1> OP code

<2> Function

Performs nothing and consumes one machine cycle.

00111 010 1111 s

3 0

00111 011 1111 h

3 0

00111 100 1111 0000

[MEMO]

254

CHAPTER 20 ASSEMBLER RESERVED WORDS

20.1 MASK OPTION DIRECTIVE

The µPD173134A, 17135A, 17136A, and 17137A have the following mask options.

• Internal pull-up resistor of RESET pin

• Internal pull-up resistor of P0D3 through P0D0 pins

• Internal pull-up resistor of P1A3 through P1A0 pins

• Internal pull-up resistor of P1B0 pin

When developing a program, all the above mask options must be specified in the source program by using mask

option directives.

20.1.1 Specifying Mask Option

The mask options are described in the assembler source program by using the following directives.

• OPTION and ENDOP directives

• Mask option definition directive

(1) OPTION and ENDOP directives

These directives specify the range in which the mask option is to be described (mask option definition block).

Specify the mask option by describing the mask option directive in an area between the OPTION and ENDOP

directives.

Description format

Symbol field Mnemonic field Operand field Comment field

[label:] OPTION [;comment]

ENDOP

......

255

CHAPTER 20 ASSEMBLER RESERVED WORDS

256

(2) Mask option definition directive

Table 20-1. Mask Option Definition Directive

Option Definition directive and format Operand Definition

Internal pull-up resistor OPTRES <operand> OPEN None

of RESET pin PULLUP Provided

Internal pull-up resistor of OPTP0D <operand 1>, ..., <operand 4>Note 1 OPEN None

P0D3 through P0D0 pins PULLUP Provided

Internal pull-up resistor of OPTP1A <operand 1>, ..., <operand 4>Note 2 OPEN None

P1A3 through P1A0 pins PULLUP Provided

Internal pull-up resistor of OPTP1B <operand> OPEN Not used

P1B0 pin PULLUP Used

Notes 1. <operand 1>, <operand 2>, <operand 3>, and <operand 4> specify the mask options of the P0D3,

P0D2, P0D1, and P0D0 pins, respectively.

2. <operand 1>, <operand 2>, <operand 3>, and <operand 4> specify the mask options of the P1A3,

P1A2, P1A1, and P1A0 pins, respectively.

(3) Example of describing mask option

; Example of describing mask option of µPD17134A subseries

MASK_OPTION:

OPTION ; Start of mask option definition block

OPTRES PULLUP ; Internal pull-up resistor is connected to RESET pin.

OPTP0D PULLUP, PULLUP, OPEN, OPEN ; Internal pull-up resistor is connected to P0D3 and P0D2 pins.

; P0D1 and P0D0 are open (externally pulled up).

OPTP1A PULLUP, OPEN, PULLUP, OPEN ; P1A3 and P1A1 pins are connected to internal pull-up resistor.

; P1A2 and P1A0 pins are open (externally pulled up).

OPTP1A PULLUP ; P1B0 pin is connected to internal pull-up resistor.

ENDOP ; End of mask option definition block

CHAPTER 20 ASSEMBLER RESERVED WORDS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

257

20.2 RESERVED SYMBOLS

The reserved symbols defined in the µPD17134A, 17135A, 17136A, and 17137A device file (AS17134) are listed

below.

System register (SYSREG)

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

FLG

MEM

MEM

MEM

MEM

MEM

MEM

FLG

FLG

FLG

FLG

FLG

0.74H

0.75H

0.76H

0.77H

0.78H

0.79H

0.7AH

0.7AH

0.7AH.3

0.7BH

0.7BH

0.7CH

0.7DH

0.7EH

0.7FH

0.7EH.0

0.7FH.3

0.7FH.2

0.7FH.1

0.7FH.0

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Bits 15 to 12 of the address register

Bits 11 to 8 of the address register

Bits 7 to 4 of the address register

Bits 3 to 0 of the address register

Window register

Bank register

Index register high

Data memory row address pointer high

Memory pointer enable flag

Index register middle

Data memory row address pointer low

Index register low

General register pointer high

General register pointer low

Program status word

BCD flag

Compare flag

Carry flag

Zero flag

Index enable flag

Read/

write
DescriptionValueSymbolic

name

AR3

AR2

AR1

AR0

WR

BANK

IXH

MPH

MPE

IXM

MPL

IXL

RPH

RPL

PSW

BCD

CMP

CY

Z

IXE

Attribute

CHAPTER 20 ASSEMBLER RESERVED WORDS

258

 Data buffer (DBF)

Port register

DBF3

DBF2

DBF1

DBF0

MEM

MEM

MEM

MEM

0.0CH

0.0DH

0.0EH

0.0FH

R/W

R/W

R/W

R/W

DBF bits 15 to 12

DBF bits 11 to 8

DBF bits 7 to 4

DBF bits 3 to 0

Read/

write
DescriptionValueSymbolic

name

P0A3

P0A2

P0A1

P0A0

P0B3

P0B2

P0B1

P0B0

P0C3

P0C2

P0C1

P0C0

P0D3

P0D2

P0D1

P0D0

P1A3

P1A2

P1A1

P1A0

P1B0

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

0.70H.3

0.70H.2

0.70H.1

0.70H.0

0.71H.3

0.71H.2

0.71H.1

0.71H.0

0.72H.3

0.72H.2

0.72H.1

0.72H.0

0.73H.3

0.73H.2

0.73H.1

0.73H.0

1.70H.3

1.70H.2

1.70H.1

1.70H.0

1.71H.0

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

 R

Port 0A bit 3

Port 0A bit 2

Port 0A bit 1

Port 0A bit 0

Port 0B bit 3

Port 0B bit 2

Port 0B bit 1

Port 0B bit 0

Port 0C bit 3

Port 0C bit 2

Port 0C bit 1

Port 0C bit 0

Port 0D bit 3

Port 0D bit 2

Port 0D bit 1

Port 0D bit 0

Port 1A bit 3

Port 1A bit 2

Port 1A bit 1

Port 1A bit 0

Port 1B bit 0

Read/

write
Symbolic

name
Value Description

Attribute

Attribute

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

CHAPTER 20 ASSEMBLER RESERVED WORDS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

259

Register file (control register)

Symbolic

name
Attribute Value Description

SP

SIOTS

SIOHIZ

SIOCK1

SIOCK0

WDTRES

WDTEN

TM0OSEL

SIOEN

P0BGPU

P0AGPU

INT

PDRESEN

TM0EN

TM0RES

TM0CK1

TM0CK0

TM1EN

TM1RES

TM1CK1

TM1CK0

BTMISEL

BTMRES

BTMCK1

BTMCK0

P0C3IDI

P0C2IDI

P0C1IDI

P0C0IDI

P0CBIO3

P0CBIO2

P0CBIO1

P0CBIO0

ZCROSS

IEGMD1

IEGMD0

ADCSTRT

ADCSOFT

ADCCMP

ADCEND

MEM

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

0.81H

0.82H.3

0.82H.2

0.82H.1

0.82H.0

0.83H.3

0.83H.0

0.8BH.3

0.8BH.0

0.8CH.1

0.8CH.0

0.8FH.0

0.90H.0

0.91H.3

0.91H.2

0.91H.1

0.91H.0

0.92H.3

0.92H.2

0.92H.1

0.92H.0

0.93H.3

0.93H.2

0.93H.1

0.93H.0

0.9BH.3

0.9BH.2

0.9BH.1

0.9BH.0

0.9CH.3

0.9CH.2

0.9CH.1

0.9CH.0

0.9DH.0

0.9FH.1

0.9FH.0

0.0A0H.0

0.0A1H.3

0.0A1H.1

0.0A1H.0

Read/

write

Stack pointer

SIO start flag

SO pin state

SIO source clock selection flag bit 1

SIO source clock selection flag bit 0

Watchdog timer reset flag

Watchdog timer enable flag

Flag for switching timer 0 output and port

SIO enable flag

P0B group pull-up selection flag (pull-up = 1)

P0A group pull-up selection flag (pull-up = 1)

INT pin status flag

Power-down reset enable flag

Timer 0 enable flag

Timer 0 reset flag

Timer 0 source clock selection flag bit 1

Timer 0 source clock selection flag bit 0

Timer 1 enable flag

Timer 1 reset flag

Timer 1 source clock selection flag bit 1

Timer 1 source clock selection flag bit 0

BTM interrupt request clock selection flag

BTM reset flag

BTM source clock selection flag bit 1

BTM source clock selection flag bit 0

P0C3 input port disable flag (ADC3/P0C3 selection)

P0C2 input port disable flag (ADC2/P0C2 selection)

P0C1 input port disable flag (ADC1/P0C1 selection)

P0C0 input port disable flag (ADC0/P0C0 selection)

P0C3 input/output selection flag (1 = output port)

P0C2 input/output selection flag (1 = output port)

P0C1 input/output selection flag (1 = output port)

P0C0 input/output selection flag (1 = output port)

Zerocross detector enable flag

INT pin edge detection selection flag bit 1

INT pin edge detection selection flag bit 0

A/D converter start flag (always 0 when read)

A/D converter software control flag (1 = single mode)

A/D converter comparison result flag (valid only in single mode)

A/D converter conversion end flag

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

CHAPTER 20 ASSEMBLER RESERVED WORDS

260

Peripheral register

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

0.0A2H.3

0.0A2H.2

0.0A2H.1

0.0A2H.0

0.0ABH.3

0.0ABH.2

0.0ABH.1

0.0ABH.0

0.0ACH.2

0.0ACH.1

0.0ACH.0

0.0AEH.0

0.0AFH.3

0.0AFH.2

0.0AFH.1

0.0AFH.0

0.0BBH.0

0.0BCH.0

0.0BDH.0

0.0BEH.0

0.0BFH.0

Read/

write
Symbolic

name
Attribute Value Description

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Dummy flag

Dummy flag

A/D converter channel selection flag bit 1

A/D converter channel selection flag bit 0

P0D3 input/output selection flag (1 = output port)

P0D2 input/output selection flag (1 = output port)

P0D1 input/output selection flag (1 = output port)

P0D0 input/output selection flag (1 = output port)

P1A group input/output selection flag (1 = all P1As are output ports.)

P0B group input/output selection flag (1 = all P0Bs are output ports.)

P0A group input/output selection flag (1 = all P0As are output ports.)

SIO interrupt enable flag

BTM interrupt enable flag

TM1 interrupt enable flag

TM0 interrupt enable flag

INT pin interrupt enable flag

SIO interrupt request flag

BTM interrupt request flag

TM1 interrupt request flag

TM0 interrupt request flag

INT pin interrupt request flag

ADCCH3

ADCCH2

ADCCH1

ADCCH0

P0DBIO3

P0DBIO2

P0DBIO1

P0DBIO0

P1AGIO

P0BGIO

P0AGIO

IPSIO

IPBTM

IPTM1

IPTM0

IP

IRQSIO

IRQBTM

IRQTM1

IRQTM0

IRQ

DAT

DAT

DAT

DAT

DAT

DAT

01H

02H

03H

04H

45H

40H

Read/

write
Symbolic

name
Attribute Value Description

R/W

W

W

R/W

R

R/W

Peripheral address of the shift register

Peripheral address of the timer 0 modulo register

Peripheral address of the timer 1 modulo register

Peripheral address of A/D converter data register

Peripheral address of timer 0 timer 1 count register

Peripheral address of the address register for GET, PUT, PUSH, CALL,

BR, MOVT, and INC instructions

SIOSFR

TM0M

TM1M

ADCR

TM0TM1C

AR

Others

DAT

DAT

0FH

01H

Attribute Value Description

DBF

IX

Fixed operand value of PUT, GET, or MOVT instruction

Fixed operand value of INC instruction

Symbolic

name

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

A
P

P
E

N
D

IX
 A

 D
E

V
E

LO
P

M
E

N
T

 O
F

 µP
D

171×× S
U

B
S

E
R

IE
S

261

A/D
Timer
Serial interface

: 4ch
: 3ch
: 1ch

PD17137A
PD17136A

PD17135A
PD17134A

ROM: 4 KB, ceramic
ROM: 4KB, RC

ROM: 2 KB, ceramic
ROM: 2 KB, RC

PD17149
PD17147

PD17145

ROM: 8 KB, ceramic
ROM: 4 KB, ceramic

ROM: 2 KB, ceramic

A/D
Timer
Serial interface

: 4ch
: 3ch
: 1ch

Comparator
Timer
Serial interface

: 4ch
: 1ch
: 1ch

Timer
Serial interface

: 1ch
: 1ch

PD17133
PD17132

ROM: 2 KB, ceramic
ROM: 2 KB, RC

PD17121
PD17120

ROM: 1.5 KB, ceramic
ROM: 1.5 KB, RC

PD17104L
PD17104

PD17108L
PD17108

Ceramic, low-voltage: 1.8 V MIN.
Ceramic

RC: low-voltage: 1.5 V MIN.
RC

ROM 1 KB

ROM 1 KB
PD17103L

PD17103
PD17107L

PD17107

Ceramic, low-voltage: 1.8 V MIN.
Ceramic

RC, low-voltage: 1.5 V MIN.
RC

Tiny controller

Small general-purpose controllers
(One-time PROM model is available for all models.)

Number of pins16 22 24 28

P
er

fo
rm

an
ce

Medium-voltage port
AC zerocross

µ
µ

µ
µ

µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

262

[MEMO]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

263

APPENDIX B COMPARISON OF FUNCTIONS BETWEEN µPD17135A, 17137A,
AND µPD17145 SUBSERIES

(1/2)

µPD17145 µPD17147 µPD17149 µPD17135A µPD17137A

ROM 2K bytes 4K bytes 8K bytes 2K bytes 4K bytes

RAM 110 × 4 bits 112 × 4 bits

Stack Address stack × 5 levels

Interrupt stack × 3 levels

Instruction execution time 2 µs (fX = 8 MHz, VDD = 4.5 to 5.5 V) 2 µs (fX = 8 MHz, VDD = 4.5 to 5.5 V)

(clock, supply voltage) 4 µs (fX = 4 MHz, VDD = 3.6 to 5.5 V) 4 µs (fX = 4 MHz, VDD = 2.7 to 5.5 V)

8 µs (fX = 2 MHz, VDD = 2.7 to 5.5 V)

I/O CMOS I/O 12 (P0A, P0B, P0C)

Input 2 (P0F0, P0F1) 1 (P1B0)

Sense input 1 (INT) 1 (INT)

Can be pulled up by mask option

N-ch open-drain I/O 8 (P0D, P0E, voltage: VDD) 8 (P0D, P1A, voltage: 9 V)

P0D pull up: software P0D pull up: mask option

P0E pull up: software P1A pull up: mask option

Internal pull-up resistor 100 kΩ TYP. (except P0D) 100 kΩ TYP.

10 kΩ TYP. (P0D)

A/D converter (supply voltage) 8 bits × 4 channels (VDD = 4.0 to 5.5 V) 8 bits × 4 channels (VDD = 4.5 to 5.5 V)

Reference voltage pin VREF (VREF = 2.5 to VDD) None (VREF = VADC = VDD)

Timer 8 bits (TM0, TM1) 2 (timer output: TM1OUT) 2 (timer output: TM0OUT)

TM0 clock : fX/512 TM0 clock : fX/256

fX/64 fX/64

fX/16 fX/16

INT INT

TM1 clock : fX/8192 TM1 clock : fX/1024

fX/128 fX/512

fX/16 fX/256

TM0 count up TM0 count up

Basic interval timer 1 (multiplexed with watchdog timer) 1 (multiplexed with watchdog timer)

(BTM) Count pulse : fX/16384 Count pulse : fX/8192

fX/4096 fX/4096

fX/512 TM0 count up

fX/16 INT

Interrupt External 1 1

(with AC zero cross detection function)

Internal 4 (TM0, TM1, BTM, SIO)

SIO 1 (clocked 3-wire)

Output latch Independent of P0D1 latch Multiplexed with P0D1 latch

264

(2/2)

µPD17145 µPD17147 µPD17149 µPD17135A µPD17137A

Standby function HALT, STOP HALT, STOP

(with input pin RLS for releasing)

Oscillation stabilization wait time 128 × 256 counts 512 × 256 counts

POC function Mask option Internal

Package 28-pin plastic SDIP (400 mil)

28-pin plastic SOP (375 mil)

One-time PROM µPD17P149 µPD17P137A

Caution The µPD17145 subseries is not pin-compatible with the µPD17135A and 17137A. The µPD17145

subseries has no model equivalent to the µPD17134A and 17136A (RC oscillation type).

For the electrical characteristics, refer to the Data Sheet of each model.

Remark fX: system clock oscillation frequency

APPENDIX B COMPARISON OF FUNCTIONS BETWEEN µPD17135A, 17137A, AND µPD17145 SUBSERIES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

265

APPENDIX C DEVELOPMENT TOOLS

The following support tools are available for developing programs for the µPD17134A subseries.

Hardware

Name

In-circuit emulator

 IE-17K

 IE-17K-ETNote1

 EMU-17KNote2

PROM programmer

 AF-9703Note4

 AF-9704Note4

 AF-9705Note4

 AF-9706Note4

SE board (SE-17134)

Emulation probe

(EP-17K28CT)

Emulation probe

(EP-17K28GT)

Conversion adapter

(EV-9500GT-28Note3)

Outline

These are in-circuit emulators that can be commonly used with microcontrollers in 17K series.

IE-17K and IE-17K-ET are connected to a host machine, NEC PC-9800 series or IBM PC/ATTM,

through RS-232-C. EMU-17K is mounted in expansion slot of NEC PC-9800 series that serves as

host machine.

When these in-circuit emulators are used in combination with the evaluation board (SE board)

dedicated to each model of microcontroller, they operate as emulators corresponding to microcontroller.

When these in-circuit emulators are used with man-machine interface software SIMPLEHOSTTM, a

more sophisticated debugging environment can be created.

EMU-17K also has a function that allows you to monitor data memory contents real-time.

SE-17134 is an SE board for µPD17134A subseries series. It can be used alone for system evaluation

or in combination with an in-circuit emulator for debugging.

EP-17K28CT is an emulation probe for 17K series 28-pin shrink DIP (400 mil) and connects SE board

and target system.

EP-17K28GT is an emulation probe for 17K series 28-pin SOP (375 mil) and connects SE board and

target system by being used with EV-9500GT-28Note3.

EV-9500GT-28 is an adapter for 28-pin SOP (375 mil) and is used to connect EP-17K28GT to target

system.

AF-9703, AF-9704, AF-9705, and AF-9706 are PROM programmers corresponding to µPD17P136A

and 17P137A. When connected with program adapter AF-9808F, these programmers can be used

to program µPD17P136A and 17P137A.

AF-9808F is an adapter for programming µPD17P136A and 17P137A, and is used in combination with

AF-9703, AF-9704 or AF-9706.

Programmer adapter

(AF-9808FNote4)

Notes 1. Low-price model: external power supply type

2. This is a program of IC Corp. For details, consult IC.

3. Two EV-9500GT-28 are supplied as accessories with the EP-17K28GT. Five EV-9500GT-28's are

optionally available as a set.

4. Manufactured by Ando Electric. For details, consult Ando Electric.

266

Name Description Distribution
media

Host machine Part number

17K series

assembler (AS17K)

Device file

(AS17134)

Support software

(SIMPLEHOST)

Software

OS

AS17K is an assembler

applicable to the 17K series.

In developing µPD17134A,

17135A, 17136A, and 17137A

programs, AS17K is used in

combination with a device file

(AS17134).

AS17134 is a device file for

the µPD17134A, 17135A,

17136A, and 17137A.

It is used together with the

assembler (AS17K) which is

applicable to the 17K series.

SIMPLEHOST, running on the

WindowsTM, provides man-

machine-interface in develop-

ing programs by using a

personal computer and the in-

circuit emulator.

Remark The supported OS versions are as follows:

 OS Version

MS-DOS Ver. 3.30 to Ver. 5.00ANote

PC DOS Ver. 3.1 to Ver. 5.0Note

Windows Ver. 3.0 to Ver. 3.1

Note Although MS-DOS Ver. 5.00/5.00A and PC DOS

Ver. 5.0 have a task swap function, this function

cannot be used with this software.

5-inch, 2HD

3.5-inch, 2HD

5-inch, 2HC

5-inch, 2HD

3.5-inch, 2HD

5-inch, 2HC

5-inch, 2HD

3.5-inch, 2HD

5-inch, 2HC

µS5A10AS17K

µS5A13AS17K

µS7B10AS17K

µS5A10AS17134

µS5A13AS17134

µS7B10AS17134

µS5A10IE17K

µS5A13IE17K

µS7B10IE17K

Windows

PC DOS

MS-DOS

PC DOS

MS-DOS

PC DOSTM

MS-DOSTM
PC-9800

series

IBM PC/AT

PC-9800

series

IBM PC/AT

PC-9800

series

IBM PC/AT

APPENDIX C DEVELOPMENT TOOLS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

267

APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT

The system clock oscillation circuit oscillates by using a ceramic resonator connected across the X1 and X2 pins

or an oscillation resistor connected across the OSC1 and OSC0 pins.

Figure D-2 shows the external circuits of the system clock oscillation circuit.

Figure D-1. External Circuit of System Clock Oscillation Circuit

Caution Wire the system clock oscillation circuit so that the resistance component and inductance

component of the ground wiring can be minimized. Wire the portion enclosed in the dotted line

in Figure D-1 as follows to prevent influence of wiring capacitance.

• Keep the wiring length as short as possible.

• Do not cross the wiring with the other signal lines. Keep a distance between the wiring and

a line through which a high alternating current flows.

• Always keep the ground point of the capacitor of the oscillation circuit at the same potential

as VSS. Do not ground the wiring to a ground pattern through which a high current flows.

• Do not extract signals from the oscillation circuit.

Figure D-2 shows an examples of incorrect oscillation circuits.

Ceramic resonator

XOUT XIN GND

PD17135A
PD17137A
PD17P137A

PD17134A
PD17136A
PD17P136A

OSC0 OSC1

Oscillation resistor

µ
µ
µ

µ
µ
µ

268

Figure D-2. Example of Incorrect Oscillation Circuits

(a) Wiring length of circuit is too long. (b) Crossed signal lines

(c) Signal line close to high alternating current (d) Current flowing through ground line of

oscillation circuit (potential at points A and B

changes in respect to point C)

(e) Signal is extracted

APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT

Too long

XOUT XIN GND XOUT XIN GNDPORT

XOUT XIN GND

High
current

XOUT XIN GNDPORT

High current

A B C

XOUT XIN GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

269

APPENDIX E INSTRUCTION LIST

E.1 INSTRUCTION LIST (by function)

[Addition Instructions]

ADD r, m ... 198

ADD m, #n4 ... 201

ADDC r, m ... 203

ADDC m, #n4 ... 205

INC AR ... 206

INC IX ... 208

[Subtraction Instructions]

SUB r, m ... 209

SUB m, #n4 ... 211

SUBC r, m ... 212

SUBC m, #n4 ... 214

[Logical Operation Instructions]

OR r, m ... 216

OR m, #n4 ... 216

AND r, m ... 217

AND m, #n4 ... 218

XOR r, m ... 219

XOR m, #n4 ... 220

[Judgment Instructions]

SKT m, #n ... 221

SKF m, #n ... 223

[Comparison Instructions]

SKE m, #n4 ... 223

SKNE m, #n4 ... 223

SKGE m, #n4 ... 224

SKLT m, #n4 ... 224

[Rotation Instructions]

RORC r ... 226

[Transfer Instructions]

LD r, m ... 227

ST m, r ... 228

MOV @r, m ... 231

MOV m, @r ... 231

MOV m, #n4 ... 233

MOVT DBF, @AR ... 234

PUSH AR ... 235

POP AR ... 237

PEEK WR, rf ... 238

POKE rf, WR ... 239

GET DBF, p ... 240

PUT p, DBF ... 241

[Branch Instructions]

BR addr ... 243

BR @AR ... 243

[Subroutine Instructions]

CALL addr ... 246

CALL @AR ... 247

RET ... 249

RETSK ... 249

RETI ... 250

[Interrupt Instructions]

EI ... 251

DI ... 252

[Other Instructions]

STOP s ... 253

HALT h ... 253

NOP ... 253

270

E.2 IINSTRUCTION LIST (alphabetical order)

[A]

ADD m, #n4 ... 201

ADD r, m ... 198

ADDC m, #n4 ... 205

ADDC r, m ... 203

AND m, #n4 ... 218

AND r, m ... 217

[B]

BR addr ... 243

BR @AR ... 243

[C]

CALL addr ... 246

CALL @AR ... 247

[D]

DI ... 252

[E]

EI ... 251

[G]

GET DBF, p ... 240

[H]

HALT h ... 253

[I]

INC AR ... 206

INC IX ... 208

[L]

LD r, m ... 227

[M]

MOV m, #n4 ... 233

MOV m, @r ... 231

MOV @r, m ... 231

MOVT DBF, @AR ... 234

[N]

NOP ... 253

[O]

OR m, #n4 ... 216

OR r, m ... 216

[P]

PEEK WR, rf ... 238

POKE rf, WR ... 239

POP AR ... 237

PUSH AR ... 235

PUT p, DBF ... 241

[R]

RET ... 249

RETI ... 250

RETSK ... 249

RORC r ... 226

[S]

SKE m, #n4 ... 223

SKF m, #n ... 221

SKGE m, #n4 ... 224

SKLT m, #n4 ... 224

SKNE m, #n4 ... 223

SKT m, #n ... 221

ST m, r ... 228

STOP s ... 253

SUB m, #n4 ... 211

SUB r, m ... 209

SUBC m, #n4 ... 214

SUBC r, m ... 212

[x]

XOR m, #n4 ... 220

XOR r, m ... 219

APPENDIX E INSTRUCTION LIST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

271

APPENDIX F ORDERING MASK ROM

After developing the program, place an order for the mask ROM version, according to the following procedure:

(1) Make reservation when ordering mask ROM.

Advise NEC of the schedule for placing an order for the mask ROM. If NEC is not informed in advance, on-

time delivery may not be possible.

(2) Create ordering medium.

Use UV-EPROM to place an order for the mask ROM.

Add /PROM as an assemble option of the Assembler (AS17K), and create a mask ROM ordering HEX file (with

extender for .PRO).

Next, write the mask ROM ordering HEX file into the UV-EPROM.

Create three UV-EPROMs with the same contents.

(3) Prepare necessary documents.

Fill out the following forms to place an order for the mask ROM:

• Mask ROM ordering sheet

• Mask ROM ordering check sheet

(4) Ordering

Submit the media created in (2) and documents prepared in (3) to NEC by the specified date.

Caution For details, refer to information document ROM Code Ordering Procedure (IEM-1366).

272

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 96.8

Name

Company

From:

Tel. FAX

Facsimile Message

